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Diabetes is a global health problem. The consumption of dietary polyphenols may help 

to decrease the risk of type 2 diabetes and slow the progression of diabetic complications. 

Aronia (Aronia melanocarpa) and elderberry (Sambucus nigra L. ssp. canadensis) fruits are rich 

in polyphenols and exhibit health-promoting properties, but they are underutilized. Aronia and 

elderberries are rarely consumed raw due to the astringent mouth feel. New food products are 

needed to increase their consumption. Kefir, a fermented dairy beverage, was chosen to be the 

matrix for incorporating berries due to: 1) the protein matrix can help mask the astringency; 2) 

an acidic environment is beneficial for the stability of phenolic compounds; 3) fermentative 

microorganisms may be able to increase the bioavailability of polyphenols. 

The first objective of this research was to develop new palatable products using 

underutilized berries and different sweeteners (sucrose, stevia and monk fruit extracts). 

Sensory evaluations were conducted to assess consumer acceptability of berry-containing 



 
 

kefirs. The results showed that aronia and elderberry kefirs sweetened with stevia or sucrose 

were all accepted by consumers where sucrose was the best-accepted sweetener. The second 

objective was to assess the health-promoting characteristics of the berry-containing kefirs. 

Aronia kefirs contained high levels of total phenolics and anthocyanins. Elderberry kefirs were 

moderate in total phenolics. All kefirs exhibited antioxidant capacity. The third objective was to 

evaluate the diabetes-beneficial properties of aronia kefir using an in-vitro digestion model. The 

impacts of fermentation on aronia polyphenols were also assessed. The results showed that the 

levels of bioaccessible polyphenols were elevated during digestion and the antioxidant capacity 

increased. Fermentation enhanced the inhibitory activity of aronia kefir on α-glucosidase but 

did not alter its weak inhibition on pancreatic α-amylase. Specific inhibition of α-glucosidase 

may decrease the absorption of carbohydrates and contribute to blood glucose control without 

side effects compared to pharmaceutical agents, such as acarbose. 

In conclusion, new berry-containing kefirs were well-accepted by the consumers and the 

consumption of berry-containing kefirs may help to reduce oxidative stress and aid in blood 

glucose control. In addition, fermentation may be a good strategy to increase the bioavailability 

of dietary polyphenols.  
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CHAPTER 1 

LITERATURE REVIEW 

The prevalence of diabetes has grown rapidly. In 2015, 9.4% of the United States 

population had diabetes [1]. Epidemiological studies demonstrate that the consumption of 

bioactive compounds from various fruits and vegetables may help to decrease the risk of 

chronic diseases, including diabetes [2, 3]. In addition, bioactive compounds obtained from the 

diet have been shown to be beneficial to prevent and delay secondary diabetic complications 

[4]. Aronia berries and elderberries are rich in bioactive compounds, but they lack palatability 

and are rarely consumed raw. New food products using aronia and elderberries were 

developed in this research. The hypotheses of this research were: 1) sucrose-sweetened berry 

kefirs will be better accepted by consumers compared to products sweetened with non-

nutritive sweeteners; and 2) fermentation will improve the bioavailability of dietary 

polyphenols. In this literature review, the mechanism of diabetes, the health-promoting 

properties and the bioavailability of polyphenols will be introduced. In addition, current studies 

focusing on the health-beneficial properties of aronia berries, elderberry and kefir will be 

discussed in detail.  

1.1 Oxidative Stress and Type 2 Diabetes 

Oxidative stress is an underlying mechanism for the development and progression of 

type 2 Diabetes Mellitus (T2DM). In individuals with T2DM, hyperglycemia can increase the 

production of reactive oxygen/nitrogen species, which elevates cellular oxidative stress [4]. 

Strategies that decrease oxidative stress may help to decrease the risk of T2DM and its 
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secondary complications. The occurrence of oxidative stress and its relationship with T2DM will 

be explained in this section. 

1.1.1 Oxidative Stress 

Under aerobic conditions, oxygen participates in the energy production process in living 

organisms [5]. In eukaryotes, more than 90% of consumed oxygen is converted to water by 

cytochrome oxidase located in electron-transport chain (ETC) in mitochondria. Less than 10% of 

consumed oxygen is reduced to reactive oxygen species (ROS) [6]. ROS include hydrogen 

peroxide (H2O2), hydroxyl radicals (·OH), and superoxide radical (O2·-). ROS are important 

molecules involved in the normal metabolism of cells. They can directly interact with signaling 

molecules and participate in pathways that are critical to cell survival and proliferation [7, 8]. In 

addition to mitochondria, plasma membranes, endoplasmic reticulum and lysosomes also 

generate ROS [9]. Cells have an antioxidant defense system to scavenge ROS and maintain 

redox homeostasis. Antioxidant enzymes, such as superoxide dismutase (SOD), glutathione 

peroxidase (GPx) and catalase (CAT), are vital players in the free radical detoxifying process 

[10]. SOD can neutralize superoxide to less toxic hydrogen peroxide. Hydrogen peroxide can be 

converted to water and hydrogen by CAT and/or GPx [11]. Under normal conditions, the 

capacity of the antioxidant defense system is adequate to neutralize the ROS and no oxidative 

damage occurs to cells and tissues. 

Oxidative stress is defined as an imbalance between the production of ROS and the 

elimination capacity of the antioxidant defense system where oxidative damages may occur to 

cellular proteins, lipids and DNA [12, 13]. Oxidative stress is associated with the overproduction 

of ROS and/or a decline in the antioxidant defense system. Oxidative stress can be triggered by 



3 
 

an unhealthy diet, such as high-fat and high-sugar diets. In addition, sedentary lifestyle and 

abnormal metabolic conditions including hyperglycemia and hyperlipidemia can aggravate 

oxidative stress [14]. Under oxidative stress conditions, excessive ROS can react with nitric 

oxide (NO) and form reactive nitrogen species (RNS), including peroxynitrite (ONOO-) and 

nitrogen dioxide (NO2) [15]. RNS is another group of free radicals that can result in oxidative 

damages to cells. Excessive ROS/RNS can modify the structure of proteins and lipids, and impair 

their function [15]. Elevated ROS/RNS may lead to damages to the mitochondrial membrane 

and DNA, which can result in apoptosis [16]. Oxidative stress can intensify metabolic disorders 

and increase the risk of several diseases, such as cardiovascular disease, neurodegenerative 

diseases and diabetes mellitus. Additionally, oxidative stress can accelerate the development 

and progression of secondary complications of chronic diseases. 

1.1.2 Oxidative Stress and Chronic Inflammation  

Inflammation is part of the body’s defense system against threats, such as infection and 

injury  [17]. There are two stages of inflammation: acute and chronic [18]. Acute inflammation 

only persists for a short duration and benefits the host. If acute inflammation cannot eliminate 

these threats, the inflammatory response will continue and chronic inflammation will be 

developed [19]. Chronic inflammation is closely interrelated with oxidative stress [20]. ROS can 

activate pro-inflammatory pathways, such as NF-ƙB and elevate the production of pro-

inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) [19]. 

Under chronic inflammatory conditions, the phagocytic cells can generate ROS/RNS and induce 

oxidative damage to tissues. In addition, the pro-inflammatory cytokines can also trigger the 

generation of ROS/RNS in non-phagocytic cells [21]. Thus, a vicious cycle between chronic 
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inflammation and oxidative stress is formed. In addition to oxidative stress, chronic 

inflammation is one of the underlying mechanism of the initiation and progression of chronic 

diseases [22]. 

1.1.3 Diabetes Mellitus 

1.1.3.1 Introduction to Diabetes Mellitus 

Diabetes Mellitus (DM) is a chronic metabolic disease that is characterized by high blood 

glucose levels (fasting blood glucose level ≥7 mmol/L) [23], which is associated with insulin 

deficiency and/or insulin resistance [24]. There are two major types of diabetes: type 1 diabetes 

mellitus (T1DM) and type 2 diabetes mellitus (T2DM). T1DM is also known as insulin-dependent 

diabetes and accounts for about 10% of diabetic cases [24]. T1DM is caused by the autoimmune 

destruction of β cells in the pancreatic islets. T1DM can be genetically linked and/or influenced 

by environmental factors [25]. T1DM typically develops in children and teenagers younger than 

19 years old [26]. The destruction of β cells leads to diminished insulin production and 

eventually no production at all.  For type 1 diabetic patients, lifelong exogenous insulin 

administration is necessary to control blood glucose [27]. T2DM is the more predominant type 

which accounts for approximately 90% of all diabetic cases [24]. T2DM is characterized by an 

impairment of insulin secretion and/or a decline in insulin sensitivity [28]. The onset of T2DM is 

strongly influenced by environmental factors, such as unhealthy eating habits, a sedentary 

lifestyle and obesity [29]. Healthy eating habits, regular exercise and pharmaceutical 

medication such as acarbose are used to assist blood glucose control in T2DM patients. 

Exogenous insulin administration may not be involved at the early stage but may be necessary 

when T2DM progresses over time [30]. 
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From a global perspective in 2016, 422 million people were reported to have diabetes 

[31]. The United States Centers for Disease Control and Prevention (CDC) reported that 30.3 

million (9.4%) of the United States population had diabetes in 2015 including 1.5 million newly 

diagnosed patients [1]. Diabetic patients need strict control of their blood glucose levels, 

otherwise complications may occur and deteriorate the individual's quality of life [32]. In the 

United States, the expense of diabetic health care is the highest among 155 disease conditions 

and health-related problems, including ischemic heart disease and cancer [33]. The annual 

expense of diabetic health care in 2013 was $101.4 billion where 57.6% was spent on 

medication and 23.5% was spent on ambulatory care. From 1996 to 2013, the prevalence of 

diabetes in the United States increased from 3.0% to 6.5% and the diabetic health care cost 

increased $64.4 billion in this time period [31, 33].  

1.1.3.2 Diabetic Complications 

Individuals with diabetes may suffer chronic or acute complications. Acute diabetic 

complications include ketoacidosis in individuals with T1DM and coma due to hypoglycemia 

[11]. Chronic diabetic complications are associated with damage to vascular endothelial cells 

caused by hyperglycemia. Vascular endothelial cells are susceptible to hyperglycemia due to 

lack of ability to down-regulate glucose uptake while extracellular glucose levels are elevated. 

[34]. Chronic diabetic complications are grouped into either microvascular (retinopathy, 

neuropathy and nephropathy) or macrovascular complications (diabetic cardiovascular 

diseases).  
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Diabetic retinopathy (DR) is diagnosed by the lesions in the retinal vascular system. The 

development of DR is associated with increased vascular permeability. This is caused by 

hyperglycemia via damage to the blood-retinal barrier, inducing edema and loss of pericytes 

[35, 36]. DR is the leading cause of vision loss worldwide among middle-aged and elderly people 

[37] and the vision loss is irreversible. The prevalence of diabetic retinopathy is estimated to 

reach 247.3 million by 2030 [38]. Almost all T1DM patients will develop retinopathy after 

twenty years of being diagnosed with diabetes [37]. More than 80% of insulin-treated and 50% 

of non-insulin-treated T2DM patients will develop some degree of retinopathy after having 

diabetes for two decades. Early detection and tight blood glucose control are beneficial to delay 

the progression of diabetic retinopathy [39].  

Diabetic neuropathy is associated with progressive degeneration of the nerve fibers or 

whole nerve cells.  Glucose toxicity is the primary cause of the nerve damage [40]. Patients with 

neuropathy have impaired sensation in the limbs, suffer extreme pain or may be asymptomatic 

[40]. The risk of peripheral neuropathy of diabetes increases along with the duration of 

diabetes and it is estimated that more than half of diabetic patients develop neuropathy to 

some extent [41]. For most cases, diabetic peripheral neuropathy is not reversible [40, 42].  

Patients with nephropathy are characterized with morphological and ultrastructural 

changes in the kidney, such as the accumulation of extracellular matrix proteins, glomerular 

basement membrane thickening, podocyte injury, mesangial matrix expansion and 

tubulointerstitial damage [43-45]. Genetic predisposition and environmental factors, such as 

smoking and a sedentary lifestyle, contribute to the development of nephropathy [46, 47]. 
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More than one-third of diabetic patients have hyperglycemia-induced renal changes [48]. 

Kidney transplant or dialysis may be necessary when nephropathy progresses to maintain the 

patient’s life [43]. 

Cardiovascular disease (CVD) is a common macrovascular complication of diabetes 

mellitus, including accelerated atherosclerosis, cardiomyopathy, and stroke [49]. CVD is the 

leading cause of mortality in diabetes where 80% of deaths are caused by myocardial infarction 

and stroke [24, 50]. Diabetic patients have an estimated three to ten-fold higher risk of 

developing cardiovascular diseases compared to the non-diabetic population [51]. Even with 

adequate glycemic control, diabetic patients can still develop diabetic cardiovascular diseases 

[52]. This phenomenon indicates that hyperglycemia is not the only factor in the development 

of diabetic cardiovascular diseases. Other factors, such as excessive ROS, may be more relevant 

[49]. A healthy lifestyle, such as healthy eating habits, frequent exercise and smoking cessation, 

is a necessary component to delay the development and progression of diabetic cardiovascular 

diseases [53, 54].  

1.1.4 Vicious Cycle between Type 2 Diabetes and Oxidative Stress 

 Elevated oxidative stress is common in T2DM. High serum glucose levels can enhance 

ROS/RNS production in the mitochondrial ETC [55]. High glucose level can partially block the 

electron transportation in complex III, which is a multisubunit transmembrane protein that 

plays a critical role in ETC, via increasing the hyperpolarization of the inner mitochondrial 

membrane potential. The inhibited electron transportation leads to excessive electrons which 

are accumulated to coenzyme Q and eventually result in the incomplete reduction of O2 and 
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form superoxide [5]. Increased superoxide production contributes to glucose-induced damages 

to cells by inhibiting glyceraldehyde-3 phosphate dehydrogenase (GAPDH). Hyperglycemia 

activates the following pathways: the polyol pathway, the protein kinase C (PKC) pathway, the 

hexosamine pathway and the advanced glycation end product (AGE) pathway [56]. The 

activation of these pathways will contribute to oxidative stress. In the polyol pathway, an 

increased amount of glucose triggers aldose reductase to convert glucose to poly-alcohol. 

Nicotinamide adenine dinucleotide phosphate (NADPH) is consumed in this process. The 

decreased NADPH leads to a reduced regeneration of glutathione (GSH), which is a ROS 

scavenger, and eventually increases the ROS level [5]. Endothelial hyperglycemia activates the 

PKC pathway by increasing diacylglycerol synthesis. The activated PKC pathway results in the 

activation of NADPH oxidase and generates more ROS [5]. In the hexosamine pathway, 

fructose-6-phosphate is converted to uridine di-phosphate by glutamine fructose-6 phosphate 

amidotransferase (GFAT). Hyperglycemia can increase hexosamine pathway flux and lead to 

elevated GFAT activity. Increased GFAT activity causes more modification of proteins, including 

the modified transcription factor SP1, transforming growth factor β1 and plasminogen activator 

inhibitor-1, which are harmful to blood vessels [5, 56]. AGEs are formed by non-enzymatic 

reactions between extracellular proteins and glucose. In a hyperglycemic condition, the 

inhibition of GAPDH leads to an increased production of the AGE precursor – methylglyoxal that 

is formed from glyceraldehyde-3 phosphate [56]. The increased AGE levels can bind their 

receptors and activate NADPH oxidase. The activation of NADPH oxidase favors the production 

of ROS [5]. In summary, hyperglycemia can contribute to oxidative stress in diabetic patients. 
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Oxidative stress can aggravate the dysfunction of β-cells and insulin resistance which can then 

accelerate the progression of type 2 diabetes. 

1.1.5 Oxidative Stress and Diabetic Complications 

1.1.5.1 Oxidative Stress and Diabetic Microvascular Complications 

Under oxidative stress conditions, the excessive activation of PKC pathways can cause 

and accelerate diabetic complications by inducing blood-flow abnormalities & capillary 

occlusions and increasing vascular permeability [57]. In addition, oxidative stress can increase 

the production of AGE [58]. The intracellular accumulated AGE levels may alter cytoplasmic and 

nuclear factors, such as the alteration of gene transcription [58, 59]. In addition, the AGE can 

cross-link with structural proteins, such as collagen, and result in microvascular structural and 

functional changes. These changes include membrane thickening with reduced elasticity and 

sensitivity to protein clearance [36, 58]. Another mechanism behind increased AGE levels the 

diabetic microvascular complications is the interaction between AGE and their receptors which 

are located on the plasma membrane. This interaction can alter intracellular signaling, gene 

expression, release pro-inflammatory cytokines and free radicals, which can, in turn, increase 

the production of AGEs and result in a vicious cycle [58].  

1.1.5.2 Oxidative Stress and Diabetic Macrovascular Complications 

The development and progression of diabetic cardiovascular disease is associated with 

chronic inflammation which is linked to oxidative stress. Excessive free radicals in the system 

can increase the oxidation of low-density lipoprotein (LDL). The oxidized LDL will increase 

vascular inflammation via augmentation of the intimal macrophage infiltration and the 
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formation of foam-cells [60]. The reaction between AGE and AGE receptors also contributes to 

vascular inflammation by activating nuclear factor (NF)-κB signaling [58]. Chronic vascular 

inflammation contributes to the atherogenesis and the formation of arterial thrombus [61]. In 

addition, ROS can damage contractile function[60]  and induce cardiomyocyte apoptosis [62, 

63]. Thus, the development and progression of diabetic macrovascular complications can be 

accelerated by low-grade inflammation and the action of ROS. 

1.1.6 Dietary Strategies to Decrease Oxidative Stress  

Nutrition plays an important role in the status of redox homeostasis. It is reported that 

diets containing high-sugar and high-fat content can cause oxidative stress [64]. Thus, these 

unhealthy diets can increase the risk of metabolic syndrome and chronic diseases. A decreased 

consumption of fat and sugar may reduce the production of ROS. The consumption of dietary 

antioxidants has been suggested as an effective strategy to decrease oxidative stress due to 

their capacity to eliminate ROS and/or boost the antioxidant defense system. Dietary 

antioxidants, include but are not limited to polyphenols, antioxidant vitamins (such as vitamin C 

and E), carotenoids and oil lecithin [65]. Some minerals, such as selenium and zinc, are also 

considered dietary antioxidants due to their essential roles as cofactors of endogenous 

antioxidant enzymes. The next section will focus on polyphenols and their impacts on T2DM.  
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1.2 Polyphenols 

1.2.1 Introduction  

Polyphenols are secondary, plant-based metabolites that are directly involved in the 

defense system of the plant to overcome abiotic stress [66, 67]. They are the largest group of 

phytochemicals [68]. Polyphenols are categorized by the number of aromatic rings and the 

basic structural elements that bind to the rings. Polyphenols are generally classified into two 

groups: non-flavonoids and flavonoids. Non-flavonoids are sub-classified as phenolic acids, 

lignans and stilbenes [68, 69]. Phenolic acids include hydroxyderivatives of benzoic acid and 

cinnamic acid and their esters. Stilbenes, such as resveratrol, have a double bond between the 

phenolic rings. Lignans are characterized by 2-phenylpropane units  [70]. Flavonoids consist of 

more than 6000 phenolic compounds and account for 60% of total dietary polyphenols [70, 71]. 

Flavonoids are further sub-categorized as flavones, flavonols, isoflavones, anthocyanins, 

flavanols, tannins and flavanones [72]. The chemical structures of some polyphenols are shown 

in Figure 1.1.  

Polyphenols are found in fruits, vegetables and cereal grains [72]. Berries, citrus fruits 

and broccoli are naturally rich in polyphenols. The amount of polyphenols in plants is affected 

by environmental factors, such as sun exposure and rainfall [68]. Polyphenol levels in plants 

may increase due to a response to stressful environmental conditions [66]. In addition, the 

degree of ripeness influences the amount of polyphenols in a fruit. During ripening, the 

phenolic acid content in the fruit decreases while the anthocyanin content usually increases 

[66]. The phenolic compound levels of fruits and vegetables may decrease during processing or 

storage [73]. The stability of individual phenolic compounds is related to structure. For instance, 
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catechin and ellagic acid are susceptible to heat due to its highly hydroxylated structure [73]. 

Cyanidins and delphinidins are less stable than pelargonidins during storage due to catechol 

groups [74]. 

 

                  

 

 

                              

Figure 1.1 Structure of polyphenols 
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 Polyphenols, especially flavanol polymers, are associated with bitter flavors and an 

astringent sensation [75, 76]. Astringency is defined as a puckering, rough and/or dry-mouth 

feel [75]. Bitter and astringency are generally considered as unappealing sensory properties to 

consumers. The plant-based foods that are rich in polyphenols, especially those that are rich in 

flavanols, may lack palatability due to astringency [76]. Sweeteners, like sucrose, are used to 

minimize bitterness and astringency in polyphenol-rich beverages, but beverages with added 

sugar may be less attractive to health-conscious consumers [77].  In order to better capitalize 

on the potential health benefits offered by polyphenols, effective strategies are needed to 

mask the less pleasant flavor and sensation. 

1.2.1.1 Anthocyanins 

Anthocyanins are a subclass of flavonoids that belong to the polyphenol group. They act 

as pollinator attractants and phytoprotective agents. Anthocyanins occur in all parts of plant: 

the leaves, stems, roots, flowers and fruits  [78]. Anthocyanins are odorless and almost 

flavorless, but as other phenolic compounds, they contribute to the astringent.  Structurally, 

anthocyanins have two benzene rings (A and B rings) and a heterocyclic ring (C ring). Most 

anthocyanins are derived from six common aglycones (anthocyanidins): malvidin, petunidin, 

delphinidin, peonidin, pelargonidin and cyanidin [79]. The structure of these aglycones is shown 

in Figure 1.2. In plants, anthocyanins are commonly found in the form of glycosides. A sugar 

moiety normally bonds to form the aglycone at position 3 of the C ring [79]. Sugar moieties that 

are frequently linked to anthocyanidins are glucose, galactose, arabinose and rutinose [79]. 

Anthocyanins are strong antioxidants. The antioxidant capacity of anthocyanins depends on 

their structure [80]. The ability of anthocyanins to neutralize free radicals depends on the 
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delocalization of the π-electron system of aromatic rings. The free radical scavenging capacity 

of anthocyanins is also related to the position of the hydroxyl groups [70].  

 

Figure 1.2 Structures of most common anthocyanidins [79] 
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Figure 1.3 Molecular structure of anthocyanins in different environmental pH levels [84] 
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temperature [88]. Proanthocyanins have a strong ability to bind to proteins and metal ions due 

to their multiple phenolic hydroxyl groups [89]. The interaction between proanthocyanins and 

salivary proteins causes an astringent sensation in the mouth. The intensity of this 

astringency/bitterness is associated with the structure of proanthocyanins, especially the 

degree of polymerization [90]. The levels of proanthocyanins decrease during the ripening 

process of berries due to oxidation/degradation [90]. Food products using berries at their full 

ripeness can help to reduce the unpalatable astringent sensation to some extent. 

1.2.1.3 Phenolic Acids 

 Phenolic acids exist naturally in plants and are subcategorized as benzoic and cinnamic 

acids depending on the number of carbon atoms (Figure 1.1). Benzoic acids contain seven 

carbon atoms, such as gallic acid, salicylic acid, protocatechuic acid and ellagic acid. Cinnamic 

acids contain nine carbon atoms, which include caffeic acid, ferulic acid, chlorogenic acid, p-

coumaric acid, etc. [91]. Compared to hydroxybenzoic acids, hydroxycinnamic acids are more 

commonly found in plant-based foods [92]. Phenolic acids are antioxidants and their 

antioxidant capacity is related to its structure. Based on their antioxidant activity, phenolic 

acids are utilized in the food industry as food preservatives and/or are used to prevent 

enzymatic browning [93]. 

1.2.2 Potential Health-Promoting Characteristics of Polyphenols  

1.2.2.1 Polyphenols and Oxidative Stress 

The consumption of polyphenol-rich foods can increase the antioxidant capacity of the 

human serum. Plaza et al. observed an enhanced serum antioxidant capacity in healthy 

volunteers after consumption of jaboticaba peel (containing 1.25 g total phenolics with 
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anthocyanins as the predominant phenolic compound) [94]. The ability of polyphenols to 

increase serum antioxidant capacity may be achieved by improving the activity of endogenous 

antioxidant enzymes, such as GPx, SOD and CAT. Noratto et al. demonstrated that the GPx 

activity in obese diabetic mice fed with raspberry powder (containing 963 mg of extracted gallic 

acid equivalent phenolics) was higher than the control group (no consumption of raspberry) 

[95]. Wu et al. reported that the consumption of anthocyanin-rich mulberry extract and cherry 

extract (200 mg/kg body weight) increased the activity of SOD and GPx in obese mice [96]. Shen 

et al. conducted an experiment using mice fed with a high-fat diet and demonstrated that 

supplementation with a polyphenol extract (containing flavonols and phenolic acids) from black 

highland barley (600 mg/kg body weight) increased the levels of CAT, SOD and GPx in the liver 

[97]. Increases in the gene expression of these antioxidant enzymes were also observed [97]. 

The improvement in the activity of antioxidant enzymes may enhance the antioxidant defense 

system and be beneficial to reduce oxidative stress. In summary, polyphenol intake shows 

promise to enhance the antioxidant capacity of the blood serum and decrease oxidative stress 

by improving the activity and gene expression of endogenous antioxidant enzymes. 

1.2.2.2 Polyphenols and Chronic Inflammation 

Polyphenols can attenuate chronic inflammation by down-regulating the production of 

pro-inflammatory cytokines and/or up-regulating the generation of anti-inflammatory 

molecules. Lee et al. reported that after an eight-week supplementation with blueberries (10g 

freeze-dried blueberry powder/100g diet), levels of pro-inflammatory cytokines (TNF-α and IL-

1β) in rats were lower compared to rats without blueberry supplementation [98]. Roth et al. 

demonstrated that treatment of ingesting anthocyanin-rich bilberry extract reduced 
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inflammation in patients with ulcerative colitis [99]. Compared to baseline levels (before 

treatment), the levels of pro-inflammatory cytokines (TNF-α and interferon-γ) were decreased 

and the levels of anti-inflammatory cytokines (IL-10) were increased [99]. The cytokine 

regulatory activity of polyphenols may be related to their interaction with cellular proteins, 

such as signaling molecules, receptors and transcription factors, and may influence the signaling 

pathways [100, 101]. In addition, polyphenols may interact with nucleic acids and alter the 

protein expression of inflammation-related molecules [100, 102].  

1.2.2.3 Polyphenols and Type 2 Diabetes 

 Epidemiological studies reveal that higher consumption of polyphenols (mostly 

flavonoids) is correlated with a lower risk of T2DM [2]. Wedick et al. investigated the 

consumption of flavonoids and the risk of T2DM, the results showed that a higher intake of 

anthocyanins was related to a lower risk of developing the disease. No relationship was found 

between the consumption of other flavonoids and T2DM [3]. In addition to epidemiologic 

studies, the beneficial properties of polyphenols are well documented in experimental studies. 

Polyphenol intake can decrease cellular oxidative stress generated by metabolism and 

potentially reduce the risk for the initiation and/or delay the progression of T2DM. In addition, 

the consumption of polyphenols can increase insulin sensitivity and/or secretion, inhibit the 

production of AGE and improve glucose homeostasis by decreasing glucose absorption and/or 

increasing the cellular glucose uptake [103-106]. 
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1.2.2.3.1 Polyphenols and insulin sensitivity. Insulin is the key hormone for maintaining 

glucose homeostasis. Insulin resistance commonly occurs in T2DM patients where the insulin 

signaling and/or action on the target tissues is impaired [107]. Insulin resistance leads to a 

lowered glucose uptake in non-hepatic peripheral tissues, a decreased suppression of hepatic 

glucose production and an elevated level of plasma glucose. Polyphenol consumption can 

attenuate insulin resistance. Oral administration of apple procyanidins ameliorated the hepatic 

insulin resistance in diabetic mice by suppressing hepatic inflammation [108]. The 

administration of anthocyanin-rich mulberry extracts improved insulin sensitivity in diabetic 

mice via activation of AMP-activated protein kinase [109]. Insulin sensitivity was increased in 

insulin-resistant-non-diabetic human subjects by consuming 333 mg/day of strawberry and 

cranberry polyphenol mixtures for six weeks [110]. Increased insulin sensitivity may help to 

decrease the hyperproduction of insulin and then restrain the β-cell failure [107, 111]. In 

summary, polyphenol consumption may help to enhance insulin sensitivity and delay the 

progression of T2DM. 

1.2.2.3.2 Polyphenols and insulin-independent blood glucose control. Polyphenol intake 

can aid in blood glucose control by delaying carbohydrate absorption. The inhibitory activity of 

phenolic compounds on carbohydrate-hydrolyzing enzymes, such as pancreatic α-amylase and 

α-glucosidase, has been well documented [112-114]. Pancreatic α –amylase is responsible for 

hydrolyzing the α-bonds of large polysaccharides, such as starch and glycogen. Alpha-

glucosidase can catalyze the breaking down of 1, 4 - α bonds in oligosaccharides and 

disaccharides. The inhibition of these digestive enzymes delays the digestion of complex 

carbohydrates and reduces the proportion of absorbed glucose [103]. In addition, the 
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consumption of polyphenols can increase the glucose uptake in skeletal muscle cells and help 

to maintain blood glucose homeostasis. This effect may be related to the altered expression 

and activity of GLUT4 through the activation of AMPK and/or PPAR gamma pathways [71, 115-

117].  

1.2.2.1.3 Polyphenols and AGE production. The consumption of dietary polyphenols can 

help to suppress the formation of AGEs under hyperglycemic conditions and delay the 

progression of diabetic complications [118]. The anti-glycation activity has been investigated by 

several in-vivo studies. Umadevi et al. stated that gallic acid had a protective effect on AGE-

induced cardiac fibrosis in rats [119]. Chao et al. observed that the consumption of caffeic acid 

and ellagic acid decreased the formation of glycation products in the kidney of diabetic mice 

[120]. The anti-glycation property of polyphenols is related to their free radical scavenging 

capacity, metal chelating activity and their capacity to trap reactive carbonyl species, such as 

methylglyoxal [121].  

In addition to the beneficial effects of phenolic compounds on diabetes, polyphenols are 

reported to have beneficial activity toward other health-related problems, such as 

cardiovascular disease [2], cancer [122], obesity [123], osteoporosis [124] and Alzheimer’s 

disease [125, 126]. In order to better utilize the health-promoting potential of dietary 

polyphenols, the bioavailability of dietary polyphenols from various sources needs to be 

investigated.   
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1.3 Bioavailability of Phenolic Compounds 

 Bioavailability is defined as the proportion of ingested food compounds that enter 

metabolic circulation and reach specific sites in the body to exhibit biological function [127]. 

The bioavailability of different phenolic compounds varies, not only due to structural variations 

in polyphenols, but also because of individual physiological and biochemical differences of 

consumers. Generally, the bioavailability of phenolic compounds is relatively low due to low 

absorption rates, instability of these compounds in the gastrointestinal tract (GIT) and quick 

elimination [128]. Several steps are crucial for food constituents to be bioavailable: liberation, 

absorption, distribution, metabolism and elimination [129]. Bioaccessibility is an important 

factor to evaluate the potential of food compounds to be bioavailable and it is related to the 

liberation process. Bioaccessibility is defined as the amount of food compounds that are 

released in the GIT and have the potential to pass the intestinal barrier to be absorbed [127]. 

In-vitro digestion models are commonly used to evaluate the bioaccessibility of food 

components. The metabolism and bioavailability of proanthocyanins, anthocyanins and 

phenolic acid will be discussed in further detail in this section. 

1.3.1 Bioavailability of Proanthocyanins  

The bioavailability of proanthocyanins (condensed tannins) is generally low due to the 

large molecular size of these compounds. Proanthocyanins are polymerized flavan-3-ols and/or 

flavan-3,4-diols [85, 130]. Due to the large molecular size of proanthocyanins, it is unlikely for 

them to be absorbed intact. In the stomach, in-vitro studies showed that some proanthocyanins 

could be hydrolyzed into monomers due to the acidic environment [85], and then monomers 
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can be absorbed in the small intestine. However, in-vivo studies suggested that the 

depolymerization of proanthocyanins in the upper GIT (stomach and small intestine) was 

minimal [85, 131, 132]. The absorption characteristics of proanthocyanins in the small intestine 

are largely affected by the degree of polymerization. Dimeric and trimeric proanthocyanins are 

relatively easily absorbed because the permeability coefficients of proanthocyanins are similar 

to a paracellular transport marker – mannitol [133]. The absorbed dimeric and trimeric 

proanthocyanins reach the liver via the portal vein. The absorbed dimers/trimers conjugate in 

the liver. The conjugated derivatives may be exported into the bile and go back to the intestinal 

lumen or be released into the systemic circulation and then distributed to the organs. The 

metabolites are excreted in the urine. Most large proanthocyanins pass the upper GIT without 

alteration and reach the colon in their original form or as complexes with macronutrients. 

Proanthocyanins that are not absorbed may be metabolized by the colonic microflora in the GIT 

and excreted in the feces [134].  

It has been suggested that proanthocyanins can exhibit bioactivity without being 

absorbed by altering the gut microflora profile [135]. A study conducted with rats showed that 

consuming proanthocyanins for three weeks caused a shift towards increasing gram-negative 

bacteria in the GIT [136]. In addition, proanthocyanin-rich grape seed extract (38.5%, w/w) 

increased the population of probiotics (Bifidobacterium) in healthy adults [137]. Gut microbiota 

plays a vital role in human health, such as synthesizing vitamins and protecting the host from 

potentially harmful invasive bacteria [128]. Thus, ingested proanthocyanins may affect human 

health by modulating the composition and catabolic activity of the gut microbiota [138, 139]. 
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More studies are needed to better understand the impacts of proanthocyanins on gut 

microflora and to better utilize the potential benefits of proanthocyanins.  

1.3.2 Bioavailability of Anthocyanins 

 Anthocyanins are relatively easily absorbed compared to proanthocyanins. The stomach 

is a major site for the liberation of anthocyanins from food matrices. The stomach pH and body 

temperature helps to hydrolyze and/or release anthocyanins. The major absorption site of 

anthocyanins is the small intestine [140]. Anthocyanin aglycones can pass the cellular 

membrane of enterocytes via passive diffusion. The absorption of anthocyanin glycosides 

involves enzymes or transporters [128, 141], such as lactate phlorizin hydrolase (LPH). LPH is 

located in the enterocyte brush border and LPH can cleave the glycosidic moieties of 

anthocyanin glycosides in the small intestinal lumen. The released aglycones can then enter the 

enterocytes via passive diffusion [128]. In addition, anthocyanin glycosides can be transported 

into the enterocytes in their glycoside form by using sodium-dependent glucose transporters 

(SGLT) [141]. The anthocyanin glycosides are hydrolyzed within the epithelial cells by a cytosolic 

β-glucosidase (CBG) and release the aglycones [140]. The absorption efficiency of anthocyanins 

varies depending on their structure. Yi et al. demonstrated that the transport efficiency of 

cyanidin glucoside was higher than cyanidin galactosides [142]. The authors also concluded that 

fewer free hydroxy groups and more methoxy groups contributed to a higher absorption 

efficiency [142]. The absorbed anthocyanin aglycones are transported via the portal vein to the 

liver, where anthocyanins undergo phase II transformations including conjugations to methyl, 

glucuronic acid and/or sulfate groups [141, 143]. After being metabolized in the liver, 

anthocyanins can either re-enter the enteric system through bile or can be distributed to 



24 
 

organs, such as the eyes, bladder, kidney, and brain [144-149] and then be excreted in urine 

[141].  

One restricting factor for the bioavailability of anthocyanins is their instability in an 

alkaline environment. The small intestine is a mild alkaline environment and anthocyanins may 

degrade in the small intestine before being absorbed [143]. The instability of anthocyanins in 

the small intestine was observed by many studies using in-vitro models. Liu et al. reported that 

42% of total anthocyanins from blueberries degraded during intestinal digestion [150]. 

Strategies that can increase the stability of anthocyanins in the small intestine may help to 

enhance their bioavailability. 

1.3.3 Bioavailability of Phenolic Acids 

 The absorption of phenolic acids can occur in the stomach, small intestine and colon 

[151]. Absorption in the stomach provides the lowest phenolic absorption levels and may be 

achieved by passive diffusion [152]. The small intestine, specifically the jejunum is the major 

absorption site for phenolic acids [153].  The intestinal absorption of phenolic acids can occur 

via monocarboxylic acids transporters (MCT) and the absorption rate is affected by the affinity 

between phenolic acids and MCT [154]. Free phenolic acids are absorbed rapidly in the stomach 

and in the small intestine [155, 156], but the majority of phenolic acids (approximately 80%) in 

plant-based foods are bound to cell wall polymers by covalent cross-linkages [157] and are 

inaccessible for absorption. Bound phenolic acids are insoluble and the human endogenous 

enzymes cannot release them [155]. The microflora in the colon may produce enzymes that are 

able to liberate the bound phenolic acids, such as xylanases and esterases [158]. The absorption 



25 
 

of the released phenolic acids in the colon is low due to: 1) poor absorption capacity of the 

colon and 2) break down of the aglycones by colon microflora [155]. Thus, the bound phenolic 

acids can be released and absorbed in the colon to some extent. However, the bioavailability of 

bound phenolic acids is lower than free phenolic acids. 

 After absorption, phenolic acids are distributed to organs and undergo several 

biotransformations in the intestine, liver and kidney where the liver is the major site [151]. The 

biotransformation of phenolic acids includes dehydroxylation, demethylation, 

dehydrogenation, hydrogenation, O-methylation, sulphation, glucuronization, glycination 

and/or GSH conjugation [151]. Phenolic acids and the conjugates may re-enter the intestinal 

lumen via bile when the circulating levels are high. Phenolic acids are mainly excreted in the 

urine in both the intact and biotransformed form [159].  

1.3.4 Factors Affecting the Bioavailability of Phenolic Compounds 

Many factors affect the bioaccessibility and bioavailability of phenolic compounds. First, 

processing methods such as thermal treatments and storage may either increase the 

bioavailability by enhancing the release of polyphenols from the food matrices [160] or 

decrease the bioavailability by accelerating degradation [161]. Second, the interaction with 

other ingested dietary ingredients such as proteins may alter the liberation process of phenolic 

compounds and in most cases negatively affect the bioaccessibility of phenolic compounds 

[162]. Third, the molecular structures of polyphenols have a vital impact on their bioavailability. 

Larger phenolic compounds like proanthocyanins are difficult to absorb while the absorption 

rates of smaller phenolics like phenolic acids are much higher. Fourth, digestion related factors, 

such as the intestinal transit time of polyphenols and enzyme activity, may positively or 
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negatively affect the release of phenolic compounds. Longer retention times in the small 

intestine leads to more degradation of anthocyanins but longer retention times in the stomach 

may cause more liberation [161]. Additionally, the microbiota in the lower GIT may break down 

some larger phenolic compounds and increase their bioavailability [163, 164]. Fifth, the 

frequency of polyphenol consumption may alter the expression of transport proteins and/or 

metabolizing enzymes that associated with polyphenol metabolism in human [166, 167]. Thus, 

consuming polyphenol-rich foods may affect their bioavailability by altering the individual’s 

ability to absorb and metabolize phenolic compounds [165].  

1.3.5 Potential Methods to Improve Bioavailability of Phenolic Compounds 

1.3.5.1 Thermal Processing 

 Thermal processing methods are frequently used to heat treat food ingredients. 

Thermal treatments can decrease the bioavailability of polyphenols in food by accelerating the 

degradation process. Some phenolic compounds, such as anthocyanins, are labile to heat [168]. 

However, some thermal processing methods are found to be beneficial to enhance the 

bioavailability of phenolic compounds in certain foods. For example, roasting nuts can increase 

the amount of free phenolic acids which are more bioavailable compared to bound phenolic 

acids [73, 169]. Rossi et al. reported that steam blanching blueberries inactivated the 

polyphenol oxidase and resulted in an increase in extractable polyphenols [170]. Arkoub-

Djermoune et al. demonstrated that some thermal processing methods, such as grilling and 

baking, enhanced the total phenolic compounds content and flavonol content in eggplant but 

decreased the flavonoid and anthocyanin levels [171]. In summary, thermal processing may 
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increase the bioavailability of some phenolic compounds in certain food matrices, but the 

effects vary and need to be investigated on a case by case basis.  

1.3.5.2 Fermentation 

Fermentation has been widely utilized to process polyphenol-rich foods for centuries, as 

in the making of wine. Fermentation not only adds flavor to the food but also modifies the food 

components including phenolic compounds. Lactic acid bacteria are commonly utilized in 

fermentation [172]. Some lactic acid bacteria, such as Lactobacillus plantarum, can metabolize 

phenolic compounds and the metabolites may be more bioavailable [173]. Frediansyah et al. 

demonstrated that black grape juice fermented with Lactobacillus plantarum exhibited higher 

α-glucosidase inhibitory activity than non-fermented black grape juice [174]. Hole et al. 

observed that fermentation with lactic acid bacteria increased the level of free phenolic acids in 

whole barley grains and improved their bioavailability [175]. These increases may be caused by 

the liberation of bound phenolic acids due to the esterase activity of lactic acid bacteria [175]. 

Similarly, Curiel et al. reported that due to the esterase activity, L. plantarum fermentation 

increased the levels of gallic acid, ellagic acid, myricetin and quercetin in Myrtus communis 

berries and increased radical scavenging capacity [176]. In addition to lactic acid bacteria, other 

fermentative microorganisms may have the capacity to alter the bioavailability of phenolic 

compounds. Wang et al. demonstrated that fermentation with yeast (Saccharomyces cerevisiae 

bayanus EC 118) enhanced the anti-inflammatory activity of maqui berry juice by improving the 

capacity to inhibit the expression of iNOS and COX-2 in a macrophage cell line (RAW264.7) 

[177]. The authors concluded that this enhancement might be related to the increase of gallic 

acid due to yeast fermentation [177]. In summary, fermentation may increase the 
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bioavailability of dietary polyphenols by altering the structure, generating more bioavailable 

metabolites and/or releasing the bound phenolic compounds. Studies in regard to the impacts 

of fermentation on the bioavailability of phenolic compounds are limited. More research 

involving various microorganisms and different food matrices is needed.  

 In addition to the above-listed processing methods (thermal processing and 

fermentation), other methods, such as milling, high-pressure processing and encapsulation may 

have positive impacts on the bioavailability of phenolic compounds [160, 178]. The effects of 

processing on the bioavailability of phenolics depend on not only the processing methods, but 

also the phenolic compounds structure and the food matrix. Currently, research studies are 

investigating impacts of a variety of processing methods on the bioavailability of phenolic 

compounds from different food matrices, but more processing studies are needed to efficiently 

utilize the potential health benefits of certain phenolic compounds.   

1.4 Aronia Berries 

1.4.1 Botany and Current Commercial Utilization of Aronia Berries 

 Aronia shrubs are native to North America [179]. The genus Aronia (belongs to the 

Rosaceae family and Maloideae subfamily) includes two species: Aronia melanocarpa and 

Aronia arbutifolia. A. melanocarpa fruits are black, also known as the “black chokeberry”, “wild 

gooseberry”, “chokepear” or “dogberry”. A. arbutifolia fruits are red and are known as the “red 

chokeberry”. A third controversial species is called A. prunifolia (purple chokeberry), which is 

considered a hybrid of A. melanocarpa and A. arbutifolia [180]. Most research has been 

conducted on the black aronia – A. melanocarpa. In this thesis, the word “aronia” is used to 

indicate the black aronia, specifically. Aronia are relatively easy to grow and they are not 
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susceptible to severe diseases and pests [179]. Birds do not consume the fruit which may be 

due to its astringent taste [179, 181, 182]. Mature aronia shrubs can be 2-3 meters in height 

and yield up to 1.2 kg fruit/m2 in five years [183]. Aronia has been traditionally used as an 

alternative medicine to treat colds among Native Americans [179]. Aronia gained popularity in 

the Soviet Union and Eastern Europe in the 20th century, and it was used as a treatment for 

hypertension, atherosclerosis, hemorrhoids and achlorhydria [179]. Currently, aronia extracts 

are used as natural food colorants to provide dark purple or blue color [184]. Some food 

products made with aronia, such as juice, jam, jelly and tea are commercially available in the 

United States, but these products are limited. More products need to be developed with aronia 

berries to increase their consumption [185].  

1.4.2 Nutritional Value and Bioactive Compounds of Aronia Berries 

 The content of nutrients and bioactive compounds in aronia berries are affected by 

several factors, such as the shrub cultivar, the maturation of the berries, the variety and 

frequency of fertilizers used and the growth location/climate [186, 187]. Fresh aronia berries 

contain 5.6% dietary fiber which includes pectin [188, 189]. The seedless fraction of aronia 

pomace  contains 70% dietary fiber on a dry weight basis [190]. Total sugar content in fresh 

aronia is approximately 620 mmol/kg including 3.5% glucose, 2.8% fructose and 0.41% sucrose 

[191]. Though the reported individual sugar content varies, glucose and fructose are the 

dominant sugars in aronia berries [192, 193].  Aronia berries contain a relatively high amount of 

sorbitol (46.2 g/kg), which is a sugar alcohol [192]. Malic acid is the predominant organic acid in 

aronia berries, which is approximately 1.22 g/100 g in fresh berries, followed by citric acid (0.13 

g/100 g). Tartaric acid, fumaric acid and shikimic acid are detected in aronia berries but these 
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amounts are low [191]. Fresh aronia berries contain small amounts of fat (0.14 g/100g) and up 

to 0.7 g/100g protein [183]. The predominant fatty acid is linoleic acid which is contained in its 

seeds [194]. Aronia berries have a relatively high concentration of potassium (0.22 g/100g fresh 

weight). Vitamins B1 (17-19 µg/100g), B2 (17-27 µg/100g), B6 (24-29 µg/100g), B9 (2-4 µg/100g), 

C (4.0-19.3 mg/100g), niacin (27-34 µg/100g) and pantothenic acid (225-382 µg/100g) have also 

been identified in aronia berries [183, 195]. 

 Phenolic compounds are the most important bioactive compounds in aronia berries. 

They are potentially responsible for the pharmaceutical effects of aronia, such as anti-influenza 

activity [183]. Aronia berries are rich in phenolic compounds ranging from 1013 to 2010 mg 

gallic acid equivalents/100 g fresh berries, which is higher than that in blueberries, bilberries, 

blackberries, strawberries, blackcurrants and cranberries [191, 196 - 198]. The major type of 

phenolic compounds in aronia are proanthocyanidins [199]. Procyanidins are the only form of 

proanthocyanidins found in aronia berries. Procyanidins are a subcategory of 

proanthocyanidins that consist of (epi)catechin subunits and aronia berries have a high 

concentration of procyanidins [198]. The degree of polymerization of aronia procyanidins 

ranges from 2 to over 30 where large polymers are dominant. The major linkages between the 

subunits of aronia procyanidins are C4-C6 and C4-C8 bonds [179]. The content of procyanidins 

in dried aronia berries is above 5 g/100 g which is higher than the proanthocyanidins in other 

berries, such as bluberries [200]. Anthocyanins are the second most dominant phenolic group in 

aronia berries [179]. Aronia is one of the berries that contains the largest concentration of 

anthocyanins [79]. Wu et al. reported that the total anthocyanin content in fresh aronia berries 

was 1480 mg/100 g, which is higher than that in black raspberry (687 mg/100 g),  wild blueberry 
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(486.5 mg/100 g), blackcurrant (476 mg/100 g), blackberry (245 mg/100 g), cranberry (140 

mg/100g) , and strawberry (21.2 mg/100 g) [201]. There are four major anthocyanins in aronia 

berries: cyanidin-3-galactoside, cyanidin-3-glucoside, cyanidin-3-xyloside and cyanidin-3-

arabinoside where cyanidin-3-galactoside is the dominant anthocyanin followed by cyanidin-3-

arabinoside [199, 202]. Other anthocyanins were occasionally detected at low concentrations, 

such as pelargonidin-3-arabinoside [198]. The major phenolic acids in aronia berries are 

chlorogenic acid and neo-chlorogenic acid, the contents of which range from 16.3 to 301.8 and 

from 92.3 to 291 mg/100 g in dried aronia berries, respectively [199, 203]. Other phenolic acids, 

such as caffeic and ferulic acids were only occasionally identified in aronia berries [204]. 

1.4.3 Health-promoting Characteristics of Aronia Berries 

1.4.3.1 Antioxidant Capacity of Aronia Berries 

Antioxidant capacity is an important parameter to evaluate the potential health-

beneficial properties of a food ingredient. Aronia berries exhibit strong antioxidant capacity due 

to the large amounts of phenolic compounds [196]. In addition, other compounds, such as 

vitamin C and β-carotene, contribute to its antioxidant activity [205]. The consumption of 

aronia berries can help to reduce oxidative stress and decrease cellular oxidative damage. 

Aronia intake can increase the antioxidant capacity of the plasma and scavenge the excessive 

free radicals in the human body. Nowak et al. observed an increase in plasma antioxidant 

capacity in healthy people after one-week consumption of aronia juice [206]. In a double-blind 

study with rowing athletes, Skarpanska-Stejnborn et al. stated that the antioxidant capacity of 

plasma in athletes supplemented with aronia juice consumption (150 mL/day) for eight weeks  

was higher than the placebo group [207]. Pilaczynska-Szczesniak et al.  observed that daily 
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intake of 150 mL aronia juice (containing 34.5 mg anthocyanins) reduced the levels of 

thiobarbituric acid-reactive substances (TBARS) in the blood and concluded that an increase in 

anthocyanin consumption could decrease exercise-induced oxidative damage to red blood cells 

in athletes [208]. Lee et al. reported that aronia extracts reduced ROS production in HT22 

mouse hippocampal cells and protected the cells against the glutamate-induced oxidative stress 

[209]. The consumption of aronia berries can also improve the antioxidant defense system by 

boosting the activity of endogenous antioxidative enzymes. Kardum et al. observed that after 

consuming aronia juice for three months, the SOD and GPx activity in healthy women was 

increased significantly [210]. Faff et al. observed that the reduction of GSH caused by exercise 

was alleviated in aronia-fed rats [211]. A study conducted by Francik et al. showed that aronia 

juice administration increased the activity of plasma CAT in rats fed a high-fat diet [212]. 

Kondeva-Burdina et al. stated that aronia juice prevented GSH depletion caused by tert-butyl 

hydroperoxide-induced oxidative stress in rat hepatocytes and increased cell viability [213]. The 

positive impacts of aronia on oxidative stress are potentially beneficial to prevent chronic 

diseases and slow their progression. 

1.4.3.2 Anti-inflammatory Activity of Aronia Berries 

 Chronic low-grade inflammation is one of the underlying factors of chronic diseases. A 

reduction in low-grade inflammation may benefit the diabetic individuals by dealying the 

progression of diabetic complications. Additionally, decreased low-grade inflammation may 

reduce the risk of T2DM in individuals with metabolic syndroms. The anti-inflammatory effects 

of aronia berries have been documented in in-vitro studies using cell models for understanding 

the mechanisms. Appeal et al. stated that aronia juice concentrate activated the NF-ƙB pathway 
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in RAW264.7 macrophages and inhibited the production of pro-inflammatory cytokines (TNF-α, 

IL-6 and IL-8) in human peripheral monocytes which were isolated from a healthy human 

volunteer [214]. Martin et al. reported that aronia berries inhibited IL-6 production in 

lipopolysaccharide (LPS)-simulated mice splenocytes and that cyanidin-3-arabinoside might be 

the major effective anthocyanin [215]. These studies demonstrate that aronia berries exhibit 

anti-inflammatory activity by suppressing the production of pro-inflammatory cytokines. 

In addition to in-vitro studies, the anti-inflammatory activity of aronia berries has been 

tested in animal models. Ohgami et al. reported that aronia extract decreased the levels of NO, 

TNF-α and prostaglandin (PG)-E2 in rats with endotoxin-induced uveitis [216]. Goh et al. 

observed that aronia concentrate suppressed the formation of 12-o-tetradecanoylphorbol-13-

acetate (TPA)-induced ear edema in mice and decreased the production of pro-inflammatory 

cytokines (TNF-α, IL-1β and IL-6) [217]. Kang et al. concluded that the consumption of aronia 

berries ameliorated the symptoms of dextran sulfate sodium-induced ulcerative colitis (a type 

of inflammatory bowel disease) in mice, and decreased the production of NO, IL-6 and TNF-α 

[218]. Loo et al. carried out an intervention with individuals with slightly high blood pressure 

levels and demonstrated that the consumption of dried aronia powder or aronia juice 

(equivalent to about 336 g fresh berries per day) decreased low-grade inflammation, while 

reductions in TNF-α were observed [219]. Low-grade chronic inflammation increases the risk of 

T2DM and CVD. The anti-inflammatory activity of aronia berries can aid in the prevention and 

treatment of chronic diseases. More in-vivo, especially clinical research studies, are needed to 

establish recommended dosages. 
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1.4.3.3 Aronia and Diabetes 

The potential benefits of aronia berries for diabetes were suggested by several in-vitro 

studies. Rugina et al. demonstrated that aronia extract helped to protect mouse pancreatic β-

cells (βTC3 cell line) from high glucose-induced cytotoxicity. The authors also observed that the 

insulin secretion increased in the aronia extract-treated βTC3 cells [220]. Aronia extracts may 

benefit insulin secretion by inhibiting the activity of dipeptidyl peptidase IV (DPP IV). DPP IV is a 

serine peptidase which can reduce insulin secretion by inactivating incretin. The inhibition of 

DPP IV can increase the secretion of insulin and be beneficial to diabetic individuals. Kozuka et 

al. investigated the DPP IV inhibitory activity of aronia juice in-vitro and concluded that the 

cyanidin 3,5-diglucoside was more efficient than cyanidin or cyanidin-3-glucoside to inhibit DPP 

IV [221]. Aronia consumption may aid in modulating blood glucose levels by inhibiting enzymes 

involved in carbohydrate absorption, such as α-glucosidase [222]. Wangensteen et al. 

investigated the inhibitory activity of aronia extracts against α-glucosidase and demonstrated 

that the inhibitory activity of aronia extracts was stronger than acarbose, which is a therapeutic 

agent for diabetes [200]. In-vitro studies suggest that aronia may benefit diabetic individuals by 

increasing the secretion of insulin and inhibiting carbohydrate-hydrolyzing enzymes. 

The hypoglycemic effects of aronia have been documented by in-vivo studies using 

animal models. Valcheva-Kuzmanova et al. reported that the levels of plasma glucose levels in 

streptozotocin (STD)-induced diabetic rats were reduced after a six-week administration of 

aronia juice. The authors observed 44% and 42% decreases in blood glucose in diabetic rats fed 

with 10 and 20 mL/kg aronia juice, respectively [223]. Oprea et al. demonstrated that the 

consumption of aronia juice decreased the blood glucose levels of alloxan-induced diabetic rats 
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by 42.83% [224]. In a study conducted by Yamane et al., the blood glucose levels of diabetic 

mice (KK-Ay mice) supplemented with aronia juice was lower than the control group (without 

the supplementation of aronia juice). The trend was consistent over the entire experiment (28 

days) [225]. In the same study, aronia juice consumption led to an inhibition of α-glucosidase 

activity in the upper small intestine of diabetic mice. Hypoglycemic activity of aronia was also 

observed in animal models with metabolic syndrome but not diabetes. Qin and Anderson 

performed a study with Wistar rats fed a fructose-rich diet. They demonstrated that the 

administration of aronia berry extracts (100 or 200 mg/kg body weight) lowered the risk factors 

related to insulin resistance via a variety of possible mechanisms, such as enhancing mRNA 

levels of insulin receptor substrate 1 and 2, which may help to increase insulin sensitivity [226]. 

Takahashi et al. illustrated that four weeks of aronia extract consumption (17.4 g aronia 

polyphenols per kg diet) decreased the fasting blood glucose levels in high-fat diet-induced 

obese rats [227]. In a human intervention conducted by Simeonov et al., three-month 

consumption of aronia juice (200 mL/day) lowered the fasting blood glucose in 21 patients with 

non-insulin dependent diabetes [228]. These studies demonstrate that aronia berries can help 

to normalize blood glucose levels not only in diabetic individuals, but also in individuals with 

metabolic syndrome. Clinical studies in regards to the impacts of aronia on diabetes are limited. 

More studies are needed to confirm the beneficial properties of aronia for T2DM and to 

establish effective dosages for human. 
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1.4.3.4 Aronia and Other Health Problems 

In addition to the antioxidant, anti-inflammatory properties and potential benefits for 

daibetes, the consumption of aronia berries is also beneficial for other health problems. The 

anti-influenza activity of aronia was reported by Park et al. in both in-vivo and in-vitro 

experiments [229]. In this study, aronia extracts (0.125 mg/mL) exhibited more than 60% 

inhibition against all five tested viruses (H1/K09, H3/PE16, B/BR60, H1/K2785 and HPAI 

rH5/IS06) including oseltamivir-resistant strains (H1/K2785 and HPAI rH5/IS06). Oseltamivir is 

an antiviral drug used to treat and prevent influenza. The inhibitory activity of aronia extracts 

on the influenza virus was dose-dependent. Additionally, the authors observed that the lethal 

rate of rPR8-GFP virus-infected mice was reduced by aronia treatment (1 mg/kg, twice daily) 

[229]. In a long-term crossover intervention performed by Handeland et al., the incidence of 

urinary tract infections (UTI) among nursing home residents was reduced after patients 

consumed aronia juice for three months (containing 715 mg/100 mL gallic acid equivalent total 

phenolics). The authors observed a 55% and a 38% decrease in UTIs among groups given 156 

mL and 89 mL juice consumption, respectively [230]. Aronia consumption may have other 

potential beneficials in addition to the properties mentioned above, such as chemoprotective 

activity. More studies need to be performed to optimize the health-promoting properties of 

aronia and the effective dosages of aronia consumption should be established. Additionally, 

more mechanistic research should be carried out to further understand the mechanisms of how 

aronia can have positively effects on human health.  
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1.4.4 Challenge of Incorporating Aronia Berries in Diet  

 Regular consumption of aronia berries can increase the consumers’ daily intake of 

phenolic compounds and potentially benefit their health. However, aronia berries are not 

commonly consumed because they are less palatable than other popular berries, such as 

blueberries. A major sensory attribute that negatively affects the flavor of aronia is the 

astringency caused by the high phenolic content, especially procyanidins. Duffy et al. conducted 

a sensory evaluation of aronia juice and concluded that the juice was not widely accepted due 

to the low sweetness and high astringency [77]. The consumer acceptance was increased when 

sweeteners were added to the juice [77]. Troszynska et al. observed that the addition of 

polysaccharides (guar, xanthan, arabic gums and carboxymethylcellulose) decreased the 

sensation of astringency in aronia extracts whereas carboxymethylcellulose was observed to 

have  the best effects on lowering astringency compared to other gums [231]. Ares et al. 

investigated the ability of sucrose, sucralose, polydextrose and milk to mask the astringency of 

phenolic-rich extracts from Achyrocline satureioides and Baccharis trimera by conducting a 

sensory study [232]. Results of this study showed that milk was the most efficient in lowering 

the astringent sensation followed by sucrose. Astringency is caused by the interaction between 

polyphenols and salivary proteins. The authors stated that the milk proteins could complex with 

polyphenols and yielded less available polyphenols to form insoluble compounds with salivary 

proteins. Thus, the astringent mouth-feel was reduced [232]. One concern about using other 

food ingredients to reduce astringency is the possibility of lowering the bioavailability of aronia 

polyphenols. The liberation pattern of aronia polyphenols during digestion can be altered if 

they interact with other food matrices, which affects the absorption of polyphenols. Another 
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concern about incorporating aronia into other food matrices is the stability of aronia 

polyphenols may be lowered. For example, the addition of milk is able to decrease the 

astringency of the phenolic-rich extract [232]. The pH of milk is neutral to slightly alkaline, 

which negatively affects the stability of anthocyanins. Food products incorporated with aronia 

in a neutral food matrix may not be able to maintain the full potential of health-promoting 

properties during shelf life. In summary, in order to increase the consumption of aronia, 

products with reduced astringency need to be developed. Additionally, in regard to optimize 

the potential health benefits of aronia berries, the bioavailability of aronia polyphenols in the 

new developed food products should not be decreased. 

1.5 Elderberries 

1.5.1 Botany and Current Commercial Utilization of Elderberries 

 Black elderberries (Sambucus nigra L. Family Adoxaceae) are deciduous shrubs that can 

be located in shady, moist areas in Europe, northern Africa, west and central Asia, and North 

America [233]. There are two subspecies of black elderberries: European elderberries 

(Sambucus nigra L. ssp Nigra) and American elderberries (Sambucus nigra L. ssp. canadensis) 

[234]. European and American elderberries are similar in most botanical characteristics, except 

European elderberries are shrubs with a single or a few trunks while American elderberries 

usually have many canes and can spread by underground rhizomes [235]. This thesis will focus 

on the American elderberry, also known as the “American elder”. 
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American elderberry is native to eastern and central North America [236]. American 

elderberry plants are multi-stemmed shrubs that can reach up to 9 m in height [236]. The plants 

bloom in early summer showing umbrella-shaped clusters of small, white flowers, which 

develop into dark purplish-black berries in the late summer or early fall. A cluster of elderberry 

fruits can contain up to 2,000 berries (5-9 mm in diameter for an individual berry) [236]. 

Elderberries are a very attractive food for birds. After consuming the berries, birds will then 

disperse the seeds. Elderberry colonies are commonly located in areas where birds nest, such 

as along railways, roadways, forest edges and fence lines [235]. Second-year American 

elderberry shrubs can yield up to 3 kg per plant. At the fourth year, 8 kg average yields can be 

achieved [236]. American elderberries can produce high yields (about 6 kg per plant) in cold 

areas, such as Normandin, Quebec, Canada [237]. Traditionally, American elderberries and 

elderberry flowers are used as herbal remedies to treat colds, flus and inflammation [238]. 

Elderberry food products have limited availability in the United States. Elderberry jams, pies, 

wines and juices are the major types of food products on the market. However, the demand for 

elderberries has increased due to their health-promoting properties [239]. More market-

available products using elderberries may encourage farmers to grow elderberries, develop 

value-added elderberry products and increase their income.  

 1.5.2. Nutritional Value and Bioactive Compounds of Elderberries 

 The nutrient level in elderberries is affected by many factors, such as the cultivar of the 

plant, the degree of fruit ripeness and environmental conditions [239]. Citric acid is the 

dominant acid in most cultivars of American elderberries followed by malic and succinic acid. 

Fructose is the dominant sugar in elderberries followed by glucose [240]. American elderberries 
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are a good source of vitamin C (36 mg/100 g fresh weight basis), potassium (280 mg/100 g fresh 

weight basis), phosphorus (39 mg/100 g fresh weight basis), calcium (38 mg/100 g fresh weight 

basis) and magnesium (5 mg/100 g fresh weight basis) [241].  

 American elderberries are rich in polyphenols. Phenolic compounds are the most 

important group of bioactive compounds in elderberries. The total phenolic content of fresh 

berries ranges from 277 to 532 mg gallic acid equivalents/100 g [235, 242, 243]. Elderberries 

are among the berries that contain the largest amount of anthocyanins [79]. The content of 

anthocyanins is up to 446.8 mg cyanidin-3-glucosides/100 g of fresh berries [242, 243].  Most 

anthocyanins in American elderberries are cyanidin-based. Cyanidin 3-(E)-p-coumaroyl-

sambubioside-5-glucoside and cyanidin-3-sambubioside-5-glucoside are the most abundant 

anthocyanins. Cyanidin-3-glucoside, cyanidin-3,5-diglucoside and cyanidin-3-sambubioside have 

been discovered in relatively high amounts in American elderberries [235]. More than 60% of 

American elderberry anthocyanins are acylated anthocyanins. In addition to cyanidin-3-(E)-p-

coumaroyl-sambubioside-5-glucoside, cyanidin-3-(Z)-(p-coumarin-sambubioside-5-glucoside, 

cyanidin-3-(p-coumarin)-glucoside and cyanidin-3-(p-coumarin)-sambubioside have also been 

identified [239]. The presence of these acylated anthocyanins may be used to distinguish 

American elderberries from European elderberries since acylated anthocyanins are not found in 

European elderberries [235, 244]. Anthocyanins in American elderberries are more stable than 

those in European elderberries when exposed to heat and light due to the presence of these 

acylated anthocyanins. This stability advantage allows American elderberries to be used as a 

source of industrial food colorants [244, 245].  Cinnamic acids, such as neo-chlorogenic acid, 

chlorogenic acid and crypto-chlorogenic acid have been identified in elderberries where 
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chlorogenic acid is dominant in most cultivars [235, 240]. Rutin (quercetin-3-rutinoside) is the 

predominant flavonol glycoside in elderberries; other flavonols, such as isoquercetin, 

kaempferol-3-rutinoside, isorhamnetin-3-rutinoside and isorhamnetin-3-glucoside have been 

identified, as well [235]. 

1.5.3 Health Promoting Characteristics of Elderberries 

The health-beneficial properties of European elderberries are well documented. 

However, most studies involving American elderberries are in regard to cultivation. Research 

that investigates the impact of American elderberries on health are limited. In this section, 

European elderberry studies are included to introduce the potential bioactivity of American 

elderberries on human health since they are closely related. 

1.5.3.1 Antioxidant Capacity of Elderberries 

 American elderberries have been shown to exhibit strong antioxidant capacity in-vitro. 

Ozgen et al. evaluated fourteen accessions of American elderberries by the ferric reducing 

antioxidant power (FRAP) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity 

[242]. All samples exhibited ferric reducing antioxidant power (13.4 – 31.7 µmol Trolox 

equivalents/ g on a fresh weight basis) and DPPH scavenging capacity (5.4 – 13.5 µmol Trolox 

equivalents/ g fresh weight basis). In the same study, authors observed a strong correlation 

between antioxidant capacity and the levels of total phenolic compounds [242]. In a study 

conducted by Simonyi et al., anthocyanin-rich extracts of American elderberries inhibited the 

production of ROS in LPS or IFN-γ-simulated mouse microglial cells (bv-2), which means 

American elderberries may help to decrease the cellular oxidative stress [246].  Currently, 
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little to no research studies have documented the ability of American elderberries to decrease 

oxidative stress in-vivo. The benefits of European elderberries on oxidative stress have been 

observed in several animal studies. Dubey et al. demonstrated that the fish oil-induced 

oxidative stress in BioF1B hamsters was attenuated by consuming European elderberry extract 

[247]. Ciocoiu et al. reported that the consumption of European elderberry extract (0.05 g/kg 

body weight every two days for 16 weeks) decreased lipid peroxides and inhibited LDL 

oxidation in STD-induced diabetic rats [248].  In the same study, levels of reduced GSH and SOD 

were elevated in both healthy and STD-induced diabetic rats [248]. These results indicate that 

the consumption of European elderberries reduced oxidative stress in rats, which may due to 

improving their antioxidant defense system. American elderberries may exhibit different 

antioxidant activity in-vivo compared to European elderberries due to the presence of acylated 

anthocyanins. More studies using rodent models or human subjects need to be conducted 

better to understand and utilize the potential health-promoting properties of American 

elderberries. 

1.5.3.2 Anti-inflammatory Activity of Elderberries 

 The anti-inflammatory activity of polyphenol-rich fruits has been observed by both in-

vivo and in-vitro studies [100, 249, 250]. However, studies on the anti-inflammatory activity of 

American elderberries are rare. Simonyi et al. observed that the NO production in LPS or IFN-γ-

stimulated mouse microglial cells (bv-2) was reduced by American elderberry extracts, which 

means that the inflammatory response was decreased [246]. Seeram et al. demonstrated that 

anthocyanin-rich extracts from American elderberries inhibited the activity of cyclooxygenase-1 

and cyclooxygenase-2 (COX-1 and COX-2) in-vitro. The COX inhibitory activity of American 
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elderberry anthocyanins was stronger than cranberries, blueberries and bilberries [251]. COX 

can catalyze the production of prostaglandins which are important compounds in the 

generation and promotion of the inflammation response [252]. Inhibition of COX activity can 

decrease the degree of inflammation. Farrell et al. conducted an in-vivo study where mice were 

fed European elderberry extracts for sixteen-weeks (20-40 and 200-400 mg/kg body weight). 

Researchers observed lower levels of inflammatory markers (TNF-α and chemoattractant 

protein-1) and decreased insulin resistance in obese mice compared to the control group [253]. 

However, the in-vivo anti-inflammatory activity of American elderberries has not been well 

documented. More research investigating the anti-inflammatory bioactivity of American 

elderberries needs to be conducted. 

In addition to antioxidant and anti-inflammatory activities, American elderberries may 

have other health-promoting properties that have been shown in research studies with 

European elderberries, such as hypoglycemia [254, 255], anti-influenza virus [256, 257], 

cardiovascular protective [258, 259] and chemoprotective activities [260]. However, the 

composition of phenolic compounds in American elderberries are different than European 

elderberries. Thus, the health-promoting properties of American elderberries may be different, 

which provides justification for investigating the potential health benefits of consuming 

American elderberries.  
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1.6 Kefir 

1.6.1 History and Production of Kefir  

 Kefir is a fermented dairy beverage that has a creamy texture and sour taste along with 

natural carbonation [261]. Kefir originated from the Caucasus Mountains in west Asia. The word 

“kefir” is derived from the Turkish word “keyif” which means “good feeling” [262]. Kefir was 

first discovered when the people of the Caucasus region stored fresh milk in leather pouches 

and the milk naturally fermented into an effervescent beverage [263]. Around the Caucasus 

region, kefir is commonly made with sheep milk. Currently, kefir is popular in European 

countries where cow milk is the typical base [263].  

 The major difference between kefir and other fermented dairy products is the presence 

of kefir grains and yeast. Kefir grains are white, cauliflower-shaped small granules (3-35 mm in 

diameter). These kefir grains are used in the production of kefir and are recovered after the 

fermentation process [264]. The composition of kefir grains varies due to many factors, such as 

the incubation conditions and the types of milk used [265]. Generally, they are mixtures of 

microflora, polysaccharides and proteins [261]. The microflora in kefir grains consists of up to 

30 species of lactic acid bacteria, yeasts and sometimes acetic acid bacteria [261, 266]. The kefir 

culture used in the research for this dissertation was a commercial products (Yogourmet®, 

Canada) containing Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, 

Lactococcus lactis subsp. bv. diacetylactis, Lactobacillus acidophilus and lactic yeasts. The 

polysaccharides in kefir grains are known as kefiran, which comprises glucose and galactose 

units [266], while the major proteins in kefir grains are caseins [261].  
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[267] 

Figure 1.4 Brief flowchart of traditional kefir production  

Traditionally, kefir fermentation is initiated by adding kefir grains to cooled pasteurized 

or unpasteurized milk. The fermentation process takes approximately twenty four hours at 

room temperature [267]. After fermentation, kefir grains are recovered and separated by 

filtering the kefir with sieves. The collected kefir grains are dried and stored at cold 

temperature (4˚C) until the next inoculation [267]. However, lyophilized starters are typically 

used in industry instead of kefir grains. One major reason is the difficulty of separating the kefir 
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grains at the end of fermentation [266, 267]. In order to obtain consistent kefir products, 

cultures with a known composition of microorganisms isolated from kefir grains may be used 

[268]. A flowchart of traditional kefir production was illustrated by Guzel-Seydim et al. and is 

shown in Figure 1.4 [269]. 

1.6.2 Nutritional Value of Kefir 

The nutritional profile of kefir is affected by the milk composition, kefir grain 

composition, fermentation conditions and storage conditions [270-272]. Sarkar reported that 

kefir typically contains 89-90% water, 0.2% lipid, 3% protein, 6% sugar and 0.7% ash [270]. Kefir 

is a source of complete protein, as the essential amino acid levels in kefir are reported to be: 

376 mg/100 g lysine, 262 mg/100 g isoleucine, 231 mg/100 g phenylalanine, 220 mg/100 g 

valine, 183 mg/100 g threonine, 137 mg/100 g methionine and 70 mg/100 g tryptophan [273, 

274]. Kefiran, a heteropolysaccharide (glucogalactan), is the major sugar in kefir [261]. During 

fermentation, the predominant sugar in milk – lactose, is hydrolyzed by β-galactosidase from 

bacteria in kefir grains and metabolized to glucose and galactose. Glucose is utilized by lactic 

acid bacteria which generates lactic acid. Lactic acid and/or galactose may be used as the 

carbon source for the yeasts in kefir grains [275]. Kefir is a suitable dairy beverage for lactose-

intolerant individuals due to the activity of β-galactosidase [270, 273, 275, 276]. Kefir contains 

various vitamins, such as vitamins B1, B2, B5, B6, B12, folic acid, A, C and K [270, 276]. The vitamin 

composition of kefir is influenced by both the type/composition of the milk used and the 

microbial profile of the kefir grains [270]. Kefir is a good source of potassium (1.65%), 

phosphorus (1.45%), calcium (0.86%) and magnesium (0.30%). Other minerals such as zinc, 

copper, iron, molybdenum and cobalt were also reported in kefir [274]. Kefir has also been 
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reported to have several bioactive compounds, such as bioactive peptides, exopolysaccharides 

(kefiran) and probiotics. These bioactive compounds may work independently or synergistically 

to enhance health-promoting activities [277]. The health-promoting properties of kefir will be 

introduced in the next section.  

1.6.3 Health Promoting Characteristics of Kefir  

1.6.3.1 Anti-inflammatory Activity of Kefir 

The anti-inflammatory activity of kefir has been documented by several studies using 

animal models with metabolic syndrome. In a study performed by Rosa et al., metabolic 

syndrome was induced in male SHR (Spontaneously Hypertensive Rats) by monosodium 

glutamate injection. After ten weeks of administrating kefir to their diet (kefir group, 1 mL/day) 

or using water as placebo (control group), a reduction in pro-inflammatory cytokines (IL-1β) and 

an increase in anti-inflammatory cytokine (IL-10) were observed in the kefir group compared to 

the control group. Beneficial effects on other biomarkers of metabolic syndrome, such as 

reductions in plasma triglycerides and insulin resistance, were also observed [278]. Hadisaputro 

et al. observed that the levels of pro-inflammatory cytokines (IL-1, IL-6) in STD-induced 

hyperglycemic rats were decreased after thirty days of plain kefir consumption (3.6 mL/day). 

Additionally, an increase in the anti-inflammatory cytokines (IL-10) was observed in the kefir-

fed rats [279]. The anti-inflammatory activity of certain compounds in kefir was investigated. 

Kwon et al. reported that the administration of kefiran (50 mg/kg body weight) reduced the 

numbers of inflammatory cells in the lavage fluid and the lung tissues of female mice with 

ovalbumin-induced asthma. The levels of inflammatory cytokines (IL-4 and IL-5) in 

bronchoalveolar lavage fluid was reduced to normal after kefiran consumption [280]. Chen et 
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al. performed an experiment using kefir peptide and male mice challenged with high-fructose 

corn syrup [281]. The results revealed that the status of mice with fatty liver syndrome was 

improved by kefir peptides administration. Decreased levels of inflammatory cytokines (TNF-α, 

IL-6 and IL-1β), hepatic triglycerides, cholesterol and serum alanine aminotransferase were 

observed in mice fed with kefir peptide compared to mice fed water [281]. In summary, regular 

consumption of kefir may help to ameliorate the symptoms of metabolic syndrome and 

decrease the risk of chronic diseases due to anti-inflammatory activities. Kefiran and bioactive 

peptides appear to contribute to the anti-inflammatory activities. 

1.6.3.2 Kefir Benefits for Diabetes 

 The consumption of kefir may benefit diabetic individuals by aiding in blood glucose 

control. In a double-blind intervention conducted by Ostadrahimi et al., sixty T2DM patients 

were divided into two groups and consumed 600 mL kefir per day (probiotic group) or 600 mL 

placebo per day (conventional fermented milk without probiotics). After an eight-week 

intervention, the fasting blood glucose levels and the glycated hemoglobin A1C (HbA1C) levels 

of the probiotic groups (6.40 ± 1.91) were significantly reduced compared to baseline (7.61 ± 

1.22) [282]. These results indicated that regular consumption of kefir could aid in the blood 

glucose control of individuals with diabetes. Compared to the control group, the fasting glucose 

levels and HbA1C levels of the probiotic groups were lower. These results also showed that the 

probiotic microorganisms (Lactobacillus casei, Lactobacillus acidophilus and Bifidobacteria) 

played an important role in the hypoglycemic activity of kefir [282]. In a study using diabetic 

KKAy mice, Maeda et al. observed that a thirty-day feeding of kefiran lowered the blood 

glucose in these mice [283]. Reductions in insulin resistance resulting from kefir 
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supplementation was observed by Rosa et al. in rats with metabolic syndrome [278]. Teruya et 

al. investigated the effects of kefir on glucose uptake in an insulin-responsive muscle cell line 

(L6 skeletal muscle cells). The authors reported that the glucose uptake ability of L6 cells was 

increased by a water-soluble fraction of kefir in the presence or absence of insulin [284]. 

Punaro et al. demonstrated that eight-weeks kefir consumption (1.8 mL/day) reduced glycogen 

accumulation in the renal tubules of STD-induced type 1 diabetic rats. This result indicates that 

kefir can slow the progression of renal injury in diabetic individuals [285]. Thus, kefir intake may 

be beneficial to diabetic individuals via modulating blood glucose levels, decreasing insulin 

resistance, increasing glucose uptake in muscle and reducing the progression of diabetic 

complications. The potential benefits of kefir for diabetes may be attributed to both the 

probiotic microorganisms and the microbial metabolites, such as kefiran. 

 In addition to anti-inflammatory properties and potential benefits to diabetes, kefir has 

been documented to have anti-allergic activities [286], anti-carcinogenic effects [287], 

cardiovascular protective activity [288, 289] and the ability to modulate gut microflora [286, 

290]. The probiotic microorganisms in kefir contribute to their health-promoting properties. In 

addition, the cell-free fractions of kefir, such as kefiran and bioactive peptides, also exhibit 

health-promoting activities [264, 291].  

1.7 Conclusions 

  The onset and progression of T2DM is associated with oxidative stress. The 

consumption of dietary antioxidants may help to reduce the risk of T2DM and slow the 

progression of secondary complications via decreasing oxidative stress. Dietary polyphenols are 

strong antioxidants. Higher consumption of polyphenols has been associated with many health 
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benefits. Aronia and American elderberries are polyphenol-rich fruits, and their health-

promoting properties have been suggested by many studies. The health-promoting properties 

of phenolic compounds, aronia berries and elderberries are shown in Table 1.1. Aronia berries 

and elderberries are suitable to be grown in most areas of the United States, including Maine, 

but the consumption of these berries is low due to their unpalatable taste and limited types of 

commercial products. The development of new products that are acceptable to consumers may 

help to increase the consumption of these berries. One concern about developing food 

products using these berries is that processing and the addition of other food ingredients may 

lower the amount of bioavailable berry phenolics. Kefir, a fermented dairy beverage, may be a 

suitable food matrix for the incorporation of berries due to the following reasons: 1) kefir is 

acidic and the low pH environment can be beneficial to the stability of phenolic compounds; 2) 

kefir is rich in proteins, which may help to mask the astringency of polyphenols; 3) the 

fermentative microorganisms in kefir may increase the bioavailability of phenolic compounds. 

In order to ensure consumers will receive the optimal health benefits of theses berries, the 

health-promoting properties of the newly developed products must be evaluated. Therefore, 

research studies in this dissertation focused on the development of berry-added kefirs and the 

evaluation of their bioavailability and heath-beneficial characteristics. 
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Table 1.1 Health-promoting characteristics of phenolic compounds, aronia berry, elderberry 

and kefir 

 Health-promoting characteristics 

Phenolic compounds 

Reduce oxidative stress in-vivo 

Attenuate chronic inflammation 

Beneficial to T2DM, including increase insulin sensitivity, aid in blood 

glucose control, and decrease AGE production 

Aronia berry 

Reduce oxidative stress in-vivo 

Anti-inflammatory activity 

Beneficial to T2DM, including increase insulin secretion and help to 

control postprandial blood glucose 

Others: anti-influenza activity, anti-infection, etc. 

Elderberries 

(American) 

Anti-oxidant capacity in-vitro 

Anti-inflammatory activity 

Kefir 

Anti-inflammatory activity  

Beneficial to diabetes, including decrease insulin resistance, aid in 

blood glucose control and reduce glycogen accumulation 

Others: anti-allergic activity, anti-carcinogenic effect, cardiovascular 

protective activity and gut microflora modulatory effect. 

 

 

  



52 
 

CHAPTER 2 

 DEVELOPMENT AND EVALUATION OF KEFIR PRODUCTS MADE WITH ARONIA OR ELDERBERRY 

JUICE: SENSORY AND PHYTOCHEMICAL CHARACTERISTICS 

 

This chapter is accepted by the International Food Research Journal and will be 

published in volume 25, issue 4. 

 

2.1 Chapter Abstract 

Aronia and elderberry are edible berries that are rich in anthocyanins and phenolic 

compounds. They are rarely consumed raw due to safety concerns and their unpalatable taste. 

Aronia and elderberry are not widely grown and they are not commonly used as food 

ingredients for commercial products, thus they are considered underutilized. Incorporating 

these berries into new products, such as kefir, provides diverse food choices and may increase 

the dietary consumption of these bioactive compounds. In this study, kefir containing either 

aronia or elderberry juice was developed using different sweeteners and levels of sweetness. 

Sensory tests were conducted to evaluate the consumer acceptability of the kefir products 

made with fresh aronia juice or commercial elderberry juice from Wyldewood Cellars® (Wichita, 

KS, U.S.). In the aronia kefir sensory test, the product sweetened with sucrose received the best 

overall acceptability (6.3) while the product sweetened with monk fruit extract was least 

favored (4.9). In the elderberry kefir sensory test, 5.7% sucrose-sweetened product was best 

accepted (6.6) followed by 4.3% sucrose-sweetened (6.1). Non-nutritive sweeteners (stevia and 

monk fruit extracts) were less accepted than sucrose in both tests. Phytochemical analyses 
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showed that aronia kefir contained high amounts of total phenolic compounds and 

anthocyanins. Kefir made with commercial elderberry juice had a moderate amount of total 

phenolics and a low amount of anthocyanins. Antioxidant capacity was observed in all products 

indicating that the consumption of berry-added kefir may benefit the decrease of oxidative 

stress. Kefir made with aronia or elderberry are acceptable functional foods which may 

contribute to the prevention of inflammation and chronic diseases when incorporated into a 

healthy diet. 

2.2 Introduction 

 Epidemiological studies suggest that the consumption of anthocyanin-rich fruits may 

contribute to decreasing the risk of type 2 diabetes [3]. The protective impacts of phenolic 

compounds on oxidative-stress-related diseases are related to their high antioxidant capacity 

[292-294]. Rios et al. indicate that blueberry extracts rich in polyphenols could decrease the 

levels of oxidized DNA bases in human subjects and attenuate DNA damage induced by H2O2 

[295]. Anthocyanin intake (two levels, 40 and 200mg/kg) is able to reduce high-fat-diet-induced 

oxidative stress in mice by boosting the activity of antioxidant enzymes (SOD and GPx). 

Systemic inflammation could be decreased with this range of intake by lowering the expression 

levels of inflammatory cytokines, such as IL-6 and TNF-α [296]. In-vitro studies revealed that 

anthocyanin-rich extracts could inhibit the formation of advanced glycation end products and 

consequently decrease the risk of diabetic complications [297]. 

Aronia melanocarpa (aronia) and Sambucus nigra L. ssp. canadensis (elderberry) are 

berries that contain high amount of anthocyanins and polyphenols [179, 239]. They are not 

widely commercial cultivated thus they are underutilized. These berries exhibit high antioxidant 
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capacity due to the phenolic compounds. Aronia and elderberry are known to reduce oxidative 

stress in humans [196, 298]. Aronia and elderberry are popular in Europe where they are 

utilized as functional food ingredients and color additives [179, 299]; however, a market for 

these berries in the United States has not been well developed.  

Kefir is a fermented dairy beverage that originated in the Caucasus Mountains region 

over one hundred years ago [268, 300]. Kefir grains consist of complex microbial communities 

and contain up to 30 species [301] where lactic acid bacteria is usually predominant, followed 

by yeast and acetic acid bacteria [264]. Several studies suggest that kefir has anti-microbial, 

anti-inflammatory, and anti-carcinogenic activities [275, 302, 303]. Kefir is naturally lactose-

free, this property makes kefir a good source of calcium and protein for lactose intolerant 

individuals [270]. The fermentative microorganisms may have the ability to increase the 

bioaccessibility and bioavailability of phenolic compounds due to the release of bound phenolic 

constituents by some lactic acid bacteria [315, 304]. The low acid environment of kefir is helpful 

to decrease the natural degradation of phenolic compounds [305]. Therefore, the combination 

of anthocyanin-rich berries and kefir may result in a value-added functional product. The 

objective of this study was to develop functional food products by incorporating either aronia 

or elderberry juice into a kefir beverage and evaluate their sensory and phytochemical 

characteristics. Different natural sweeteners (sucrose, stevia or monk fruit extract) were used 

to enhance the sweetness of the products. The consumer acceptability of the products was 

evaluated via sensory tests. The aronia sensory test focused on the impact of sweetener variety 

on consumer acceptability. The elderberry kefir sensory test assessed the influence of 

sweetness levels. Bioactive constituents of the kefir products were analyzed in the laboratory. 
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2.3 Material and Methods 

2.3.1 Chemicals 

Methanol, citric acid anhydrous, potassium chloride, hydrochloric acid, and sodium 

bicarbonate were obtained from Fisher’s Scientific (Waltham, MA, U.S.). 2, 2-diphenyl-1-

picrylhydrazyl (DPPH), Folin - Ciocalteu’s phenol reagent and gallic acid were purchased from 

Sigma-Aldrich (St. Louis, MO, U.S.), and sodium acetate from Chem-Impex int’l inc. (Wood Dale, 

IL, U.S.). Ultrapure water was obtained from a Millipore water system (EMD Millipore, Billerica, 

MA, U.S.).  

2.3.2 Dietary Material 

Aronia (Aronia melanocarpa, variety ‘Viking’) were obtained from the University of 

Connecticut (Storrs, CT, U.S.) from the 2014 growing season. Elderberry juice was a gift of Dr. 

John Brewer from Wyldewood Cellars® (Wichita, KS, U.S.). Elderberries (Sambucus nigra, L. ssp. 

canadensis) used in making samples for fresh juice phytochemical analyses were collected from 

the experimental garden at the University of Maine (Orono, ME, U.S.) during the 2015 harvest 

season. Berries were harvested at full ripeness which was determined by a deep purple color 

and softness of the berry. They were de-stemmed and washed, then frozen at -20˚C. The 

thawed berries were pasteurized (100˚C, 5 minutes) in an aluminum sauce pan then juiced with 

a domestic juicer (Hamilton Beach, Southern Pines, NC, U.S.). Juice yield from 1 kg berries 

averaged 360 g. Fresh juice was used immediately to make the kefir products. Commercial kefir 

culture (Yogourmet®, Lachute, QC, Canada) was used as the starter for the kefir.  The viability of 

the lactic bacteria in the starter was determined by inoculation on MRS agar (Nedgen, Lansing, 

MI, U.S.) at 40˚C for 48 hours. The viability of the yeast in the starter was measured by plating 
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on antibiotic plate counting agar (Alpha Biosciences, Baltimore, MD, U.S.) at room temperature 

for 96 hours. Sucrose (Great Value®, Bentonville, AR, U.S.), stevia extract (Stevia in the Raw®, 

New York City, NY, U.S.), monk fruit extract (Monk Fruit in the Raw®, New York City, NY, U.S.) 

and 2% milk (Oakhurst®, Portland, ME, U.S.) were purchased from local supermarkets.  

2.3.3 Kefir Manufacture and Formulas 

All kefir products were prepared by the following method: 2% milk was heated to 82˚C 

in a commercial size aluminum sauce pan, cooled to 26˚C using an ice bath, and then 

transferred to a 4 L pyrex glass bowl. The commercial starter was added to the milk (5 g per 

quart), and the mixture was stirred for 5 minutes to ensure the starter was dissolved. Either 

aronia juice (~13%, w/w) or elderberry juice (~10%, w/w) was added to the mixture. The 

amount of non-nutritive sweetener used in each product was adjusted according to the 

instruction on the package to create equal sweetness to sucrose. After the addition of all 

ingredients, the mixture was covered with a cloth and left at room temperature to ferment for 

24 hours. The kefir was homogenized with a Hamilton Beach immersion blender (Southern 

Pines, NC, U.S.). Each kefir product was divided into two containers with sealed lids and stored 

at 4˚C. The kefir was allowed to chill at 4 ˚C for 2 hours prior the sensory tests. The sensory 

tests were completed within 36 hours. Formulas are shown in Table 2.1.  Kefir products were 

only formulated with juice and sweetening agents (sucrose, stevia extract, or monk fruit 

extracts); no additional modifiers were used. Low sucrose levels were selected for reducing 

calorie content and to ensure that the predominant flavor was from the berry juice. 
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  An aliquot of the kefir prepared for the sensory test was collected and stored at -20˚C 

until laboratory analyses. The initial study design was to utilize fresh berry juices for the kefir 

products but due to crop failures in 2013 and 2014, fresh elderberries were not available. 

Commercial elderberry juice (shelf-stable product) was used in this study. To better understand 

the difference between commercial and fresh elderberry juice, an additional set of elderberry 

kefir products made with fresh juice was prepared and analyzed in the laboratory at a later 

date.  

Table 2.1 Formulas of kefir products for sensory evaluation 

Product Sweetener Milk with 
starter (g) 

Commercial 
elderberry 
juice (g) 

Fresh 
elderberry 
juice (g) 

Fresh 
aronia 
juice (g) 

Sucrose 
(g) 

Stevia 
(g) 

Monk 
fruit 
(g) 

Aronia kefir 

sucrose 83 ---- ---- 13 4.0 ---- ---- 

stevia 83 ---- ---- 13 ---- 0.40 ---- 

monk fruit 83 ---- ---- 13 ---- ---- 0.80 

Elderberry 
kefir 
(commercial 
juice) 

low sucrose 
(4.3%) 

90 10 ---- ---- 4.5 ---- ---- 

high sucrose 
(5.7%) 

90 10 ---- ---- 6.0 ---- ---- 

low stevia 
(0.4%) 

90 10 ---- ---- ---- 0.45 ---- 

high stevia 
(0.6%) 

90 10 ---- ---- ---- 0.60 ---- 

Elderberry 
kefir 
(Fresh juice) 

low sucrose 
(4.3%) 

90 ---- 10 ---- 4.5 ---- ---- 

high sucrose 
(5.7%) 

90 ---- 10 ---- 6.0 ---- ---- 

low stevia 
(0.4%) 

90 ---- 10 ---- ---- 0.45 ---- 

high stevia 
(0.6%) 

90 ---- 10 ---- ---- 0.60 ---- 

Note: ---- indicates the ingredient was not used in the formula 
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2.3.4 Sensory Analyses  

All sensory tests were performed in the Sensory Testing Center at the University of 

Maine, Orono campus. Sensory tests were approved by the Institutional Review Board for the 

Protection of Human Subjects at the University of Maine (IRB). Two tests were conducted and 

100 healthy participants for each test were recruited from the community. Demographic 

information was collected, such as age and gender. Consumer familiarity with the berries and 

kefir was assessed. Consumer attitude toward purchasing healthy food was asked. Color, flavor, 

sweetness, texture and overall acceptability of all samples were evaluated using a 9-point 

hedonic scale (1=dislike extremely, 5=neither like nor dislike, 9=like extremely). Products 

received random 3-digit codes and samples were presented to the consumers in a randomized 

sequence. Samples were served cold (4 ˚C) in transparent 2 oz plastic cups and water was 

offered as a palate cleanser. Information was collected anonymously with computers using 

SIMS Sensory Software® (Berkeley Heights, NJ, U.S.). Each participant was compensated with $2 

for completion of the sensory test.  

2.3.5 pH, Titratable Acidity, Total Soluble Solids and Color Measurements 

pH, titratable acidity (TA), and total soluble solids (˚Brix) were evaluated following the 

methods reported by Mena et al. with minor modification [306]. Briefly, pH was measured 

using a Sartorius pH meter (Bohemia, NY, U.S.). TA was determined by titrating 5 g of kefir with 

0.1 M NaOH solution. The results were expressed as % lactic acid [307] in kefir and % citric acid 

in juice. Total soluble solids were tested using a PAL-3 refractometer by Atago (Tokyo, Japan) 

and values were expressed as ˚Brix. The color was measured using a LabScan XE 

spectrophotometer manufactured by HunterLab (Reston, VA, US) and was recorded as L* 
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(lightness), a* (redness/greenness), and b* (yellowness/blueness). Hue angle and Chroma 

values were calculated by the following formulas [308, 309].  

Hue = Arc tan(𝑏∗ 𝑎∗⁄ ) for the first quadrant (+a, +b) 

Hue = 360 + Arc tan(𝑏∗ 𝑎∗⁄ ) for the fourth quadrat (+a, -b) 

 Chroma =  √(𝑎∗2 + 𝑏∗2) 

pH and ˚Brix were measured in triplicate, TA was measured in duplicate due to limited 

sample availability. Color was measured in five independent tests to confirm the uniformity of 

the sample and obtain representative results.  

2.3.6 Extraction 

Phenolic compounds were extracted following the method reported by Scibisz et al. 

with modification [310]. After adding acidified 80% methanol (1% citric acid, w/v, 1:10, 

sample:solvent) to the kefir matrix, the mixture was vortexed then sonicated in a Branson 5510 

sonicator (Danbury, CT, U.S.) for 1 hour. Samples were centrifuged at 16639×g (Eppendorf 

5804R, Hamburg, Germany) for 30 minutes at 4˚C. The supernatant was collected. This process 

was repeated three times. The combined supernatant was evaporated under a vacuum 

(Eppendorf Vacufuge plus, Hamburg, Germany) at room temperature. Dried samples were re-

suspended using acidified 100% methanol (1%, citric acid), and kept at ˗20˚C for one hour to 

precipitate the protein. The slurry was then centrifuged at 16639×g for 30 minutes at 0˚C and 

the supernatant was collected. Supernatant was dried under a vacuum and re-suspended with 

80% acidified methanol (1%, w/v). The extract samples were kept at ˗20˚C until analyses. 
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2.3.7 Total Phenolic Content 

TP content was determined using the Folin-Ciocalteu method as described by Velioglu et 

al., with minor modifications [311]. Briefly, after mixing extract (20 µl) and Folin-Ciocalteu 

reagent (90 µl), the plate was left at room temperature for 5 minutes and then sodium 

bicarbonate (6 g/100 ml, 90 µl) was added. The plate was covered and incubated at room 

temperature in the dark for 90 minutes. The absorbance was read at 750 nm with a Biotek plate 

reader (ELx 800, Winooski, VT, U.S.). All samples were measured in triplicate, and the results 

are expressed as gallic acid equivalents (GAE). 

2.3.8 Total Monomeric Anthocyanin Content 

TMA content was determined using the pH differential method developed by Lee et al. 

with modifications to fit a 96-well plate format [82]. Briefly, the extract (20 µl) was diluted with 

180 µl of pH 1.0 buffer (0.025 M, potassium chloride) and 180 µl pH 4.5 buffer (0.4 M, sodium 

acetate) separately. The mixture was incubated for 20 minutes at room temperature in the 

dark. The absorbance (abs) was read at 520 nm and 690 nm using the plate reader. The TMA 

content was calculated by the following formula and expressed as cyanidin-3-glucoside (C3G) 

equivalents. 

Anthocyanin (cyanidin − 3 − glucoside equivalents , mg L⁄ ) =  
A ×MW×DF×103

ε×L
  

Where: A = (abs520 nm – abs700 nm) pH 1.0 – (abs520 nm – abs700 nm) pH 4.5; 

MW (molecular weight) = 449.2g/mol for cyanidin-3-glucoside; 

DF = dilution factor; 
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L = pathlength in cm; 

ε= 26900L/mol·cm, for cyanidin-3-glucoside; 

103 = factor for conversion from g to mg. 

2.3.9 Antioxidant Capacity  

Antioxidant capacity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) 

free radical scavenging method by Duymus et al. with minor modifications [312]. 150 µl of 

DPPH solution (0.3 mM) were added to 150 µl serially diluted extracts, the mixture was 

incubated in the dark at room temperature for 30 minutes and read at 515 nm. The inhibition 

rate was calculated by the following formula:  

%inhibition =  
Abs𝐶𝑜𝑛𝑡𝑟𝑜𝑙−Abs𝑆𝑎𝑚𝑝𝑙𝑒

Abs𝐶𝑜𝑛𝑡𝑟𝑜𝑙
× 100  

Inhibition (%) was plotted against extract concentration, and the IC50 (the concentration 

to scavenge fifty percent of DPPH free radical) was calculated. Gallic acid was used as a positive 

control.  

2.3.10 Statistical Analysis 

Data are shown as mean ± standard deviation. Sensory data were analyzed with one-

way analysis of variance using JMP 12 software by SAS Institute Inc. (Cary, NC, U.S.). Tukey’s 

Honest Significant Difference (HSD) test was used for mean comparisons. Pearson test was used 

to determine correlations. A significance level was set at α = 0.05.  
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2.4 Results and Discussion 

2.4.1 Aronia Kefir Evaluations 

2.4.1.1 Aronia Kefir Sensory Test 

Three aronia kefir products containing different sweeteners were evaluated in this test. 

The only difference among aronia kefir products was the type of the sweetener. Participants’ 

perception about different sweeteners could be assessed. Demographic results demonstrated 

that participants in this test were balanced in gender (54 female and 46 male), and the general 

age range was 18-34 years old. A question about the importance of purchasing food with 

potential health benefits was addressed and 94% of participants responded positively. Thus, 

functional food products, like aronia kefir, comply with consumer purchasing trends. Sensory 

attributes and overall acceptability results are shown in Figure 2.1. The results show that the 

participants accepted the color of all the products equally; however, significant differences in 

acceptability were detected for other attributes. Based on the ratings for sweetness, the 

participants liked the sucrose-sweetened sample best followed by stevia and monk fruit extract 

was the least favored. Similar results were obtained by another study where chocolate milk 

sweetened with sucrose received better acceptability compared to stevia or monk fruit extracts 

[313]. A study by Cardello et al. demonstrate that many non-nutritive sweeteners, such as 

stevia and aspartame have a residual bitter taste which is not well accepted by the consumers 

[314]. In our test, consumers noted that kefir products sweetened with non-nutritive 

sweeteners (stevia and monk fruit extract) had a “bad”, “longer”, or “unpleasant aftertaste” 

which lowered consumer liking of the products. Flavor was best received in the sucrose-

sweetened aronia product. Kefir has a unique flavor due to the lactic acid and carbon dioxide 
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[273]. In this study, aronia juice and sweeteners were added to the kefir, and contributed to the 

overall flavor profile. Aftertaste of non-nutritive sweeteners may be a reason for the low 

hedonic scores of the products in the flavor attribute. The best texture was received in the 

sucrose-sweetened product where a thicker consistency was noticed. Cardoso and Bolini 

indicated that sucrose contributed a more viscous texture to a beverage product compared to 

non-nutritive sweeteners [315]. The unique foamy texture of kefir generated by carbonation 

during fermentation [267] may be novel to the American palate and may have an impact on the 

acceptability. Consumer preference of the texture may be influenced by the viscosity and the 

carbonation of the product. The best overall acceptability (6.3) was received in aronia kefir 

made with sucrose. Aronia kefir made with monk fruit extract, by contrast, received the lowest 

hedonic score (4.9). In addition to the influence by sweeteners, consumers’ unfamiliarity with 

the kefir and/or aronia berry may be another reason which had an impact on the overall 

acceptability of the products. Over half of the participants (57%) were naive to kefir (never 

consumed kefir previously) and 78% were not familiar with aronia. Orjuela-Palacio et al. proved 

that repeated exposure to a high-polyphenol beverage increased the consumer acceptance 

[316]. This indicates that the acceptability of the kefir products in this study could be higher if 

our participants were more familiar with either kefir or aronia. Generally, overall acceptability 

of each aronia kefir product was better received by participants who were previously familiar 

with kefir compared to the kefir-naive participants (data not shown).  
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Figure 2.1. Consumer acceptability of aronia kefir made with different sweeteners 

Note: Data are shown as means ± standard deviation. n=100.  

Different letters indicate significant differences among means within each attribute, 

p<0.05. 

2.4.1.2 Aronia Kefir Quality Parameters 

The results of pH, TA, ˚Brix and color of aronia kefir are shown in Table 2.2. The pH 

values of aronia kefir were in the acidic range as expected and this acidic environment is 

necessary to maintain the integrity of the phenolic compounds [305]. TA is representative of 

the sour taste in the product. Lactic acid produced by the kefir culture and organic acids in 

aronia juice contributed to TA values. No correlation was observed between TA and pH (r = -

0.13, p = 0.73). The highest ˚Brix value was observed in the sucrose-sweetened product as 

expected. Several factors contribute to the ˚Brix of the product. They include the added 

sucrose, fructose in aronia berries and the breakdown products of the milk disaccharides by the 
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living culture. Concentrations of viable lactic acid bacteria and yeasts in the commercial kefir 

starter were 9.83 × 108 CFU/g and 5.3 × 104 CFU/g, respectively. 

Table 2.2 Quality evaluation of juices, aronia kefir, elderberry kefir made with commercial juice, 

and elderberry kefir made with fresh juice  

Product 
pH 

(n=3
) 

TSS 
(˚Brix 
n=3) 

%TA 
(w/w 
n=2) 

Color (n=5) 

L* a* b* 
Hue 

angle 
Chroma 

Aronia kefir 

Sucrose 
4.4±
0.01 

13.2 ± 
0.10 

0.64 
53.1 ± 
0.26 

16.9 ± 
0.29 

-4.9 ±  
0.14 

359.7 
± 0.01 

17.6 ± 
0.24 

Stevia 
4.4±
0.01 

8.9 ±  
0.06 

0.67 
53.2 ±  
0.04 

16.7 ±  
0.11 

-5.1 ±  
0.04 

359.7 
± 0.00 

17.5 ±  
0.09 

Monk fruit 
4.4± 
0.01 

9.5 ± 
0.12 

0.66 
54.0 ± 
0.12 

16.9 ±  
0.17 

-4.6 ±  
0.09 

359.7 
± 0.01 

17.5 ±  
0.14 

Elderberry 
kefir 
(commercial 
juice) 

4.3% sucrose 
4.5± 
0.01 

13.1 ±  
0.06 

0.73 
60.5 ± 
0.11 

10.9 ±  
0.02 

1.5 ±  
0.04 

360.1 
± 0.00 

11.0 ±  
0.03 

5.7% sucrose 
4.6± 
0.01 

14.6 ± 
0.06 

0.70 
60.4 ± 
0.11 

10.9 ± 
0.03 

1.6 ± 
0.05 

360.1 
± 0.00 

11.1 ±  
0.04 

0.4% stevia 
4.5± 
0.01 

9.2 ± 
0.00 

0.77 
60.8 ± 
0.48 

10.8 ± 
0.07 

1.7 ±  
0.08 

360.2 
± 0.01 

10.9 ±  
0.08 

0.6% stevia 
4.5± 
0.01 

9.2 ± 
0.06 

0.75 
61.6 ± 
0.27 

10.6 ± 
0.16 

1.6 ±  
0.05 

360.2 
± 0.00 

10.7 ±  
0.17 

Elderberry 
kefir  
(fresh juice) 

4.3% sucrose 
4.5± 
0.01 

13.5 ± 
0.01 

0.74 
60.7 ± 
0.07 

12.0 ± 
0.09 

0.1 ±  
0.06 

360.0 
± 0.01 

12.0 ± 
0.09 

5.7% sucrose 
4.5± 
0.01 

14.9 ± 
0.06 

0.74 
60.6 ± 
0.02 

12.1 ± 
0.03 

-0.3 ± 
0.04 

360.0 
± 0.00 

12.1 ± 
0.03 

0.4% stevia 
4.6± 
0.01 

9.1 ± 
0.06 

0.76 
59.9 ± 
0.04 

12.2 ± 
0.03 

0.6 ± 
0.03 

360.1 
± 0.00 

12.2 ± 
0.03 

0.6% stevia 
4.6± 
0.01 

9.5 ± 
0.01 

0.74 
59.6 ± 
0.09 

12.7 ± 
0.05 

0.3 ± 
0.07 

360.0  
± 0.01 

12.7 ± 
0.05 

Juice 

Aronia 
3.4± 
0.00 

17.1 ± 
0.06 

1.15 
0.4 ± 
0.01 

0.1 ± 
0.02 

-0.3 ± 
0.03 

358.7 
± 0.07 

0.3 ± 
0.02 

Commercial 
elderberry 

4.0± 
0.01 

20.7 ± 
0.06 

1.90 
0.3 ± 
0.00 

-0.1 ± 
0.01 

-0.8 ± 
0.01 

361.4  
± 0.01 

0.8 ± 
0.01 

Fresh 
elderberry 

4.3± 
0.01 

12.5 ± 
0.00 

0.55 
2.40 ± 
0.12 

2.7 ± 
0.22 

3.5 ± 
0.22 

360.9  
± 0.05 

4.4 ± 
0.24 

Note: Data are shown as means ± standard deviation except for %TA.  

Since hue values were close to 0°/360° on hue angle scale, hue angle values were 

transformed by adding 360° for comparison [308]. 
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Chroma values indicate the saturation or the intensity of the color. High Chroma values 

of the aronia kefir products indicated the color was saturated. Based on the similar Chroma 

values among the aronia kefir products, there was no difference in the color intensity. Hue 

angle values close to 0° (360°) indicated reddish color. The hue angle values of aronia kefir 

indicate that the products displayed a reddish color. High L* values of the aronia kefir show the 

products had a bright color. Positive a* values and negative b* values of the products indicate 

the products presented a bluish-red color. Anthocyanins present a red to a blue color when the 

environment changes from acidic to alkaline. The bluish-red color was expected in the products 

due to the acidic environment of kefir. 

2.4.1.3 Aronia Kefir Phytochemical Analyses 

The results of the phytochemical analyses of aronia kefir samples are shown in Table 

2.3. Aronia kefir products had high TMA contents (16.57-17.22 mg C3G/100 g kefir). A typical 

serving size of kefir is 8 oz. One serving of the aronia kefir product would provide more than 39 

mg TMA. Average TMA intake in the United States is 12.5 mg/day/person [201]. Our products 

provided three times more than the average intake for TMA. An epidemiologic study shows 

that in a population with an intake of 22.3-24.3 mg/day of TMA there was a lower incidence of 

type 2 diabetes compared to a population with only 2.0-2.3 mg/day [3]. In addition, Jennings et 

al. indicated that a TMA intake of 39.9 mg/day was associated with lower inflammation levels 

and improved insulin resistance compared to a TMA consumption of only 3.54 mg/day [317]. 

According to Seymour et al., consumption of cherries containing 25.83 mg TMA increased the 

plasma antioxidant capacity for 12 hours in healthy humans [149]. This evidence confirms that 
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the consumption of aronia kefir could increase anthocyanin intake in a normal diet and 

contribute to decreasing in inflammation and preventing type 2 diabetes.  

Table 2.3 Phytochemical evaluation results of juices, aronia kefir, elderberry kefir made with 

commercial juice and elderberry kefir made with fresh juice 

Product Anthocyanin 
Content 

(mg C3G/100 g 
sample) 

Total Phenolic 
Compounds 

(mg GAE/100 g 
sample) 

DPPH IC50 
(mg 

sample/mL) 

Aronia kefir 

Sucrose 17.22 ± 0.17 43.04 ± 1.05 28.84 ± 0.26 

Stevia 16.57 ± 0.44 40.32 ± 1.02 27.59 ± 0.26 

Monk fruit 16.94 ±0.38 40.37 ± 0.51 27.84 ± 0.26 

Elderberry kefir 
(commercial 
juice) 

4.3% sucrose 1.02 ± 0.22 19.61 ± 0.25 59.19 ± 0.37 

5.7% sucrose 0.95 ± 0.01 18.76 ± 0.19 65.52 ± 0.13 

0.4% stevia 1.13 ± 0.02 19.86 ± 0.32 60.36 ± 0.56 

0.6% stevia 1.06 ± 0.02 20.13 ± 0.58 61.65 ± 0.76 

Elderberry kefir  
(fresh juice) 

4.3% sucrose 18.67 ± 0.08 42.31 ± 0.96 20.86 ± 0.43 

5.7% sucrose 20.10 ± 0.14 43.66 ± 1.90 20.36 ± 0.86 

0.4% stevia 17.05 ± 0.06 39.00 ± 0.46 24.11 ± 0.67 

0.6% stevia 18.90 ± 0.07 43.50 ± 0.82 20.68 ± 0.55 

Juice 

Aronia 275.64 ± 3.18 604.49 ± 14.90 1.54 ± 0.04 

Commercial 
elderberry 

25.59 ± 1.58 337.28 ± 4.75 4.39 ± 0.03 

Fresh 
elderberry 

416.92 ± 3.18 369.47.59 ± 1.38 2.14 ± 0.01 

Note: Data are shown as means ± standard deviation, n=3. 

TP content in aronia products were 40.32 – 43.04 mg GAE/100 g kefir. An 8 oz serving 

provides more than 95 mg GAE of phenolics to the consumers. This equals about one-fifth of 

the average daily consumption of TP (450 mg GAE/person) in the American diet [318]. Dall’Asta 

et al. proved that dietary polyphenols could stimulate insulin secretion and protect β-cells from 
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the damage induced by oxidative stress [106]. Aronia kefir products could add to the overall 

consumption of total phenolics in the diet and contribute to the prevention of diabetes. DPPH 

IC50 values of aronia kefir products were between 27.59 to 28.84 mg kefir/mL. These results 

showed that the products had the ability to sequester free radicals. The antioxidant capacity of 

aronia kefir products is associated with the amount of TMA and TP. Kefir is a live culture and 

the environment is dynamic. TMA and TP are being actively metabolized which helps explain 

the low recovery rates. Recovery rates of TMA and TP were about 45% and 55% respectively. 

TMA ingested from fruit and vegetables are usually conjugated and have low bioavailability 

[319]. Using a food matrix like kefir that contains live cultures may enhance the bioaccessibility 

of the aronia bioactive compounds by increasing TMA due to the de-conjugation of the 

anthocyanins.  

2.4.2 Elderberry Kefir Evaluations (Commercial Juice) 

2.4.2.1 Elderberry Kefir Sensory Test 

Four elderberry kefir products sweetened with either sucrose or stevia were evaluated 

in this test. In the previous sensory test of aronia kefir, monk fruit extract was not well accepted 

and it was eliminated from the test of elderberry kefir. The elderberry kefir products were 

sweetened to two levels to test the impact of sweetness. Commercial products, such as 

blueberry flavored Lifeway® kefir, usually have about 20% sugars including 8 g added sugars. 

The ˚Brix values of the products in this study without added sweetener were approximately 9% 

(data not shown). Thus 4.3% or 5.7% sucrose was used to sweeten elderberry kefir to keep the 

total ˚Brix at least 5% lower than commercial products. 0.4% and 0.6% stevia extracts were 

used to create equal sweetness to the sucrose products respectively. Demographic results 
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showed that participants in this test were balanced for gender (55 female and 45 male) and the 

major age range was 18-34 years old. All participants in this test responded positively that 

purchasing health-beneficial food was important.  

The consumer acceptability test (Figure 2.2) demonstrated that the products were 

accepted equally for color. The best acceptability in sweetness was observed in elderberry kefir 

sweetened with higher sucrose content (5.7%). Significantly lower ratings were observed in the 

two products sweetened with stevia extract. This is potentially driven by the unpleasant 

aftertaste of stevia extract based on the consumer comments. Sweeter products (5.7% sucrose 

and 0.6% stevia) were accepted better compared to less sweet products (4.3% sucrose and 

0.4% stevia), but there was no significant difference between two stevia-sweetened products in 

this study. A similar trend was observed by Johansen et al. [320]. Their study indicated that 

yogurt sweetened with 13% sucrose significantly increased consumer preference compared to a 

product sweetened with 9% sucrose. Flavor was rated best in elderberry kefir sweetened with 

higher sucrose content (5.7%) which was not significantly different from elderberry kefir 

sweetened with 4.3% sucrose. The acid in kefir matrix, added sweetener and elderberry juice 

contributed to the complex flavor of the elderberry products. Fermented dairy products have a 

distinctive sour taste which may be a negative influencing factor on the consumers’ 

acceptability [321]. The addition of sucrose to the products resulted in an increased sweet to 

sour ratio (˚Brix:TA) and may present a better-balanced flavor. The two products sweetened 

with stevia extract were less-accepted for flavor. The reason may be the unpleasant aftertaste 

of stevia extract. The best texture was received in the elderberry product with 5.7% sucrose. 

Sucrose contributes to a more viscous texture which was observed in this product. 
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Effervescence in dairy products induced by fermentation may be unfamiliar to consumers and 

might be an influencing factor. Best overall acceptability (6.6) was rated in elderberry kefir 

sweetened with high sucrose content (5.7%), and the product made with low stevia content 

(0.4%) received the lowest rating (5.8). Similar to what was observed in the previous aronia 

kefir consumer testing, participants’ unfamiliarity with either kefir or elderberry may 

undermine the overall acceptability of the products. In this test, 40% of the consumers had 

never consumed kefir and 58% of the participants were unfamiliar or had never heard of 

elderberry. Elderberry kefir products were better accepted by previous kefir consumers 

compared to the kefir-naive group (data not shown).  

 

Figure 2.2 Consumer acceptability of elderberry kefir made with different sweeteners 

Note: Data are shown as means ± standard deviation. n=100. Different letters indicate 

significant differences among means within each attribute, p<0.05. 
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2.4.2.2 Elderberry Kefir Quality Parameters (Commercial Juice) 

pH, TA, ˚Brix and color results of elderberry kefir made with commercial juice are shown 

in Table 2.2. The pH values demonstrated that the elderberry kefir products were acidic, which 

is necessary for the stability of bioactive compounds [305]. TA of products sweetened with 5.7% 

sucrose was the lowest while stevia-sweetened (0.4%) elderberry kefir was the highest. TA 

represents the sour taste. The sour taste in elderberry kefir was associated with the lactic acid 

generated by fermentation and the organic acids from the elderberry juice. There was no 

significant correlation between TA and pH (r = 0.49, p = 0.25). The highest ˚Brix value was 

observed in 5.7% sucrose-sweetened products as expected. Product sweetened with 4.3% 

sucrose was second highest. Stevia products both had low ˚Brix values. Color was analyzed for 

elderberry kefir products. All elderberry kefir products had similar color intensity based on the 

Chroma values. Hue angle values of all elderberry products were close to 0 (360) indicating that 

the products presented as a reddish color. High L* values indicated that the products had a light 

color. a* and b* values of all products were positive. This indicated that elderberry kefir 

products present light red color. Since anthocyanins present a red color in an acidic 

environment, this color was reasonable. 

2.4.2.3 Elderberry Kefir Phytochemical Analyses (Commercial Juice) 

Phytochemical results of elderberry kefir made with commercial juice are shown in 

Table 2.3. Kefir products made with commercial elderberry juice contained a low amount of 

TMA (0.95 – 1.13 mg C3G/100 g kefir) and a moderate amount of TP (18.76 – 20.13 mg 

GAE/100 g kefir). The TMA and TP contents of commercial elderberry juice were 25.59 mg 

C3G/100 g and 337.28 mg GAE/100 g respectively. These amounts were much lower than the 
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reported values in the literature [322]. The recovery rates of TMA and TP were about 40% and 

60% respectively (data not shown). Literature suggests several factors may impact TMA content 

in elderberry or elderberry products. For instance, plant variety and growing conditions can 

alter anthocyanin content [322, 323]. Processing, such as thermal treatments or filtration, could 

result in anthocyanin loss [324-326]. The processing parameters and elderberry varieties of 

commercial juice (a shelf stable product) are unknown, an additional set of kefir made with 

fresh juice was made to better understand the difference between the commercial and fresh 

elderberry juice. The same product formulas were used. Phytochemical evaluation of the 

additional elderberry kefir products is discussed in the next section. 

2.4.3 Elderberry Kefir Evaluation (Fresh Juice) 

The results for the biochemical measurements of the fresh elderberry juice are shown in 

Table 2.2. ˚Brix and TA values of the fresh elderberry juice were lower than the commercial 

juice. Color parameter values of commercial and fresh elderberry juice are different. Based on 

the Chroma values, fresh elderberry juice had a more saturated color than commercial juice. 

Phytochemical properties of the fresh and the commercial elderberry juices were measured to 

better understand the difference (Table 2.3). The results demonstrated that the TMA content in 

fresh elderberry juice was 16 times higher than the commercial juice. Higher TP content was 

observed in fresh elderberry juice. Gonzalez-Molina et al. revealed that anthocyanin content in 

elderberry juice decreased more than 50% during 56 days storage at room temperature [327]. 

Elderberry juice should be utilized fresh to ensure the highest levels of anthocyanins in 

products like elderberry kefir. 
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A sensory test was not conducted on the products made with fresh juice due to 

insufficient fresh elderberries. pH, TA, ˚Brix and color results of elderberry kefir made with fresh 

juice are shown in Table 2.2. The elderberry kefir products made with fresh juice exhibited 

similar pH, TA and ˚Brix values. No correlation was found between pH and TA (r = 0.22, p = 

0.61). Based on the Chroma values, fresh-elderberry-juice-added kefir product with 0.6% stevia 

had a more saturated color.  

Phytochemical analyses results of elderberry kefir made with fresh juice are shown in 

Table 2.3. TMA content of kefir made with fresh elderberry juice was 14 times higher than that 

in the product made with commercial juice. TP content in fresh-juice elderberry kefir was two 

times higher compared to the products made with commercial juice. Smaller IC50 values in the 

products made with fresh elderberry juice were observed. This indicates that kefir made with 

fresh elderberry juice exhibits stronger antioxidant capacity than the commercial-elderberry-

juice kefir. The higher TMA and TP contents in fresh-elderberry-juice kefir due to the larger 

amount of TMA and TP in the fresh juice. One serving (8 oz) of the elderberry kefir products 

made with fresh juice contains more than 40 mg TMA and 93 mg TP. Elderberry kefir products 

made with fresh juice could contribute to the enhancement of consumers’ dietary intake for 

both TMA and TP. Increased consumption of TMA and TP may contribute to a decrease in the 

chronic inflammation and in the risk of type 2 diabetes [3, 106]. Therefore, the freshness of 

juice and a shorter shelf life are important to maximize the delivery of bioactive compounds. 
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The recovery rate of TMA in products made with fresh elderberry juice was around 45%. 

For TP, the recovery rate exceeded 100%. Similarly, increased total phenolics were observed in 

myrtle berry homogenate after fermentation with Lactobacillus plantarum C2 and the main 

increase was in phenolic acids [176]. This study suggested that the increase was due to the 

esterase activity in the lactic bacteria. Esterase cleaves the ester bond which liberates the 

phenolic acids from their glycosylated form. During fermentation, the constituents of 

elderberry juice are metabolized by the living kefir culture. This enhancement may lead to a 

functional food with an increased amount of bioavailable phenolic compounds. 

2.5 Conclusion 

Kefir products made with aronia or elderberry were evaluated for their sensory 

attributes, quality parameters and phytochemical properties. Both sensory tests indicated that 

consumers preferred sucrose over non-nutritive sweeteners. Results of phytochemical analyses 

revealed that the freshness of juice was critical for maximum bioactive compounds in the 

products. The fermentation process may contribute to the liberation of phenolic compounds in 

part by esterase activity and may be important to enhance the bioavailability of bioactive 

compounds. Further research is needed to better understand the impact of fermentation on 

bioavailability and liberating the phenolic compounds to potentially increase their absorption. 

Developing value-added functional food products could be a good way to utilize aronia or 

elderberries. Kefir products with berries may increase dietary intake of anthocyanins and total 

phenolics, which may contribute to the prevention of type 2 diabetes and other inflammatory 

chronic diseases.   
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CHAPTER 3 

FERMENTATION ALTERS THE BIOACCESSIBLE PHENOLIC COMPOUNDS AND INCREASES THE 

 ALPHA-GLUCOSIDASE INHIBITORY EFFECTS OF ARONIA JUICE IN A DAIRY MATRIX 

FOLLOWING IN-VITRO DIGESTION 

 
This chapter is published in the Food & Function 2018, volume 9, page 2998-3007. 

 

3.1 Chapter Abstract 

The prevalence of diabetes reached 415 million worldwide in 2015. Polyphenol-rich food 

intake can benefit the glycemic control for individuals with diabetes. Fermentation may 

increase the bioavailability of polyphenols, w°°hich is generally low.  Aronia (Aronia 

melanocarpa) is a polyphenol-rich berry that is native to North America. Proanthocyanins and 

anthocyanins are the major phenolic compounds in aronia. In this study, aronia kefir was made 

by fermenting cow’s milk with added aronia juice. The changes in bioaccessible polyphenols of 

aronia kefir during digestion were assessed using an in-vitro model. The impact of fermentation 

on the potential bioactivity of aronia polyphenols was evaluated. Results showed that the 

bioaccessible polyphenols in aronia kefir were elevated during digestion and the antioxidant 

capacity increased (IC50 of DPPH scavenging decreased from 24.07 mg kefir/mL to 8.97 mg 

kefir/mL). Digested aronia kefir had stronger inhibitory activity on α-glucosidase (IC50: 152.53 

mg kefir/mL) compared to the non-fermented control (IC50: 484.93 mg kefir/mL). Both aronia 

kefir and the non-fermented control had weak inhibition on pancreatic α-amylase. Specific 

inhibitors of α-glucosidase, such as aronia polyphenols, have the potential to delay 

carbohydrate digestion and reduce the absorption of glucose without side effects. Utilizing 
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aronia kefir in the diet is a good strategy to help control blood glucose levels. Fermentation may 

be an effective method to increase the bioavailability of dietary polyphenols in other food. 

More studies about the effects of fermentation on polyphenol-rich food are needed to optimize 

the potential health-promoting properties. 

3.2 Introduction 

Diabetes has been a global issue for the past few decades. In 2015, 30.3 million people 

(9.4%) in the United States and 415 million people in the world had diabetes [328]. Diabetes is 

associated with a decline in life expectancy and a reduction in life quality [32]. Tight blood 

glucose control is crucial for diabetic patients to delay the progression of complications, such as 

diabetic retinopathy, neuropathy and nephropathy [329]. The modulation of postprandial 

glucose absorption is one important method for management of hyperglycemia. Synthetic 

pharmaceutical agents are used to inhibit carbohydrate-hydrolyzing enzymes for delaying and 

reducing the absorption of glucose. Despite the effectiveness of the drugs, most of them have 

side effects that impact the gastrointestinal tract and hepatic system [329, 330]. Studies 

suggest that dietary polyphenols derived from plant-based food exhibit similar activity in 

inhibiting carbohydrate-hydrolyzing enzymes in-vitro and have the potential to aid in blood 

glucose control without side effects [329].  

Dietary polyphenols are commonly ingested as a part of daily diet. They are found in 

high levels in plant-based foods, especially in berries. Generally, polyphenols have low 

bioavailability due to their instability in the small intestine and their large molecular size [331]. 

The food matrix may limit or improve the absorption of polyphenols and influence the 
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bioavailability [92]. Several methods have been suggested to increase the bioavailability of 

polyphenols, such as using encapsulation to increase the stability in the gastrointestinal tract 

[332, 333]. Additionally, some microorganisms are capable of breaking down the complex 

phenolic compounds and the metabolites may be more bioactive [177].  

Aronia (Aronia melanocarpa) fruit is a berry native to eastern North America [334]. 

Aronia contains more total polyphenols (10-20 mg gallic acid equivalent/g fresh weight) than 

many other plant-based food, such as blueberry (1 to 4 mg gallic acid equivalent/g fresh weight) 

[202, 335, 336]. The astringent mouth-feel of aronia is caused by the high procyanidin content. 

Aronia is rarely consumed raw due to the astringency and the lack of sweetness.  Aronia was 

traditionally used by Native Americans as medicine to treat the common cold [179].  The 

phenolic compounds are the major bioactives that are responsible for the therapeutic effects of 

aronia. In Russia, aronia has been used as a natural remedy to treat hypertension and 

atherosclerosis [179]. A recent study conducted by Loo et al. showed that consumption of 

aronia juice decreased low-grade inflammation in hypertensive patients [219]. Broncel et al. 

observed that consuming aronia extract reduced the oxidative stress in patients with metabolic 

syndrome [337]. 

Kefir is a fermented dairy product consisting of up to 30 species of microorganisms 

including lactic bacteria, yeast and sometimes acetic acid bacteria [338]. Functional properties 

of kefir are well documented, including anti-bacterial, anti-carcinogenic and anti-inflammatory 

effects [261]. Kefir is naturally lactose-free, making it a good calcium and protein source for 

lactose-intolerance individuals. In this study, kefir was selected as the matrix to incorporate 
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aronia polyphenols for the following reasons: 1) kefir is rich in protein, which can minimize the 

astringent mouth-feel of aronia [339] and may protect the polyphenols from degradation in the 

small intestine [340]; 2) the diverse microorganism community in kefir starter has the potential 

to metabolize phenolic compounds and increase the bioavailability [341]. Incorporating aronia 

into kefir may be a good way to optimize the potential health-promoting properties of aronia; 

3) the acidic pH of kefir helps to protect the anthocyanins from degradation. 

Digestion is a key process influencing the bioavailability of a dietary component [134] 

because factors such as pH and enzymes in the digestive tract can modify the components and 

alter their liberation behavior [333]. Understanding the changes of the aronia polyphenols 

during digestion is important to assess their potential bioactivity. The functional properties of 

aronia before ingestion is well studied, but knowledge about the changes in a fermented matrix 

and the potential anti-diabetic properties after digestion remain unknown. To our knowledge, 

this is the first study to examine the bioaccessibility of aronia polyphenols in a fermented dairy 

matrix. The objectives of this study were: 1) to investigate the effects of kefir-fermentation on 

the potential bioactivity of aronia polyphenols in a dairy matrix; 2) to evaluate the changes in 

the bioaccessibility and antioxidant capacity of aronia kefir in the digestive tract using an in 

vitro model.    
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3.3 Materials and Methods 

3.3.1 Chemicals 

 Acetonitrile (HPLC grade), ammonium chloride, sodium phosphate dibasic, hydrochloric 

acid, methanol, potassium chloride, potassium thiocyanate, sodium hydroxide, sodium 

bicarbonate, soluble starch and urea were purchased from Fisher Scientific (Waltham, MA, 

U.S.). 2,2-diphenyl-1-picrylhydrazyl (DPPH), dinitrosalicylic acid, formic acid, ox-bile, p-

nitrophenyl β-D-glucopyranoside (pnp-G), potassium sodium tartrate tetrahydrate, porcine α-

amylase, rat intestinal powder and HPLC standards (quercetin, chlorogenic acid, neo-

chlorogenic acid and cyanidin-3-galactoside) were obtained from Sigma-Aldrich (St. Louis, MO, 

U.S.). Bovine serum albumin, glucose, glucosamine hydrochloride, glucuronic acid, lipase, 

magnesium chloride, mucin, pepsin, sodium phosphate monobasic and uric acid were 

purchased from MP Biomedicals (Santa Ana, CA, U.S.). Calcium chloride was purchased from 

Ward’s Science (Rochester, NY, U.S.), potassium dihydrogen phosphate was purchased from 

Alfa Aesar (Haverhill, MA, U.S.). All water used was obtained from a Millipore water system 

(EMD Millipore, Billerica, MA, U.S.). 

3.3.2 Food Material 

 Aronia (Aronia melanocarpa, variety ‘Viking’) were harvest based on the apparent 

ripeness of uniform deep purple color from the University of Connecticut (Storrs, CT, U.S.) from 

the 2014 growing season. Berries were de-stemmed, washed and stored at -20 ˚C. Frozen 

berries were thermal-treated (100 ˚C, 5 minutes) and juiced with a domestic juicer (Hamilton 

Beach, Southern Pines, NC, U.S.). Juice was used immediately. Commercial kefir starter 
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(Yogourmet®, Lachute, QC, Canada) and 2% milk (Oakhurst®, Portland, ME, U.S.) were 

purchased from a local supermarket.  

3.3.3 Sample Preparation 

 Aronia kefir was prepared by the following method: 2% milk was heated to 82 ˚C in an 

aluminum saucepan, and cooled to 26 ˚C in an ice bath. The cooled milk and the commercial 

starter (5 g per quart of milk) were combined in a glass bowl. The mixture was stirred for 5 

minutes to ensure that the starter was fully dissolved. Freshly made aronia juice was added to 

the milk-starter matrix (15%, w/w) and mixed well. The mixture was covered with a breathable 

cloth and kept at room temperature (23 ˚C) to ferment overnight. After 24 hours of 

fermentation, the aronia kefir was homogenized with an immersion blender (Hamilton Beach®, 

Southern Pines, NC, U.S.). The homogenized aronia kefir was transferred into a sealed glass jar 

and stored at 4 ˚C for 24 hours before carrying out the in-vitro digestion. Three batches of 

aronia kefir were made and in-vitro digestion was performed individually. 

 Milk and aronia juice without the addition of kefir starter was used as a non-fermented 

control. Non-fermented control was made by mixing 2% milk with 15% (w/w) freshly made 

aronia juice in a glass jar and sealed with a lid. The mixture was kept at 4 ˚C for 24 hours (the 

fermentation time of making kefir) and then acidified to pH 4.5 (the pH of kefir). The acidified 

non-fermented control was stored in the refrigerator (4 ˚C) for another 24 hours before the in-

vitro digestion process was carried out. Batches were made in triplicate. 
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3.3.4 in-vitro Digestion Procedure 

The digestion process was simulated using a modified method from Oomen et al. to 

assess the changes of polyphenols in the digestive tract after ingestion [342]. For each 

digestion, three compartments in the digestive tract were simulated: mouth, stomach and small 

intestine. Artificial digestive juices (saliva, gastric juice, intestinal juice and bile) were prepared 

fresh before the in-vitro digestion was performed. The composition of digestive juices are listed 

in Table 3.1. pH values of the digestive juices were adjusted with concentrated HCl or 2M NaOH 

to the appropriate range. The digestion process was carried out as follows: the process was 

initiated by adding saliva to 27 mL aronia kefir (2:3, v/v). The mixture was stirred gently for 5 

minutes at 37˚C in an Isotemp™ water bath (Fisher’s Scientific, Waltham, MA, U.S.). One-third 

of the oral-digested sample was removed and collected as the oral-digested fraction. Gastric 

digestion was initiated by adding in gastric juice to the remaining oral-digested sample (4:5, v/v) 

and incubating the mixture at 37 ˚C in a shaking water bath (Edvotek®, Washington D.C., U.S.) 

for 2 hours. This process consisted of two steps because the pH environment in the stomach is 

not stable at the beginning of gastric digestion due to food influx: for the first hour, one portion 

of gastric juice was added to the remaining oral digesta and the pH of the mixture was not 

adjusted; for the second hour, three portions of gastric juice were added to the mixture, the pH 

was adjusted to 2.0 with concentrated hydrochloric acid. At the end of gastric digestion, half of 

the gastric digesta was removed and collected as the gastric-digested fraction. Digestion in the 

small intestine was initiated by adding NaHCO3 (1 M) to the remaining gastric-digested sample, 

resulting in a pH of 5.7. Intestinal juice and bile were added to the mixture (4:2:9, v/v). pH of 

the mixture was adjusted to 7.5 with 2 M sodium hydroxide and the mixture was incubated at 
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37 ˚C in the shaking water bath for two hours. All of the intestinal digesta were collected as the 

small intestine-digested fraction. Though the collected volume of the individual fractions was 

different, each fraction contained an equal amount of aronia kefir (9 mL). All incubations were 

conducted in the dark and the mixtures were sealed with parafilm to reduce oxygen exposure. 

The aronia kefir controls for each stage of digestion were processed by the same procedure in 

the absence of enzymes and bile. Non-fermented control was treated with the same in-vitro 

digestion procedure.  

All collected samples were centrifuged at 16639×g (Eppendorf 5804R, Hamburg, 

Germany) for 10 minutes at 0 ˚C. The collected supernatant was acidified to pH 2.0 with 

concentrated hydrochloric acid to inactivate the digestive enzymes and to stabilize the phenolic 

compounds [331]. Methanol was added to the supernatant (2:1, v/v) and it was chilled at -20 ˚C 

to precipitate proteins. After 30 minutes, proteins in the mixture were removed by 

centrifugation at 0 ˚C for 30 minutes (16639×g, Eppendorf 5804R). Samples were filtered 

through a 0.20 µm syringe filter (Corning Inc., Corning, NY, U.S.) where an aliquot of the filtered 

supernatant was stored at -80 ˚C for phenolic compound quantification and antioxidant 

capacity evaluation. The remaining filtered supernatant was evaporated under a vacuum 

(Eppendorf Vacufuge plus, Hamburg, Germany) to remove methanol. The aqueous supernatant 

was purified with a C18 cartridge (Sigma-Aldrich, St. Louis, MO, U.S.) and washed with water to 

remove reducing sugars. The phenolic compounds in the supernatant were eluted with 

methanol. The purified sample was dried under a vacuum and resuspended in ultrapure water. 

The re-suspended samples were stored at -80 ˚C for enzyme inhibition activity analyses. 

Digestion was carried out in triplicate. 
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Table 3.1 The composition of digestive juices 

Artificial saliva Gastric juice Intestinal juice Bile 

Inorganic compounds 

10 mL KCl 89.6 g/L 15.7 ml NaCl 175.3g/L 40 ml NaCl 175.3 g/L 
30 mL NaCl  

           175.3 g/L 

10 mL KSCN 20 g/L 
18 mL CaCl2·2H2O 

            22.2 g/L 

40 mL NaHCO3  

           84.7 g/L 

68.3 mL NaHCO3  

              84.7 g/L 

10 mL NaH2PO4  

            88.8 g/L 
9.2 mL KCl 89.6 g/L 

10 mL KH2PO4  

           8.0 g/L 
4.2 mL KCl 89.6 g/L 

10 mL Na2PO4  

            57.0 g/L 

3 mL NaH2PO4  

          88.8 g/L 
6.3 mL KCl 89.6 g/L 200 µl HCL 37% g/g 

1.7 mL NaCl  

           175.3 g/L 
10 mL NH4Cl 30.6 g/L 10 mL MgCl2 5 g/L  

1.8 mL NaOH  

            40.0 g/L 
8.3 mL HCl 37% g/g 180 µl HCl 37% g/g  

Organic compounds 

8 mL urea 25.0 g/L 10 mL glucose 65.0 g/L 4 mL urea 25.0 g/L 10 mL urea 25.0 g/L 

 
10 mL glucuronic acid  

            2.0 g/L 
  

 3.4 mL urea 25.0 g/L   

 

10 mL glucosamine  

           hydrochloride  

           33.0 g/L 

  

Others 

145 mg α-amylase 1.0 g BSA 
9 mL CaCl2·2H2O  

          22.2 g/L 

10 mL CaCl2·2H2O  

            22.2 g/L 

15 mg uric acid 1.0 g pepsin 1.0 g BSA 1.8 g BSA 

50 mg mucin 3.0 g musin 3.0 g pancreatin 6.0 g bile 

  0.5 g lipase  

pH    

       6.5 ± 0.2 1.07 ± 0.07 7.8 ± 0.2 8.0 ± 0.2 

Note: The organic and inorganic solutions were adjusted into 500mL with distilled water 

separately. Other constituents were added to the mixture of organic and inorganic 

solutions and the pH was adjusted to the appropriate intervals with 2 M NaOH or 

concentrated HCl 
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3.3.5 UPLC Analysis of Phenolic Compounds 

 The profile of polyphenols would be altered during digestion, monitoring these changes 

is important to understand the possible metabolism of polyphenols in the digestive tract and 

the impacts of digestion on the potential bioactivity of polyphenols. In this study, the 

quantification of the anthocyanins and phenolic acids (chlorogenic acid and neo-chlorogenic 

acid) in the collected digesta was performed on an Ultra Performance Liquid Chromatography 

(UPLC) (Agilent Technologies1290 Infinity, Santa Clara, CA, U.S.) with a Photodiode Array (PDA) 

detector. The method used was modified from Teleszko et al. [343]. Separation was carried out 

using a C18 column (3 µm, 150 × 4.6 mm, Thermo Scientific, Waltham, MA, U.S.) at 25 ˚C. 

Samples were injected at a flow rate of 1.3 mL/min. Phenolic compounds were eluted with a 

gradient mobile phase consisting 4.5% formic acid in water (phase A) and 4.5% formic acid in 

acetonitrile (phase B). The gradient was as follows: 0 min: 1% phase B; 4.5 min: 10% phase B; 7 

min: 20% phase B; 10 min: 24% phase B; 14 min: 36% phase B; 15min: 60% phase B; 16 min: 1% 

phase B. The post run time was 5 min. Samples were spiked with quercetin (25 µg/mL) as an 

internal standard. An external calibration curve was drawn using cyanidin-3-galactoside (3.9, 

7.8, 15.6, 31.2, 62.5, 125 and 250 µg/mL, r2 = 0.9987), chlorogenic acid (3.9, 7.8, 15.6, 31.2, 

62.5, 125 and 250 µg/mL, r2 = 0.9999) and neo-chlorogenic acid (3.9, 7.8, 15.6, 31.2, 62.5, 125 

and 250 µg/mL, r2 = 0.9998) standards. Anthocyanins were detected at 520 nm and expressed 

as cyanidin-3-galactoside equivalents. The individual anthocyanins were identified by the 

elution order reported by Jakobek et al. [202]. Chlorogenic acid and neo-chlorogenic acid were 

detected at 320 nm. Peak areas were used for quantification and the results were expressed as 
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mg polyphenols per part (one part contains 9 mL aronia kefir). Measurements were conducted 

in triplicate. 

3.3.6 DPPH Free Radical Scavenging Assay 

 Antioxidant capacity of polyphenols is a crucial parameter to evaluate their potential 

health benefits. In the presented study, the antioxidant capacity of each digested fraction was 

evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity. The method 

was slightly modified from Duymus et al. [312]. Briefly, equal amounts of 0.3 mM DPPH solution 

(150 µL) and the diluted samples (150 µL) were loaded to a 96-well plate. The mixture was 

incubated in the dark at room temperature for 30 minutes and the absorbance was read at 515 

nm with a Biotek plate reader (ELx800, Winooski, VT, U.S.). A mixture of DPPH solution and 

water was used as the negative control for this assay. Scavenging percentage was calculated 

with the following formula:  

%Scavenging =  
Abs𝐶𝑜𝑛𝑡𝑟𝑜𝑙 − Abs𝑆𝑎𝑚𝑝𝑙𝑒

Abs𝐶𝑜𝑛𝑡𝑟𝑜𝑙
× 100 

Scavenging activity of each fraction was measured at five different concentrations to 

calculate IC50 values, which is the concentration of the sample to scavenge 50% of the DPPH 

free radicals. Measurements were conducted in triplicate. 

3.3.7 Rat Intestinal α-glucosidase Inhibitory Activities  

 Alpha-glucosidase is a vital carbohydrate-hydrolyzing enzyme catalyzes the breakdown 

of disaccharides and oligosaccharides to release glucose in the small intestine [344]. In this 

study, α-glucosidase inhibitory activity was evaluated using a method reported by Oki et al. 
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with modification [345]. Alpha-glucosidase was extracted from rat intestine powder by using 

0.1 M sodium phosphate buffer at pH 6.9 (1:30, w/v) in an ice bath with sonication. Sonication 

was performed 12 times (30 seconds for each round) and the mixture was vortexed after each 

sonication. The mixture was centrifuged at 0 ˚C for 10 minutes at 16639×g. The supernatant 

was filtered through a 0.45 µm syringe filter (Phenomenex, Torrance, CA, U.S.) and kept on ice 

until use in the assay. Samples (50 µL) and α-glucosidase extract (100 µL) were mixed and 

incubated at 37 ˚C for 10 minutes in the dark. Water was used to prepare controls. The reaction 

was initiated by the addition of 50 µL 4-nitrophenyl α-glucopyranoside (pnp-G, 5 mM). The 

mixture was incubated at 37 ˚C for 30 minutes in the dark and read at 405 nm. Phosphate 

buffer (0.1 M) was used to prepare sample blank to correct for the background color. The 

inhibitory activity of the sample on intestinal α-glucosidase was calculated as follows: 

%inhibition =  
𝐴𝑏𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − (𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒 𝑏𝑙𝑎𝑛𝑘)

𝐴𝑏𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 × 100 

 Five dilutions of each sample were measured to calculate IC50 values. Measurements 

were carried out in triplicate. 

3.3.8 Porcine Pancreatic α-amylase Inhibitory Activities 

Pancreatic α-amylase is a key enzyme that starts the digestion of complex 

carbohydrates by hydrolyzing the glycosidic linkages in the small intestine. Inhibitory effects of 

samples on porcine pancreatic α-amylase were conducted with the method reported by 

Nampoothiri et al. with modification [346]. Briefly, sodium phosphate buffer (0.02 M, pH 6.9) 

with 0.006 M sodium chloride was used to dissolve α-amylase and the starch. 100 µL sample 

and 100 µL α-amylase solution (100 unit/mL) were mixed and incubated at 25 ˚C for 10 min. 
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The reaction was initiated by adding 100 µL starch solution (1 g/mL). The mixture was 

incubated at 25 ˚C for an additional 10 min. The reaction was stopped by adding 200 µL 

dinitrosalicylic acid reagent and incubating the mixture in a water bath for 5 minutes at 100 ˚C. 

The dinitrosalicylic acid reagent was made of 1 g/mL dinitrosalicylic acid in water containing 2% 

NaOH (2 M, v/v) and 30% (w/v) potassium sodium tartrate tetrahydrate. When the mixture 

temperature reached the room temperature (23 ˚C), 50 µL of the mixture was loaded to a 96-

well microplate, diluted with 200 µL water and read at 540 nm. Sample blank was prepared 

using sodium phosphate buffer to correct for the background color. The control was prepared 

with sodium phosphate buffer instead of samples. The α-amylase inhibitory activity of the 

samples was calculated as follows:  

%inhibition =  
𝐴𝑏𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − (𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒 𝑏𝑙𝑎𝑛𝑘)

𝐴𝑏𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 × 100 

The inhibitory activities of individual samples were tested at five different dilutions. IC20 

values, the concentration of the sample required to inhibit 20% porcine pancreatic α-amylase, 

were calculated. The measurements were conducted in triplicate.  

3.3.9 Statistical Analysis 

 Data are shown as means ± standard deviations. Statistical analyses were conducted 

using SAS Studio (Cary, NC, USA). Analysis of Variance and Tukey’s HSD post hoc were carried 

out to evaluate the differences. A significance level was set at α = 0.05. 
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3.4 Results 

3.4.1 Quantification of Bioaccessible Phenolic Compounds  

The contents of the bioaccessible phenolic compounds in aronia kefir and non-

fermented control during in-vitro gastrointestinal digestion are presented in Table 3.2. Four 

major monomeric anthocyanins (cyanidin-3-galactoside, cyanidin-3-glucoside, cyanidin-3-

arabinoside and cyanidin-3-xyloside) and two dominant phenolic acids (chlorogenic acid and 

neo-chlorogenic acid) were identified and quantified via UPLC analyses. Caffeic acid, a 

metabolite of chlorogenic acid, was not detected. Most phenolic compounds in aronia kefir 

increased after gastric digestion, with the exception of cyanidin-3-glucoside which showed no 

change compared to the oral-digested sample. During intestinal digestion, the chlorogenic acid 

content was increased (from 1.04 ± 0.02 mg/part to 1.29 ± 0.09 mg/part) and the other 

identified anthocyanins and phenolic acids remained the same.  

The total anthocyanin content is shown in Figure 3.1. After the entire gastrointestinal 

digestion, total bioaccessible anthocyanins were increased by 96.9% compared to the 

undigested aronia kefir. Total anthocyanins in intestinal-digested kefir was 5.09 ± 0.40 mg/part 

(1 part = 9 mL aronia kefir). One serving of commercial kefir is 240 mL thus one serving aronia 

kefir would provide 135.73 mg bioaccessible anthocyanins.  
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Table 3.2 Quantification of individual phenolic compounds (mg/part)  

Fractions 

Cyanidin-

3-

galactoside 

Cyanidin3-

glucoside 

Cyanidin-

3-

arabinoside 

Cyanidin-3-

xyloside 

Chlorogenic 

acid 

Neo-

chlorogenic 

acid 

Aronia 

Kefir 

Undigested 1.87 ± 0.11 

d 

0.09 ± 0.01 

cd 

0.57 ± 0.03 

e 

0.05 ± 0.01 

e 

0.61 ± 0.03 

g 

0.49 ± 0.02 

e 

Oral 

C
* 

1.87 ± 0.15 

d  

0.07 ± 0.02 

d 

0.55 ± 0.07 

e 

0.05 ± 0.01 

e 

0.76 ± 0.02 

efg 

0.59 ± 0.02 

cde 

D
* 

1.96 ± 0.13 

d 

0.07 ± 0.02 

d 

0.58 ± 0.06 

e 

0.06 ± 0.01 

e 

0.78 ± 0.02 

efg 

0.60 ± 0.02 

cde 

Gastric 

C
* 

2.60 ± 0.34 

cd 

0.10 ± 0.03 

bcd 

0.85 ± 0.14 

de 

0.08 ± 0.01 

de 

0.92 ±0.04 

cde 

0.69 ± 0.02 

abc 

D
* 

3.14 ± 0.42 

c 

0.12 ± 0.04 

abcd 

1.13 ± 0.19 

cd 

0.11 ± 0.02 

cd 

1.04 ± 0.02 

bc 

0.75 ± 0.02 

ab 

Intestinal 

C
* 

3.10 ± 0.33 

c 

0.11 ± 0.02 

abcd 

1.08 ± 0.12 

cd 

0.10 ± 0.01 

cd 

1.17 ± 0.11 

ab 

0.74 ± 0.03 

ab 

D
* 

3.50 ± 0.29 

bc 

0.13 ± 0.01 

abcd 

1.33 ± 0.10 

bc 

0.13 ± 0.01 

bc 

1.29 ± 0.09 

a 

0.70 ± 0.09 

abc 

Non-

fermented 

control  

Undigested 
2.60 ± 0.13 

cd 

0.13 ± 0.01 

abcd 

0.87 ± 0.06 

de 

0.08 ± 0.01 

de 

0.70 ± 0.04 

fg 

0.54 ± 0.03 

de 

Oral 

 

C
* 

3.10 ± 0.45 

c 

0.12 ± 0.03 

abcd 

1.06 ± 0.21 

cd 

0.11 ± 0.02 

cd 

0.84 ± 0.06 

def 

0.65 ± 0.04 

bcd 

D
* 

3.29 ± 0.16 

bc 

0.13 ± 0.02 

abcd 

1.15 ± 0.07 

cd 

0.11 ± 0.01 

cd 

0.85 ± 0.05 

def 

0.64 ± 0.04 

bcd 

Gastric 

C
* 

4.13 ± 0.32 

ab 

0.16 ± 0.04 

abc 

1.56 ± 0.17 

ab 

0.16 ± 0.02 

ab 

0.97 ± 0.02 

cd 

0.72 ± 0.02 

ab 

D
* 

4.59 ± 0.41 

a 

0.18 ± 0.04 

a 

1.79 ± 0.21 

a 

0.18 ± 0.02 

a 

1.08 ± 0.05 

bc 

0.77 ± 0.03 

a 

Intestinal 

C
* 

4.67 ± 0.29 

a 

0.17 ± 0.02 

ab 

1.85 ± 0.11 

a 

0.19 ± 0.01 

a 

1.19 ± 0.07 

ab 

0.78 ± 0.01 

a 

D
* 

4.69 ± 0.36 

a 

0.17 ± 0.03 

ab 

1.88 ± 0.19 

a 

0.19 ± 0.02 

a 

1.31 ± 0.06 

a 

0.72 ± 0.07 

ab 

Note: data are shown as means ± standard deviations (n=3), values in the same column with the 

same letter are not significantly different at p < 0.05; *: C stands for control and D stands 

for digesta; one part was equivalent to 9 mL sample; anthocyanins were expressed as mg 

cyanidin-3-galactoside/part; chlorogenic acid was expressed as mg chlorogenic/part; neo-

chlorogenic acid was expressed as mg neo-chlorogenic/part. 

No differences were observed among phenolic compounds in the individual stages of 

digestion between aronia kefir digesta and aronia kefir controls (Table 3.2 and Figure 3.1). After 

intestinal digestion, the non-fermented control contained larger amount of cyanidin-3-
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galactoside, cyanidin-3-arabinoside and cyanidin-3-xyloside (4.69 ± 0.36 mg/part, 1.88 ± 0.19 

mg/part and 0.19 ± 0.02 mg/part) compared to aronia kefir (3.50 ±  0.29 mg/part, 1.33 ±  0.10 

mg/part and 0.13 ± 0.01 mg/part respectively). Differences in the other identified phenolic 

compounds between non-fermented control and aronia kefir were not observed. The total 

bioaccessible anthocyanins in intestinal-digested non-fermented control was 88.5% higher than 

in the undigested non-fermented control. After digestion, the increase of anthocyanins was 

lower in non-fermented control compared to the increase in aronia kefir.  

 

Figure 3.1 Quantification of total anthocyanins during in-vitro digestion 

Note: Data are shown as means ± standard deviations (n=3), one part was equivalent to 9 mL 

sample, bars with the same letter are not significantly different at p < 0.05. 
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3.4.2 Antioxidant Capacity  

 Antioxidant activity of aronia kefir and the non-fermented control was measured using 

the capacity to scavenge DPPH free radicals. IC50 values were calculated and the results are 

shown in Figure 3.2.  Aronia kefir exhibited antioxidant capacity during the entire 

gastrointestinal digestion. Antioxidant capacity of aronia kefir digesta was improved during 

gastric digestion (DPPH IC50 values from 24.07 ±  0.78 mg/part to 12.01 ± 0.57 mg/part) and 

held consistent after intestinal digestion (DPPH IC50: 8.97 ± 0.93 mg/part). Aronia kefir digesta 

exhibited similar antioxidant capacity compared to the corresponding aronia kefir controls at 

each digestive stage. Aronia kefir digesta and non-fermented control digesta exhibited similar 

antioxidant capacity after gastric- and intestinal-digestion. A strong correlation between IC50 

values of DPPH and total anthocyanins was observed (r = - 0.89) as well as between IC50 values 

and the sum of chlorogenic and neo-chlorogenic acid contents (r = - 0.90). 

 

Figure 3.2 Antioxidant capacity of kefir during in-vitro digestion 

Note: Data shown as means ± standard deviations (n=3), bars with the same letter are not 

significantly different at p < 0.05. 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Oral Gastric Intestinal Oral Gastric Intestinal

Aronia kefir Non-fermented control

D
P

P
H

 I
C

5
0

(m
g
 s

am
p

le
/m

L
)

Control Digesta

a 
a 

cd 

def ef 
f f ef 

de 
def 

ab 

bc 



92 
 

3.4.3 Inhibitory Activity of Carbohydrate-hydrolyzing Enzymes  

 The inhibitory effects of intestinal digested aronia kefir and non-fermented control on α-

glucosidase and pancreatic α-amylase were tested. The results are shown in Figure 3.3 and 

Figure 3.4. Digested aronia kefir exhibited strong inhibitory activity toward α-glucosidase and 

weak inhibitory activity on α-amylase. Compared to the digested non-fermented control, 

digested aronia kefir had a stronger inhibitory effect on α-glucosidase. The IC50 values for α-

glucosidase inhibition of aronia kefir and non-fermented controls were 152.53 ± 15.24 mg 

kefir/mL and 365.16 ± 48.84 mg non-fermented control/mL respectively. Digested aronia kefir 

as well as the digested non-fermented control exhibited similar inhibitory activity against 

pancreatic α-amylase. IC20 values of α-amylase for the aronia kefir and the non-fermented 

control were 146.52 ± 5.37 mg kefir/mL and 196.21 ± 5.50 mg non-fermented control/mL. Plain 

kefir was processed using the in-vitro digestion system with the same method as the samples. 

Inhibitory activity of plain kefir on enzymes was not observed.  

 

Figure 3.3 α-glucosidase inhibitory activity 

Note: Data shown as means ± standard deviations (n=3), bars with the same letter are not 

significantly different at p < 0.05. 
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Figure 3.4 Pancreatic α-amylase inhibitory activity  

Note: Data shown as means ± standard deviations (n=3), bars with the same letter are not 

significantly different at p < 0.05.  

3.5 Discussion 

This study examined the bioaccessibility and the antioxidant capacity of phenolic 

compounds in aronia kefir during a simulated gastrointestinal digestion. The impacts of 

fermentation on aronia polyphenols and on their carbohydrate-hydrolyzing enzyme inhibitory 

activities were evaluated.  

The in-vitro digestion model used in this study simulated three compartments of the 

digestive tract: mouth, stomach and small intestine. Digestive juices (saliva, gastric juice, 

duodenal juice and bile) used in this model contained not only corresponding enzymes but also 

other compounds that exist in human digestive juices, such as calcium chloride which may 

chelate phenolic compounds in the digestive tract and alter their bioaccessibility [347].  
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In this study, salivary α-amylase, which is the main digestive enzyme in the mouth, had 

negligible effects on the release of bioaccessible phenolic compounds in aronia kefir as 

expected, because the aronia kefir is a protein-rich beverage and the duration for the simulated 

oral digestion is short. 

During gastric digestion, the acidic environment helps to stabilize the free anthocyanins 

and phenolic acids in aronia kefir. The low pH environment in the stomach contributes to the 

liberation of the phenolic compounds from the phenolic-protein complex and lead to the 

increase in bioaccessible anthocyanins and phenolic acids [143, 305, 333].  In addition, 

proanthocyanins, the oligomeric and/or polymeric flavan-3-ols, are the most abundant 

bioactive constituents in aronia. The depolymerization of proanthocyanins due to the acidic 

environment may contribute to the enhancement of the monomeric anthocyanin levels and 

potentially increase the bioavailability of aronia polyphenols [22, 135]. Bermudezsoto et al. 

reported that digestive enzymes did not affect the aronia polyphenol content in the absence of 

food matrix [331]. In this study, a similar trend was observed. Though the amount of 

bioaccessible polyphenols in the gastric-digested aronia kefir (4.50 ± 0.66 mg/part for total 

anthocyanins, 1.04 ± 0.02 mg/part for chlorogenic acid and 0.75 ± 0.02 mg/part for neo-

chlorogenic acid) was slightly higher than that in the gastric control (3.63 ± 0.52 mg/part for 

total anthocyanins, 0.92 ± 0.04 mg/part for chlorogenic acid and 0.69 ± 0.02 mg/part for neo-

chlorogenic acid), the difference was not significant.  
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The small intestine is the major absorption site for most phenolic compounds so the 

quantity of bioaccessible polyphenols is important [141]. Many studies demonstrated that 

phenolic compounds are labile in the small intestine due to the mild alkaline environment. 

Bermudezsoto et al. conducted a study demonstrating that more than 35% of anthocyanins and 

20% phenolic acids were lost after in-vitro intestinal digestion of aronia juice [331]. Similar 

results were reported by Correa-Betanzo et al. where anthocyanins in blueberry decreased to 

10% – 15% during in-vitro intestinal digestion [348]. Bouayed et al. reported a complete loss of 

anthocyanins but an increase in phenolic acids after in-vitro intestinal digestion of apples [349]. 

However, depending on the type of polyphenols and the food matrix, the changes of 

bioaccessible polyphenols in the small intestine may be different. In the present study, the 

bioaccessible chlorogenic acid in aronia kefir increased and the anthocyanins content remained 

the same during intestinal digestion.  The increases in chlorogenic acid may be attributed to the 

degradation of anthocyanins in addition to the liberation from the kefir matrix. Similar results 

were observed in other studies that utilized a protein-rich food matrix to protect the 

polyphenols from degradation in the small intestine. A study conducted by Lamothe et al. 

showed that the stability of tea polyphenol in the small intestine was improved by dairy 

matrices (milk, yogurt and cheese) [340].  The protective effects of food matrices (dairy and 

egg) on the stability of grape anthocyanins during the intestinal digestion were observed by 

Pineda-Vadillo et al. [350]. Stanisavljevic et al. reported that after in-vitro digestion of aronia 

juice in a food matrix, bioaccessible anthocyanins and total phenolic compounds increased 

[351]. It is important to note that the referenced study only tested the anthocyanin and the 

total phenolic contents before and after the entire gastrointestinal digestion process (not at the 
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individual digestive stage). The changes of the soluble anthocyanins in the small intestine 

remains unknown. Digestive enzymes and bile did not contribute to the liberation of phenolic 

compounds in aronia kefir since the differences in anthocyanins, chlorogenic acid and neo-

chlorogenic acid between the digested aronia kefir and aronia kefir controls were not 

significant.  

The antioxidant capacity of polyphenols is associated with their health-promoting 

properties. The consumption of polyphenols may help to decrease oxidative stress, attenuate 

the production of pro-inflammatory biomarkers and lower the risk of chronic diseases, such as 

type 2 diabetes [352]. Foods that have strong antioxidant capacity before consumption may 

lose their antioxidant activity during the digestion process. This is caused by the structural 

alterations that occur due to the harsh conditions in the digestive tract and/or the interaction 

with other food ingredients. A loss of antioxidant capacity of polyphenol-rich food after in-vitro 

gastrointestinal digestion was documented in many studies and this loss was associated with 

the degradation of phenolic compounds [348, 353]. In this study, the antioxidant capacity of the 

intestinal-digested aronia kefir was higher than the oral-digested aronia kefir. The progressive 

release of phenolic compounds during digestion may contribute to the increase [350]. It is 

important for food to exhibit antioxidant capacity in the gut lumen, where dietary polyphenols 

could inhibit the proliferation of abnormal cells and slow the progression of cancer [331]. In 

addition, dietary polyphenols in the lumen may have protective effects on other food 

components during digestion, such as protecting unsaturated fatty acids from oxidation [350, 

354]. The protective activity of polyphenols on unsaturated fatty acids may contribute to a 

healthier cardiovascular status.   
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Alpha-glucosidase and pancreatic α-amylase are carbohydrate-hydrolyzing enzymes that 

play a vital role in catalyzing the breakdown of complex carbohydrates. Inhibition of these 

enzymes can delay the absorption of carbohydrates and aid in the management of 

hyperglycemia. In the present study, only intestinal-digested samples were tested for enzyme 

inhibitory activity because pancreatic α-amylase and α-glucosidase exist in the small intestine. 

It is important to note that yeast α-glucosidase was frequently used in other research, but this 

study used α-glucosidase extracted from rat small intestinal powder because mammalian α-

glucosidase is more relevant to human α-glucosidase [355]. This study demonstrated that 

polyphenols in aronia were the major compounds affecting the enzyme inhibitory activity 

because plain kefir treated in the same method did not show any inhibitory activity (data not 

shown). The inhibitory effects of dietary polyphenols on pancreatic α-amylase and α-

glucosidase are well documented [356]. In this study, intestinal-digested aronia kefir exhibited 

strong inhibitory activity on α-glucosidase and minor inhibitory effect on pancreatic α-amylase. 

Strong inhibition of pancreatic α-amylase may lead to undigested complex carbohydrates in the 

large intestine and cause abdominal pain, flatulence, and/or diarrhea [357]. Therapeutic agents, 

such as acarbose, can cause gastrointestinal side effects because of their non-specific inhibitory 

effects on both pancreatic α-amylase and α-glucosidase. Due to this effect, the specific 

inhibitory activity of aronia kefir on α-glucosidase over pancreatic α-amylase might be desirable 

for hyperglycemia management [358, 359]. Incorporating aronia kefir into a normal diet may be 

a good strategy to control postprandial plasma glucose level without causing side effects. 
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Fermentation altered the composition of bioaccessible aronia polyphenols in kefir and 

changed their potential bioactivity. The impacts of the fermentative microorganisms on 

polyphenols from various studies suggest that the phenolic metabolites produced by 

microorganisms might be more bioavailable. This is due to the smaller size of the metabolites 

and thus they are better absorbed compared to the parent compounds [173, 177]. A study 

conducted by Curiel et al. observed that fermentation by lactic acid bacteria increased the 

antioxidant capacity of Myrtle berry homogenate [176]. In addition, Hunaefi et al. stated that 

24 hours lactic acid fermentation decreased the total phenolic compounds in red cabbage 

sprouts but increased the antioxidant activity [360]. Zhao et al. also reported that fermentation 

by lactic acid bacteria decreased the flavan-3-ols content and increased phenolic acid 

derivatives in tea extract [341]. There was also evidence that the antioxidant activity was 

elevated [341]. These results demonstrate that fermentation may be a feasible method to 

enhance the antioxidant capacity of dietary polyphenols in different food matrices. However, in 

this study, there was no difference in the antioxidant capacity between aronia kefir and the 

non-fermented control after gastric- and intestinal-digestion. 

In this study, digested aronia kefir had stronger inhibitory activity on α-glucosidase than 

the digested non-fermented control (IC50 values are 152.53 mg kefir/mL and 365.16 mg non-

fermented control/mL, respectively) though digested non-fermented control had higher 

cyanidin-3-galactoside, cyanidin-3-arabinoside and cyanidin-3-xyloside. The stronger enzyme 

inhibitory effects of digested aronia kefir may due to the metabolites of polyphenols generated 

by the fermentation. Frediansyah et al. observed similar results where fermentation by lactic 

acid bacteria increased the inhibitory activity of black grape juice for α-amylase and α-
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glucosidase [174]. Fermentation may be a good strategy to increase the bioavailability of 

polyphenols in other foods. In addition, a fermented dairy matrix may be a suitable carrier for 

dietary polyphenols due to their protective effects on the stability of phenolics in the small 

intestine. More research is needed to better utilize the potential activity of fermentation on 

improving the bioavailability of dietary polyphenols.  

3.6 Conclusion 

In this study, the stability and bioaccessibility of the polyphenols in aronia kefir were 

evaluated using an in-vitro gastrointestinal digestion model, where the impacts of fermentation 

on aronia polyphenols were evaluated. After digestion, the bioaccessible polyphenols in aronia 

kefir and its antioxidant capacity increased. The digested aronia kefir exhibited strong inhibitory 

activity toward α-glucosidase but weak inhibition of pancreatic α-amylase. Intestinal-digested 

aronia kefir contained less cyanidin-3-galactoside, cyanidin-3-arabinoside and cyanidin-3-

xyloside compared to the intestinal-digested non-fermented control but exhibited similar 

antioxidant capacity. Fermentation enhanced the inhibitory activity of aronia polyphenols on α-

glucosidase. In conclusion, consuming aronia kefir may aid in controlling blood glucose level 

without side effects. Fermentation may be a good strategy to enhance the bioavailability of 

dietary polyphenols. In order to better understand the positive impacts of fermentation on the 

bioavailability of dietary polyphenols, the identification of the metabolites in aronia kefir is 

necessary. 
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CHAPTER 4 

 OVERALL CONCLUSIONS AND FUTURE DIRECTIONS 

4.1 Study Conclusions 

 Aronia and elderberry are underutilized fruits with great health-promoting properties. 

They are rarely consumed raw due to the astringent sensation caused by a large amount of 

phenolic compounds. In this research, berries were incorporated into a fermented dairy matrix, 

kefir, and sweetened with different natural sweeteners (sucrose, stevia extract and monk fruit 

extract) to mask the astringency. Studies were conducted to evaluate the consumer 

acceptability and health-promoting properties of these products. The key findings are 

summarized in table 4.1. 

The first objective of this study was to develop new palatable kefir products using aronia 

or elderberries. The levels of sucrose used in the aronia and elderberry kefir were lower than 

most flavored commercial kefir products in the market, such as blueberry, mango and 

raspberry flavored Lifeway® kefirs. The reason for minimizing the amounts of added sucrose is 

to ensure that these products are attractive to health-conscious consumers.  The final level of 

sucrose in aronia and elderberry kefirs was at least 5% lower than flavored commercial kefirs. In 

order to test how berry kefirs were received by the potential consumers, two separate sensory 

tests on either aronia or elderberry kefir products were conducted to evaluate the consumer 

acceptability. In the first sensory test, aronia kefir products were sweetened with sucrose, 

stevia extract or monk fruit extract to the same level of sweetness. Both the sucrose- and 

stevia-sweetened aronia kefirs were slightly liked by the consumers where the overall 

acceptability of the sucrose-sweetened products were higher (6.3). Monk fruit-sweetened 
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aronia kefir was not well accepted by the consumers. In the second sensory test, elderberry 

kefirs were sweetened with either sucrose or stevia extract to two levels of sweetness. The 

highest overall acceptability was observed in elderberry kefir sweetened with a higher amount 

of sucrose (5.7%). All elderberry kefirs were accepted by the consumers where all ratings were 

higher than 5. In summary, berry kefirs, which were less sweetened than most commercial 

products, were accepted by consumers. Sucrose appeared to be the best accepted sweetener 

than monk fruit or stevia extract based on the consumers’ rating. Aronia and elderberry kefirs 

have the potential to be successful commercial products. Additionally, the berry kefirs made 

with stevia and monk fruit extracts are suitable for pre-diabetic and diabetic individuals. 

 The second objective of this study was to evaluate the health-related characteristics of 

the aronia and elderberry kefirs, including the total phenolic levels, monomeric anthocyanins 

content and antioxidant capacity. The results showed that all the berry kefirs contained high 

levels of phenolic compounds and exhibited moderate antioxidant capacity. Compared to 

elderberry kefirs made with commercial juice, a pasteurized shelf-stable product, elderberry 

kefir made with fresh juice had approximately twenty times more anthocyanins, and two times 

more total phenolics.  One serving of aronia kefir or elderberry kefir made with fresh juice can 

provide three times more than the average intake for anthocyanins and contribute to 

approximately one-fifth of the average intake of phenolic compounds in the United States. The 

consumption of phenolic compounds may help to decrease the risk of T2DM and slow the 

progression of its complications. Currently, the available food products of aronia and 

elderberries are limited in the United States. More commercial available products using aronia 

or elderberry may help to increase the consumption of phenolic compounds among consumers. 
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In addition, the development of aronia and elderberry products may enhance consumers 

demand for these berries, which may encourage farmers to grow them and gain profits.  

 The third objective of this research was to evaluate the bioaccessibility of phenolic 

compounds in aronia kefir and their potential to assist blood glucose control. The levels of free 

phenolic compounds and their antioxidant capacity during digestion were assessed using an in-

vitro model of simulated digestion. The inhibitory activity of digested aronia kefir on the 

carbohydrate-hydrolyzing enzymes was measured. After digestion, the bioaccessible phenolic 

compounds and antioxidant capacity of the aronia kefir increased. The digested aronia kefir 

exhibited a strong inhibitory activity toward α-glucosidase and weak inhibitory activity for 

pancreatic α-amylase. The inhibition of α-glucosidase and pancreatic α-amylase can slow the 

digestion of carbohydrates and thus reduce their absorption. However, strong inhibition of 

pancreatic α-amylase can lead to un-digested complex carbohydrates in the large intestine, 

affect the bacterial fermentation and then cause side effects, such as abdominal pain and 

flatulence. Thus, the consumption of aronia kefir may aid in blood glucose control without side 

effects due to its specific inhibition of α-glucosidase over pancreatic α-amylase. In addition, the 

impacts of fermentation on the potential bioactivity of aronia kefir were evaluated in this part. 

Compared to the non-fermented control, aronia kefir exhibited stronger inhibitory activity of α-

glucosidase after digestion. Both the digested aronia kefir and the non-fermented control had 

weak inhibition on pancreatic α-amylase. This is the first study to investigate the impact of kefir 

fermentation on berry polyphenols and their health-promoting properties. Kefir fermentation 

may be a good strategy to improve the bioavailability of dietary polyphenols.  
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 In summary, this research provides evidence that both aronia and elderberries have the 

potential to be used as food ingredients in commercial food products. Also, the results of 

sensory tests show a possibility for the industry to lower the sucrose content of their products 

without sabotaging the consumers’ acceptability. A reduction in sucrose content may lead to 

healthier products which may be favored by health-conscious consumers. The berry-containing 

kefirs developed in these studies may be beneficial to pre-diabetic and diabetic individuals for 

their potential to help control blood glucose. Additionally, the berry-containing kefirs are a 

good source of protein and calcium for individuals with lactose intolerance due to the lactose-

free properties of kefir.  

Table 4.1 Key findings of these studies 

Chapter No. Samples Evaluations Key findings 

2 

Elderberry 

and aronia 

kefirs 

sweetened 

with 

sucrose, 

stevia or 

monk fruit 

extract 

Consumer 

acceptability test 

1. Kefirs that were less sweetened than 

commercial products were accepted by 

consumers;  

2. Sucrose-sweetened kefirs were best 

accepted compared to the products 

sweetened with stevia or monk fruit extract. 

Phytochemical 

analyses  

1. Berry kefirs contained high levels of 

phenolic compounds and exhibited moderate 

antioxidant capacity; 

2. Freshness of juice used in making kefirs 

affected their phenolic content 

3 
Aronia 

kefir 

Bioaccessibility 

Levels of bioaccessible phenolic compounds, 

including anthocyanins and phenolic acids, 

increased during digestion 

Benefits to 

diabetes 

Consumption of aronia kefir may aid in blood 

glucose control 

Impact of 

fermentation 

Fermentation increased the inhibitory activity 

of polyphenols toward α-glucosidase 
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4.2 Study Limitations 

 In the sensory test (chapter 2), we investigated the impacts of sweetener type and 

sweetness levels on consumers’ acceptability toward aronia or elderberry kefirs. The first 

limitation of this study is that we did not include a control sample in sensory tests. If we 

included an aronia or elderberry kefir without additional sweetener in each individual test, we 

could know if the addition of sweetener can increase the consumer acceptability. Alternatively, 

we could add a plain kefir sample with the same sweetness levels to each sensory tests, which 

would allow us to draw a conclusion if the addition of berry juice is favored by consumers. 

However, more than four samples are not recommended to be evaluated in one sensory 

session because increased sample numbers will lead to participant fatigue, which may 

negatively affected the accuracy of the evaluation. Thus, in order to obtain accurate results, we 

did not add a control sample. The second limitation was that the phenolic metabolites in 

digested aronia kefir could not be identified (chapter 3). We observed new peaks in the 

digested aronia kefir compared to the digested non-fermented control. However, due to lack of 

mass spectrometry, the identification could not be conducted. 

4.3 Future Directions 

4.3.1 Impacts of Kefir Culture on Proanthocyanins 

In a previous study (presented in Appendix A), we made an assumption that the 

increases of monomeric anthocyanins in elderberry kefir during storage may be related to the 

microbial depolymerization of proanthocyanins. Proanthocyanins exist in many berry fruits and 

cereals. One major restriction of the bioavailability of proanthocyanins is the large molecular 

size. Kefir culture may contain microorganisms that can depolymerize proanthocyanins and 
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produce smaller, more bioavailable molecules, such as monomeric anthocyanins. To date, there 

is no study that investigates the impact of kefir culture on the bioavailability of 

proanthocyanins. It is worth investigating the impact of kefir fermentation on the bioavailability 

of proanthocyanins from various foods. Studies aiming at separation and identification of the 

microorganisms in kefir culture may be needed. The microorganisms which could depolymerize 

proanthocyanins may be good candidates for the bioprocessing of proanthocyanin-rich foods to 

increase their bioavailability. 

4.3.2 Identification of the Metabolites in Aronia Kefir after Digestion 

In chapter four of this dissertation, the in-vitro digested aronia kefir exhibited stronger 

α-glucosidase inhibitory activity than the non-fermented control. This result may be due to the 

phenolic metabolites generated by microorganisms in the kefir. However, due to limitations of 

our experiments, the metabolites in aronia kefir were not identified. The identification of these 

metabolites needs to be conducted in order to better understand how kefir microorganisms 

interact with phenolic compounds. In addition, the metabolites may be isolated and used as 

nutraceutical agents to aid in blood glucose control of diabetic individuals. Currently, there is no 

available literature investigating the phenolic metabolites from kefir fermentation. 

4.3.3 Evaluation of Berry-incorporated Kefir with in-vivo Studies  

 For this research study, the strong inhibitory activity of aronia kefir on α-glucosidase 

was observed in-vitro. However, the question if aronia kefir can alter the activity of α-

glucosidase in-vivo and decrease the postprandial blood glucose level has not been answered.  

Though in-vitro studies showed positive results, the results of in-vivo studies may be different.  
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In order to confirm the potential benefits of berry kefirs in an integrated metabolic system, in-

vivo studies need to be conducted. Currently, no research in regards to the in-vivo bioactivity of 

polyphenol-enriched kefirs has been done. In addition, no publication is available on the 

bioavailability of kefir-fermented phenolic metabolites using animal models. Studies utilizing 

animal models are needed to investigate if kefir fermentation improves the bioavailability of 

dietary polyphenols in-vivo.  
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APPENDIX A: EFFECTS OF SWEETENERS ON THE LEVELS OF PHENOLIC COMPOUNDS AND 

ANTIOXIDANT CAPACITY OF ARONIA AND ELDERBERRY KEFIRS DURING STORAGE 

1. Chapter Abstract 

 Aronia berries and elderberries are rich in phenolic compounds including anthocyanins. 

Some phenolic compounds, specifically anthocyanins, are very labile. The instability of phenolic 

compounds can restrict their applications in the food industry. The addition of sweeteners may 

help the stability of phenolic compounds. In this study, aronia and elderberry juice were 

individually incorporated into kefir, a fermented dairy beverage. Products were sweetened with 

natural sweeteners, sucrose, stevia extract or monk fruit extract, at varying concentrations. The 

total phenolic (TP) content, total monomeric anthocyanin (TMA) content and DPPH (2,2-

diphenyl-1-picrylhydrazyl) free radical scavenging capacity of each product was tested every 

seven days during twenty-eight days of storage at 4˚C. The results demonstrated that, 

compared to aronia kefir without added sucrose, the addition of sucrose at 4.8% and 6.3% 

negatively affected the levels of TP and TMA. Compared to sucrose, monk fruit extract 

appeared to be a better sweetener for aronia kefir and elderberry kefir with a low level of 

sweetness to produce kefirs with a higher amount of TP and TMA. Stevia-sweetened berry 

kefirs contained more TMA but exhibited lower antioxidant capacity than sucrose-sweetened 

products. After twenty-eight days of cold storage (4˚C), TP content decreased in most berry 

kefirs. The levels of TMA decreased in aronia kefirs but increased in elderberry kefirs during 

storage. DPPH scavenging capacity of all kefir products declined after twenty-eight days of 

storage. The changes in the levels of TP, TMA and antioxidant capacity over time may be 

associated with both natural degradation and microbial metabolism of polyphenols. 



141 
 

2. Introduction  

 Aronia (Aronia melanocarpa) and elderberry (Sambucus nigra L. spp. canadensis) fruits 

are underutilized berries that are rich in polyphenols, especially anthocyanins. Development of 

new products using these berries could increase the diversity of food products on the market 

and potentially help to increase the consumer’s daily intake of anthocyanins. The utilization of 

anthocyanins in food products is restricted because anthocyanins are labile, which means the 

levels of anthocyanins in food products will decrease during processing and storage.  Reque et 

al. reported that after 10 days of storage at 4˚C, the anthocyanins in blueberry juice degraded 

by 83% [83].  Queiros et al. demonstrated that the level of anthocyanins in sweet cherry juice 

was reduced by 42% after 28 days of refrigeration [361]. Anthocyanins are stable at pH levels 

ranging from 1 to 4. The degradation of anthocyanins is accelerated in an alkaline environment 

[83]. An acidic food matrix such as a fermented dairy beverage, may help to decrease the 

degradation of anthocyanins compared to a neutral food matrix. The presence of sweeteners 

may alter the stability of anthocyanins during storage. Kopjar et al. reported that blackberry 

juice with sucrose added  contained a higher amount of anthocyanins than juice without added-

sucrose after ten days of storage stored at 4˚C [362]. In order to ensure the quality of an 

anthocyanin-rich product during its shelf life, methods to increase the stability of anthocyanins 

are important.  

 Kefir is a fermented dairy product that originated in the Caucasus Mountain region. Kefir 

is an effervescent beverage with a sour taste and creamy texture [261]. Kefir was chosen to be 

the food matrix for incorporating aronia and elderberries for the following reasons: 1) kefir is 

acidic, which may help to stabilize the phenolic compounds during storage; 2) studies have 
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showed that fermentation with lactic acid bacteria or yeast increased the antioxidant capacity 

of polyphenol-rich foods [176, 177, 360]. Kefir is a symbiotic community of various lactic acid 

bacteria and yeast. Some lactic acid bacteria and yeast in kefir may have the ability to increase 

the antioxidant capacity of phenolic compounds in berries. 3) kefir is a suitable dairy beverage 

for lactose-intolerant individuals due to the consumption of lactose by the microorganisms. In 

this study, aronia or elderberry juice was incorporated into kefir, and different sweeteners were 

added. The objective of this study was to investigate the influence of sweeteners on the 

phenolic compounds and the antioxidant capacity of berry kefirs during storage. In the first part 

of this study, the impacts of sucrose on phenolic compounds in berry-added kefirs were tested 

at five concentrations. The effects of sucrose and two non-nutritive sweeteners (stevia and 

monk fruit extracts) were evaluated in the second part.  

3. Material and Methods 

3.1 Chemicals and Dietary Ingredients 

Citric acid anhydrous, hydrochloric acid, methanol, potassium chloride, and sodium 

bicarbonate were purchased from Fisher’s Scientific (Waltham, MA, U.S.). 2, 2-diphenyl-1-

picrylhydrazyl (DPPH), Folin - Ciocalteu’s phenol reagent and gallic acid monohydrate were 

obtained from Sigma-Aldrich (St. Louis, MO, U.S.). Sodium acetate was purchased from Chem-

Impex international, Inc. (Wood Dale, IL, U.S.). Ultra pure water used in this study was obtained 

from a Millipore water system (EMD Millipore, Billerica, MA, U.S.). 

 Aronia berries (Aronia melanocarpa, variety ‘Viking’) used in the first part of this 

experiment were obtained from the University of Connecticut (Storrs, CT, U.S.) in 2013. Aronia 
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berries used in the second part of this study to test the effects of different sweeteners were 

harvested from the University of Connecticut (Storrs, CT, U.S.) in 2014. Elderberries (Sambucus 

nigra L. spp. canadensis) were harvested from the Littlefield experimental garden at the 

University of Maine from the 2014 growing season (Dr. Myracle’s Hatch Projet, Hatch # 

ME021924). The berries were harvested at their full ripeness based on their deep purple color.  

The berries were de-stemmed, washed and stored at -20˚C until use. A commercial kefir culture 

(Yogourmet®, Lachute, QC, Canada) containing lactic bacteria (Lactococcus lactis subsp. lactis, 

Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. bv. diacetylactis, Lactobacillus 

acidophilus) and lactic yeasts was used to make kefir products. Dietary sweeteners and low-fat 

milk (2%, Oakhurst®, Portland, ME, U.S.) were purchased from a local supermarket. The dietary 

sweeteners used in this study include sucrose (Great Value®, Bentonville, AR, U.S.), stevia 

extract (Stevia in the Raw®, New York City, NY, U.S.) and monk fruit extract (Monk Fruit in the 

Raw®, New York City, NY, U.S.).  

3.2 Kefir Preparation and Formulas 

 The kefir formulas products are shown in Table A.1, Table A.2 and Table A.3. All kefir 

products were prepared using the following method: low-fat milk was heated to 82˚C on the 

gas stove and then cooled to 26˚C using an ice bath within 30 min. The temperature was 

measured using a digital thermometer. During the cooling process, frozen aronia berries or 

elderberries were heated (100˚C, 5 min) and then juiced using a domestic juicer (Hamilton 

Beach®, Southern Pines, NC, U.S.). The cooled milk was transferred to a glass bowl and the 

commercial starter was added (5 g/quart). The mixture was stirred for 5 minutes to fully 

dissolve the starter. Aronia or elderberry juice was added to the mixture, and then the 



144 
 

sweeteners were added. The amounts of non-nutritive sweeteners (stevia and monk fruit 

extracts) used in the individual samples were adjusted according to the instructions on the 

package to standardize the sweetness to equal sucrose. The sweetness levels of the aronia 

kefirs presented in Table A.2 was the same. Elderberry kefirs (Table A.3) were grouped 

according to the sweetness levels. The products with 3 g sucrose, 0.3 g stevia or 0.6 g monk 

fruit extract were grouped as products with a low level of sweetness (Group L). The other 

elderberry kefirs were grouped as products with a high level of sweetness (Group H). Once 

prepared, kefir mixture samples were covered with a cloth and incubated at room temperature 

(23˚C) for fermentation. After 24 hours, pH values of the kefir products were 4.5. Then the kefir 

products were homogenized with a blender (Hamilton Beach®, Southern Pines, NC, U.S.) and 

transferred to sealable glass containers, and each sample batch was divided into five aliquots, 

sealed and stored at 4˚C. The phenolic analyses were performed after 2 hours of storage (day 

0), and subsequent analyses were conducted on days 7, 14, 21 and 28 of storage. Samples are 

duplicated.  

Table A.1 Aronia kefir formulas sweetened with sucrose 

Product Code Milk (g) Aronia Juice (g) Sucrose (g) 

Aronia-S0.0 100 20 0 

Aronia-S1.6 100 20 2 

Aronia-S3.2 100 20 4 

Aronia-S4.8 100 20 6 

Aronia-S6.3 100 20 8 

Note: Aronia-S0.0: aronia kefir without added sucrose; Aronia-S1.6: aronia kefir with 1.6% 

added sucrose; Aronia-S3.2: aronia kefir with 3.2% added sucrose; Aronia-S4.8: aronia 

kefir with 4.8% added sucrose; Aronia-S6.3: aronia kefir with 6.3% added sucrose. 
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Table A.2 Aronia kefir formulas sweetened with different sweeteners 

Aronia kefir Milk (g) Aronia Juice (g) 
Sweetener (g) 

Sucrose Stevia 
Monk 
fruit 

AroniaSucrose 100 20 4 ----- ----- 
AroniaStevia 100 20 ----- 0.4 ----- 
AroniaMonk 100 20 ----- ----- 0.8 

Note: ----- indicates the ingredient was not used in the product. 

AroniaSucrose: aronia kefir sweetened with sucrose; AroniaStevia: aronia kefir 

sweetened with stevia extract; AroniaMonk: aronia kefir sweetened with monk fruit 

extract. 

Table A.3 Elderberry kefir formulas sweetened with different sweeteners 

Group* Elderberry kefir 
Milk 
(g) 

Elderberry juice 
(g) 

Sweetener (g) 

Sucrose Stevia 
Monk 
fruit 

L 
EberrySucrose-L 80 20 3 ----- ----- 
EberryStevia-L 80 20 ----- 0.3 ----- 
EberryMonk-L 80 20 ----- ----- 0.6 

H 
EberrySucrose-H 80 20 4.5 ----- ----- 
EberryStevia-H 80 20 ----- 0.5 ----- 
EberryMonk-H 80 20 ----- ----- 0.9 

Note: ----- indicates the ingredient was not used in the product 

*: Products in each group had a similar level of sweetness. Products in group L were less 

sweet than products in group H. 

EberrySucrose-L: elderberry kefir sweetened with 3% sucrose; EberryStevia-L: elderberry 

kefir with 0.3% stevia extract; EberryMonk-L: elderberry kefir with 0.6% monk fruit 

extract; EberrySucrose-H: elderberry kefir sweetened with 4.5% sucrose; EberryStevia-H: 

elderberry kefir with 0.5% stevia extract; EberryMonk-H: elderberry kefir with 0.9% monk 

fruit extract. 
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3.3 Extraction 

Phenolic compounds were extracted from the berry kefirs following a modified method 

from Scibisz et al. [310]. Briefly, kefir products were extracted with 80% acidified methanol (1% 

citric acid, w/v). The kefir to solvent ratio was 1:10.  The samples were sonicated for one hour 

in a Branson 5510 sonicator (Danbury, CT, USA) and centrifuged at 16639×g (Eppendorf 5804R, 

Hamburg, Germany) for 30 min at 4˚C. The supernatant was collected and the residue was 

extracted two additional times. The supernatant was pooled and dried under a vacuum 

(Eppendorf Vacufuge plus, Hamburg, Germany). The dried extracts were re-suspended using 

100% acidified methanol (citric acid, 1%, w/v) and kept at -20˚C to precipitate proteins. The 

slurry was centrifuged at 0˚C for 30 minutes at 16639×g. The supernatant was vacuum-dried at 

room temperature and re-suspended with 80% acidified methanol (citric acid, 1%, w/v). The 

samples were stored at -20˚ C until analysis. 

3.4 Total Phenolic Content  

 The total phenolic (TP) content in kefir extracts was measured using a modified Folin-

Ciocalteu method reported by Velioglu et al. [311]. The extract (20 µL) and Folin-Ciocalteu 

reagent (90 µL, 1:9 diluted with water) were loaded into a 96-well plate. After 5 min incubation 

at room temperature in the dark, sodium bicarbonate (6 g/100 mL, 90 µL) was added to 

samples. The mixture was incubated for 90 minutes at room temperature in the dark. Gallic 

acid was used to create the standard curve. Absorbance was read at 750 nm using a Biotek 

plate reader (Elx 800, Winooski, VT, USA). The data are presented in gallic acid equivalents 

(GAE), as the average of triplicate measurements of duplicated samples. 
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3.5 Total Monomeric Anthocyanin Content  

 The total monomeric anthocyanin (TMA) levels in the kefir products was measured using 

the pH differential method established by a modified method from Lee et al. [82]. Generally, 

the extract (20 µL) was mixed with either pH 1.0 buffer (0.025 M potassium chloride, 180 µL) or 

pH 4.5 buffer (0.4 M sodium acetate, 180 µL) in 96-well plates. The mixture was incubated at 

room temperature for 20 minutes in the dark. The absorbance (Abs) was read at 515 nm and 

690 nm using a Biotek plate reader (Elx 800, Winooski, VT, USA). The total monomeric 

anthocyanin content was calculated using the following formula and expressed in cyanidin-3-

glucoside (C3G) equivalents. Samples were measured in triplicate. 

𝐴𝑛𝑡ℎ𝑜𝑐𝑦𝑎𝑛𝑖𝑛 (𝑚𝑔 𝐶3𝐺 𝐿⁄ ) =  
𝐴 × 𝑀𝑊 × 𝐷𝐹 × 103

Ɛ × 𝐿
 

Where: A = (Abs515-Abs690) pH 1.0 – (Abs515-Abs690) pH 4.5; 

 MW (molecular weight) = 449.2/mol for cyanidin-3-glucoside; 

DF = dilution factor; 

L = pathlength in cm; 

Ɛ = 26900 L/mol·cm, for cyanidin-3-glucoside; 

103 = factor for conversion from g to mg. 

3.6 Antioxidant capacity 

 The antioxidant capacity of kefir products was evaluated using the 2,2-diphenyl-1-

picrylhydrazyl (DPPH) free radical scavenging capacity method. The method was modified from 

Duymus et al. [312]. Equal amounts (150 µL) of the sample and DPPH methanol solution (0.3 

mM) were loaded into a 96-well plate. The plate was incubated at room temperature in the 
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dark for 30 min. A mixture of 80% acidified methanol (solvent of the extract) and DPPH solution 

was used as the control. The absorbance was read at 515nm. The inhibition rate of the sample 

was calculated using the following formula:  

%𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =  
𝐴𝑏𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑏𝑠𝑐𝑜𝑛𝑡𝑜𝑙
× 100 

 Five dilutions of each sample were measured for DPPH scavenging capacity. The IC50 

values, which is the concentration of the sample required to scavenge 50% of DPPH radicals, 

were calculated and expressed as mg/mL. Measurements were conducted in triplicate. 

3.7 Statistical Analysis 

 Data are shown as mean ± standard deviations. Significant differences among sample 

means were evaluated using one way Analysis of Variance and Tukey’s HSD post hoc tests (p ≤ 

0.05). Pearson correlation coefficient test was conducted to determine the correlation between 

the levels of phenolic compounds and DPPH scavenging capacity. Data were analyzed using SAS 

University Edition (Cary, NC, U.S.). 

4. Results 

4.1 The Impacts of Sucrose on the Levels of Phenolic Compounds, Monomeric Anthocyanins 

and Antioxidant Activity of Aronia Kefir 

The impacts of sucrose concentration on the phenolic compounds including 

anthocyanins were evaluated by comparing the five samples (Aronia-S0.0, Aronia-S1.6, Aronia-

S3.2, Aronia-S4.8 and Aronia-S6.3) that had been stored for the same duration. TP of aronia 

kefir sweetened with different concentrations of sucrose are shown in Figure A.1. Compared to 

Aronia-S0.0 (no added sucrose), the TP levels were higher in the sample with 1.6% added 
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sucrose on day 0 (95.23 ± 2.02 mg GAE/100 g) and 3.2% sucrose on day 14 (110.57 ± 0.52 mg 

GAE/100 g). On every individual testing day, TP content of Aronia-S4.8 and Aronia-S6.3 were 

lower than Aronia-S0.0.  

 

Figure A.1 Total phenolic compound levels of aronia kefir sweetened with different 

concentrations of sucrose 

Note: Data are shown as mean ± standard deviation, n=2 (batches) x 3 (measurements). Among 

the samples that were tested on the same day, different letters indicate significant 

differences at p≤0.05. 

TMA in different concentrations of sucrose-sweetened aronia kefir are shown in Figure 

A.2.  All samples contained the highest TMA on day 0. After fermentation (on day 0), only 

aronia kefir sweetened with 6.3% sucrose (Aronia-S6.3) contained less monomeric 

anthocyanins (41.14 ± 0.85 mg C3G/100 g) than Aronia-S0.0 (44.50 ± 1.95 mg C3G/100 g). No 

significant differences of TMA among all samples were detected on day 7. After day 14, 21 or 28 
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of storage, Aronia-S4.8 and Aronia-S6.3 contained less monomeric anthocyanins compared to 

Aronia-S0.0 that had been stored for the same period.  

 

Figure A.2 Total monomeric anthocyanin levels in aronia kefir sweetened with different 

concentrations of sucrose 

Note: Data are shown as mean ± standard deviation, n=2 (batches) x 3 (measurements). Among 

the samples that were tested on the same day, different letters indicate significant 

differences at p≤0.05. 

The antioxidant capacity of the aronia kefir samples were evaluated and the results are 

shown in Figure A.3. Aronia-S0.0 exhibited either higher or similar antioxidant capacity 

compared to the other samples on every testing day during storage, with the exception of Day 

21. On day 21, Aronia-S1.6 exhibited the strongest scavenging capacity (IC50 was 13.25 ± 0.27 

mg kefir/mL). Overall, the antioxidant capacity of aronia kefir samples sweetened with different 

concentrations of sucrose were slightly decreased during 28 days of storage. 
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Figure A.3 DPPH IC50 values of aronia kefir sweetened with different concentrations of sucrose 

Note: Data are shown as mean ± standard deviation, n=2 (batches) x 3 (measurements). Among 

the samples that were tested on the same day, different letters indicate significant 

differences at p≤0.05. 

4.2 The Impacts of Different Sweeteners on the Levels of Total Phenolic Compounds, 

Monomeric Anthocyanins and Antioxidant Capacity in Aronia Kefir 

  TP content of aronia kefirs are shown in Figure A.4.  The impact of sweetener type 

(sucrose, stevia and monk fruit) on TP levels were evaluated by comparing the three aronia 

kefirs stored for the same time period (day). Compared to AroniaSucrose, AroniaMonk 

contained more TP on each testing day except for day 0. On day 0, the TP content of 

AroniaSucrose and AroniaMonk was the same. Compared to AroniaSucrose, AroniaStevia had 

an equal amount of TP on day 0, higher levels on day 7, 14 and 21, and then a lower level on 

day 28.  
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The effects of storage time on the TP content of samples assessed. TP levels of 

AroniaSucrose decreased on day 14, and then increased on day 28. TP levels of AroniaMonk 

decreased on day 14 and gradually increased on days 21 and 28. A decreases of the TP in the 

AroniaStevia sample was observed after 14 days of storage, and the TP content of AroniaStevia 

increased on day 21. After twenty-eight days of storage, the TP levels of AroniaSucrose and 

AroniaMonk were almost the same as their corresponding values on day 0. The AroniaStevia 

sample had a lower amount of TP on day 28 compared to day 0.  

 

Figure A.4 Total phenolic compound levels of aronia kefir sweetened with sucrose, stevia 

extract and monk fruit extracts 

Note: 1. Data are shown as mean ± standard deviation, n=2 (batches) x 3 (measurements).  

2. Lowercase letters indicate significant differences (p ≤ 0.05) among the three samples 

that were tested on the same day; 

3. Capital letters indicate significant differences (p ≤ 0.05) of the same sample over 

storage time.  
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The TMA content of aronia kefir is shown in Figure A.5. The impacts of sweetener types 

were evaluated by comparing the three products tested on the same day. On each testing day, 

AroniaMonk contained higher levels of TMA than AroniaSucrose. AroniaStevia also had slightly 

higher levels TMA than AroniaSucrose on day 0 (31.53 ± 0.18 and 29.94 ± 0.76 mg C3G/100 g, 

respectively) and day 28 (13.67 ± 0.36 and 11.50 ± 0.11 mg C3G/100 g, respectively). The TMA 

levels of AroniaStevia and AroniaSucrose were similar on all other testing days.  

The TMA content of all aronia kefirs dramatically decreased after seven days of storage. 

TMA levels of AroniaMonk declined until day 21 and slightly increased during the last week of 

storage. The amount of TMA in AroniaStevia decreased until Day 14, remained the same on day 

21 and slightly increased on day 28. The level of TMA in AroniaSucrose maintained the same 

from day 14 to the end of the storage study.  

The antioxidant capacity levels of the aronia kefirs are shown in Figure A.6. Comparisons 

among products stored for the same time period were conducted to evaluate the impacts of 

the sweeteners. On days 0, 7 and 14, the antioxidant activity of AroniaMonk (IC50s were 16.31 ± 

0.47, 15.59 ± 0.16, 16.54 ± 0.34 mg kefir/mL) was higher than AroniaSucrose (IC50s were 17.86 ± 

0.47, 16.97 ± 0.10, 16.95 ± 0.57 mg kefir/mL). However, the antioxidant capacity of AroniaMonk 

(IC50s were 19.87 ± 0.33 and 20.07 ± 0.32 mg kefir/mL) was lower than AroniaSucrose (IC50s 

were 18.09 ± 0.36 and 19.42 ± 0.21 mg kefir/mL) on Day 21 and 28. AroniaStevia exhibited 

similar antioxidant capacity as AroniaSucrose on most testing days except for day 21 where the 

antioxidant capacity of AroniaStevia (IC50 was 19.02 ± 0.28 mg kefir/mL) was lower than 

AroniaSucrose (IC50 was 18.09 ± 0.36 mg kefir/mL). The antioxidant capacity of all aronia kefir 
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samples were maintained over 14 days of storage but slightly decreased on either day 21 or day 

28. Decreases in antioxidant capacity of AroniaMonk and AroniaStevia were observed on day 

21. The antioxidant activity of AroniaSucrose decreased on day 28. 

 

Figure A.5 Total monomeric anthocyanin levels of aronia kefir sweetened with sucrose, stevia 

extract and monk fruit extracts 

Note: 1. Data are shown as mean ± standard deviation, n=2 (batches) x 3 (measurements).  

2. Lowercase letters indicate significant differences (p ≤ 0.05) among the three samples 

that were tested on the same day; 

3. Capital letters indicate significant differences (p ≤ 0.05) of the same sample over 

storage time.  
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Figure A.6 DPPH IC50 means of aronia kefir sweetened with sucrose, stevia extract and monk 

fruit extracts 

Note: 1. Data are shown as mean ± standard deviation, n=2 (batches) x 3 (measurements).  

2. Lowercase letters indicate significant differences (p ≤ 0.05) among the three samples 

that were tested on the same day; 

3. Capital letters indicate significant differences (p ≤ 0.05) of the same sample over 

storage time.  

4.3 The Impacts of Different Sweeteners on the Levels of Total Phenolic Compounds, 

Anthocyanins and Antioxidant Capacity of Elderberry Kefir 

  The TP contents of elderberry kefir samples are shown in Figure A.7. Comparisons were 

conducted among the products with a comparable level of sweetness.  The impacts of 
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higher TP content on day 14 but a less amount on day 21. No significant differences of TP levels 

were noted between EberryStevia-L and EberrySucrose-L on other testing days. In group H 

(products with a high level of sweetness), the EberryMonk-H and EberryStevia-H samples 

contained higher TP content than EberrySucrose-H on day 0.  There was no significant 

difference in TP content among EberrySucrose-H, EberryStevia-H and EberryMonk-H on day 7, 

14 and 21.  

The TP levels of elderberry kefirs appeared to decrease over storage time for samples 

with both high and low sweetness levels. In group L, TP content of EberrySucrose-L decreased 

after one week of storage and maintained the same level until day 21 and then decreased 

again. The TP levels of EberryStevia-L and EberryMonk-L fluctuated during the first 21 days of 

storage. The lowest amount of TP for all elderberry kefir samples was observed on day 28.  In 

group H, TP levels of EberryStevia-H decreased over storage time. The TP content of 

EberrySucrose-H and EberryMonk-H slightly fluctuated during storage time. After 28 days, all 

elderberry kefirs in group H contained less TP levels than day 0. 
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Figure A.7 Total phenolic compound levels of elderberry kefir sweetened with sucrose, stevia 

extract and monk fruit extracts 

Note: 1. Data are shown as mean ± standard deviation, n=2 (batches) x 3 (measurements).  

2. Graph I: Results of elderberry kefir with a low level of sweetness; 

Graph II: Results of elderberry kefir with a high level of sweetness. 

3. Lowercase letters indicate significant differences (p ≤ 0.05) among the three samples 

that were tested on the same day; 

Capital letters indicate significant differences (p ≤ 0.05) of the same sample over 

storage time. 
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The TMA content of elderberry kefir samples is shown in Figure A.8. In group L, 

EberryMonk-L sample contained higher TMA content than EberrySucrose-L samples on days 7, 

14, 21 and 28. EberryStevia-L levels were also higher than EberrySucrose-L on day 7, 14 and 28. 

In Group H, EberryMonk-H sample contained higher TMA content than EberrySucrose-H on 

days 0, 21 and 28. No significant differences among all samples were observed on day 7. 

EberryStevia-H and EberrySucrose-H contained similar amounts of TAM content on days 0, 7, 14 

and 21. On Day 28, EberryStevia-H had higher TAM content than EberrySucrose-H. 

The TMA content of elderberry kefir samples for both sweetness level groups increased 

over time. Over storage time, the highest TMA amount for each elderberry kefir treatment was 

observed on day 28. After twenty-eight days of storage, the amount of TMA in EberrySucrose-L, 

EberryStevia-L, EberryMonk-L, EberrySucrose-H, EberryStevia-H, EberryMonk-H increased by 

32.6%, 36.2%, 46.4%, 32.3%, 43.8% and 35.6% compared to their corresponding values on day 

0, respectively. 
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Figure A.8 Total monomeric anthocyanin content of elderberry kefir sweetened with sucrose, 

stevia extract and monk fruit extracts 

Note: 1. Data are shown as mean ± standard deviation, n=2 (batches) x 3 (measurements).  

2. Graph I: Results of elderberry kefir with a low level of sweetness; 

Graph II: Results of elderberry kefir with a high level of sweetness. 

3. Lowercase letters indicate significant differences (p ≤ 0.05) among the three samples 

that were tested on the same day; 

Capital letters indicate significant differences (p ≤ 0.05) of the same sample over 

storage time. 
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Figure A.9 DPPH IC50 means of elderberry kefir sweetened with sucrose, stevia extract and 

monk fruit extracts 

Note: 1. Data are shown as mean ± standard deviation, n=2 (batches) x 3 (measurements).  

2. Graph I: Results of elderberry kefir with a low level of sweetness; 

Graph II: Results of elderberry kefir with a high level of sweetness. 

3. Lowercase letters indicate significant differences (p ≤ 0.05) among the three samples 

that were tested on the same day; 

Capital letters indicate significant differences (p ≤ 0.05) of the same sample over 

storage time. 
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 The antioxidant activity levels of elderberry kefir samples are shown in Figure A.9. In 

group L, no significant differences in antioxidant capacity were detected among kefir samples 

on day 0. EberryMonk-L exhibited a higher antioxidant capacity than EberrySucrose-L on days 

14 and 21 but a lower antioxidant capacity on days 7 and 28. The antioxidant capacity of 

EberryStevia-L was similar with EberrySucrose-L samples on day 0, 7 and 14 but lower than 

EberrySucrose-L on day 21 and 28. In group H, the antioxidant capacity of EberryMonk-H 

sample was higher than EberrySucrose-H on days 0 and 21 but lower on all other testing days. 

Compared to EberrySucrose-H, EberryStevia-H exhibited a lower antioxidant capacity on days 

14 and 28 but no significant difference on days 0, 7 and 21. 

 After twenty-eight days of storage, the antioxidant capacity of elderberry kefir samples 

decreased over storage time. The decreases in antioxidant capacity of EberrySucrose-L, 

EberryStevia-L, EberryMonk-L occured on day 14, day 7 and day 21, respectively. The 

antioxidant capacity of EberrySucrose-H, EberryStevia-H and EberryMonk-H reduced on day 14, 

day 14 and day 7, respectively.  

5. Discussion 

5.1 Impacts of Sucrose 

In our study, aronia kefir samples with 4.8% and 6.3% added-sucrose contained less TP 

and TMA levels than aronia kefir without added-sucrose on each testing day. The addition of 

sucrose did not appear to protect the TP or TMA levels during storage. To our knowledge, this is 

the first study to investigate the impacts of sucrose concentration on polyphenols in a 

fermented dairy matrix. The aronia phenolic compounds in our study were exposed to various 



162 
 

fermentative microorganisms, such as lactic bacteria and yeasts in kefir. Some fermentative 

microorganisms may have the ability to alter the amount of phenolic compounds by releasing 

the bound phenolic compounds and/or metabolizing them [173, 363]. The ability of yeast 

(Kluyveromyces marxianus) isolated from kefir to increase the antioxidant capacity of grape 

polyphenols synergistically has been observed in other research studies [364]. In addition, 

researchers noted that the presence of added-sucrose (1%) altered the growth pattern of both 

lactic acid bacteria and yeast in soymilk kefir compared to samples without sucrose [365]. Thus, 

the concentration of sucrose may influence TP and TMA levels by altering the capacity of 

microorganisms to metabolize phenolic compounds. The protective impacts of sucrose on 

phenolic compounds in fruit juice have been documented by several studies [366-368]. These 

protective impacts may be related to a decrease in water activity [367, 369]. In our study, the 

addition of 6.3% sucrose may not be sufficient to substantially affect water activity levels of the 

kefir sample to a critical point that would be beneficial to the stabilize polyphenols over storage 

time.  

The antioxidant capacity of aronia kefir is contributed by the phenolic compounds. 

However, in this study, the correlation analyses did not show a significant relationship between 

TP and the DPPH radical scavenging activity. These results indicate that in addition to changes 

of TP levels, there were other alterations that may have affected the antioxidant capacity of 

aronia kefir samples, such as changes in polyphenol composition. The changes in phenolic 

composition may lead to altered antioxidant capacity levels because the antioxidant capacity of 

individual phenolic compound differs [370]. Fermentation may have affected the composition 

of polyphenols in our study. Aronia kefir was stored at 4˚C, at which temperature the 
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fermentation process might be slowed but not stopped because the ˚brix values of sucrose-

added aronia kefir decreased over storage (data not shown). The addition of sucrose at 

different concentrations may lead to varied activities of microorganisms during storage and 

influence the profile of the fermentative metabolites. Wang et al. reported that fermentation 

with yeasts (Saccharomyces cerevisiae bayanus EC 118) decreased the amount of total 

polyphenols but increased the level of gallic acid and the antioxidant capacity of maqui berry 

juice [177]. Jimenez-Lopez et al. demonstrated that fermentation decreased the concentration 

of epicatechin, increased the amount of total phenolic compounds and resulted in slightly 

enhanced antioxidant capacity in caper berries [371]. In summary, the impacts of sucrose on 

the antioxidant capacity of aronia kefir during storage may be achieved by altering the 

metabolism activity of microorganisms in addition to the changes of phenolic levels. More 

research is needed to verify this assumption.  

5.2 Effects of Non-nutritive Sweeteners 

In our study, monk fruit-sweetened aronia kefir contained more TP and TMA compared 

to sucrose-sweetened kefir samples at the lower sweetness levels. However, among the 

elderberry kefirs in group H, the levels of TP and TMA between monk fruit- and sucrose-

sweetened samples fluctuated at different testing points. Based on our results, no clear 

apparent trend occurred between antioxidant capacities of monk fruit and sucrose-sweetened 

berry kefirs. These results indicate that monk fruit extract may be a preferred sweetener to use 

than sucrose for aronia kefirs and elderberry kefirs with a low level of sweetness to produce 

products with higher levels of TP and TMA. Our results are similar to a study conducted by 

Nowicka and Wojdylo [372]. They demonstrated that after six months storage at 4˚C, sour 
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cherry puree with the addition of 1% monk fruit (referred as “Luo Han Kuo”), had higher TP and 

TMA levels compared to the sample with 7% added sucrose [372]. To our knowledge, this 

research is the only study involving monk fruit extract on the stability of phenolic compounds to 

date. However, the food matrix and the amount of sweeteners used in our study was different 

from the referenced study. In addition to the direct interactions between sweeteners and 

polyphenols, the impacts of sweeteners on the microorganisms may also contribute to our 

results. There has been no published study about the impacts of monk fruit on fermentation.  

Compared to sucrose, the addition of stevia appeared to be beneficial to maintain TMA 

levels but decreased the antioxidant capacity of berry kefirs over time. However, the results did 

not show a clear trend of the TP content among stevia- and sucrose-sweetened aronia kefir and 

elderberry kefir in group L. Some of our findings are in agreement with a former study 

conducted by Skapska et al., where  the replacement of sucrose with stevia extract reduced the 

antioxidant capacity of an aronia-herbal beverage [373]. However, Wozniak et al. demonstrated 

that in the absence of microorganisms, sucrose exhibited protective effects on anthocyanins 

but steviol glycosides (the sweet compounds in stevia extract) did not, which was different than 

our findings [374]. One factor that may influence the impact of sweeteners on TMA levels in our 

study is the presence of fermentative microorganisms. Both sucrose and stevia are carbon 

sources for lactic acid bacteria [375]. The addition of sucrose or stevia may alter the 

fermentation activity of microorganisms in kefir and then influence their pattern to interact 

with polyphenols. One other factor that may result in this difference is the type of 

anthocyanins. In the referenced study, purified cyanidin-3-glucoside and pelargonidin-3-
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glucoside were used. In our study, both aronia and elderberries contain various types of 

anthocyanins.  

Twenty-eight days of storage at 4˚C decreased the TP levels in most berry kefirs and 

reduced the antioxidant capacity of all berry kefirs. The decreases may be caused by the natural 

and microbial degradation of phenolic compounds. In a study conducted by Muniandy et al., 

decreases of TP levels in tea extract-enriched yogurt was observed during 21 days of storage. 

However, the DPPH scavenging capacity of tea extract-added yogurt was not altered [376]. The 

different results may be due to the different fermentation culture and polyphenol sources used 

in our study versus the referenced study. 

 During storage, the TMA content of the aronia kefirs decreased but the TMA levels in 

the elderberry kefirs increased over time. The decreases in aronia kefir are associated with the 

degradation of monomeric anthocyanins over time. Reque et al. also observed that 10 days of 

storage at 4˚C decreased the anthocyanin content in blueberry juice by 83% [74]. The increases 

of TMA content in elderberry kefir may be related to the microbial activity in the kefir. Some 

microorganisms can produce enzymes that can catalyze the hydrolysis of proanthocyanins, such 

as tannase [377, 378]. The hydrolysis of proanthocyanins can yield monomeric anthocyanins. 

The proanthocyanin compositions of aronia and elderberries are different [198], and this may 

be a reason for the different trends of TMA changes in aronia versus elderberry kefirs. The 

majority of the proanthocyanins in aronia are polymers with more than ten degrees of 

polymerization. In elderberries, the polymerization degrees of the predominant 

proanthocyanins are lower than seven. More studies are needed to test this assumption.   
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6. Conclusion 

 The impacts of sweeteners (sucrose, stevia and monk fruit) on the levels of TP, TMA and 

antioxidant capacity of berry-added kefir were tested during 28 days of storage at 4˚C. Results 

showed that compared to Aronia kefir without sucrose, the addition of sucrose at 4.8% and 

6.3% decreased the contents of TP and TMA. Compared to sucrose, monk fruit extract may be a 

preferred sweetener for aronia kefirs and elderberry kefirs with a low level of sweetness for 

protecting the levels of TP and TMA. Berry kefirs sweetened with stevia contained more TMA 

than the samples sweetened with sucrose, but the free radical scavenging capacity showed an 

opposite trend.  

Twenty-eight days of storage at 4˚C decreased the antioxidant capacity of all berry 

kefirs. Decreases of TP were observed during storage, but with fluctuations. The TMA content in 

aronia kefir decreased over time, but the content in elderberry kefir increased. The different 

trends may be related to the distinct polyphenol compositions of aronia and elderberries. In 

addition, it may be associated with the activity of microorganisms in kefir. More studies are 

needed to understand the influences of microorganisms on polyphenols during storage. 
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APPENDIX B: APPLICATION FOR APPROVAL OF RESEARCH WITH HUMAN SUBJECTS 

1. Summary of the proposal 

Chronic diseases have become a global issue causing many health issues with increased 

morbidity and mortality. A healthy diet is critical to the prevention of many chronic diseases 

such as type 2 diabetes and cancer. The functional properties of food and the bioactive 

compounds they contain are current research interests to increase health benefit. 

Fermented products such as kefir and berries that contain phytonutrients are two attractive 

topics in this area. 

Fermented milk products have a good reputation in maintaining gut health due to their 

microorganisms that influence the fermentation process and make them a rich source of 

probiotics. Probiotics are also linked to healthy metabolic effects such as reducing blood 

cholesterol, boosting the immune system, preventing cancer, and attenuating lactose 

intolerance symptoms [1]. Kefir, a fermented dairy product, has been proven to have similar 

impacts on human health similar to other fermented dairy products such as yogurt. In 

addition, due to the composition of several different microorganisms in kefir, it is naturally 

free of lactose, which is very important. As reported, lactose intolerance is a popular 

disorder that influences approximately 75% of the world’s adults [2]. Considering there is no 

lactose in kefir, it would be a good source of protein and calcium for the lactose intolerance 

population. 

Berries are rich in phenolic compounds, especially anthocyanins which make them an 

attractive resource for health related research. Anthocyanins are secondary plant 

metabolites that are proven to have high antioxidant capacity [3]. The health benefits of 
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anthocyanins, especially their antioxidant effects which are related to their role in lowering 

the risk of several chronic diseases, have been reported by many articles [4]. 

Aronia and elderberries are under-utilized berries, reported to have high anthocyanin 

content [5, 6]. Due to the astringent mouth feel caused by the high phenolic content, they 

are considered unpleasant to consumers. The use of these berries in a dairy matrix may 

minimize this flavor, and the acidic environment of fermented dairy could stabilize the 

phenolic compounds in berries. The aim of this study is to develop new desirable products 

that incorporate elderberry and aronia into kefir. The consumption of this berry product 

might help to decrease the prevalence of chronic diseases by boosting the public’s intake of 

antioxidant compounds, especially anthocyanins. 

New products will be made with low fat milk (2%) and a commercial-available kefir 

starter mix (Yogourmet™), either aronia or elderberry will be added to the product. Each 

product will be sweetened by natural sweeteners (monk fruit or stevia extract) or table 

sugar. One concentration of each sweetener will be applied to aronia products, while two 

different concentrations will be used in elderberry products. Overall, three products will be 

developed using aronia berry and six p tests will be carried out in the Consumer Testing 

Center in University of Maine in four days, two days for aronia products and another two 

days for elderberry products. During each test, three or six samples (about one ounce each) 

marked with three randomized digit numbers will be served to every participant. Flyers, 

Consent form, and Questionnaires are presented in Appendices A to F. 
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2. Personnel 

Principal Investigator: Xue Du, MS. 

Xue Du is a PhD student in the School of Food and Agriculture in University of Maine, 

majoring in Food Science and Nutrition. She will be in charge of participant 

recruitment, sample preparation, conduction of sensory evaluation, and data 

analysis. CITI training is current. 

Mentor (Faculty Sponsor): Angela Myracle, MPH, PhD. 

Dr. Myracle is an Assistant Professor in the School of Food and Agriculture in 

University of Maine. She obtained her PhD in Human Nutrition, Purdue University. 

She has 25 years of experience in biochemical analysis, epidemiological studies, and 

sensory evaluation. She is the major supervisor of this project and will oversee the 

entire project. CITI training is current. 

Research Associates:   

Mary Ellen Camire, PhD. 

Dr. Camire is a Professor of the School of Food and Agriculture, University of Maine. 

She has more than 20 years’ sensory evaluation experience, and presently teaches 

the graduate course: Sensory Evaluation. CITI training is current. 
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Katherine Davis-Dentici. 

Ms Davis-Dentici is an employee in University of Maine since 1993, and she has rich 

experience with sensory evaluation and product development. She will help through 

the entire project. CITI training is current. 

Students: Some students in the School of Food and Agriculture might help with this project, 

and all of them will complete CITI training before assisting the project. 

3. Participant recruitment 

100 participants who aged 18 or older will be recruited for each sensory evaluation test 

(elderberry or aronia products tasting) via flyers, Facebook, and FirstClass notices (attached 

as Appendix C and D); both male and female will be recruited. Consumers who are allergic to 

any ingredient of the products, such as milk and elderberry / aronia, will be excluded. The 

number of subjects for the study is chosen according to Gacula and Rutenbeck [7], to allow 

enough power to obtain statistically significant results. 

4. Informed consent 

Subjects will be asked to read the printed informed consent form (as presented in 

Appendices E and F), which will be written at an 8th reading level, before participation. 

Participation in the study will be assumed to indicate consent. 

5. Confidentiality 

Subjects will login on the SIMS program in the Consumer Testing Center of University of 

Maine; data will be collected anonymously and only available to the study investigators. 

Password protected data file will be saved in the computers that are kept in a locked room. 
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Data will be deleted once the analysis is completed and the resulting article has been 

accepted; data will not be kept for more than one year after the completion of the study, 

which is December 20th, 2016. 

6. Risks to participants 

Potential food allergens will be announced to the subjects in the recruitment notices 

and informed consent forms.  

Subjects will risk losing personal time. Even though each test should take no more than 

30 minutes, unfamiliarity of the SIMS computer program may lead to longer testing time. 

Assistance will be provided during the test to minimize the time. 

In general, the risks involved are minimal, and should be no greater than daily eating. 

7. Benefits 

 Participants will have the opportunity to taste new products and may like them. 

 Developing new products in this project may help the elderberry and aronia farmers to 

utilize the berries. In addition, new products will contribute to the varieties of diary food 

products, and may also boost the consumption of polyphenols, which is a health-beneficial 

phytochemical that has been related to lower the risk of chronic disease. 

 Risk of this project will be no more than associated with normal eating, so the benefits 

are expected to outweigh the risk. 

8. Compensation 
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 Participants who complete the whole evaluation process will receive $2 as 

compensation. 
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APPENDIX C: ELDERBERRY KEFIR TASTING RECRUITMENT NOTICE 

Would you like to taste kefir, a fermented milk beverage?  New kefir products are 

developed and volunteers are needed to provide their opinions; if you are aged 18 or older, and 

have about 20 minutes spare time, please come and help the researchers! 

Testing session will be held in the Consumer Testing Center, Hitchner Hall 158. The date 

will be announced. Scheduling a time by calling (207)889-7117 or e-mailing xue.du@maine.edu 

will be preferred; however, volunteers are welcome to show up at any time. 

Volunteers will receive $2 for participating in the study; however, if you are allergic to 

milk, elderberry, sugar, monk fruit or stevia, please do not participate.  

 

Contacts: Xue Du (Magic): (207)889-7117 or e-mail xue.du@maine.edu;  

 Dr. Angela Myracle at (207)581-1617 or angela.myracle@maine.edu. 

 

 

 

 

 

 

 

 

 

mailto:xue.du@maine.edu
mailto:xue.du@maine.edu
mailto:angela.myracle@maine.edu
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APPENDIX D: ARONIA KEFIR TASTING RECRUITMENT NOTICE 

Would you like to eat kefir, a fermented milk beverage? New kefir products are 

developed and volunteers are needed to provide their opinions; if you are aged 18 or older, and 

have about 20 minutes spare time, please come and help the researchers! 

Testing session will be held in the Consumer Testing Center, Hitchner Hall 158. The date 

will be announced. Scheduling a time by calling (207)889-7117 or e-mailing xue.du@maine.edu 

will be preferred; however, volunteers are welcome to show up at any time. 

Volunteers will receive $2 for participating in the study; however, if you are allergic to 

milk, aronia berry (chockberry), sugar, monk fruit or stevia, please do not participate. 

 

Contacts: Xue Du (Magic): (207)889-7117 or e-mail xue.du@maine.edu;  

Dr. Angela Myracle at (207)581-1617 or angela.myracle@maine.edu. 

 

 

 

 

 

 

 

 

 

 

mailto:xue.du@maine.edu
mailto:xue.du@maine.edu
mailto:angela.myracle@maine.edu
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APPENDIX E: ELDERBERRY KEFIR INFORMED CONSENT FORM 

Dear Consumer, 

You are invited to participate in a research study being carried out by Xue Du, a PhD 

student under the supervision of Dr. Angela Myracle, Assistant Professor of Human Nutrition 

from the School of Food and Agriculture at the University of Maine. The purpose of this study is 

to determine whether new kefir products with underutilized berries (elderberries) and different 

sweeteners are well accepted by consumers. 

If you know that you are allergic or sensitive to milk, elderberry, sugar or stevia, please 

do not participate; and you must be at least 18 years of age to participate. 

 

What Will You Be Asked to Do? 

If you decide to participate in this study, you will be asked to answer a list of questions 

about yourself. The questions will include your age, gender, and your familiarity of elderberry 

and kefir. You will be given 6 different samples to taste and evaluate. The test might take 20 

minutes. 

Risks 

The risks of participating in this study should be minimal and no greater than normal 

daily eating. 

Benefits  

You will taste new products and may like them. Also, this research may help the 

elderberry farmers and industries to develop new products and increase food varieties. In 

addition, this research may increase the fruit intake of consumers. 
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Compensation 

After completing all the questions listed, you will receive $2. No compensation will be 

offered if the questions are not completed. 

Confidentiality 

The data will be collected anonymously, and your name will not be shown in any 

document. Data will be kept on pass-word protected computers in a locked room. All data will 

be destroyed no later than 12 months after this study is completed (December 20th, 2016). 

Voluntary 

Participation is voluntary. You may choose to not participate at the beginning or stop at 

any time during the study. Compensation will be provided only if you complete the tasting and 

the questions. 

Contact Information 

If you have any questions about this study, please contact Xue Du at (207)889-7117 or 

xue.du@maine.edu; or Dr. Angela Myracle at (207)581-1617 or angela.myracle@maine.edu. If 

you have any questions about your rights as a research participant, please contact Gayle Jones, 

Assistant to the University of Maine’s Protection of Human Subjects Review Board, at 581-1498 

(or e-mail gayle.jones@umit.maine.edu).   

 

Your participation in the study indicates that you have read and understand the above 

information and agree to participate in the study. 

 

mailto:xue.du@maine.edu
mailto:angela.myracle@maine.edu
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APPENDIX F: ARONIA KEFIR INFORMED CONSENT FORM 

Dear Consumer, 

You are invited to participate in a research study being carried out by Xue Du, a PhD 

student under the supervision of Dr. Angela Myracle, Assistant Professor of Human Nutrition 

from the School of Food and Agriculture at the University of Maine. The purpose of this study is 

to determine whether new kefir products with underutilized berries (aronia berries) and 

different sweeteners are well accepted by consumers. 

If you know that you are allergic or sensitive to milk, aronia berry, sugar, monk fruit or 

stevia, please do not participate; and you must be at least 18 years of age to participate. 

 

What Will You Be Asked to Do? 

If you decide to participate in this study, you will be asked to answer a list of questions 

about yourself. The questions will include your age, gender, and your familiarity of aronia 

(chockberry) and kefir. You will be given 3 different samples to taste and evaluate. The test 

might take 20 minutes. 

Risks 

The risks of participating in this study should be minimal and no greater than normal 

daily eating. 

Benefits 

You will taste new products and may like them. Also, this research may help the aronia 

farmers and industries to develop new products and increase food varieties. In addition, this 

research may increase the fruit intake of consumers. 
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Compensation 

After completing all the questions listed, you will receive $2. No compensation will be 

offered if the questions are not completed. 

Confidentiality 

The data will be collected anonymously, and your name will not be shown in any 

document. Data will be kept on a pass-word protected computer in a locked room. All data will 

be destroyed no later than 12 months after this study is completed (December 20th, 2016). 

Voluntary 

Participation is voluntary. You may choose to not participate at the beginning or stop at 

any time during the study. Compensation will be provided only if you complete the tasting and 

the questions. 

Contact Information 

If you have any questions about this study, please contact Xue Du at (207)889-7117 or 

xue.du@maine.edu; or Dr. Angela Myracle at (207)581-1617 or angela.myracle@maine.edu. If 

you have any questions about your rights as a research participant, please contact Gayle Jones, 

Assistant to the University of Maine’s Protection of Human Subjects Review Board, at 581-1498 

(or e-mail gayle.jones@umit.maine.edu).   

 

Your participation in the study indicates that you have read and understand the above 

information and agree to participate in the study. 

 

mailto:xue.du@maine.edu
mailto:angela.myracle@maine.edu
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APPENDIX G: SENSORY EVALUATION QUESTIONNAIRE OF ELDERBERRY KEFIR  

Attribute 1: Instruction 

Thank you for agreeing to participate in our research. Please click the bottom button on 

the screen to start the evaluation, and evaluate the samples following the order shown on the 

screen and verify that each 3-digit code matches the sample that you taste. Please choose the 

answers that best describe your attitude towards the product. Please take a sip of water 

between tasting samples. 

Attribute 2: check all that apply 

Please indicate your gender: 

 Male 

 Female 

 Would prefer not to say 

Attribute 3: check one 

Please indicate your age range: 

 18-24 

 25-34 

 35-44 

 45-54 

 55-65 

 Over 65 
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Attribute 4: yes or no 

Have you ever consumed kefir? 

 Yes 

 No 

 I don’t know what kefir is 

Attribute 5: check one 

How familiar are you with elderberries? 

 Never heard of 

 Somewhat unfamiliar 

 Somewhat familiar 

 Very familiar 

Attribute 6: check one 

How important is it to you to consider the health benefits of food before purchasing? 

 Not important 

 Slightly important 

 Neutral 

 Moderately important 

 Extremely important 
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Attribute 7: hedonic scale 

How much do you like the color of this sample? 

1 2 3 4 5 6 7 8 9 

Dislike 
extremely 

Dislike 
very much 

Dislike 
moderately 

Dislike 
slightly 

Neither like 
nor dislike  

Like 
slightly  

Like 
moderately  

Like very 
much 

Like 
extremely 

 

Attribute 8: hedonic scale 

How much do you like the flavor of this sample? 

1 2 3 4 5 6 7 8 9 

Dislike 
extremely 

Dislike 
very much 

Dislike 
moderately 

Dislike 
slightly 

Neither like 
nor dislike  

Like 
slightly  

Like 
moderately  

Like very 
much 

Like 
extremely 

 

Attribute 9: hedonic scale 

How much do you like the sweetness of this sample? 

1 2 3 4 5 6 7 8 9 

Dislike 
extremely 

Dislike 
very much 

Dislike 
moderately 

Dislike 
slightly 

Neither like 
nor dislike  

Like 
slightly  

Like 
moderately  

Like very 
much 

Like 
extremely 

 

Attribute 10: hedonic scale 

How much do you like the texture of this sample? 

1 2 3 4 5 6 7 8 9 

Dislike 
extremely 

Dislike 
very much 

Dislike 
moderately 

Dislike 
slightly 

Neither like 
nor dislike  

Like 
slightly  

Like 
moderately  

Like very 
much 

Like 
extremely 
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Attribute 11: hedonic scale 

How do you rate the overall acceptability of this product? 

1 2 3 4 5 6 7 8 9 

Dislike 
extremely 

Dislike 
very much 

Dislike 
moderately 

Dislike 
slightly 

Neither like 
nor dislike  

Like 
slightly  

Like 
moderately  

Like very 
much 

Like 
extremely 

 

Attribute 12: comment 

If you want to refer to any product you have tasted, please use the three-digit code of 

the product. 

 

Thank you for your time. 

Please lift the window up to let the staff know that you are finished.  
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APPENDIX H: SENSORY EVALUATION QUESTIONNAIRE OF ARONIA KEFIR 

Attribute 1: Instruction 

Thank you for agreeing to participate in our research. Please click the bottom button on 

the screen to start the evaluation, and evaluate the samples following the order shown on the 

screen and verify that each 3-digit code matches the sample you taste. Please choose the 

answers that best describe your attitude towards the product. Please take a sip of water 

between tasting samples. 

Attribute 2: check all that apply 

Please indicate your gender: 

 Male 

 Female 

 Would prefer not to say 

Attribute 3: check one 

Please indicate your age range: 

 18-24 

 25-34 

 35-44 

 45-54 

 55-65 

 Over 65 
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Attribute 4: yes or no 

Have you ever consumed kefir? 

 Yes 

 No 

 I don’t know what kefir is 

Attribute 5: check one 

How familiar are you with aronia berries (Chokeberries)? 

 Never heard of 

 Somewhat unfamiliar 

 Somewhat familiar 

 Very familiar 

Attribute 6: check one 

How important is it to you to consider the health benefits of food before purchasing? 

 Not important 

 Slightly important 

 Neutral 

 Moderately important 

 Extremely important 
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Attribute 7: hedonic scale 

How much do you like the color of this sample? 

1 2 3 4 5 6 7 8 9 

Dislike 
extremely 

Dislike 
very much 

Dislike 
moderately 

Dislike 
slightly 

Neither like 
nor dislike  

Like 
slightly  

Like 
moderately  

Like very 
much 

Like 
extremely 

 

Attribute 8: hedonic scale 

How much do you like the flavor of this sample? 

1 2 3 4 5 6 7 8 9 

Dislike 
extremely 

Dislike 
very much 

Dislike 
moderately 

Dislike 
slightly 

Neither like 
nor dislike  

Like 
slightly  

Like 
moderately  

Like very 
much 

Like 
extremely 

 

Attribute 9: hedonic scale 

How much do you like the sweetness of this sample? 

1 2 3 4 5 6 7 8 9 

Dislike 
extremely 

Dislike 
very much 

Dislike 
moderately 

Dislike 
slightly 

Neither like 
nor dislike  

Like 
slightly  

Like 
moderately  

Like very 
much 

Like 
extremely 

 

Attribute 10: hedonic scale 

How much do you like the astringency (dry, shrinking mouth-feel of dry wine, tea, or coffee) of 

this sample? 

1 2 3 4 5 6 7 8 9 

Dislike 
extremely 

Dislike 
very much 

Dislike 
moderately 

Dislike 
slightly 

Neither like 
nor dislike  

Like 
slightly  

Like 
moderately  

Like very 
much 

Like 
extremely 
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Attribute 11: hedonic scale 

How much do you like the texture of this sample? 

1 2 3 4 5 6 7 8 9 

Dislike 
extremely 

Dislike 
very much 

Dislike 
moderately 

Dislike 
slightly 

Neither like 
nor dislike  

Like 
slightly  

Like 
moderately  

Like very 
much 

Like 
extremely 

 

Attribute 12: hedonic scale 

How do you rate the overall acceptability of this product? 

1 2 3 4 5 6 7 8 9 

Dislike 
extremely 

Dislike 
very much 

Dislike 
moderately 

Dislike 
slightly 

Neither like 
nor dislike  

Like 
slightly  

Like 
moderately  

Like very 
much 

Like 
extremely 

 

Attribute 13: comment 

If you want to refer to any product you have tasted, please use the three-digit code of the 

product. 

 

Thank you for your time. 

 Please lift the window up to let the staff know that you are finished. 
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