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ADVANCED TRACKING AND COMMUNICATION SATELLITES

C. M. Kelly 

W. C. Reynolds

Goodyear Aerospace Corporation 

Akron, Ohio

INTRODUCTION AND SUMMARY

This paper describes a synchronous-orbit 
tracking and communication satellite system. 
The spacecraft is essentially a communication 
satellite that uses a large electronically steered 
antenna in conjunction with tracking interferom­ 
eters and low-powered solid state transmitter- 
receiver components. The system will track and 
communicate with target vehicles that are equip­ 
ped with a dipole type antenna, UHF receiver 
and a 10-w transmitter.

The satellite uses the spherical reflector 
and the associated packaging and deployment 
techniques that were analyzed and ground tested 
in connection with passive communication satel­ 
lite programs. 1> 2, 3 A spherical reflecting 
structure similar to Figure 1, View A, will 
serve as the VHF/UHF communication link an­ 
tenna reflector and as a support for the UHF 
tracking interferometer antennas. Electronic 
steering is accomplished by a multiple-feed sys­ 
tem similar to Figure 1, View B, that is located 
in the focal area of the spherical antenna reflec­ 
tor. Target location, trajectory and orbit pa­ 
rameter data processing, system control, and 
housekeeping functions will essentially be accom­ 
plished at a master ground terminal from the 
data exchanged with the satellite over a low- 
powered wideband duplex data link operating at 
X band.

Tracking satellite attitude and yaw angle are 
also determined at the master ground terminal 
from signals radiated from the UHF satellite 
interferometer antennas and polarization vector 
of the X-band antenna signal respectivity.

Finally, this paper presents data concerning 
the electronic system, satellite configuration, 
payload weight and volume, tracking accuracy, 
system coverage, antenna beam steering, sys­ 
tem trades, data links, ground terminal, and 
other satellite applications.

SYSTEM CONCEPT

General

The synchronous satellite tracking and com­ 
munication concept is described in this section.

The satellite will use the gravity-gradient 
stabilization and solar-sail station-keeping sub­ 
systems that have been studied and analyzed for 
similarly configured passive communication 
satellites. 1» 2, 3 Ancillary active thrusters are 
also provided to ensure that the antenna is

pointed towards the earth after deployment and 
to facilitate the initial positioning of the satellite. 
The satellite is stabilized to within ±3 deg and 
all satellite antennas have 24 deg of beam cov­ 
erage, (see Figure 2). The large VHF antenna 
achieves the 24-deg coverage by electronically 
switching its 3-deg beam. The interferometer 
and microwave antennas realize the 24-deg cov­ 
erage by limiting their gain to 17 db. The target 
vehicle antenna has almost hemispheric cover­ 
age by virtue of its low gain.

The system, is capable of handling a number 
of target vehicles simultaneously. They may be 
assigned from the mission control center or may 
enter by individually initiated interrogation such 
as in emergency rescue. The target vehicle re­ 
quires a receiver and a transponder with a ra­ 
diated power in the 10-w class operating in VHF/ 
UHF bands and a simple antenna such as a dipole.

Satellite

The satellite has a VHF electronically- 
steered 150-ft diameter unfurlable spherical 
antenna, four fixed interferometer antennas, 
solid-state receivers, transmitters, stabiliza­ 
tion and station-keeping subsystems, and a 250-w 
solar-cell power supply. It will weigh less than 
780 Ib, will package into a 120-cu ft volume, and 
could be placed into synchronous orbit with an 
Atlas Agena launching vehicle system.

Communications and Ranging

Duplex VHF and UHF voice or data channels 
with a 10-kc RF bandwidth and a carrier-to-noise 
ratio of 32 db can be provided over a 20, 000-mi 
link to vehicles equipped with a dipole type an­ 
tenna, a 10-w transmitter, and a receiver withan 
effective 900-K noise temperature, (Figure 3).

Ranging is achieved by acquiring the target 
via the high ERP signal of the 150-ft VHF elec­ 
tronically-scanned antenna and then relaying a 
pseudo-random amplitude modulated noise pulse 
through the tracking satellite and target vehicle 
transponders back to the master ground termi­ 
nal. The ranging system is similar to that used 
with Mariner IV. 4 However, the system band­ 
width is increased from base bandwidth of 8 cy­ 
cles used for Mariner IV to 1600 cycles to ac­ 
commodate doppler frequency shift and to permit 
faster ranging measurements. Target vehicle to 
satellite radial velocity is determined by the 
processing of the doppler frequency shift data.
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Range and range rate measurement accuracies 
are expected to be better than 500 ft and 15 fps 
respectively.

Figure 4, View A shows the communication 
and ranging system data links.

Tracking

Tracking is accomplished by the ground 
processing of target vehicle signals relayed 
from four interferometer antennas that are 
mounted orthogonally on the rim of the 150-ft 
VHF satellite antenna. Two-axis angular reso­ 
lution of the order of 0. OZ milliradian appears 
possible if sensors are used to measure the 
temperature and stress of the interferometer 
support ring (0. 02-milliradian accuracy would 
locate a target on the earth's surface to about 
1/2 mi). The microwave interferometer prin­ 
ciple allows determination in spacecraft coordi­ 
nates of the direction from which the RF wave is 
eminating, by phase comparison of the signal re­ 
ceived at separated antennas. Ambiguities are 
resolved by multifrequency operation. The
tracking system concept and data links are shown 
in Figure 4, View B and the tracking geometry 
is shown in Figure 5. References 5 through 8 
describe phase-measuring and tracking tech­ 
niques.

Data Links

The system employs the following data links 
(see Figure 6).

Communication and Ranging, Ground - 
Satellite Duplex - Voice, command, and broad­ 
band data, up at 8 Gc, down at 7 Gc

Communication and Ranging, Satellite - 
Vehicle Duplex - Voice and data transmission 
up at 300 Me, down at 250 Me

Vehicle Tracking Interferometer, Vehicle 
to Satellite - Interferometer receive at 400 Me

Satellite Sensing Interferometer, Satellite 
to Ground - Interferometer transmit at 500 Me.

The characteristics of the above baseline data 
links are shown in Table I.

Satellite Position and Attitude Measurement

Precise location of the satellite is accom­ 
plished by existing ground-station tracking tech­ 
niques which continually up-date the satellite's 
ephemeris.

Two-axis attitude determination is achieved 
by interferometer measurements similar to 
those described above for target tracking. How­ 
ever, the interferometers would now be used in

a transmit mode to the master ground station. 
The third angular coordinate of the satellite, 
yaw or rotation about the Z axis of minimum in­ 
ertia, is sensed on the ground from the polari­ 
zation vector of the 7-Gc communication down 
link. Figure 4, View C shows the satellite atti­ 
tude sensing concept and data links.

Stabilization and Station Keeping

Attitude control is provided by a passive, 
gravity-gradient system. The system takes ad­ 
vantage of the torques that act on a satellite hav­ 
ing differing principal moments of inertia. These 
torques are due to the gradient of the earth's 
gravitational field. The axis of minimum mo­ 
ment of inertia aligns itself with the local ver­ 
tical. Further, the orbital rate of the satellite 
causes gyroscopic torques that align the prin­ 
ciple axis of maximum moment of inertia with 
the normal to the orbital plane. Satellite orien­ 
tation is thus provided by the proper selection of 
the principal axes moments of inertia.

Disturbances due to the action of natural 
phenomena would tend to induce and maintain in­ 
tolerable attitude motion. Therefore, a damp­ 
ing mechanism is incorporated to dissipate en­ 
ergy, thus reducing the oscillation to acceptable 
levels.

The damper is essentially a modified Ames 
configuration. The damper rod and satellite are 
excited at different frequencies thus inducing 
relative motion. By introducing a viscous dash- 
pot between the damper and main satellite body, 
rotational energy is dissipated. The fixed boom 
(in conjunction with the damper) only serves to 
provide yaw attitude control. This is accom­ 
plished by rotating the entire damper mechanism 
thus rotating the principal axes which in turn will 
rotate the entire satellite through the gyroscopic 
torque.

Station keeping is accomplished by control of 
the direction (and magnitude) of the solar pres­ 
sure incident on the satellite's body (or sail). 
Proper programmed orientation of the satellite 
(or sail) relative to the sun provides adequate 
thrust to maintain a given orbit or position rela­ 
tive to other satellites or the earth. Orientation 
control is provided by programmed rotation of 
the damper mechanism thus inducing satellite ro­ 
tation as explained earlier.

The entire operation is passive with the excep­ 
tion of the yaw attitude control mechanism which 
must be actuated actively.

Satellite Configuration

of:
As shown in Figure 7, the COMSAT consists
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TABLE I - BASELINE DATA LINK CHARACTERISTICS

Link

Communication and ranging 
Ground to satellite 
Satellite to ground 
Satellite to vehicle 
Vehicle to satellite

Vehicle tracking interferometer

Satellite to ground

Fre­ 
quency 

(Me)

8000 
7000 

250 
300

400 

500

Band­ 
width 
(kc)

1000. 0 
1000. 0 

10. 0 
10. 0

3. 2 

10. 0

Power 
(w)

20. 0 
1. 0 

10. 0 
10. 0

10. 0 

0. 2

Antenna

Ground

Size 
(ft)

85 
85

85

Beam- 
width 
(deg)

0. 1 
0. 1

1. 6

Gain 
(db)

64 
64

40

Satellite

Size 
(ft)

0. 5 
0. 5 

100. 0 
100. 0

8. 0 

6. 5

Beam- 
width 
(deg)

24 
24 

3 
3

24 

24

Gain 
(db)

17 
17 
35 
35

17 

17

Target vehicle
Beam- 
width 
(deg)

152 
152

152

Gain 
(db)

1 
1

1

Receiver 
noise 
temp-

(K)

900 
58 

900 
900

900 

900

Carrier

ratio

30 
30 
32 
32

15 

30

1. A 150-ft diameter, 200-ft radius-of- 
curvature central lenticular shape (two gas- 
erected spherical end caps) for the main antenna 
reflector, with an unfurlable tape rim, an inflat­ 
able film torus and four flat spiral interferom.- 
eter antennas.

2. Wire-grid film tubes to connect the cen­ 
tral structure to the top and bottom structures.

3. A top structure composed of a satellite 
stabilization system, solar cells for power, and 
a solar sail and jets for station keeping.

4. A bottom structure containing an X- 
band parabola, flat spiral feeds for the large . 
reflector, receivers, transmitters, power sup­ 
plies, command and control equipment, and 
associated electronics.

The satellite is compactly packaged into a 
simple canister. (Figure 8). Its deployment 
sequence consists of canister deployment, de­ 
ployment of torus and rim through a controlled 
inflation procedure, inflation and deployment of 
booms for positioning of top and bottom struc­ 
tures, inflation and deployment of lenticular 
shape and deployment of Ames type damper. The 
lenticular shape is pressurized until the wire 
grid in the upper cap is near the yield point of 
the wires, creating a spherical reflector with 
excellent contour.

Photolyzable film is used for the entire 
torus and for the pressure barrier film on the 
lenticular caps. After deployment and wire- 
grid rigidization, this polymeric film is photo- 
degraded through the action of solar ultraviolet 
energy to a molecular weight form that evapo­ 
rates. The remaining central structure con­ 
sists of the wire-grid antenna reflector, the tape 
rim and the relatively small interferometer an­ 
tennas. This configuration presents a small 
area for solar pressure, minimizing perturba­ 
tions and station keeping problems.

The flat spiral feeds on the bottom structure 
are at the upper spherical cap focal point, or at 
one-half radius of curvature of the cap.

Weight and power requirements are sum­ 
marized in Table II.

TABLE II -

WEIGHT AND POWER REQUIREMENTS

Item

Basic structure and reflector
Lens
Torus
Tape rim
Support booms (8)
Inflation system
Canister
Stabilization

Flat-spiral feed array for
spherical reflector
64 elements, 250 Me,
24-ft diameter

Four interferometer antennas
7 elements, 400-500 Me,
spiral arrays

Solar- cell power supply
250-w output

X-band transmitter, re­
ceiver, antenna and
transmission line

Four 250-Mc transmitter and
receivers at 8 Ib and
40 w

Weight 
(Ib)

156
37
25
41
33
39
67

40

16

125

12

32

Power 
required 

(w)

20

160
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TABLE II - SYSTEM TRADES

WEIGHT AND POWER REQUIREMENTS 

(Continued)

Item

Eight 500-Mc interferometer 
transmitters at 2 Ib and 
4 w

Eight 400-Mc receivers, 8 re­ 
quired at 2 Ib and 3 w

Command, control, telemetry, 
housekeeping, program­ 
ming, etc.

Thrustors 

Totals

Weight 
Ub)

16

16

10

10

675

Power 
required 

(w)

32

24

25

261

OTHER MISSIONS

The subject communication satellite is one 
of a family of satellites being studied for the 
missions indicated on Figure 9. Satellites with 
diameters greater than 1000 ft have been ana­ 
lyzed in connection with the work associated with 
Reference 1.

This tracking and communication satellite, 
because it is essentially an oriented spherical 
cap, might also be used as a passive communi­ 
cation satellite. It could also be used to imple­ 
ment the specific missions shown on Table III.

Trades are discussed below for two general 
types of links, (1) those with a constant-gain tar­ 
get vehicle antenna, and (2) those with a constant- 
area target vehicle antenna. The information ca­ 
pacity of the link is assumed constant.

The link frequency is a dominant parameter 
of the satellite design. The relationship of link 
frequency to other parameters is shown in 
Table IV.

TABLE IV -

PARAMETRIC RELATIONSHIPS

Item

Antenna 
tolerance

Beam 
angle

Steering re­ 
quirement

Transmitter 
power

Relationship between item and 
frequency for antenna type

Constant gain 
antenna

Proportional to

Independent of

Independent of

Independent of

Constant area 
antenna

Proportional to

Inversely pro­ 
portional to

Proportional to

Proportional to 
inverse squared

In general, if antenna steering, and beam 
area coverage are not a problem on either end 
of the link, higher frequency operation is usu­ 
ally warranted. Lower frequencies are quite

TABLE HI - DATA LINKS, SYNCHRONOUS ORBIT

Type of link

Voice data

Command

Data relay

Marine

Rescue or combat

Ocean or weather buoys

Lunar communications

FM broadcast

TV broadcast

RF 
band­ 
width

1 0. 0 kc

0. 1 Me

1. 0 Me

1 0, 0 kc

1 0. 0 kc

0. 4 kc ;

1 0. 0 kc

200, 0 kc

6. 0 Me

Fre­ 
quency 
(Me}'

250'.. 0

250, 0

250, 0>

250. 0

125. 0

125. 0

2000. 0

1 00. 0

62. 5

Antenna

(ft)

100

1 00

1 00

100

200

25

1 00

1 00

200

Spacecraft

angle (deg)

3. 0

3. 0

3, 0

3, 0

3. 0

24, 0

0. 36

7. 5

6. 0

Ground circle

(naut mi)

1040

1040

1040

1040

1040

8360

NA

2600

2090

Radiated 
power 

(w)

7. 0

7. 0

70. 0

0. 5

0. 5

0. 5

0. 5

64. 0

160. 0

Mobile 
antenna 

gain 
(db)

1

1

1

13

1

1

33

1

13

Mobile 
antenna 

beam angle 
(deg)

152

152

152

38

152

152

38

152

38

Comment

4-kc channel

40-kc channel, C/N = 20

400-kc channel, C/N = 20

Yagi on mast

C/N = 24 db

0. 160-kc channel, C/N = 20

10-ft dish on moon

15-kc channel, C/N = 27, FM 
modulation index = 5, S/N = 53 db

TV channel No. 2, cable loss = 4 db

Carrier to noise (C/N) = 30 db, Noise figure (NF) = 6 db, same parameters for duplex operation
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attractive becaiise of ease of RF power genera­ 
tion, equipment cost, and reduced antenna tol­ 
erance and steering requirements. It should be 
noted that the data link bandwidth is independent 
of frequency for the constant-gain antenna case. 
This fact makes the lower VHF frequencies at­ 
tractive for broadcast type services where large 
antenna apertures and large beamwidth are de­ 
sirable. Large antennas for low-frequency use 
are lighter and much easier to implement be­ 
cause of relaxed dimensional tolerance require­ 
ments.

CONCLUSIONS

The type of tracking and communication 
satellite described herein, because of its simple 
stabilization system, expected long life, early 
availability, and capability to operate with sim­ 
ple target vehicle equipment illustrates an at­ 
tractive solution to the problem of implementing 
a wide-area coverage tracking and communica­ 
tion system with today's inexpensive low-powered 
target vehicle equipment.

A satellite of this general type could provide 
communication such as command and rescue 
links for aircraft, missiles, spacecraft, ships, 
and persons.

Further study and a flight-test program is 
recommended to define the most utilitarian mis­ 
sions, electronics systems, and satellite con­ 
figurations.

The vehicle and astronaut capabilities of the 
Apollo program could accelerate the develop­ 
ment of a tracking and communication satellite 
by accomplishing things such as providing a 
flight-test laboratory, reducing test-booster 
cost, controlling and observing the deployment 
of the satellite, boresighting the interferometer 
antenna, measuring satellite surface tempera­ 
ture, checking and adjusting antenna contour, 
and gathering design improvement data,
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BASELINE DATA LINK CHARACTERISTICS

Cn 
CD

LINK

COMMUNICATION AND RANGING
GROUND TO SATELLITE
SATELLITE TO GROUND 
SATELLITE TO VEHICLE 
VEHICLE TO SATELLITE

VEHICLE TRACKING INTERFEROMETER
VEHICLE TO SATELLITE

SATELLITE SENSING INTERFEROMETER 
SATELLITE TO GROUND

FREQUENCY

MC

8000
7000 

250 
300

400

500

BANDWIDTH

KC

1000
1000 

10 
10

3.2

10

POWER

WATT

20
1 
10 
10

10

.2

GROUND 
ANTENNA

CD

fg S
UJ < Z
* uj < 
co CD CD

85 .1 64
85 J 64

———— —

85 1,6 40

SATELLITE 
ANTENNA

CD

t s g
UJ < 2 
b! UJ <
to CD e>

.5 24 17
.5 24 17 

100 3 35 
100 3 35

8.0 24 17

6.5 24 17

TARGET 
VEHICLE 
ANTENNA

CD 
UJo g

1 ?
UJ < 
CD CD

—————

152 1 
152 (

152 1

RECEIVER 
NOISE 
TEMPER­ 
ATURE

°K

900
58 

900 
900

900

900

CARRIER 
TO NOISE

30
30 
32 
32

15

30

GOODYEAR AEROSPACE

TABLE I . BASELINE DATA LINK CHARACTERISTICS



VOICE DATA LINK

COMMAND LINK

DATA RELAY LINK

MARINE LINK

RESCUE OR COMBAT LINK

OCEAN OR WEATHER 
BUOYS

LUNAR COMMUNICATIONS

FM BROADCAST

TV BROADCAST

RF BANDWIDTH

10 KC

0.1 MC

1.0 MC

10 KC

10 KC

O.h KC

10 KC

200 KC

6 MC

DATA LINKS - SYNCHRONOUS ORBIT

FREQUENCY (MC)

250

250

250

250

125

125

2000

100

62.5

 

a
<IJ X  ~>»<§ .
^ EH 
E£J pc.

100

100

100

100

200

25

100

100

200

SPACECRAFT
ANTENNA BEAM ANGLE (DEG.)

3.0

3.0

3.0

3.0

3.0

2U

0.36

7.5

6

GROUND CIRCLE 
COVERAGE (NA-MI)

10^0

10^0

10^0

10^0

10l|-0

8360

NA

2600

2090

RADIATED POWER
(WATTS )

7

7

70

0.5

0.5

0.5

0.5

6h

160

<;

EH
3 o 

fd
P£| s _ - 

PQ H0 <!s 3

1

1

1

13

1

1

33

1

13

MOBILE ANTENNA BEAM ANGLE (DEG)

152

152

152

38

152

152

38

152

38

C/N = 30 db 
NF = 6 db 
Same Parameters for 
Duplex Operation

U-KC CHANNEL

UO-KC CHANNEL, C/N = 20

1*00 -KC CHANNEL, C/N = 20

YAGI ON MAST

C/N = 2Udb

0.160-KC CHANNEL, C/N = 20

10 -FT DISH ON MOON

15KC CHANNEL, C/N=27, FM MOD 

INDEX = 5, S/N = 53 db

TV CHANNEL #2, CABLE LOSS 

= h db

TABLE DATA LINKS - SYNCHRONOUS ORBIT



SATELLITE LENS AND FEED

cn 
00

20-FOOT PAS COMSAT MODEL FLAT SPIRAL ANTENNA ELEMENTS FOR 
SPHERICAL ANTENNA AND INTERFEROMETERS

VIEW A VIEWB

GOODYEAR AEROSPACE

FIGURE1. SATELLITE LENS AND FEED



SYSTEM GEOMETRY

SYNCHRONOUS ORBIT SATELLITE 
STABILIZED TO ±3°

MASTER 
TERMINAL

INTERFEROMETER 
ANTENNA

LARGE APERTURE 
ANTENNA

SMALL X BAND 
ANTENNA

24° BEAM COVERAGE FROM 
ALL SATELLITE ANTENNAS

18° MINIMUM ANGLE 
COVERAGE

1° BEAM TO SATELLITE

3° ELECTRONICALLY 
STEERABLE BEAM 
FROM SATELLITE

152° BEAM FROM 
AUTOMATION 
VEHICLE

TARGET 
VEHICLE

FIGURE 2. SYSTEM GEOMETRY
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TYPICAL COMMUNICATION LINK

TWO-WAY VOICE CHANNEL 
BETWEEN SPACECRAFT AND 
GROUND, SHIP, PLANE, 
MISSILE, SATELLITE, 
PERSONS, ETC

ANTENNAS 
100-FT-DI AM SPACE 
DIPOLE GROUND MOBILE

PT =B + C/N+<»-GT -GR-KTR
B = 10 KC

f = 100 TO 2500 MC 

C/N=32DB 

T R =900 DEC K

> ; '- P T = 10W; SYNCHRONOUS, 
20,000-NAUT-MI LINK

GROUND COVERAGE VARIES DIRECTLY WITH LINK 
DISTANCE AND INVERSELY WITH FREQUENCY.

GOODYEAR AEROSPACE

FIGURE 3. TYPICAL COMMUNICATION LINK
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SYSTEM DATA LINKS

MASTER TERMINAL TO TARGET VEHICLE 
COMMUNICATIONS AND RANGING

MULTIPLE SPIRAL 
UHF/VHF FEED ———— 
(64 SPIRAL MODULE)

X BAND ANTENNA

MASTER 
TERMINAL

150 FT SPHERICAL
ANTENNA
REFLECTOR

DUPLEX VOICE 
COMMUNICATIONS

TARGET 
VEHICLE

FIGURE 4A. SYSTEM DATA LINKS
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SYSTEM DATA LINKS

TARGET VEHICLE TO MASTER 
TERMINAL ANGLE TRACKING

INTERFEROMETER
ANTENNA
(7 SPIRAL MODULE)

MULTIPLE SPIRAL
UHF/VHF FEED
(64 SPIRAL MODULE)

X BAND ANTENNA

MASTER 
TERMINAL

INTERFEROMETER
ANTENNA
(7 SPIRAL MODULE)

GOODYEAR AEROSPACE

FIG'URE4B. SYSTEM DATA LINKS
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SYSTEM DATA LINKS

SATELLITE TO MASTER TERMINAL 
SATELLITE ATTITUDE SENSING

TRANSMITTER
INTERFEROMETER
ANTENNA

MULTIPLE SPIRAL
UHF/VHF FEED
(64 SPIRAL MODULE)

4 ANTENNAS 
REQUIRED FOR 
ROLL AND PITCH 
SENSING

ROLL AND PITCH 
SENSING

MASTER 
TERMINAL

TRANSMITTER AND
INTERFEROMETER
ANTENNA

X BAND ANTENNA 
VERTICAL POLARIZED 
(YAW DATA)

YAW SENSING ANTENNA 
ADJUSTABLE POLARIZATION

GOODYEAR AEROSPACE

FIGURE 4C. SYSTEM DATA LINKS 
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TRACKING GEOMETRY • ALL DATA PROCESSING AND COORDINATE 
CALCULATION ON GROUND

• RANGE FROM COMMUNICATION LINK 
PULSE TIME DELAY

• AZIMUTH FROM COMMUNICATION LINK 
POLARIZATION

• ORTHOGINAL INTERFEROMETERS
• ANGLE DETERMINATION VIA PHASE 

COMPARISON
• AMBIGUITIES RESOLVED VIA 

MULTIFREQUENCY
• RESOLUTION^ 0.02 MILLIRADIUS 

AND 0.5 MILES

• PHASE GEOMETRY

lX 1 = X/2

L22 ~ L2 1 = 2XLCOS0

MASTER GROUND STATION 
AND COMPUTER COMPLEX

SATELLITE ORIENTATION DETERMINATION

VEHICLE

VEHICLE LOCATION DETERMINATION

FIGURES. TRACKING GEOMETRY



DATA LINK BLOCK DIAGRAM

GROUND SATELLITE TARGET VEHICLE

8000MC

7000MC

NOTES:
Rx = RECEIVER 
Tx = TRANSMITTER

t
400MC ^

400MC

INTERFEROMETER 
ANTENNAS

COMMUNICATION
AND

RANGING
TRANSMISSION

PATHS

VEHICLE
TRACKING

INTERFEROMETER

SATELLITE
SENSING

INTERFEROMETER

FIGURE 6. DATA LINK BLOCK DIAGRAM



SATELLITE CONFIGURATION

CANISTER DAMPING 
AND YAW CONTROL 
SYSTEM THRUST JETS

SOLAR SAIL ACROSS 
AND BOTTOM BOOMS

7 ELEMENTS A 
INTEREROMETER t 
ANTENNA

PHOTOLYZABLE FILM 
NYLON GRID

INTERFEROMETER 
ANTENNA

SOLAR CELLS

PHOTOLYZABLE FILM 
WIRE GRID-SPHERICAL 
REFLECTOR 200' RADIUS

UNFURLABLE METAL
TAPE RIM 
A

PHOTOLYZABLE 
FILM TORUS

WIRE FILM 
TUBE BOOMS

MULTIPIE FLAT SPIRAL FEED 24'

CANISTER AND 
ELECTRONICS

T24'

OOOOOOOO WHF POWER00000000 Vnr r^VVCK
oooooooo TRANSISTOR
OOOOOOOO ON EACHoooooooo ^IN c:AL- n
oooooooo FEED
OOOOOOOO ci CMFMTOOOOOOOO ELEMENT

p,— 24'—^)

SATELLITE 
METAL TAPE 
RIM

• AH6'6

B- B

64-250 MC 
FLAT SPIRAL 
ELEMENTS 
3' DIA AND 
T HIGH

FLAT SPIRAL MODULE 
7 ELEMENTS 9" DIA X 2"

C- C

FIGURE 7. SATELLITE CONFIGURATION
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100"

PAYLOAD CONFIGURATION

STA 77.07

[—50"

•60" DIA-

SHROUD JETTISON DEVICE

STA 0

STA 117.43

STOWED ANTENNA AND 
INFLATION SYSTEM

STA 270

GOODYEAR AEROSPACE

FIGURES. PAYLOAD CONFIGURATION
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HIG.H GAIN LENTICULAR SYNC SATELLITE

DIAMETER (D) - 200 FT

REFLECTOR
WEIGHT (W) - 400 LBS

RADIUS OF
CURVATURE (p) - 560 FT

CANISTER OR 
SPACECRAFT

WIRE FILM BOOM

LENTICULAR 
REFLECTOR

TORUS

MULTIPLE FEEDS

STEERING AND 
STABILIZATION

ORBIT _______ __ SYNCHRONOUS 
CONCEPT ________ HIGH GAIN TRANS-REC 
DEPLOYMENT ___ __ AUTO OR MANUAL 
OPERATION _______ ACTIVE OR PASSIVE 
MISSIONS:

COMMUNICATIONS
Aircraft and mobile
Broadcast
Interplanetary
Range support

NAVIGATION AND RESCUE 
RADIO ASTONOMY 
RADIOMETRY 
TRACKING
INTERFERENCE ANALYSIS GOODYEAR AEROSPACE

FIGURE 9. HIGH GAIN LENTICULAR SYNC SATELLITE
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