
The Space Congress® Proceedings 1971 (8th) Vol. 1 Technology Today And
Tomorrow

Apr 1st, 8:00 AM

Aloft: A Language Oriented to Flight Engineering & Testing Aloft: A Language Oriented to Flight Engineering & Testing

W. F. Kamsler
Martin Marietta Corporation Denver, Colorado

J. Gyure
Martin Marietta Corporation Denver, Colorado

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation Scholarly Commons Citation
Kamsler, W. F. and Gyure, J., "Aloft: A Language Oriented to Flight Engineering & Testing" (1971). The
Space Congress® Proceedings. 4.
https://commons.erau.edu/space-congress-proceedings/proceedings-1971-8th/session-2/4

This Event is brought to you for free and open access by
the Conferences at Scholarly Commons. It has been
accepted for inclusion in The Space Congress®
Proceedings by an authorized administrator of Scholarly
Commons. For more information, please contact
commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1971-8th
https://commons.erau.edu/space-congress-proceedings/proceedings-1971-8th
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1971-8th%2Fsession-2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1971-8th/session-2/4?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1971-8th%2Fsession-2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/

ALOFT: A LANGUAGE ORIENTED TO FLIGHT ENGINEERING & TESTING

W. F. Kamsler and J. Gyure
Martin Marietta Corporation

Denver, Colorado

ABSTRACT

A high order computer language called ALOFT has been

developed for the checkout and operation of complex

space oriented equipment such as the proposed NASA

Space Shuttle. The flexibility of the language

makes it equally suited for use with existing launch

vehicles such as Saturn, Titan, etc. and space sys­

tems such as Space Station, Viking, etc. With such

flexibility it can be assumed that the language will

be equally acceptable to future vehicles, space ex­

periments, etc.

Flexibility is obtained by making the language inde­

pendent of any test system and providing for the

user to define a wide variety of words and functions,

This later capability also makes it independent of

the device it is testing.

The paper describes the language and its syntax.

It also shows its ability to operate in a multidis-

cipline environment independent of the test system.

LANGUAGE CHARACTERISTICS

ALOFT has been designed to be independent of the

test system and of any particular test article. The

language does, however, contain capabilities to en­

able it to cope with Space Shuttle peculiar features

and requirements.

A study of these features and requirements, along

with the general test and checkout problem, resulted

in the determination that the capabilities described

below should be included in the language.

Test oriented capabilities:

Test initiation;

Application of stimulus;

Measurement of output;

Comparison of results;

Man/machine interfaces;

Records and logs with time tags;

Monitoring;

Clock and time controlled actions;

System, subsystem, and unit testing.

Independence with respect to testing equipment via:

Dictionary data banks;

Common character set;

Statements which are free form with respect to

input media;

Minimum interaction with operating system;

Test writer-created safing features.

Flexibility provided by:

Full arithmetic and relational operator set;

Thirty-two character data names;

List and table capability;

Simple loop capability;

Subroutines;

Integer, fixed point, Boolean, text, binary,

and time data;

Simple numeric and Boolean assignment state­

ments;

Unconditional and simple conditional transfers;

Interrupt initiated routines.

Engineering reader orientation with:

English words for primitives;

Natural English forms as delimiters;

Natural statement structure;

Generalized commenting capability.

Concurrent test execution provisions:

Initiated via language primitives;

Synchronization capability;

Interrupt capability;

Meaning dependent on language processor

Implementation.

Self-extension through:

Macro definition capability;

Other language capability;

Special communications requirements:

Computer to computer;

Computer to data bus.

2-1

PART I

A. Why another new language?

A study was undertaken to determine the character­
istics and capabilities of several higher-order,
test oriented languages with respect to advanced
space-oriented applications. The languages inves­
tigated included: ATOLL, ATLAS, CLASP, ATOLL II,
MOLTOL, CTL, VTL, TOOL, ADAP, and ASEP. This
study included the investigation of the languages
themselves and also a study of existing language
applications. The results provided a background
and understanding of the role that a test-oriented
language plays in the acceptance and implementation
of automation. Other results include a greater
appreciation of the degree to which test system
characteristics and limitations have affected the
development of "test-oriented" languages, and the
degree to which test system characteristics have
dictated test philosophy.

It is interesting to note that practically all of
the test-oriented languages (TOL's) established
the same objectives to direct the design of a
language which would be useful in accomplishing
automatic checkout tasks.

However, few TOL's have been able to accomplish
their stated objectives without compromise.
Developing a TOL for a specific test article and
utilizing existing equipment affected the resulting
language design. In all examples studied, with
one exception, this has been the case.

A common tendency with all of the TOL f s studied
(perhaps ATLAS excepted) is for the language to be
writer oriented. The common reader oriented
objectives seem to be subverted by the writer's
natural desire ,to reduce the number of characters
to be written on the coding form. This results in
abbreviations, mnemonics, fixed formats, unnatural
(but shorter) word usage, and other forms of coding
that are non-English like and require study by
engineers who should be able to understand the test
programs but don't really have the time. The
writer is generally supported by the compiler de­
signer because of the simplifications possible in
recognizing and analyzing source language primitives
and statements.

As a result the most common complaint about any
TOL is that it is too difficult to learn to read
and understand. This is usually brought about by
the use of mnemonics, fixed fields to distinguish
parameters, etc. and by the use of terms that the
language designers erroneously considered to be
generally understood.

The facilities of the language, such as declara­
tions, specifications, and definitions, can usually
be used by the writer to simplify his writing task
at the expense of readability. Since these same
facilities can be used to enhance readability (and
sometimes are so used) the result becomes more a
function of the writer's motivation than of lan­
guage definitions and rules.

The absence of arithmetic capabilities has also
been noted for several of the languages. These
have had to be implemented through the use of
machine language subroutines.

The absence of digital data transfer and computer
intercommunications capability is a special prob­
lem with regard to advanced space vehicles.

TOLs developed to this date have (with the ex­
ception of ATLAS) been designed for a specific
test program using identifiable test equipment.
The languages are test system/test article depen­
dent. As a result, they are not readily adaptable
to new test systems or test articles*

None of the TOLs considered would fully satisfy
the broad test-oriented applications area as en­
visioned by the authors. Work would need to be
done to further the goal of test system indepen­
dence of the languages other than ATLAS. ATLAS
itself would need additions for system-oriented
functions since it is primarily for use in a bench
type unit testing operation.

Modification of a language is not impossible; how­
ever, the structure of the languages studied and
their related processors are restrictive enough
that it is more efficient to start over, rather
than to accept limitations on the capabilities of
a language which result from historical factors
and are not related to its projected use.

B. Who will use this new language?

A test and flight engineer oriented language im­
plies a language specifically fitted to the edu­
cation, technical vocabulary, experience and
training of test and flight engineers. There are
others who will also use the language including
test and flight equipment designers and program­
mers. Each potential user will be identified and
their characteristics and language requirements
discussed in the following paragraphs.

1. The Test Writer

The test writer prepares a step-by-step sequence
of events to program the test system based on the
design characteristics and performance require­
ments of the equipment to be tested.

The test writer should have a thorough knowledge
of the prime equipment design, control, test and
operation. The latter requirements make him a
system applications specialist, requiring engi­
neering training and test experience.

To the extent that he has to learn internal de­
tails of the operation and peculiarities of the
test system and unfamiliar programming language
features, his time is diverted from the study of
the equipment to be tested.

His requirements call for a test language that is
easy to learn and is as independent of the spe­
cific test system as possible.

2-2

When the test writer becomes proficient in the use
of the language, he generally desires means of
abbreviation of the language elements, statements,
and routines in order to save writing time and to
avoid inadvertent errors. He needs a language
which allows the writer to predefine terms and
abbreviations which can subsequently be used to
shorten the writing task.

2. Design Engineer

The test writer may or may not be a designer or
representative of the system or unit being tested
or controlled. If he is not, it is generally con­
sidered necessary that the test programs be re­
viewed and approved by design engineering
personnel.

The design engineers for advanced space-oriented
projects include capabilities in a broad range of
disciplines such as electronics (including digital
systems), hydraulics, pneumatics, propulsion, RF
systems, and life support.

The design engineer's requirement for a test lan­
guage is that it consist of familiar technical
terms and a logical, readily understood format.
The prime equipment design engineer does not want
to learn the details of the test system and its
internal operations in order to understand the
test and control interfaces with his equipment.

3. Operating Personnel

The eventual execution of the program will involve
test and control operators. They must be inti­
mately familiar with all operator interface hard­
ware and with the system level operating charac­
teristics of all hardware elements of the equip­
ment under test and the test (or control) system.
They are customarily test engineers at higher
equipment operation and test levels and advanced
technicians at lower (LRU) test levels. In the
ultimate system operation level, they may be
flight engineers, astronauts, or pilots.

These language users will review and approve the
test procedures. Of prime concern will be the
human engineering aspects of operator interactions,
instructions, decisions, holds, emergency routines,
displays, etc., and any related aids that will be
made available. This user requires a language
that is easily read and understood and one that
defines operator involvement clearly and non-
ambiguously.

4. Quality Assurance

The quality assurance personnel are involved in
several areas of program preparation and execution.
One role is to assure that the test procedure
meets or exceeds all documented test requirements
and indeed verifies the required performance capa­
bilities of the system or unit under test. An­
other is to verify, either during or after program
execution, that the tests and/or control activi­
ties were indeed performed and that acceptable
results were obtained. This user requires a lan­
guage that is non-ambiguous, one that has the

ability to clearly state evaluations and decisions,
and a means to clearly specify how the system is
to display and record the results of test evalu­
ations, significant branches, and test completion.

5. Safety Engineering

Verification that test and control procedures con­
tain satisfactory emergency safing routines and
precautions is usually assigned to a specific
organizational group or panel. Due to the poten­
tially hazardous activities involved in all phases
of advanced and current space programs, there are
customarily many checks and rechecks of the integ­
rity of test and control programs as well as
equipment. The performance and integrity of
equipment at all levels of testing is of concern,
because it will eventually be used at higher
levels and in hazardous operations.

This user requires that the language be easily
read and understood, and facilities for clearly
defining and presenting warnings, precautions,
safing routines and monitoring be provided.

6. Customer

The term "customer" as used herein includes all of
the generally higher levels of program or project
management such as those implied by headquarters,
project management, integration, coordination,
etc., that are normally attributes or roles of
customers .

The background and training of involved personnel
may span several technologies. Here, the language
requirement is for readability without extensive
training. It should not be necessary to acquire
a detailed knowledge of the test or control system
in order to understand the test program.

This survey of the various users of a higher-level
test-oriented language helps to establish the
objectives such a language must meet in order to
successfully accomplish the task for which it is
designed.

C. Language Objectives

The ALOFT language was designed with the primary
emphasis placed on meeting the following
objectives .

1. Independence with Respect to Testing Equipment

The nature of the Space Shuttle and other advanced
space systems makes it necessary that the test
language be developed to be independent of any
particular set of equipment. There are expected
to be several differently configured test systems
which would use the language. These include
numerous test system configurations at contractor
and vendor facilities.

The advantages of this approach are that the test
system need not be completely designed at the time
that the writing of test programs is initiated.
The language can work in several test systems,
thereby allowing for easier communication of test

2-3

requirements between vendor, contractor, and
customer. Finally, a longer life expectancy of
the language a'nd its associated processors can be
expected since the obsolescence of a particular
test system will have no direct language effect,
The same language will be capable of being used
from one program to another.

2. Flexibility

A test language must provide flexibility to meet
both the anticipated and unanticipated needs of
future space-oriented programs. The advantages of
flexibility are that it gives a language a much
better chance to meet the necessary requirements
which arise as a result of changing technologies.
Flexibility also contributes to the greater use­
fulness of the language to a particular project
and extends the useable life of a language over a
number of projects.

3. Engineering Reader Orientation

Two approaches to the definition of a language
with respect to the users of that language can be
identified. One approach is to define a language
with maximum ease of writing (which generally re­
sults in degraded readability). Another approach
is to define a language with maximum readability
(which puts a heavier burden on the writer).

In space vehicle checkout applications it has been
historically true that the writing task is a
relatively smaller portion of the overall program­
ming cycle, while the resulting tests must be read
and validated by a number of people. Therefore,
the emphasis is placed on maximizing readability
and providing aids within the language to assist a
reader in understanding tests written in the
language .

4. Self-extension Capability

A self-extension capability is necessary to enable
the language to keep up with new developments in
space vehicle checkout without resorting to lan­
guage and compiler modification which is a time
consuming process requiring professional program­
mers. An important consideration is the constraint
of such a capability so that difficulties are not
introduced for those who must read and interpret
the resulting language extensions,

5. Computer/Computer and Computer/Digital Inter-
face Unit Communication Capabilities______

Present Space Shuttle concepts require multiple
computer configurations in a central computer com­
plex linked by multiple data buses to other com­
puters and special digital interface units. These
computers and special digital interface units in
turn interface with the line replaceable units.
Test and checkout of the installed line replaceable
units requires communication between the computers
and the digital interface units via the data
buses.

6. Maximum Use of Past Language Development

Efforts__________________________

Many test-oriented higher-level languages have
been developed for specific application areas.
Since it is desirable that a new language have a
longer and more useful life than previous efforts,
it is necessary to take into consideration the
advantages and disadvantages of these predecessor
languages. Utilizing this information enables
the insightful development of a language which
will be able to effectively handle past and
current requirements and yet be capable of effec­
tive use for some time to come.

D. General Language Characteristics

The ALOFT language incorporates the following
characteristics in order to achieve the objectives
defined previously:

1. Test Orientation

The following discussion identifies the test
oriented functions which are implemented in ALOFT.

1.1 The General Nature of Testing

Testing involves the initiation of activity with
controlled predetermined conditions and then anal­
ysis of the resulting activity. The predetermined
conditions are in the nature of applied stimuli
while analysis involves the measuring and compar­
ing of the responses. It is with this activity
and analysis that a test-oriented language must
concern itself.

1.2 Initiation of Test Execution Via the Language

To initiate the action of a test from within an­
other test, the language must be able to call or
perform a test sequence. Such a request for
action permits a test to commence.

1.3 Application of Stimulus

The first test function usually performed is the
application of a specific stimulus or control
signal to a specific unit under test.

The application of stimulus signals may take many
forms. Major categories include DC signals and
AC signals, normally classified as analog signals.
Application of single level DC signals usually
falls into the discrete category. A third cate­
gory consists of digital stimulus. The nature of
the Space Shuttle (with its integrated avionics)
indicates that a built-in stimulus (contained in
an interface unit (IU)) will have to be programmed.
As far as the test writer is concerned, he must
request the application of the stimulus just as
he would in any other test situation. Where the
natural or operating stimulus cannot be called
into use, an artificial stimulus is applied which
produces a known output for a known input.

2-4

1.4 Measurement of Output Signal

Once a stimulus is applied to a unit under test,
an output is expected in response to the input
stimulus. The language provides for acquiring
that output and retaining it for further manip­
ulations. In the Space Shuttle application,
outputs will be sensed by lUs attached to Line
Replaceable Units (LRU) and the data then is
placed on the data bus to be received by the
central computer complex.

1.5 Comparison of Results

It is generally necessary to determine if the
output acquired as a result of a measurement
function is satisfactory with respect to some ex­
pected value. This output value is then compared
to some predetermined value, with appropriate
tolerances, and the results are used to indicate
some further action.

2. Naturalness of Statement Structure

The statement structure of ALOFT is based on an
engineering oriented English format.

The English-like format of the language enhances
the capability of a varied class of readers to
understand the tests written in the language. The
potential for error on the part of the test writer
is reduced due to the familiar and natural way of
using the language. Ease of learning on the part
of all users is enhanced by an English-like format.

The selected approach is to use a limited number
of explicit English-like statements, with a mini­
mum of abbreviations on the final test output.

The ALOFT language is, as a result, understandable
with little training and has few special rules
which need to be learned by users, yet it is man­
ageable by practical language processors.

3. Self-extension Capability

A self-extension capability is implemented in the
language. This self-extension capability is pri­
marily provided for the use of the sophisticated
test programmer who takes the time required to
study how the language may provide powerful
assistance in the accomplishment of his particular
task. It is not intended that this capability be
used by the less sophisticated test writer and in
no way should detract from his ability to use the
more straight forward portions of the language.
Some project control of the use of language ex­
tension capabilities may be desirable.

The selected approach is to make the language ex­
tensible through subroutines, macros, and decla­
rations, with all extensions using existing capa­
bilities as elements. If necessary, another lan­
guage can also be inserted.

This approach provides for a language processor
that can be fixed but still be capable of reuse
on different projects. All extensions are defined
in terms of the basic language, so that retraining

is not required for the use of extensions. The
language can, therefore, accommodate project
changes, system evolution, new programs, etc.

4. Self-documenting Capability

Programs written in the language are explicit and
invariable as to the intent of all actions. As
such, they are useful and sufficient as test
definition documents.

This provides a single source of documentation,
without the possibility of deviation of the actual
program from the specification and/or commentary.
As a result, fewer documents are subject to con­
figuration control, review, approval, etc.

This capability is accomplished through the syntax
design and the language elements themselves.
Comments are also allowed in any statement where
multiple blanks may appear. The use of comments
in this way will allow the writer to clarify any
statement that may not be completely clear as a
result of its elements and syntax.

5. Safing Features

A capability within the language is provided which
allows the test writer to create his own safing
features .

Three approaches with respect to safing features
can be identified. One is the inclusion in the
language of the necessary capabilities to enable
a test writer to create his own safing procedures
which would be attached to the test he is
currently writing versus the inclusion of a stand­
ard set of safing procedures either in the lan­
guage itself, or as part of an operating system.
Inclusion of a standard set of safing procedures
in either the language or an operating system is
difficult to do prior to the establishment of the
actual operating hardware of the checkout system.
Since the language is independent of any particular
test system, it is necessary to provide to the
test writer the capability to create his own '
safing procedures. Another advantage to this
approach is that safing procedures can easily be
modified when necessary by the creation of new
procedures.

Safing procedures might be called into execution
by the operator, by branches within a program, or
by interrupts (which are discussed later) .

This approach provides for flexibility and visi­
bility of all safing routines, with any degree of
control that the project may direct.

It also enables writers to optimize routines for
specific applications and to understand safing
routines prepared by others.

6. User Program Maintenance

User program maintenance is facilitated by the
naturalness of statement structure and the self-
documentation capability of the language.

2-5

This function is generally not the responsibility
of the test writer but the responsibility of the
users of the tests. In any case any changes which
are initiated to a test are subject to consider­
able review by a number of affected parties.
This requires that such changes and the test it­
self be readily understood by all concerned. The
engineering reader orientation and the self-docu­
menting capability of the language are of primary
assistance in this capacity.

E. Selected Specific Language Characteristics

1. Format

The ALOFT statement format is free form with re­
spect to input media, and consists of fixed but
natural English statement structures.

The meaning of language elements depends solely on
their alphanumeric configuration and not on any
specific orientation with respect to input media.
Neither the writer nor the reader is required to
recognize meaning based on the position of a lan­
guage element. All meaning is, therefore, ex­
plicit in the statement.

This results in more easily understood print-outs
and documentation.

Also, this approach does not restrict the language
to any specific input/output media (cards, print­
ers, etc.) or special coding sheets.

Fixed statement structures enable language pro­
cessing simplification and decrease potential mis­
interpretations (ambiguities) in statement mean­
ings. It is also more efficient than variable
field order structures where each field must be
self-identifying.

With respect to natural English statement
structures, readers will be most comfortable with
statements that appear in as natural a form as
possible. The writer is also prone to error when
he is required to write in an arbitrary format or
an unstructured format. The latter, especially,
can be prone to inadvertant omissions.

2. Numeric and Relational Operators

The lack of an arithmetic calculation capability
was identified as a deficiency in some of the test
and checkout languages studied. In order to avoid
this deficiency in the ALOFT language a capability
for addition, subtraction, negation, multipli­
cation, division, and exponentation is provided.

The relational operators equal, not equal, greater
than, not greater than, less than, not less than,
between, and not between are provided.

These relational operators are necessary to aid
in the expression of the various conditional
statements, limit checks, and other forms of
checks universally required in test and checkout
languages.

3. Dictionary Data Banks

A dictionary data bank capability is available in
the ALOFT language to provide the Line Replaceable
Unit designers and the test equipment designers
with the capability to declare the nouns and modi­
fiers required to test a unit and to define the
action of those nouns and modifiers with respect
to the test system.

This requirement is necessary to provide the final
link between the language and the test system.
Such a link must be supplied in one way or an­
other. The alternative to creating a language
capability to define that link is to have a pro­
grammer generate machine language tables which
provide the necessary information. These tables
could be included in the language processor or
operating system at the time the unit and test
equipment have been designed, To avoid the use of
a professional programmer to modify the language
processor each time new LRUs (requiring new nouns
and modifiers) and new test equipment are avail­
able for use, a language capability is provided.

This language capability provides for complete
test system independence of both language and lan­
guage processor. It will provide the capability
required to interface tests written in the lan­
guage with any test system.

A hierarchy of language users is necessary under
the dictionary data bank concept. The LRU de­
signer specifies the nouns and modifiers which are
required to completely implement the test functions
available in the language. The test equipment de­
signer specifies the meaning of these nouns and
modifiers with respect to the equipment which will
actually test the device. In the case of Space
Shuttle, for instance, a noun signifying pressure
would have to be defined in terms of Interface
Unit numbers and digital code words. This in­
formation is placed in a dictionary data bank,
utilizing special language capabilities designed
for this function.

When the test engineer writes his test he uses the
functions available in the language along with the
particular dictionary data bank he needs to pro­
vide him with all allowable nouns and modifiers
which can be used in testing the particular de­
vice in which he is interested. He is in no way
concerned with how the test system implements the
meaning of these nouns and modifiers.

In short, the dictionary data bank provides the
test writer with all necessary information with
regard to the test article and also provides the
interface between the language and any specific
test system.

The advantages of this concept are:

The language is test system independent.

The language processors can be developed be­
fore any specific test system is defined.

Tests can be created before a specific test
system is defined.

2-6

The dictionary data bank is created for the
use of the test writers by test system
designers.

The dictionary data bank provides common in­
formation to be used by a number of separately
processed tests.

4. Subroutine Structures

A subroutine capability is provided in the lan­
guage.

This capability is a powerful aid for specifying
those functions which are repeated many times.
It is both a convenience to the writer in reducing
his writing task and assists the reader by isolat­
ing and clearly specifying those functions which
are of a repeatable nature.

A subroutine capability also allows the creation
of a library of common sets of actions for use by
all test writers.

This is a programming oriented capability provided
for the use of test engineers. Most test oriented
languages have some form of subroutine capability.

5. Interrupt Initiated Routines

A capability is provided to initiate the execution
of a subroutine as a result of an interrupt.

This includes an inhibit/enable interrupt capa­
bility which allows the test writer to control the
action of those interrupts which affect the opera­
tions of his test.

This capability provides a test writer with the
ability to respond to an interrupt which may
affect the operation of his test. These inter­
rupts may be interrupts that specify that certain
error conditions or hardware status changes have
been generated in the device under test, over and
above those conditions which can be determined in
the normal course of testing.

As a result, back out and safing subroutines can
be established for execution when such hardware
signals occur.

6. Define-Type Capability

A define-type capability is provided as a writing
aid. In essence, this capability provides a
writer with the ability to create within the lan­
guage a set of abbreviations for language elements
and combinations of language elements and state­
ments. The define statement will help the writer
to both minimize the possibility of error in re­
peating long strings of language elements and will
also ease the writing task. The task of the
reader is not compromised however, since a com­
piler will produce full listings with proper sub­
stitutions for all abbreviated portions of state­
ments.

7. Concurrent Testing Capability

A special set of language elements to facilitate
concurrent testing, along with simple rules for
their use, is designed into the language, Such
multiple programming features do not overly com­
plicate the language or its compiler but provi­
sions for concurrent testing must be included in
the executive programs.

8. Monitoring

A language capability is provided to enable a
check to be utilized in a continuous monitor mode,

This capability is necessary to allow the con­
tinuous monitoring of systems. As long as no
anomalies occur, little notice is attached to the
monitored systems. However, if an anomaly is de­
tected, a previously defined warning, alternate
action or a backout routine provides corrective
action.

With the capability for concurrent test execution
existing in the language, monitor tests can be
continuously executed while other tests are run on
a noncontinuous basis.

A monitor test differs from a normal test only in
that a way of specifying repeatable execution
exists for the monitor test.

Continuous monitoring is a vital portion of most
space system and booster test programs. As a test
function, it belongs in the language to insure an
integrated systems test approach.

9. Special Discipline Provisions

Special discipline provisions within the language
are confined to words which identify special
characteristics which are attached to declared
data items.

This approach removes special discipline pro­
visions from the test function language elements
which are designed for the general testing prob­
lem. It confines these characteristics to data
which represent the subsystems and LRUs under
test.

The language, therefore, provides the capability
for specifying functions peculiar to each avionic
discipline to insure that the test writer has
terms to use with which he is familiar.

The names of the functions and characteristics of
test article are specified by the people most
closely related to the design of the system to be
tested.

2-7

10. Test Level

The language is capable of defining tests at all
levels; system, subsystem, unit and sub-unit.

The use of the same language at all levels will
facilitate the preparation and verification of
test programs because the writers and readers can
directly use and compare performance parameters,
etc. In addition, the separate programs can
utilize common definitions, subroutines, and
libraries when they are applicable. The subsystem
test engineers can readily verify performance of
the subsystem and units when involved in higher
level tests. Common language processors can be
used.

11. Program (Project) Orientation

The language described in this paper is capable
of being used not only for Space Shuttle but for
test and checkout of other advanced space vehicles
and systems.

The language characteristics have been developed
as a result of study of previously designed test
languages and a knowledge of the current Space
Shuttle configuration. Attention has been paid to
the general test and checkout problem and the
generalized needs identified as a result have been
considered in establishing the characteristics of
this language. The inherent flexibility and
power of the language as currently envisioned,
along with its self-extension capability, should
enable it to be readily applied in test and check­
out of other systems besides Space Shuttle,

PART II

A. Language Overview

A very flexible, yet unambiguous structure is pro­
vided for the ALOFT language. A minimum number of
rules and restraints are imposed on the user.

A basic English-like statement structure is used
for test action statements. It has the form:

Itthen - do what - to what

The when permits a time statement to define when
the desired action is to take place.

The do what defines the action that is to take
place. To meet the specific needs of the many
disciplines involved in advanced space projects, a
variety of action words are necessary. The lan­
guage provides this capability, Typical are such
verbs as measure, verify, apply, set, turn, send,
display, print, etc. With this variety of verbs
the user is able to select terms that most accu­
rately describe the action,

The to what identifies the name of the unit under
test function undergoing the action. The name is
defined in the dictionary data bank. For any
given test program and test system these names are
defined in terms that are meaningful in relation

to the article under test. Provisions are in­
cluded to enable these functions (which will
appear in signal lists, schematics, etc.) to be so
defined.

These defined names are placed in the dictionary
using SPECIFY statements. The test writer is con­
fined to the use of function names which must
eventually appear in the dictionary.

The dictionary also facilitates the problem of
identifying the calling addresses of Space Shuttle
systems, subsystems, LRUs, etc. The redundant
data bus concept of the Space Shuttle requires all
addressable items to be identified by their data
bus and interface unit (IU) numbers. The data
bus, IU, and function codes are identified at the
same time the function name is placed in the data
dictionary.

Typical examples of the language, ready for com­
piling are:

STATEMENT 80 AFTER CDC "COUNT DOWN CLOCK' f IS
-10MIN 50SEC,

MEASURE^ RIGHT AILERON 2 POSITION^ AND SAVE AS
_ AILERON POSITION^ .

IF_ AILERON POSITION^ IS BETWEEN 10PCT AND
20PCT GO TO STATEMENT 120.

STATEMENT 120 DISPLAY TEST (RIGHT AILERON 2
IN CORRECT POSITION) ON_ CRT 2, LINE 23_ .

As is readily seen, the language is very readable.
All specially defined items are delimited by means
of underscores. The compiler obtains the address
for such information from the dictionary data
bank.

Comments such as "COUNT DOWN CLOCK" which are not
to be compiled, are delimited by dual apostrophes.

Test to be printed or displayed such as "RIGHT
AILERON 2 IN CORRECT POSITION" is delimited by
open and closed parentheses.

If the dictionary were not provided, it would be­
come necessary for the test writer to define
addresses while writing the test procedure. The
procedure would then be more subject to error and
the printed address data would impair readability.

B. Language Specification Summary

1. General

The specification of the ALOFT language1 uses syn­
tax diagrams to illustrate the construction of all
legal elements of the language from the basic
characters and symbols to complete programs. This
technique was chosen because it is precise, mini­
mizes the ambiguities associated with prose de­
scriptions, is more condensed than prose descrip­
tions, and facilitates rapid comprehension of
alternative statement constructions.

2-8

2. Basic ALOFT Statements and Statement Prefixes

As with English and most higher level programming
languages, the lowest meaningful and complete
element of ALOFT is a statement. Within ALOFT
statements, words and phrases are inserted to
help readability and prevent misinterpretations
and errors by users. These are generally verbs,
articles, prepositions, etc., which make the
statements English-like. They are required to be
used precisely as shown in the syntax diagrams.
The complete statement, rather than a single words,
defines the action or purpose of the statement.
In general, however, a verb or operation code in
the statement is a very strong indication of the
type of activity or purpose of the statement. In
addition to basic statements, ALOFT has provisions
for including optional prefix phrases, which may
be either a condition for execution of the state­
ment or an action to be performed at essentially
the same time.

The basic statement and prefix phrase types, as
indicated by their key words, are listed below.
The parenthetical notes are included to further
explain the associated actions.

(Analog or digital function)

(Discrete functions, valves,
clocks)

(Discrete functions on or off)

(Digital data)

Send actions

APPLY

SET

TURN

SEND

Acquire actions

READ and SAVE (Discretes, clocks, digital)

MEASURE and SAVE (Analog, digital)

VERIFY (Read or measure with condi­
tional transfer)

Invocations or calling statements

PERFORM (Subroutine)

PERFORM PROGRAM (Program)

EXECUTE (For macros only)

USE (Data bank)

Delimiters

BEGIN (Program, data bank, sub­
routine)

MACRO (Beginning of macro definition)

COMPLETE (Program, data bank)

LEAVE ALOFT (To use another language)

RESUME ALOFT (To return from another lan­
guage)

Interrupt manipulation

WHEN INTERRUPT (To identify the action to
occur as a result of a named
interrupt)

ENABLE (Interrupt)

DISABLE (Interrupt)

Sequence control

GO TO (Unconditional transfer)

IF (Variable reference conditional
transfer)

VERIFY (Function conditional transfer)

WHEN INTERRUPT (See above)

REPEAT (Single statement)

Assignment or arithmetic operation

LET

ASSIGN

(Variable reference) = (Value
or formula)

(Variable reference) = (Dis­
crete or Boolean state)

Concurrent program implementation

CONCURRENTLY
PERFORM

SYNCHRONIZE (n)

(For concurrent programs)

(Synchronization points in
each program)

Prefix phrases and timing control

WHEN (Clock=
time)

SET (Clock=
time), AND

(Precedes action statement)

(Precedes action statement)

AFTER (Clock=
time), (Precedes action statement)

STATEMENT (number) (Statement label where
required)

S (number) (Statement label where
required)

Other time phrases

 WITHIN (Time (To set a time limit for
value) VERIFY)

 FOR (Time (To generate a timed discrete
value) or pulse)

Operator interfaces and records

DISPLAY (Messages)

INDICATE (Lights or fixed states)

PRINT (Variable messages)

RECORD (Variable messages)

REQUEST (DISPLAY message then READ and
SAVE keyboard input)

Definition statements

SPECIFY (Function)

DECLARE (Table, list, internal
variable)

BEGIN (Subroutine, program, data
bank)

REPLACE (Abbreviation, Substitution)

MACRO (Macros)

Miscellaneous

ACTIVATE (Acknowledge or honor a
function in a table)

DEACTIVATE (Ignore a function in a table)

2-9

C. Sample Syntax Diagrams

1. Format of Language Syntax Diagrams

The syntax diagrams for ALOFT are modeled after
the syntax diagrams found in the Abbreviated Test
Language for Avionics Systems (ATLAS), ARINC
Specification 416-1, June 1, 1969.

This form of syntax diagram was chosen over alter­
nate forms due to its readability, clarity, and
precision, It is a type of syntax diagram that
can be easily learned by engineering personnel
and has been proven in field use.

The format of presentation used in the ALOFT
specification is the syntactic diagram followed by
an explanation of the semantics of the illustrated
diagram. This combination constitutes a full
definition of the structure and meaning of a lan­
guage form,

2. Explanation of Language Syntax Diagrams

Syntax diagrams are made up of syntactic units
and basic syntax elements that ultimately reduce
to the allowable letters, numerals, and symbols
which make up the character set of the language.
The basic syntax elements appear in syntactic dia^-
grams as themselves or as a name that is syn*-
tactically equivalent. The syntactically equiv­
alent name appears in lower case type. For
example:

letter :: - A

where ":: =" means syntactic equivalence. There­
fore, in a syntactic diagram the construction ~-
letter is equivalent to the construction* A

A name enclosed in a dashed box is a syntactic
unit defined from basic syntax elements and/or
other syntactic units. A definition consists of a
name within a dashed box on the left and a syntax
diagram on the right. For example:

^SYNTACTIC UNIT* basic syntax element- "~" ~~ syntax elements -f basic

The syntax diagram in the example indicates that
the syntactic unit being defined on the left is a
concatenation of two basic syntax elements with a
previously defined syntactic unit. The lines
indicate the flow of the syntax diagram from left
to right. The wavy lines indicate continuation of
a syntax flow from one line on the page to the
next lower line. Assume that the dashed box indi­
cated by the name syntactic unit 1 has previously
been defined as CD. Further assume that the first
basic syntax element is syntactically equivalent
to A and the second basic syntax element is syn­
tactically equivalent to B. Therefore, the syn­
tactic unit being defined on the left, is reduci­
ble to the basic syntax elements forming the
character string ABCD.

Choice among syntactic units is indicated by a
branching in the syntax diagram. For example:

The flow of the syntax diagram illustrated allows
only one branch to be taken, which results in a
single syntactic unit being chosen from the three
syntactic units available.

A choice between taking or omitting a syntactic
unit is indicated by a branch in the syntax flow
that contains no syntactic unit. For example:

Repetition of syntactic units is indicated by a
feedback loop with the maximum number of repeti­
tions, if applicable, indicated on the loop arrow.
Otherwise, the number of repetitions is undefined,
A syntactic unit on a line that is part of a feed­
back loop must appear at least once in the corre­
sponding statement for which the syntax diagram
exists. For example:

SYNTACTIC UNIT

Notes that give further information on a syntax
diagram appear in parentheses beneath the diagram,
with an arrow indicating where in the diagram the
note is to be applied. For example:

T SYNTACTIC UNIT

(Note)

To further illustrate these concepts, the follow­
ing selected sample diagrams from the ALOFT speci­
fication are presented:

2-10

NUMERIC FORMULA

The syntactic unit "NUMERIC FORMULA" provides a syntactical structure for the expression of arithmetic calcu­
lations. The meaning of the symbols included in the syntax are:

+ , preceding the feedback loop, is unary
positive;

-, preceding the feedback loop, is negation;

+, inside the feedback loop, is addition;

-, inside the feedback loop, is subtraction;

* is multiplication;

/ is division;

** is exponentiation;

Parentheses enclose numeric formulas used within numeric formulas, where necessary, and also enclose quanti­
ties so as to delimit dimensional information to alleviate confusion of dimensional symbols and arithmetic
symbols.

-EQUAL TO-

-NOT EQUAL TO-

- GREATER THAN-

- LESS THAN

GREATER THAN OR EQUAL TO
LESS THAN OR EQUAL TO

The syntactic unit "RELATIONAL FORMULA" provides a syntactical structure for the expression of relationships

between variables or between variables and data constants.

I CONDITIONAL TRANSFER C
RELATIONAL FORMULA l-y x i:":"":}^1

LIMIT FORMULA \J

A *—I titiLATJ-Uimij vunwuLju. r"I-TF r \/ —----—

THEN' STATEMENT

2-11

The syntactic unit "CONDITIONAL TRANSFER" provides a syntactical structure for the optional execution of a
statement. The optional nature of the statement execution is provided by imbedding in the conditional trans­
fer statement a relational formula or a limit formula. When the result of the evaluation of these imbedded
syntactic units is "true", the statement following the "THEN" is executed. Otherwise, the statement is
skipped and the next statement after the conditional transfer is executed. The statement following the "THEN"
may often be an unconditional transfer.

Send Action Syntax

I SEND VERB I

The syntactic unit "SEND VERB" provides terms for use in describing the send actions performed in send
action statements, defined below.

r TIME_ PREFIX_J- 4> -\

. __________________ Ll VERB. __________________

\STATEMENT_ J '_______'

, * VARIABLE REFERENCE
r"~ ~TABLE~NAME~~ ~ ^ "^ FUNCTIONS -<fr

STA^tf }^——(J)—FOR— $-\TIME VALUE\•\TIMEJALUE\^
~WNCTION~NAME~^--*———*———————r*—\ QUANTITY '—^———————————————————^

The syntactic unit "SEND ACTION STATEMENT" provides a syntactic structure for the performance of stimulus
actions in a test. A time prefix may be attached to the send action statement. The function name is pro­
vided to the test writer from a dictionary data bank. The state of a discrete, a numeric quantity, or a
variable reference identifying a numeric quantity to be sent to an LRU can be identified. In the case of
a discrete state, a time limit for the application of that discrete state may be established. At the end of
the time specified, the discrete state will be reversed.

If a table name is identified instead of a function name, the function of each row of the table is sent with
the appropriate values as identified by the state, quantity, or variable reference.

Acquire Action Syntax

-MEASURE

ACQUIRE VERB ^
-READ

2-12

The syntactic unit "ACQUIRE VERB" provides terms for use in describing the acquire actions performed in
acquire action statements, defined below.

1 ACQUIRE ACTION STATEMENT
L _ — _— ̂— — — — — — — — —

TIME PREFIX — <j>-

i

FUNCTION^ NAME_ _ j—————————————————

— ----, A^A
TABLfi7 NAME \———^———^ FUNCTIONS —— *-

r~\

-AND- -SAVE——b—AS r/ VARIABLE REFERENCE

n/'\

The syntactic unit "ACQUIRE ACTION STATEMENT" provides a syntactic structure for the performance of measure­
ment actions in a test. A time prefix may be attached to the acquire action statement. The function name is
provided to the test writer from a dictionary data bank. The information acquired by the action of this
statement is retained, for later use in the test, in the variable reference identified.

D. Sample ALOFT Statements

In the course of development of ALOFT a number of programs were written in the language. One of these pro­
grams was a routine called "KAF2 Flight Control Preps Program". This routine was originally written in ATOLL
and used in the checkout of the Saturn launch vehicle. Statements from this program are included here to
provide an example of ALOFT usage.

BEGIN PROGRAM_KAF2_''FLIGHT CONTROL PREPARATIONS FOR AS509''.

USE DICTIONARY DATA BANK. KAFZ DISC OUTPUTS TO VEH _•

DDAS SIGNAL FUNCTIONS _t

.DISCRETE I/O FROM ESE PANELS.t

INPUT/OUTPUT DEVICES _.

DECLARE _CSP POWER ON TIME. TIME.

DECLARE .GR-1 UP-TO-SPEED INDICATION TIME_ TIME.

DECLARE .GR-2 UP-TO-SPEED INDICATION TIME. TIME.

DECLARE .GR-3 UP-TO-SPEED INDICATION TIME. TIME.

DECLARE _FCC POWER ON TIME_ TIME.

DECLARE _T?_ TIME.

• f SCOW ' f

''SCOX' '

••SCOY ••

•'SCOZ' •

"SCOV '

2-13

DECLARE.FC FLAG TABLE.WITH 9 COLUMNS INDEXED BY.SC.AND LABELED

ROW NUMBERt FUNCTIONt UNITS».ST1.800 LEANi.ST2. BOOLEAN..ST3.

BOOLEAN*.STi*_BOOLEAN».STB.BOOLEAN*.ST6.BOOLEAN* HAVING 8 ROWS

INDEXED BY.FR.WITH ENTRIES

ft FR FUNCTION UNITS STI ST2 STS STM ST5 ST6 ••

1* .FLAG 25. f ON/OFF* ON* OFF* OFF* OFF. OFF* OFF AND

2* .FLAG 26.* ON/OFF* OFF* ON* OFF* OFF* OFF* OFF AND

3* .FLAG 27_» ON/OFF* OFF* OFF* OFF. OFF* OFF* OFF AND

»» .FLAG 28. ON/OFF* OFF* OFF* OFF* OFF* OFF* OFF AND

5* .FLAG 37.. ON/OFF* OFF. OFF* OFF* ON* OFF. OFF AND

6* .FLAG 38_. ON/OFF* OFF* OFF* OFF* OFF. ON. OFF AND

7. .FLAG 39.. ON/OFF. OFF. OFF. OFF. OFF. OFF. ON AND

' 8» .FLAG **7.» ON/OFF* ON* ON* ON* ON* ON* ON

SOQ0100 BEGIN CRITICAL .TERMINATION SUBROUTINE. WITH INPUT .TERM TABLE,

SODD200 APPLY .TERM TABLE. FUNCTIONS .STATE..

SQ00300 DISPLAY .PROG NAME.. TEXT (HAS BEEN FORCIBLY TERMINATEDI ON

.CONSOLE CODE..

SOOD400 END CRITICAL .TERMINATION SUBROUTINE..

SlOOOOn WHEN INTERRUPT .TERMINATE. OCCURS THEN PERFORM .TERMINATION SUBROUTINE,

WITH INPUT _KAF2 TERM FUNCTIONS..

S1001DO ENABLE .TERMINATE..

2-14

S300000 ACTIVATE_FC PREPS SCAN.ALL.

S3nC100 IF.FLAG 1_IS ON GO TO S300500.

L£T_RN_-1.

S300110 DEACTIVATE.FC PREPS S C AN_R OW (_RN_) .

IF.RN.IS LESS THAN 36 THEN GO TO S3DQ110.

GO TO SSQOGOn.

S300500 IF_FLAG 2. IS ON GO TO S3006QC.

S300510 DEACTIVATE.FCC PREPS SC AN. ROW (_RN_) .

LET_RN_::_RN_«-I.

IF_PN_IS LESS THAN 52 GO TO S3C05io.

S30C60C1 VrRi F Y_FC PREPS S C AN.F UNC T ION S ARE EQUAL TO_S T A T E_OT HERw I$E GO TO

S6COOOO.

S3QD7Dn IF.FLAG 1^ IS OFF THEN GO TO S301500.

S30DEOG VERIFY „ F C C/ON/ *6 D 1 1 . IS OFF OTHERWISE GOTO S327200.

S3noenn REAP GMT INTO _FCC POWER ON TIME..

S3D1COG TURN _ IU FCC SYSTEM PWR _ ON. f% MD01823 tt

S3niinO DISPLAY _CRT 1 CLEAR^.

S3012Gn DISPLAY TEXT (JU FCC SYSTEM PWR ON) ON CRT IrLlNE 1 .

S3Q130Q ASSIGN _FLAG 6. "FCC POWERED ON 3Y PROGRAM'' ON.

S301MnG IF.FLAG 2_ IS OFF THEN GOTO S3CP1CG.

S3015CO VERIFY _ CSP/POWER/ON _ IS OFF OTHERWISE GOTO S327700.

S3016CD READ GMT INTO _CSP POWER ON TIME..

S3G17rn TURN _ IU EOS RG SYS POWER _ ON. "MD01303"

S30180C DISPLAY TEXT (IU EDS RG SYS POWER ON) ON _CRT ItLINE 2_.

S3019Gn ASSIGN .FLAG 5. ''CSP POWERED ON BY PROGRAM*' ON.

S3D2DCD IF.FLAG 1. IS OFF THEN GOTO S30450C.

2-15

S321300 DISPLAY TEXT (GROUP 3tUP TO SPEED) ON .CRT ItLINE 11..

S321400 DISPLAY .GR-3 UP-TO-SPEED INDICATION TIME. ON .CRT ItLINE 12..

S321500 PRINT TEXT (GROUP 3.UP-TO-SPEED TlMEJt .GR-3 UP-TO-SPEED INDICATION

	TIME. ON .PRINTER..

S321600 RECORD TEXT (GROUP 3 UP-TO-SPEED TlME)t .GR-3 Up-TQ-SPEED INDICATION

	TIME. ON .MAG TAPE..

S321700 TURN . IU EDS RG ROLL AXIS SEL . OFF. • t MD0190*l tt

S321800 TURN . IU EDS RG YAW AXIS SEL . OFF. *«MD01905'»

S3219CO TURN _ IU EDS RG PITCH AXIS SEL . OFF. tf MD019C6"

S32200Q TURN _ IU EDS RG REF GYRO SEL . OFF. f «MD01907 f «

S32210D TURN _ IU EDS RG CMD GYRO SEL . OFF. ftMDOl909 ft

S322200 TURN . IU EDS RG SPARE GYRO SEL . OFF. tf MD01910 tf

S32230G IF.FLAG I.IS OFF THEN GOTO S323600 . ft FCC OPTION NOT SELECTED'*

A further example of ALOFT usage is provided by this example subroutine and its use.

BEGIN.ADJUST.WITH INPUTS.VALUE OF X.t.FINAL V ALUE.t.ADJUST FUNCTION.

AND.FUNCTION OF X.AND OUTPUT.RESULT..

DECLARE.Y.NUMERIC.

DECLARE.VALUE OF X.NUMERIC.

DECLARE.FINAL VALUE.NUMERIC.

DEC LA RE.RESULT.NUMERIC.

LET.RESULT.EQUAL 0.

SET CLOCK 1 TO OMSECt AND

SEND.ADJUST FUNCTION. "THE •».VALUE OF X..

AFTER CLOCK 1 IS 5MSECt

MEASURE.FUNCTION OF X.AND SAVE AS.Y..

IF.Y.IS GREATER THAN OR EQUAL TO.FINAL VALUE. THEN

LET.RESULT.EQUAL.VALUE OF X..

END.ADJUST..

2-16

•'THE FOLLOWING IS A PORTION OF THE PROGRAM USING THE PREVIOUSLY DEFINED

SUBROUTINE.ADJUST. t AS IT MOULD BE WRITTEN AND AS IT WOULD APPEAR ON A

FINAL LISTING. DECLARATIONS AND SPECIFICATIONS REQUIRED ARE ASSUMED.••

••OTHER

STATEMENTS"

LET.START.EQUAL 5.0V.

STATEMENT 100 PERFORM.ADJUST. WITH INPUTS.START.155.ODEG..POSIT ION DRIVER.

AND. POSITION. AND OUTPUT.VOLTIN..

IF_VOLTIN_IS NOT EQUAL TO 0 THEN GOTO STATEMENT 101.

LET.START.EQUAL.START.+l.OV.

GOTO STATEMENT 100.

STATEMENT 1D1 "PROGRAM CONTINUES"

• 'OTHER

STATEMENTS"

LET.VALUE SENT.EQUAL 2U.CINHG.

STATEMENT 200 PERFORM.ADJUST.WITH INPUTS.VALUE SENT .»110 .ODEGF t .PRESSURE.

AND.TEMPERATURE.AND OUTPUT. TOTAL PRESS..

IF.TOTAL PRESS.IS NOT EQUAL TO 0 THEN GOTO STATEMENT 201.

LET.VALUE SENT.EQUAL.VALUE SENT.+2.OINHG.

GOTO STATEMENT 200.

STATEMENT 201 "PROGRAM CONTINUES"

"AT EACH PERFORM.ADJUST.STATEMENT CONTROL WOULD 9E TRANSFERRED TO THE

PREVIOUSLY DEFINED.ADJUST.SUBROUTINE WITH THE APPROPRIATE INFORMATION

AS INDICATED IN THE PERFORM STATEMENT. WHEN THE SUBROUTINE IS COMPLETE*

CONTROL IS RETURNED TO THE STATEMENT FOLLOWING THE PERFORM STATEMENT.

THIS ACTIVITY OCCURS AT RUN TIME."

ACKNOWLEDGEMENT

The authors would like to acknowledge the exten­
sive contributions of C. W. Case and E. L. Kinney
toward the development of the ALOFT language and
especially for the contribution of many of the
ideas which have been presented in this paper.

REFERENCE

ALOFT was developed for NASA, KSC under contract
NAS10-7308. Mr. Henry Paul, LV-CAP was the
Technical Monitor.

BIBLIOGRAPHY

(1) Specification for ALOFT, A Language Oriented
to Flight Engineering and Testing, MCR-70-450,
Martin Marietta Corp., December, 1970.

(2) Development of a KSC Test and Flight
Engineering Oriented Language - Phase I Report,
MCR-70-327, Martin Marietta Corp., August, 1970.

(3) Development of a KSC Test and Flight
Engineering Oriented Language - Phase II Report,
MCR-70-365, Martin Marietta Corp., October, 1970.

'(4) Development of a KSC Test and Flight
Engineering Oriented Language - Phase III Report,
MCR-70-424, Martin Marietta Corp., December, 1970.

2-17

	Aloft: A Language Oriented to Flight Engineering & Testing
	Scholarly Commons Citation

	tmp.1401908924.pdf.kCyFf

