
The Space Congress® Proceedings 1971 (8th) Vol. 1 Technology Today And
Tomorrow

Apr 1st, 8:00 AM

A Checkout Language for Future Space Vehicles A Checkout Language for Future Space Vehicles

J. W. Meadlock
President, M&S Computing, Inc. Huntsville, Alabama

T. T. Schansman
Vice President, M&S Computing, Inc. Hunts ville, Alabama

R. E. Thurber
System Consultant, M&S Computing, Inc. Hunts ville, Alabama

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation Scholarly Commons Citation
Meadlock, J. W.; Schansman, T. T.; and Thurber, R. E., "A Checkout Language for Future Space Vehicles"
(1971). The Space Congress® Proceedings. 5.
https://commons.erau.edu/space-congress-proceedings/proceedings-1971-8th/session-2/5

This Event is brought to you for free and open access by
the Conferences at Scholarly Commons. It has been
accepted for inclusion in The Space Congress®
Proceedings by an authorized administrator of Scholarly
Commons. For more information, please contact
commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1971-8th
https://commons.erau.edu/space-congress-proceedings/proceedings-1971-8th
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1971-8th%2Fsession-2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1971-8th/session-2/5?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1971-8th%2Fsession-2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/

A CHECKOUT LANGUAGE FOR FUTURE SPACE VEHICLES

J. W. Meadlock
President
M&S Computing, Inc.
Huntsville, Alabama

T. T. Schansman
Vice President
M&S Computing, Inc.
Hunts ville, Alabama

R. E. Thurber
System Consultant
M&S Computing, Inc.
Hunts ville, Alabama

ABSTRACT

To support an increased emphasis on automated
checkout of future space vehicles, a procedure-
oriented computer language is required. This
language needs to be more user-oriented and
needs to have a more complete set of capabilities
than existing languages. Such a language, named
TOTAL, was developed under contract to NASA-
KSC. This paper presents an overall view of the
language in terms of its major characteristics as
derived from the basic design objectives.

INTRODUCTION

Why a New Language?

It is anticipated that future space vehicles will
require an increased emphasis on automation of
various types of testing at the launch site and dur
ing the actual mission. One of the major tools
required to effectively support this automation is
a procedure-oriented language, usable by engi
neering personnel, to describe test procedures to
a computer. Such a language has as major design
objectives:

o Easy to learn and use by engineers

o Easy to read by non-writers

o Capable to support future space vehicle
checkout

M&S Computing reviewed existing, significant
languages (see Bibliography) to determine if such
a language was already available. Although sev
eral languages fulfilled the objectives to various
degrees, none could be considered satisfactory. It
was therefore necessary to perform a new lan
guage design. This new design is based on exist
ing language designs, with modifications and addi
tions, to fulfill the major design objectives and to
include improvements, where experience has
shown these to be necessary.

The language thus developed has been named
TOTAL (Test engineer Oriented Test Application
Language) and is the subject of this paper. The

effort was performed under contract to the NASA-
Kennedy Space Center.

Some Language Highlights

There are many ways to characterize a language.
The following are a selection of those characteris
tics considered of greatest interest to a potential
user.

o Simple statement format and vocabulary

o Automatic English-like output for
simplicity of reading

o Error prevention and detection (verifica
tion) aids

o "Built-in" procedure writing standards and
conventions

o Language extension capability to adapt to
local requirements or special situations

o Hardware configuration independence

o Usable in ground computer as well as
on-board computers

o Designed for integrated, systems, sub
systems, and component testing

o Simplified management/configuration
control

o Not dependent on professional program
mers' support

o Applicable to a timesharing environment

o Direct interface with major system ser
vices such as "monitoring" and "logging"

o Full man/machine interface capabilities

Purpose of this Paper

The space in this paper does not allow a
detailed description of the language. Our
attempt here is to present an overall view of the
language design, and to show how this design was
derived from the major language design objec
tives. A language design is only meaningful if
the underlying philosophy is understood.

2-19

We first discuss the major design objectives and
the reasons for these. We then discuss a selec
tion of the major language characteristics and
relate these to the design objectives. Reference
material and a Bibliography are included at the
end of this paper for readers who desire more
detailed information.

MAJOR DESIGN OBJECTIVES

We will first discuss the major design objectives
and the reasons for their existence before we
discuss their effect on the language design.

Easy to Learn and Use by Engineers

The automation of an application is necessarily
started through the appropriate use of program
ming personnel. As the automation effort
matures, however, it is mandatory that the actual
user has a more direct control over the automa
tion effort. That is, for increased and efficient
automation, the need for intermediaries between
the actual user and his application should be
minimized.

In our case this implies that the engineer should
be able to directly communicate his test require
ments to the checkout complex, rather than pro
vide these to a programmer for implementation.
The language should, therefore, be such that
engineering personnel, without previous program
mer training or experience, are able to familiar
ize themselves with it.

Note, however, that this does not mean that the
user does not have to be aware of "automation
concepts". It is neither possible nor desirable to
hide the fact that a computer is used as a major
tool in the automation process. The user has to
understand and appreciate the capabilities and
shortcomings of computers to the same degree
that he is aware of other support equipment.

Easy to Read by Non-Users

In the environment under study it is frequently
necessary that the test procedures are perused
by personnel not directly involved in the imple
mentation of the test procedure.

It is a very costly task to train all potential lan
guage readers to the same depth as the procedure
writers. In addition, the occasional reader can
easily forget his training. It is, therefore,
imperative that procedures specified in the lan
guage can be understood by the non-writer with
an absolute minimum orientation.

Capable to Support Future Space Vehicle Checkout

This, of course, is the prime objective. A major
concern is that a single language can be used to
specify most (if not all) test procedures used in a
variety of testing situations. The idea is that
testing personnel will only have to be familiar
with one language. The basic language design
should therefore first of all be applicable to most
common testing situations. In addition, the lan
guage should allow a degree of extendability, by
the intended user, to adapt to unexpected or spe
cialized testing situations. Consideration need
also be given to expected testing techniques and
methods. These are imposed not only by the
prime equipment test requirements, but also by
system considerations.

MAJOR LANGUAGE CHARACTERISTICS

The analysis of the major design objectives
resulted in various language design characteris
tics that form the basis of the language design.
There are, of course, numerous characteristics
that were derived from the major (or minor)
design objectives. It is clearly impossible to
describe all of these in the space of this paper.
We will therefore only describe those character
istics that are considered critical and that pro
vide an overall view of the language design.

Easy to Learn and Use by Engineers

A wide variety of factors influence the effort
required by the procedure writer to accomplish
his task. The factors that most significantly
influenced the language design are summarized
below.

Input Statements

Simplification of the effort required to describe
the test procedure is a prime concern. To
accomplish this, the format of the input state
ments, as well as the vocabulary used, has to be
considered. A statement format, flexible enough
to describe the necessary actions, but simple
enough to accomplish our objective, is the Fixed-
Length, Fixed-Assignment, Field Format shown
at the top of Figure 1.

This is a form divided in columns of fixed widths.
Each column has a heading, describing the type of
information to be entered in that column. There
fore, once a user knows what information is
required to describe an action (usually self-
evident), he immediately can form the statement.
There is, therefore, a minimal need to remem
ber various statement formation rules.

2-20

Minimal Vocabulary

By keeping the number of words in the language
vocabulary to a minimum, an additional simplifi
cation is accomplished. Note that the format pre
viously described aids in this effort. No words
are needed to indicate separation between state
ment entries or to indicate sequencing of state
ment entries. The main vocabulary needed is
therefore the action to be described in the "Opera
tion" field. The most common words used in the
"Operation" field are shown in Figure 2 (see Fig
ure 1 for examples). An operation can consist of
one to three words. The first word is the "verb",
the main action to be performed. The second word
is the "object", the class of items to which the
verb is to be applied. The third word is a "condi
tion" or "modifier" that is occasionally used to
further refine the description of the action to be
taken. Abbreviations can be used by simply com
bining the first two characters of each word to be
entered in the "Operation" field.

Design Conventions

Prior to the design and implementation of a test
procedure in a specific language, it is necessary
to define a set of groundrules that specify how the
language is to be applied. For example, it is
necessary to define labeling or naming conventions,
to partition use of computer memory, to assign
use of decision switches, etc. , such that the
writers use reasonably similar conventions to
improve intercommunication and readability.

This is necessary because most programming
languages are "generalized" to cover a wide, and
frequently unpredictable, variety of applications.
However, when a language is designed for a very
similar set of applications, it is much more use
ful to design the most commonly required conven
tions into the language. This aids both the pro
cedure writers and their management in minimiz
ing the time necessary to define and document the
required design conventions.

The language design includes design conventions
for the following items:

o Predefined item names/labels

o Procedure structuring rules

o Use of internal/external storage

o Communication between Test Procedure
Modules (interface rules)

o Use of decision switches

Minimal Programmer Support

To effectively increase the use of automation, it

is mandatory that the personnel involved are mini
mized. That is, the test procedure writer should
be able to specify his requirements directly in a
format interpretable by the computer, rather
than through a programmer. This, in effect,
implies two major factors.

It is first of all necessary to absolutely limit the
use of "Assembly Language Programming" to
emergencies. That is, all (presently predictable)
functions should be able to be specified by the
engineer. Assembly Language should only be
used for unanticipated requirements and, when
used, should be clearly separated from the other
procedure statements.

Second, it is necessary to absolutely limit "con
figuration dependent knowledge" in the system
support software; that is, information which is
subject to change as test methods change or as
prime or support equipment changes. For exam
ple, test point dependent data is captured in a cen
tral Test Point Characteristics File (described in
Figure 3), external to the system software. This
information is standard information, so that it
should not have to be written down each time that
it is required. However, it is subject to changes
that should be under control of test engineering
personnel, so it should not be an integral part of
the compiler and/or operating system. Another
item is the provision for User Defined Operators.
These allow user-defined extensions to the basic
signals spectrum, if required, without modifica
tions to the language compiler. Both of these last
items are discussed in more detail later on in this
paper.

The above summarizes the main language fea
tures provided to make the language as easy to
learn and use as possible.

Easy to Read by Non-Writers

The statement format and terminology previously
described are very easy to read by personnel
that are regularly using the language. However,
personnel that are not involved in the writing of
the test procedures, but mainly peruse the test
procedures for various reasons, would have
some difficulty reading the raw input statements.
Of course, this is a problem that is common to
all existing programming languages.

The most common solution is to have the writer
write in some sort of pidgin English that makes
the statement somewhat easier to read. That
approach has been applied with varying degrees
of success. It sometimes favors the writer and
sometimes favors the reader. In the environ
ment we are discussing here, the reader has less
use for a detailed knowledge of the language than

2-21

for most other languages. It was therefore
decided that it would be more effective to optimize
writeability and readability (for the non-writer)
as largely independent items.

To make the raw input statements readable to
personnel with no or limited language training,
the compiler expands the input statements into
brief English sentences. This "Expanded List
ing" therefore becomes available as soon as the
test procedure starts becoming operational.
Note that no special burden is imposed upon any
of the users. Figure 1 illustrates some typical
input statements and their corresponding
Expanded Listing.

Capable to Support Future Space Vehicle Checkout

To provide a rational basis for the definition of
language design requirements, it was necessary
to identify the major characteristics of the envir
onment to which the checkout language will be
applied. From the many vehicles under consid
eration for future missions, the avionics systems
of the Space Shuttle and Space Station were iden
tified as representing the most pertinent check
out language requirements. The definition of the
checkout environment was complicated consider
ably by the wide variety of concepts and ground-
rules under consideration for these systems.
From these different approaches, the major
features were abstracted and analyzed for poten
tial impact on a checkout language. From these
features, it was possible to establish a baseline
of checkout activities and a checkout system con
figuration. The following discussion explains
the major characteristics of the language which
were derived from these features.

The baseline checkout system configuration de
picted in Figure 4 reflects the major pertinent
features of potential vehicle checkout systems
which might impact a checkout language. These
impacts are primarily through the computer con
figuration and the data distribution system which
transports signals among vehicle components.
The baseline checkout system includes a selec
tively decentralized computer configuration with
a central data management computer and addi
tional computers dedicated to some of the subsys
tems. It also includes a separate ground com
puter to control ground support equipment and to
control or support on-board checkout functions
during mission phases on the ground. A multi
plexed digital data bus interconnects these com
puters with other on-board components, and a
standard Data Bus Interface (DBI) attaches
devices to the data bus.

Signal Spectrum

One of the most fundamental characteristics of a
checkout language is the spectrum of signals to
and from the system under test (SUT) which can
be represented. An integral part of that charac
teristic is the way in which they are represented.
The key to TOTAL'S signal spectrum is the spec
trum of the DBI's of Figure 4. Across the many
approaches to checkout of the Space Shuttle and
Space Station, the concept of the multiplexed digi
tal data bus and its standard signal interface is
very consistent. The DBI converts both ways
between serial digital (data bus) data and:

o Discrete (On/Off) Signals

o DC Analog Voltages

o Digital Words

To generate a particular DBI output to a system
under test (SUT) test point, the computer must
supply a "data bus address" which identifies a
particular output, and a data word which supplies
the value of the standard signal to be generated at
that output. Conversely, a computer input from
an SUT test point consists of an identifying ad
dress and the value of the standard signal at the
test point. This data bus message, consisting of
an address and a value, is the lowest level of
communication between the computer and the SUT.
It is also the most frequently described level,
since one DBI signal generally results in the per
formance of a complete test function, such as
applying a specific stimulus or measuring a spe
cific physical parameter. These standard inter
face signals, through which all communication
with the SUT must pass, form the "primary
interface" which is directly described in TOTAL.
That is, the engineer may write test statements
which explicitly identify discretes, DC analog
voltages, and digital words. TOTAL also recog
nizes the existence of more specialized "inter
mediate interface" signal types and provides an
additional, more specialized, capability to des
cribe them. That capability is presented after
the following discussion of the primary interface
signals.

Test Point Characteristics File

While the standard DBI signal forms are the
means of conveying information to and from the
SUT, they are not always the most useful form to
the engineer. He is concerned with the tempera
tures, pressures, and positions which DC analog
voltages represent, rather than the voltages
themselves. Furthermore, he is familiar with
the nomenclature of a measurement test point on
a pump or actuator, rather than a data bus ad
dress. Concepts such as data bus addresses and

2-22

transducer output voltages should not be forced
into the language of the engineer. Neither should
their corresponding test point identifications and
engineering values of physical parameters be pro
grammed into a compiler or operating system.
An effective compromise to these two extremes is
TOTAL'S Test Point Characteristics File, through
which translations can be made between the engi
neer's test point identification nomenclature and
the corresponding data bus addresses. The one-
to-one correspondence between individual SUT
test points and unique data bus addresses is par
ticularly suited to description through such a data
file. As indicated in Figure 3, the Test Point
Characteristics File also contains calibration and
conversion data to translate between Data Bus
Interface signal values and the engineering units
of the physical parameters they represent. This
translation allows the engineer to describe his
test steps with the physical units and ranges
peculiar to each test point. It also makes the
written test procedure independent of transducer
replacement and recalibration. Only the Test
Point Characteristics File needs to be updated for
these changes.

Other pertinent data which is unique to individual
test points is contained in this file. These addi
tional items are nominal values for certain signal
characteristics, so the test statements need not
include them explicitly. In most applications, the
engineer will be able to rely on these nominal val
ues for his tests. For the exceptions, TOTAL
allows him to override the nominals by specifying
other values in the test sequence statements.

The Test Point Characteristics File contains a
translation for every test point at the primary
signal interface. It is defined so that it can be
accessed by the compiler and/or operating sys
tem, but still be separate from them so it can be
easily and independently maintained.

In a bench test environment, there are potentially
three signal interfaces which can be described
through a Test Point Characteristics File. These
are depicted in Figure 5, which represents a typi
cal bench test complex. The first interface is the
Unit Under Test (UTT) interface which relates the
internal test point of the UUT to the connector
plugs on the test complex. The second is the
patchboard interface which relates the connector
plug pins to the stimulus generating and response
measuring devices in the complex. Some of these
interconnections are typically through program
controlled routing switches, so test equipment
devices can be switched from one UUT test point
to another during a test sequence. Therefore,
the patchboard interface file must identify the
routing switch and switch state required to com
plete each connection. The third interface is the

test equipment interface with the control computer.
This file defines the computer commands and data
formats required to communicate with the
stimulus /measurement devices and the routing
switches. These three Test Point Characteristics
Files describe the interfaces which change for
different UUT's, different tests, and test equip
ment device replacement or modification. These
files will contain somewhat different information
from that described for the integrated vehicle
checkout system, but they perform the same basic
function of isolating one-to-one translations which
are specialized and subject to change.

User Defined Operators

For most of the devices attached to the data bus in
the integrated vehicle checkout system, each "pri
mary interface" operation is a complete test func
tion. However, there are likely to be some spe
cial signal generating and monitoring devices to
provide more than discrete, DC voltage, and digi
tal word communication with the SUT. These spe
cial devices form an "intermediate interface"
between the data bus and the SUT as shown in Fig
ure 6. It is anticipated that the signal character
istics of these intermediate devices will not be
standardized, but will be adapted to the unique
requirements of the SUT's for which they are pro
vided. Therefore, the intermediate devices will
be more specialized to individual SUT's and will
require a more complex manipulation at the pri
mary interface to activate a single stimulus or
measurement at an intermediate test point. The
incorporation of this type of intelligence into a
compiler or operating system would put the bur
den of understanding specialized equipment back
on the professional programmer and tends to
defeat the purpose of a checkout language.

The intermediate interface concept is exemplified
by the digital ramp generators currently used dur
ing prelaunch checkout of the Saturn V Flight Con
trol System. These ramp generators are shown
in Figure 7, including their interfaces with the
Saturn IU Stage and the Saturn Ground Computer
Complex (SGCC). The primary interface shown
includes discrete (on/off) stimuli out of the SGCC
and measurement inputs to the SGCC through the
Digital Data Acquisition System (DDAS). The pur
pose of the ramp generators is to supply simulated
vehicle rates to nine rate gyros in the IU Stage.
Since the SGCC cannot provide the needed signals
directly, intermediate devices are required in the
form of three digital ramp generators. The cor
responding intermediate interface consists of nine
rate simulation signals, three out of each ramp
generator and one into each rate gyro. Discrete
stimuli at the primary interface control the ramp
generators. One group of three discretes is used
for ramp generator selection and another group of

2-23

three selects vehicle axes. Identification of one
intermediate interface signal requires that one dis
crete in each of these groups be on and the others
b« off. The direction and ramp rate of the selec
ted intermediate signal are then established with
the ramp coatrol discretes. The resulting simu
lated rate detected by the rate gyro can be read
from the DDAS measurement of the rate gyro out
put. In summary, the generation of a single stim
ulus value at a selected rate gyro input requires
the manipulation of eight discretes and monitoring
of one measurement at the primary interface.

While this level of test equipment dependent intel
ligence should not be programmed into a compiler
or operating system, neither should the engineer
have to specify such details every time he wishes
to stimulate a gyro. To avoid burdening the pro
fessional programmer with this type of logic, but
still simplify the writing task of the engineer,
TOTAL includes the concept of a User Defined
Operator. This capability allows the engineer to
write the sequence of primary interface operations
required to generate an intermediate stimulus or
take a measurement, and to assign a single new
language operator to that sequence. Such a User
Defined Operator can be defined once and can then
be used in the same manner as the basic operators
of the language.

To apply the User Defined Operator concept to the
ramp generators described above, the general
logic sequence is first determined. To select a
specific rate gyro input signal, two selection dis
cretes must be turned on and four turned off.
Then, for example, a RAMP UP operator would
require that the "ramp positive" discrete be turned
on until the desired simulated vehicle rate, read
from one of nine DDAS measurements, is reached.
The "ramp positive" discrete is turned off to com
plete the operation. To apply the RAMP UP oper
ation to any single rate gyro input, the same
sequence of logic is performed. The only changes
are in identification of the individual primary
interface points to be monitored or turned on and
off, and the final rate to be achieved.

The preceding sequence is typical of the type of
intermediate interface manipulation anticipated
for future space vehicles. A User Defined Opera
tor therefore defines a fixed sequence of operations
with variable test point identifications and values.
The definition includes naming the intermediate
interface signals to which it may be applied. Each
intermediate interface signal is defined in terms
of the primary interface signals which control or
monitor it, and these primary signals names are
substituted into the defined sequence when it is
compiled. This capability to extend and specialize
the language has been specifically designed so that
an engineer may define his own operators without

reliance upon a professional programmer to
understand his equipment. It constitutes a user
oriented language extension and adaptation capa
bility at the signal interface level, where the
most extensive flexibility and change activity in
the hardware can be expected.

For vehicle checkout, an individual DBI signal is
expected to perform a complete test function, in
most cases. Therefore, the application of User
Defined Operators is the exception rather than the
rule. In a bench test complex, however, it is
common that several test equipment interface sig
nals are required to generate a single LRU inter
face signal. In this environment, the User
Defined Operator is an essential tool to avoid a
very detailed test writing effort on the part of the
test engineer.

System Services

A checkout system contains various hardware and
software items that cooperatively perform the
testing. The purpose of the language is to com
municate with and direct the system. It is there
fore necessary to design the language such that it
can indeed communicate with the system. At this
stage of development, the total checkout system
is not well-defined. However, based on current
approaches to equipment configurations and check
out activities, there are significant system ser
vices which are clearly required. Various char
acteristics of TOTAL, are therefore based on the
required interaction with these system services.
Some of these are described below.

System Monitor

Performance monitoring is an essential ingred
ient in present day launch vehicle checkout and it
promises to be an even more significant activity
in the future. Performance monitoring is
accomplished by reading vehicle parameters or
combinations of parameters and evaluating them
relative to some pre-established standard. This
is "passive" testing in the sense that no stimuli
are applied to generate parameter values; the
natural environment provides the stimuli. In
addition to immediate evaluation of parameter
values, performance monitoring includes dis
playing the data and storing it for future refer
ence.

To support performance monitoring, the language
provides control over the monitoring of vehicle
test points for extended periods of time. This
language capability is predicated on the existence
of a System Monitor, provided as part of the
checkout system to sample and test measure
ments repeatedly over an extended period of time,
The extensive use of performance monitoring

2-24

projected for future space vehicles indicates that
the following capabilities will be required of a
System Monitort

o Test the values of test points against fixed
or sliding limits.

o Logically combine the results of individual
tests to generate responses to multiple
test point conditions.

o Display the values of test points being
monitored and identify out of tolerance
values.

o Respond to out of tolerance conditions by
one of the following:

Display a message.

Initiate execution of a defined com
mand/response test sequence to
further diagnose or resolve the con-
tion.

Modify test limits and sampling rates
on other monitored points.

Initiate or cancel other monitor
activities.

These capabilities and restrictions are based on a
general purpose service which is easy to use.
Because it will be used so extensively, the ser
vice should be provided centrally for ease of use
and efficiency in execution. These capabilities
are expected to be used concurrently with the exe
cution of command/response test sequences which
issue stimuli and verify expected responses.
TOTAL includes operators dedicated to the defini
tion of test conditions and responses for the Sys
tem Monitor, as well as to control their activation
and de-activation.

In addition to the concurrent monitoring through
the System Monitor, the language also provides
for monitoring a measurement at a specified sam
ple rate within a test sequence. Through this
"sequential read" capability the test engineer may
specify that a certain number of samples of a
measurement be taken and stored in computer
memory for analysis. Mass Storage Files can be
defined in memory to easily store and retrieve
these readings. Mass Storage Files can also be
defined on peripheral storage devices such as mag
netic tapes or disk so that large quantities of data
can be stored outside computer memory and still
be easily accessed by the program.

Closely associated with the monitoring of test
points is the logging of events and test point values
for later reference. Using a peripheral Mass
Storage File, the test engineer may store any data

which his test sequence can access. In addition to
this capability, the checkout system itself will
automatically log a great deal of data for an
activity record and audit trail without any explicit
command from a test sequence. Since such fully
standardized automatic logging systems frequently
record too much or too little information, TOTAL
increases the utility of the logging system to the
test engineer by providing him some control over
what is logged. The following information is
logged at the request of a test sequence:

o Individually selected data items which are
stored in computer memory by the test
sequence

o All measurement values read by the test
sequence

o Start of execution of all test sequence
modules called in the test sequence

This list is very limited to prevent an individual
test sequence from overly restricting the per
manent record of checkout activities.

Timesharing

One of the important considerations in the pro
jected Space Shuttle mission time line is its short
ground turnaround time. This requirement may
force testing and preflight preparation of various
vehicle subsystems to be accomplished in parallel.
A "system service" that TOTAL has to interface
with is the ability of the system to run more than
one test sequence in a timeshared mode. Al
though the fact that the procedure is executed in a
timeshared mode is generally transparent to the
procedure writer, there are instances that he
must be aware of possible difficulties imposed by
this mode of execution. The language design,
therefore, provides the following required fea
tures:

o Procedure structure that allows portions
to be executed in a timeshared mode

o The ability to command timeshared exe
cution of test procedures

o The ability to prevent test steps from
being timeshared (i.e., interrupted)
during time critical portions of a test
procedure

o Aids to identify potential conflicts in the
use of common test points by concurrently
executing test sequences.

CONCLUSION

As should be clear from the preceding discussion,

2-25

it was not our purpose to design a novel language.
Our intent was to build upon existing, proven,
concepts and experience. We added slightly novel
features and expanded existing features, to re
move presently known shortcomings, and to in
sure the capability to handle future requirements.

We believe that the language, thus designed, pro
vides a firm basis for effective use, and for
possible expansion where actual experience so
dictates.

REFERENCES

(1) "Development of a Test and Flight Engineer
Oriented Computer Language, Phase I",
M&S Computing, Report No. 70-0022,
NAS10-7307.

(2) "Development of a Test and Flight Engineer
Oriented Computer Language, Phase II",
M&S Computing, Report No. 70-0031,
NAS10-7307.

(3) "Development of a Test and Flight Engineer
Oriented Computer Language, Final Report,
Volumes I and II", M&S Computing, Report
No. 70-0034, NAS10-7307.

BIBLIOGRAPHY

A. Future Space Vehicle Checkout

(1) "A Two-Stage Fixed Wing Space Trans
portation System, Vol. II, Preliminary
Design", McDonnell Douglas Corpora
tion, MDC E0056.

(2) "Space Shuttle Final Technical Report,
Vol. VII, Integrated Electronics",
General Dynamics Convair Division,
GDC-DCB69-046.

(3) "Study of Integral Launch and Re-entry
Vehicle Systems, Vol. IV, Design and
Subsystems Analysis", North American
Rockwell, SD 69-573-4.

(4) "A Conceptual Design of the Space
Shuttle Integrated Avionics System",
MSFC, NASA TMX-53987.

(5) "Final Report, Integral Launch and Re
entry Vehicle, Vol. Ill, Special Studies"
Lockheed Missiles and Space Company,
LMSC-A959837.

(6) "Information Management Study",
MITRE Corporation, MTR-1524.

The

(7) "Space Station Definition, Vol. V, Sub
systems", McDonnell Douglas Corpora
tion, MDC G0605.

(8) "NASA Space Shuttle - Vehicle Checkout
Design Concept", M&S Computing,
Report No. 69-0013.

B. Language Descriptions

(1) "Flight Computer and Language Proces
sor Study", Logicon, Inc., NASA-ERC,
Contract No. NAS12-2005.

(2) "Vital Programmer's Manual and User's
Guide, Volume I", PRD Electronics, Inc.,
PRD Control No. 181-69-02, Rev. 0.

(3) "The Compiler for the Programming
Language for Automatic Checkout Equip
ment (PLACE), Part I PLACE Language
and Compiler", Batelle Memorial Insti
tute, Air Force Aero-Propulsion Lab
oratory, AF APL-TR-68-27.

(4) "Abbreviated Test Language for Avionics
System (ATLAS)", Aeronautical Radio,
Inc., 418-1.

(5) "MOLTOL Test Writer's Reference Man
ual", McDonnell Douglas Corporation,
no Report number.

(6) "Appendix of ATOLL References, Speci
fication for the Operating System for the
Saturn V Launch Computer Complex",
IBM Corporation, 66-232-001.

(7) "Automatic Sequence Execution and Pro
cessor (ASEP)", General Electric Cor
poration, ATM-U002-0.

(8) "Intermediate Language Definition (CVA-
VTRAN)", PRD Electronics, Inc., 181-
69-08.

(9) "OCS-Test Language Assembler", Gen
eral Electric Corporation, OCS-03-Rev. 1.

(10) "CAGE Test Language Description",
Martin Marietta Corporation.

(11) "Programming Manual for Test Station,
Guided Missile System AN/TSM-93,
Vol. 2, UTEC Compiler Programming",
RCA Corporation, Aerospace System
Division.

(12) "TOOL-Test Oriented On- board Language
System, Flight Packaged On-board Check
out Systems Development Unit, Overall

2-26

Specification-Level 2", Martin Marietta
Corporation.

(13) "STOL User's Manual", McDonnell
Douglas Corporation, SM-46842.

(14) "Preliminary ATOLL ll Spec. ", Mesa
Scientific Corporation, NASA-MSFC.

ILLUSTRATIONS

Figure 1. Sample Input Statements and Expanded
Listing.
Figure 2. Common Operator Terms.
Figure 3. Test Point Characteristics File.
Figure 4. Baseline Vehicle Checkout System.
Figure 5. Bench Test Complex.
Figure 6. Vehicle Checkout System Signal Inter
faces.
Figure 7. Digital Ramp Generator Interfaces.

2-27

INPUT STATEMENTS

LABEL,

DONE

j> pos

OPERATION

NAME
ISSUE DIS ON
TEST PRP Gl
DISP LINE

TURN-
END

12 pos

TO STORAGE
DISP FORMAT

ON NOT COMPLE1

12 pos

TEST POINT
MODULE NAME
DISP ADDRESS

TP0050
TURNON-1
VERIFPT-1
C5

'ED

TP0050

^ 12 pos ,

VALUE (S)

PUMP TURN-ON SEQUENCE

2500 PSIA

24 pos

TIMING

50

6 pos

NEXT
LAST

DONE

6 pos

FLAGS

2
_ Pos~

ro oo

EXPANDED LISTING

START OF TP0050-PUMP TURN ON SEQUENCE
SET -PUMP NO 1 START- TO ON
IF VALUE OF -PRESSURE NO 1- IS GREATER THAN 2500 PSIA, WITHIN

50 MSEC, GO TO DONE
DISPLAY ON CONSOLE 5

TURN ON NOT COMPLETED
DONE END OF EXECUTION OF TP0050-PUMP TURN ON SEQUENCE

SAMPLE INPUT STATEMENTS AND EXPANDED LISTING

Verbs Conditions

ADD - add two numbers
CALL - call test procedure
DISP - display information
DIV - divide two numbers
END - end of test procedure
GO TO - go to statement nr __ _
ISSUE - issue stimulus
MPY - multiply two numbers
NAME - name of the Test Pro

	cedure is __ _ _
READ - read measurement
SET - set value to _ _
SUB - subtract two numbers
TEST - test measurement/

	condition
DELAY - delay execution

DA - disable
DL - delete
EN - enable
EQ - equal to
GE - greater or equal
GT - greater than
LE - less than or equal
LT - less than
NE - not equal to
OF(F) - off
ON - on
OL - outside limits
WL - within limits

Objects

CDE
COND
DATA
DIS
FORM
LINE
OPTN
PRP
TIME
VALUE

digital code
condition indicator
data stored in memory
discrete signal
display format
text line
option indicator
proportional signal
system clock time
value of parameter

COMMON OPERATOR TERMS

2-29

Test Point Names

o Input Names

o Descriptive Phrase Output Name

Data Distribution System Address

Test Point Type

o Measurement/Stimulus

o Information Form

Discrete
Proportional
Digital Code

Proportional Signal Conversion Data

o Calibration/Conversion Points

o Negative Value Representation

o Engineering Units Name

o Nominal Number of Samples in Average

o Filter Characteristics for Filtered Readings

Nominal Sampling Interval

Post-Stimulus Delay

TEST POINT CHARACTERISTICS FILE

2-30

Ground

Ground /
yDisplays &J
\Controls /

ro
CO

Ground
Computer

151
B
I

Conventional
Peripheral
Equipment

Ground based
Launch
Support

Equipment

Space Vehicle

On-Line
Storage

I
Central Data
Management

Computer

Data Bus

Display

Computer

Guidance &
Navigation
Computer

Vehicle
Control
Computer

Other

On-Board /
^Displays &J
^Controls/

Subsystem
:sComponents

BASELINE VEHICLE CHECKOUT SYSTEM

Test Equipment
Interface

Patchboard
Interface

UUT
Interface

K>
GOto

Control

Computer

*sr ^>

">

Stimulus /

Measurement

Devices

Programmable

Routing

Switches

* ————— *
* ————— *
* ————— »•
* ————— *-

* ————— ̂
^ ————— ̂
•a ————— ̂
^ ————— *-
^ ————— ̂ «

Patch

•

aoard

•\

--1

^ ———

•* ———

^1 ———i>
——+*

—— *•

K

Unit
Under

Test

(UUT)

Connector
Plugs

BENCH TEST COMPLEX

System
Under
Test

to
CO
CO

T

.

Test

Procedure

Operating

System Data Bus

System
Under
Test

1
I

i.
Intermediate
Stimulus/

Measurement
Device

Primary Interface

Intermediate Interface

VEHICLE CHECKOUT SYSTEM SIGNAL INTERFACES

ro

STIMULI
(Discretes)

Ramp Control

Po s itive ————————

Negative ————————

Slow/Fast ——————

Axis Selection

Generator Selection

Command ———————

sc
Pri]
Inte

SUPPORT
EQUIPMENT

(Ramp Generators)

————— *-

———— ̂

————— »»

————— >•

————— ̂

————— *•

————— *•

———— »»

———— **

ICC
mary
rface

Comraand

Ramp

Generator

Reference

Ramp

Generator

Spare

Ramp

Generator

——
——

Interm
Inter

——— *-

——— »»

——— **

——— *-

——— **•

——— ̂

ediate
face

SATURN
IU STAGE

(Rate Gyros)

Pitch Comm.

Yaw Comm.

Roll Comm.

Pitch Ref.

Yaw Ref.

Roll Ref.

Pitch Spare

Yaw Spare

Roll Spare

h~

RATE
MEASUREMENTS

(DDAS)

——— ̂ -Pitch Comm. Rate

———— ̂ Yaw Comm. Rate

——— ̂ -Roll Comm. Rate

———— ̂ -Pitch Ref. Rate

fc^IV-i-rTr T? f~\ 4- "n*i4-r»

I ———— ̂ -Roll Ref. Rate

^^ T^-4.^.1* C*«^<^^.^ T">«^-*.^

SGCC
Primary
Interface

DIGITAL RAMP GENERATOR INTERFACES

	A Checkout Language for Future Space Vehicles
	Scholarly Commons Citation

	tmp.1401908824.pdf.WeyDJ

