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ABSTRACT

During the early lift-off period of Space Sh
uttle 

vehicle (SSV) launch, i.e., the first 10 seconds of 

flight, the Shuttle's propulsion system's ma
in 

engines (SSME's) and solid rocket boosters (
SRB's) 

generate intense acoustic pressure fields. 
This 

intense pressure field excites various Shutt
le 

structures, components, avionics, and sensitive pay- 

load hardware. SSV system elements, of course, must 

be designed and qualified to withstand the l
ift-off, 

ascent, and reentry acoustic environments. In order 

to minimize the Shuttle's lift-off acoustic 
design 

environments, a noise suppression model test program 

was initiated to examine techniques to reduc
e the 

Shuttle noise environments via modifications
 to the 

launch facility. This approach has been shown to 

be advantageous from the standpoint of missi
on oper 

ations, simplicity, payload capability, and particu 

larly from the ecomonic aspect for the reusa
ble 

orbiter. Particular emphasis has been given herein 

to the orbiter payload bay environments. This paper 

discusses the potential noise suppression te
chniques 

utilized in this recent test series. These techni 

ques are the candidates for use with the ful
l-scale 

Shuttle system during launch from Launch Com
plex 39 

(LC 39) at Kennedy Space Center, the Eastern Test 

Range for NASA.

INTRODUCTION

The sound suppression test program for the S
pace 

Shuttle vehicle was developed as an extensio
n of the 

baseline effort to define the vehicle's acou
stic 

environments resulting from operations at th
e launch 

pad complex (LC 39) at Kennedy Space Center, Florida. 

These baseline environments, measured from a
 series 

of model tests at the Acoustic Model Test Fa
cility 

(AMTF) were noted to exceed the environmenta
l design 

criteria for certain portions of the vehicle
. The 

main exceedances were noted for the payload 
bay on 

the orbiter, which is scheduled to be the "w
orkhorse" 

in a reusable mode over many missions. To reduce 

these payload bay environmental exceedances,
 two 

general actions could be taken. First, the orbiter 

or payload bay could be modified to reduce t
he in 

ternal payload bay acoustic environments ind
uced by 

the exhaust flow. Second, the severe environments 

could be attacked and suppressed at the sour
ce. One 

candidate "fix" is a major structural design
 modifi 

cation to the orbiter. This, of course, imposes 

costly weight penalties on the orbiter that 
would 

have to be "paid for" on each and every miss
ion. 

Another "fix" would be to impose payload mod
ifica 

tions. But reducing the severe environmental

conditions in this manner would require 'usin
g 

shrouds or encapsulations around the payload
 or cri 

tical element resulting in impacts in, terms of size* 

weight, shape, complexity, etc* On the other hand, 

if the noise levels for the payload bay coul
d be 

alleviated or suppressed by a modification o
f the 

launch facility itself, the savings would be
 signif 

icant. MSFC proposed such modifications, to be de 

termined from the results of scaled model te
sts.

The environments were to be suppressed by a 
"one 

time" fix to the launch facility, providing 
some 

means of reducing the vehicle environments w
ith a 

ground based structural or operational chang
e to 

meet the Shuttle vehicle f s acoustic design c
riteria* 

This approach was accepted and tests began i
n 

August ,1975.

The constraints on a ground based solution w
ere less 

critical and less costly than a 'modification,
 to the 

vehicle or to each payload. Thus, an optimum candi 

date was to be found with minimal impact in 
terms of 

design and fabrication or on operational pla
ns as 

well as pref light preparation and postflight
 refur- 

b i s hment . S imp lie ity and economic u t il iz at ion ' are 

strong guidelines in the joint JSC/KSC/MSFC 
efforts 

in determining the best suppression mode for
 appli 

cation to the launch complex and vehicle mis
sions 

associated with the Kennedy Space Center lau
nches.

Few cases of similar programs and goals were
 found 

in the literature. Whatever limited study attempts 

were found, in most cases, were not directly appli 

cable to the Shuttle system because of vario
us con 

straints associated with the geometry of the
 f mil- 

scale hardware, refurbishment requirements » 
overall 

scope, etc. Because, of specific geometric 'varia 

tions in the vehicle /launch facility designs
* ex 

trapolation of a given suppression node to a
nother 

launch configuration may not be totally succ
essful 

because of the influence of the related geom
etries 

on the induced environments* Experimental data* no 

doubt, support this judgment in, cases other thanL 

those studied in this program*

BASIC OBJECTIVES Mm

The basic objectives of this experimental effor
t In* 

eluded (1) the definition of the acoustic envir
on- 

ment of the Shuttle vehicle and adjacent groun
d 

plane for both the "on-pad" and "lift-off" con
di

tions and (2) the defin.it ion of realistic no
ise sup 

pression techniques and required modificatio
n to the 

launch facility that com. Id in, any way reduce the
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engines 1 acoustic power generation capability asso 
ciated with the supersonic flows. After obtaining 
the baseline test data, the necessity of reducing 
the vehicle environment became apparent» and a Sig 
nificant portion of the tests .have involved attempts 
to provide several candidate techniques to suppress 
the Shuttle's engine exhaust generated noise* Sev 
eral "candidate" suppression, techniques were chosen 
in these model hot test firings to 'best meet "current 
design criteria with minimal impact on the facility 
design and operations* The final suppression mode 
for LC 39 will be selected front these candidates* 
This selection will be based on the specific suppres 
sion characteristics that 'best meet the currently 
imposed design criteria, and on compatibility with 
the launch facility design, fabrication* and opera 
tions during launch* as well as on the need for 
r efu rb i shmen t .

In a research, and development program of this type 
where major overall goals and application of results 
are usually achieved in a timely manner» the -initial 
effort generally involves the determination of all 
the measurable parameters influencing the phenomenon 
of primary concern* in this case acoustics* Howevez* 
because of the stringent schedule demands and need 
for almost immediate design plans* no effort could 
be expended in measuring Internal flow temperatures* 
velocities* and turbulence as affected 'by the Injec 
tion of water or other similar suppression approach 
es. It is mandatory* for the complete understanding 
of the sound generation and suppression phenomena* 
that such flow re 1 at able quantities be measured for 
the more direct determination of how to control the 
resultant, acoustic fields. The approach herein, has 
necessarily omitted, this important intermediate step 
in an attempt, to meet existing schedules and program 
imp 1 ement at ion.

Nineteen model firings were conducted in the initial 
test phase to define the baseline vehicle environ 
ments, including two configurations of the mobile 
launcher (ML)* Figure 1 shows the orblter model 
used in this test series with pressure transducers 
flush mounted on, the external model surface, "there 
were 40 acoustic measurements on the 6*4% SSV model* 
5 were located on the SRB, 7 on the ET, and 28 on 
the or biter. Figure 2 shows the or biter model and 
many of the transducers on the top surface. Figure 
3 shows the orbiter v s under-surface measurement lo 
cations. The orbiter aft heat shield has three 
measurements and, the external pay load 'bay has eight 
measurements distributed over the sides and top*

A typical, 6.41 model test firing at IMF is deline 
ated in figure 4 showing the sequence of events*
The SSME's are ignited first, as is done in most 
cases, for a period of 3 to 5 seconds and then the
SRB motors are ignited and burn, for more than 9 sec 
onds. A sufficient period, for acquiring data for 
the SSV case (SRB's and 8SME f s) is maintained* The 
SSME's are then cut off or terminated while the 
SRB's continue firing dry for a short period in or 
der to establish the environments for the baseline 
or dry condition. The sound suppression device,, the 
''horseshoe" water injector in this case, is then 
activated. For this case the water flow rate was 
increased from zero to a. steady state value of ww/ 
W = 1.7. The reduced, environments for this flow

ratio can clearly be seen. This can be compared 
with the baseline environments for definition of the 
sound suppression for each case.

The model, geometrically scaled at 6.4% of full 
scale, is shown in figure 5 for the on-pad case. 
The facility, deflectors, and trench are also built 
to the 6.'41 scale. Figure 6 illustrates the SRB 
over the exhaust flow holes in the ML for the on-pad 
ease. The structural members protruding into the 
•boles are used to support the SRB' through four sup 
port columns at the SRB aft skirt/ML interface.

The current baseline ML design includes large holes 
in the ML deck, for the SRB exhaust flow passage onto 
the deflector and flow trenches. A ML design con 
sidered earlier involved much smaller holes in an 
attempt to reduce the on-pad environments.

The vehicle trajectory effects were simulated. 
Model tests were conducted at various vehicle alti 
tudes with the appropriate vehicle drift variations 
totally simulating the vehicle's three-dimensional 
movement relative to the launch facility at LC 39. 
Two general drift conditions were considered in the 
model test program; nominal and worst-case drifts 
were simulated in separate tests to describe the 
environmental variations from lift-off to full-scale 
altitudes of almost 300 feet.

One of the major concerns in these tests was the 
simulation of the exhaust impingement on the top of 
the ML, since the vehicle drift is highly pronounced 
even just after lift-off* The early impingement of 
the supersonic exhaust flow on the non-optimized 
"flat-plate" portion of the launch facility induced 
higher'vehicle environments and consequently the 
need became apparent for suppressing the acoustic 
energy reaching the vehicle during this portion of 
flight* Several alternate modes were proposed and 
tested in order to provide various trafe-offs, if 
necessary, in the facility/vehicle design and/or 
operational constraints, or simply to allow an ef 
fective economical weighting of each suppression 
approach,.

The degree, of sound suppression necessary for the 
Shuttle to meet the internal design criteria for the 
payload bay is dependent on several factors. The 
permissible OASPL for the internal payload bay is 
1,45 dB with a prescribed spectrum. The necessary 
suppression is then derived from the external envi- 
ronments (measured in the baseline test series) and 
the appropriate transmission loss, i.e., the acous 
tic energy Loss through the orbiter payload bay 
structure, and the internal noise reduction. It 
appears that at this time only the external environ 
ments are available. No transmission loss data from 
experimental efforts have been acquired.

SCALING CONSIDERATIONS

As is well known, the Space Shuttle system consists 
of two solid rocket motors and three (high chamber 
pressure) liquid propellant rocket engines. Any 
scale model contemplated for acoustic testing would 
generally be required to have both propulsion sys 
tems scaled by the same relationship. Different
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scaled values between the two systems would greatly 
complicate the testing and possibly restrict the 
usefulness of the results, especially for those test 
conditions where the interaction between the two 
systems is considered to be significant. Consequen 
tly, for Shuttle acoustic model testing, careful 
selection of compatibly scaled solid rocket motors 
and liquid engines had to be made.

Acoustic model testing is based upon the principle 
of dynamic similarity. This principle states that 
two systems are dynamically similar if they are geo 
metrically scaled and if the time average values of 
temperature, velocity and density are the same at 
identical locations. Consequently, this implies 
that temperature, velocity, and density are preser 
ved in dynamically similar systems. This points out 
then that the mean squared sound pressure (or total 
energy) is the same at similar points or scaled lo 
cations in dynamically similar systems. This is 
shown below as

p = Gm (ftn) dfm = J*Gp (fp) df

where G(F) is the mean squared pressure per 
unit bandwidth (PSD)

The complete derivation of the scaling relationship 
and subsequent dimensional analysis is beyond the 
intended scope of the material being presented, how 
ever, this brief analysis reveals that time and 
length quantities scale directly with a character 
istic length. Because the velocities are preserved 
in a dynamically scaled system, the frequency must 
be inversely proportional to this characteristic 
length, such as

Lo

By employing the use of the dimensionless frequency 
or Strouhal number which is widely used in many 
forms of dynamic analysis, this is perhaps more 
clearly seen. The Strouhal number is given as: 
S = fL/vo , where L is the characteristic length, vo 
is the characteristic velocity, and f is the fre 
quency. Dynamic similarity states that S(model) = 
S(prototype) or:

Because velocities are preserved in dynamically sim 
ilar systems,

If the exit nozzle diameter is selected as the char 
acteristic length in both systems, then L p/L m be" 
comes the "scale factor" of the experiment, i.e., 
fm = (S.F.)fp. This states, therefore, that the 
frequencies generated by the model are equal to the 
product of scale factor times the full scale fre 
quencies. This is the procedure used to scale the 
acoustic data presented herein. In summary, between 
the model and full scale, the mean squared sound

pressures are identical at geometrically similar lo 
cations and the frequencies scale inversely with the 
characteristic length (or scale factor).

It has been stated that pressures, densities, velo 
cities, and temperatures are identical in dynamical 
ly similar systems. This is not the case for the 
thrust of the engines and other derived quantities 
which are of second order, such as areas. For ex 
ample, thrust is given as

Where m

In the above equations m is the flow rate, v is the
velocity, p is the density, and A is the area of the 
nozzle exit. The thrust ratio between, full scale 
and model becomes

Tp Ap (Dp ) 2
n* =3 I, =s ' ••

The ratio Dp/Dm is the scale factor, therefore, the 
thrust requirement between full scale and model is

The thrust of the model then should be equal to the 
full scale thrust divided by the scale factor squar 
ed. Areas and flow rates between full scale and 
model would scale in the same manner.

The first consideration in any acoustic model test 
program is the selection of compatible engines. 
This, of course, defines the scale factor of the ex 
periment. This selection is, as always, dependent 
upon the availability of hardware, development re 
quired, time schedules involved, and cost.

Scale model high chamber pressure (3000 psi) liquid 
engines were not available for this program and the 
cost and time required to develop such an engine 
were prohibitive. Selection of equivalent liquid 
rocket engines thus began. Fortunately, during the 
early Saturn engine development work, several model 
liquid rocket engines of different scales were fab 
ricated by MSFC (J-2»s and RL-lG's) and this hard 
ware was available for use provided a compatibly 
scaled solid rocket motor 'could be found, A search 
of existing inventories of solid propel1ant motors 
of the Army, Air Force, and Navy revealed, that an 
acceptable motor was currently in use. This motor 
was the "Tomahawk" built by Thiokol and originally 
used as a high altitude sounding rocket* There is 
an ample supply of these motors available and it is 
still in production.

The Tomahawk mo to 3; along with existing liquid engines
simulating the SSME's, established the scale of the 
Shuttle acoustic model test program at 6*4%, or a
scale factor of 15.6, As in. any test program, com 
promises have to be made, however, those in the 
development of this program are not considered, sig 
nificant, perhaps on the order of Sli to 10X, and are 
well within the realm of acceptable engineering de 
sign tolerances in terms of repeatability of results,
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accuracy of instrumentation systems, and statistical 
uncertainty in data processing.

SUPPRESSION APPROACHES

The sound suppression modes considered in this study 
were potential candidates for use at LG 39 at 
Kennedy Space Center. The general guidelines for 
the preliminary design phase included significant 
environmental reductions in. conjunction with the 
many factors which promote acceptable launch facili* 
ty installation and minimal operational constraints 
with minor refurbishments, if any. The suppression 
mode selected must be simple* such that its complex* 
ity does not jeopardize its success or otherwise in 
directly compromise the vehicle or mission objec 
tives* The associated hardware oust allow for 
necessary prelaunch and launch operations without 
exc e s s ive co ns t raint s * Refurbishment requ irement s 
for any suppression related hardware must be minimal 
in terms of manpowerf time and cost* because of the 
stringent flight turnaround readiness requirements«

Approaches to reduce, the payload region einrizoomeiits
generally included the use of several concepts*
Barriers or shields were used to block the direct 
line-of-sight between, the source and receiver (e.g.*
portions of the exhaust flow and the payload bay 
region) and water was Injected to add mass to the 
exhaust. Adding mass is a means of attempting to
reduce the turbulent flow velocities 1m a constant 
momentum flow system* Also, flow screens were used 
to break up the flow into smaller "'portions 11 attemp 
ting to reduce the amplitude of the lower frequency
acoustic energy in a mode similar to that used in 
aircraft engine noise suppression.

The re liit: ive vehicle /launch facility geometrical re 
lationships have also been studied, especially in 
regard to minimizing the flow impingement on the top
of the mobile launcher platform surface after vehic 
le lift-off and subsequent drift. For the off-pad, 
case, deflectors were used to prevent the flow from 
impinging on the launch facility in a "flat plate" 
manner which would tend to induce higher acoustic 
environments. Thus, a technique for reducing the 
inherent vehicle drift also was investigated and 
recommendations are forthcoming. A model firing 
has been made to evaluate the effectiveness of re 
ducing the vehicle drift and subsequent exhaust im 
pingement through positive control of the vehicle 
also allowing other schemes of sound reduction to 
supplement the reductions gained by keeping the SRB 
exhaust flow in the holes in the ML,

As a specific example of the barrier or shielding 
technique* the use of exhaust flow trench covers was 
considered* This portion of the study was similar
to that utilized in the Titan noi.se suppression pro 
gram* If the vehicle exhaust were directed into a 
closed-channel type coniiguracion*as shown in figure 
7, the vehicle environments could be significantly 
reduced, depending on the exact dimensions and geo 
metry* In the case at LC 39, however, the trench 

scheme is not suitable for several reasons* 
first., the existing ML design requires the rather 
large opening for the passage of the exhaust through 
the 'Mobile launcher*, Such large openings, however, 
provide a direct line-of-sight between the orblter

and a large portion of the exhaust flow. This situ 
ation exists in this case whether or not the exhaust 
trenches are covered. Second, the trench dimensions 
are quite large and the loads on a 55-foot-wide un 
supported cover are significant and result in prob 
lems in design and fabrication. Third, the refur 
bishment requirements and operational interferences 
of trench covers are not considered totally accept 
able to the vehicle launch facility operational 
goals at LC 39* Figure 7 illustrates only one of 
the cover configurations used in these tests. Other 
covers used in this test series also blocked the 
vertical open area between the bottom of the ML and 
the top of the exhaust trench. Other covers were 
designed like 'Venetian blinds" or slats with vari 
able degrees of closure as an alternate to the solid 
plate covers*

Other barriers considered in cold flow model tests 
included a solid divider between the SSME and SRB 
exhaust flows from the top of the deflector to the 
bottom of the ML« This would prevent the SRB noise 
contributions from radiating through the large open 
ing for the SSME exhaust flow through the ML. Be 
cause of potential flow impingement problems, this 
particular scheme was not pursued in the 6.4% hot 
£lw nodel test.

Solid terriers show certain related structural prob 
lems of loading, physical interferences, etc. How- 
ever, barriers composed of sheets or sprays of water 
could be used to some degree where solid walls are 
prohibitive* Several schemes using water barriers 
were proposed and some tested but other types of 
suppression approaches have generally proved more 
effective.

.Another barrier considered in this study involved 
the partial closure of the SSME exhaust flow hole 
in, the mobile launcher. Because of the divergent 
cant angles of the SSME's, the degree of closure had 
to be limited in order to maintain the clearance be 
tween the exhaust flow and vertical side surfaces of 
the SSME hole through the ML. The limited closure 
allowed for engine gimballlng and exhaust spread 
(approximately 13°) but did not prove to be suffi 
cient to provide any appreciable reduction of the 
vehicle environments for the on-pad (pre-lift-off) 
case.

Another barrier-type mode was designed by KSC and 
was tested but did not include solid or structural 
barriers, The "trench grid" shown in figure 8 was 
a crossed-pipe water injection system over the SSME 
exhaust flow trench, It was suggested .that a fine 
spray of water over the entire trench region might 
provide some reduction in the environment as a 
"barrier11 in addition to the added mass effect to 
reduce the exhaust velocities. A water pipe across 
the bottom of the ML base is also shown in figure 8 
and is designated as a "spray bar*" Its contribu 
tion can. be described much as the trench grid except 
that the injection is in a near vertical plane.

The '''nozzle injection' 1 device, used in solid motor 
model tests under the sponsorship of the Navy, was 
tested here with the SSME's but did not favorably 
fit into the facility requirement5 and operational 
flexibilities at LC 39, Wat ci could be injected, as 
shown in figure 9, into the immediate exhaust flow



area near the nozzle exit plane.

One of the basic approaches utilized in the SSME 
tests was the "water ring" shown in figure 10. The 
water ring was a peripheral pipe around the SSME 
exhaust flow hole in the ML, flush with the deck 
surface. The water injection was very near the 
SSME nozzle exit plane in an attempt to efficiently 
mix water with the exhaust flow at the earliest 
possible time after the exhaust emergence from the 
engine.

After preliminary tests of the water ring configu 
ration, it was found that the water flow rates re 
quired pipe diameters larger than could easily be 
implemented without interference with vehicle 
launch preparation. An alternative to this water 
ring problem was the "horseshoe" injection device 
which was situated on the ground plane at LG 39 and 
consequently did not interfere with the vehicle 
preparation as the ML deck-mounted water ring did. 
The horseshoe, shown in figure 11, utilizes a pipe 
on the edge of each side of the exhaust flow trench 
and a connecting pipe across the trench along the 
crest of the exhaust deflector. The configuration 
is thus "horseshoe"-shaped and injects water from 
the deflector crest and side pipes along the trench 
walls.

The horseshoe configuration was also used with the 
SRB exhaust, again injecting water from the trench 
sides and from the deflector crest into the SRB ex 
haust flow below the ML. This configuration is 
shown in figure 12. The curved pipe over the 
trench is arched to avoid flow impingement and is 
not used to inject water.

Figure 13 shows the model facility with the vehicle 
at a full-scale altitude of about 280 feet, which 
occurs between 5 and 6 seconds after lift-off. The 
vehicle is placed at the proper test elevation as 
indicated and the launch facility is moved to simu 
late the proper vehicle drift relative to the fa 
cility at that time in flight. The exhausts then 
flow into the ML exhaust flow holes or onto the ML 
deck where impingement occurs. Exhaust impingement, 
as noted previously, is influential in increasing 
the vehicle environments during lift-off. As pre 
viously stated, one mode of reducing the environ 
ments during launch is to restrict the degree of 
vehicle drift and, therefore, the degree of impinge 
ment of the SRB exhaust on the ML deck. If the ve 
hicle drift is significant and cannot be controlled, 
other means of suppression are available. Figure 
14 shows a model sound suppression device for the 
post-lift-off period during which the SRB exhaust 
leaves the hole area in the ML. The "top ring 11 
water injection device is situated about 25 feet 
above the ML deck (full scale) and injects water 
into the exhaust impingement area on the deck. 
There are potential problems anticipated for this 
configuration including facility operations and re 
furbishment difficulties. KSC is now studying 
trade-offs for this lift-off suppression technique.

Another post-lift-off sound suppression device has 
also been tested. KSC proposed the "geyser" con 
figuration shown in operation in figure 15. Water 
is piped up through the ML and out the top of the 
ML deck. A "diffuser cap" was installed at the

pipe end, almost flush with the ML deck, and holes 
in the cap were to advantageously distribute the 
water for optimum exhaust flow mixing. A modifica 
tion to this design has been proposed and results 
are not available at the time of the paper presen 
tation to indicate the "modified geyser" results.

DISCUSSION OF PRELIMINARY RESULTS

A time history showing the overall sound pressure 
level in dB for the lower payload area as a func 
tion of time is presented in figure 16. These time 
traces are "constructed" from data from various 
tests for the simulated flight times shown. The 
SSME's are operating approximately 3.5 seconds be 
fore SRB ignition. As can be seen, for the payload 
bay the acoustic environment generated by the SSME fs 
is the dominating environment, approximately 8 dB 
over the SRB environment, for the on-pad case. As 
the Shuttle lifts off the mobile launcher, the 
SSME noise contributions decrease rapidly, while 
the noise environment generated by the SRB ! s has a 
somewhat gradual increase in OASPL. This increase 
is approximately 2 to 3 dB at the highest elevation 
tested. This increase in environment for the SRB 
is due to increased impingement of the SRB exhaust 
flow as a result of the inherent drift of the Shut 
tle. This effect of drift on the OASPL will be 
discussed more fully.

The SSME's were utilized as a common source to 
study many various modes of sound suppression. The 
simplicity and low cost for these firings, as com 
pared to the SRB model, directed the use of the 
SSME cluster as the "workhorse" for this suppres 
sion study effort. The water ring injection device 
shown in figure 10 was tested at various flow rates 
and with two sizes of holes in the discharge pipe 
and with two hole patterns for the water spray con 
figuration for this specific water ring design. No 
advantages were noted from these hole size and pat 
tern changes. Figure 17 illustrates the acoustic 
spectra for the "SSME's-only" firing for the on-pad 
condition comparing a dry baseline with water ring 
flow ratios ranging from about 1 to almost 7 (ww/ 
wp = 1 to 7). The baseline case OASPL was 158.9 dB, 
and the water ring injection shows an OASPL of 
149.0 dB for the higher flow rates (ww /Wp = up to 
6.9), a reduction in OASPL of almost 10 dB and about 
15 dB in the 100 Hz one-third octave band.

Figure 18 presents a comparison of the "suppressed 
environments" obtained with various noise suppress 
ion techniques utilized during the test series. 
These results are shown for the "SSME 1 s-only" con 
figuration for the lower payload bay area. The 
baseline configuration, i.e., dry with unmodified 
ML, is shown as the solid line and it can be com 
pared directly with the various noise suppression 
techniques indicated. As can be seen, the more 
elaborate concepts, or those used in combinations, 
exhibited the larger amounts of suppression. For 
example, the water ring (ww /Wp = 5.8) with spray 
bar and trench grid combination (ww /wp = 4,1) indi 
cates a large amount of suppression throughout the 
total frequency range presented. The OASPL decreas 
ed about 10 dB and the one-third octave SPL values 
decreased about 12 dB to 16 dB in the critical range 
of 30 Hz to 125 Hz. Of all the conditions tested
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to date in the SSME's-only configuration) this com 
bination achieved the greatest amount of suppression. 
The total water requirement with the set of condi 
tions is WW/WP =» 9,9, i.e., approximately 243,000
gallons per minute. The water ficwile injection 
technique (see figure 9) is comparable to those con 
figurations listed within the shaded area* Speci 
fically, the configurations indicated by the shaded 
band are (1) full length exhaust trench cover (no 
ramp) see figure ?», (2) trench grid alone, ww/wjp « 
2.84, (3) spray bar alone, w»/wp, :=s 2*3, and (4) com 
bined spray bar and trench grid, ww/wp ;=a 3*86, see 
figure 8,

The information in, figure 19 was derived from all 
the tests utilizing (1) the horseshoe water injec 
tion device shown in figure 11, (2) the two separ 
ate portions of the horseshoe device herein noted
as the "crest pipe" which lies across the SRB de 
flector crest and the side pipes which include the 
two parallel pipes of the horseshoe configuration,
(3) the water ring, -and (4) the tests involving the 
combination of the above suppression modes with the 
spray bar and trench grid. The suppression results 
from the horseshoe /crest pipe/side pipe water injec 
tors were not as effective as the other modes noted 
in figure 19. The 4 dB reduction in the GASPL at a 
horseshoe water flow ratio of about 9 to 1 (ww/Wp) 
is not significant in relation to that obtained oy 
the water ring or combination test schemes where 11 
and 13 dB, respectively, were noted, for a 9 to 1 
water flow rate. The data obtained for the ring/ 
bar/grid combination were generally in the water 
flow ratios of ww/wp = 7 to 10. The suppression for 
the low flow range is estimated,

As can be seen, the effectiveness of the suppression 
modes here asymptotes at flow rates where ww/wp = 
about 8 to 1. In several tests the crest pipe and 
side pipe configurations indicated that the suppres 
sion asymptotes at lower flow ratios, i.e., at about 
3 to 1 for the crest pipe and about 2 to 1 for the 
side pipe.

It appears that water injection from one specific 
physical location is effective for some limited 
water flow rate. After that "plateau" is reached, 
the additional water does not appear to be effect 
ive in further reducing the vehicle environment. 
The addition of water at another location with re 
spect to the flow, however, may offer more reduction 
in the acoustic environment.

The "SRB f s-only" on-pad noise suppression results 
utilizing the basic horseshoe configuration (see 
figure 12) are presented in figure 20. The horse 
shoe technique is the only suppression method at 
tempted for the SRB on-pad condition since it was 
effective and met KSC design and operational re 
quirements. As can be seen from figure 20, a sig 
nificant reduction in sound pressure level is 
achieved with this technique. The OASPL for the 
mid-payload bay area decreased 10 dB with signifi 
cant reductions being indicated for all frequency 
bands, i.e., about 7 dB to 10 dB for the 30 Hz to 
125 Hz frequency band. This amount of suppression 
was achieved with a "small" water-to-propellant flow 
ratio (ww/Wp = 1.7) in comparison to the water flow 
ratios used for the SSME*s-only condition. This 
water flow ratio of 1.7, although seemingly small,

results in a required full-scale water pumping ca 
pacity of about 262,000 gallons per minute.

Three measurements were located on the orbiter aft 
heat shield; one near the center, one near the base 
of one lower engine, and one near the outer edge 
adjacent to a lower engine. The top band of data 
in figure 21 indicates the spread in the acoustic 
spectra for those three measurements for the on-pad 
baseline (dry) case where only the SRB f s were fired. 
The lower data band indicates the- reduced environ 
mental levels with a water flow ratio of ww/wp =1.7 
on the SRB horseshoe configuration. A reduction in 
the OASPL is noted at about 15 dB, whereas the one- 
third octave band at 100 Hz is as much as 19 dB 
lower for that suppression case. A recent test of 
the SRB horseshoe indicated that a lower water flow 
rate of ww/wp =0.7 yields little suppression for 
any of the orbiter areas. It appears that water 
flow ratios (ww/Wp) of greater than one are neces 
sary for significant reductions.

The reductions noted for the base heat shield using 
the water ring and combination schemes with only 
the SSME's firing were generally not more than 6 dB 
for the OASPL. This conclusion is compatible with 
the relative differences between the suppression 
results noted for the SRB and SSME horseshoe water 
injectors.

After lift-off, the orbiter ! s payload bay external 
environments are dominated by the SRB contribution 
with the exception of the higher frequency acoustic 
energy (above 1000 Hz). This trend is noted in 
figure 16 where the SSME f s contribution (OASPL) is 
shown to decay rapidly after several seconds into 
flight. Since the environments are mainly due to 
the SRB exhaust contribution, which is increased by 
the impingement of the SRB exhaust on the top of 
the ML, greater suppression efforts are expended on 
the SRB portion of the problem. Figure 22 denotes 
the sound suppression effects for the one-third 
octave band spectra for various tests attempting to 
reduce the off -pad or inflight environments. The 
unsuppressed condition is noted by the data band 
labeled "Baseline." One mode of reducing the en 
vironment includes the condition where the degree 
of SRB exhaust impingement on the ML deck is minimal. 
If the SRB exhaust were kept within the SRB exhaust 
flow hole in the ML, the continued use of the de 
flector and exhaust trench could be beneficial in 
terms of environmental reduction and more so when 
water is also used. The two curves in figure 22 
labeled "SRB Flow in Hole" relate to the condition 
where the model vehicle drift was not as prescribed 
for nominal missions but retained the vehicle alti 
tude with an "artificial" or devised drift which 
prevented SRB exhaust core from impinging on the ML 
deck. Water injection via the SRB horseshoe con 
figuration could be utilized if the drift permits 
the exhaust to remain in the ML hole even at ve 
hicle elevations of 300 to 400 feet. Small reduc 
tions are noted for the dry case where impingement 
is prevented. The addition of water at ww/wp =1.7 
resulted in a 4 dB to 5 dB reduction.

The use of the top ring water injection device (see 
figure 14) which sits above the ML deck and down 
range of the SRB exhaust flow holes in the ML, indi 
cates a reduction of about 6 dB to 7 dB with a water
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flow of ww/Wp =2.5. This configuration has poten 

tial refurbishment problems because of its "above 

deck" structural members and has other limitations 

with regard to the operation plans at LC 39. To 

minimize the refurbishment problems and to simplify 

operational plans and plumbing complexities, another 

mode of suppressing the lift-off environments was 

proposed by KSC. The geyser configuration employs 

a pair of pipes through the ML (ending flush with 

the deck) injecting water vertically in a position 

under where the vehicle will drift and where exhaust/ 

water mixing could occur. This configuration is 

shown in figure 15 with water flowing vertically and 

diffused somewhat by a perforated "cap" over the 

pipe, designed to distribute water for optimal mix 

ing. The data from these tests are not yet avail 

able but hopefully will provide some significant 

suppression for the lift-off condnVtion where the low 

frequency energy is dominated by the SRB contribu 

tions.

During the initial portion of this test program, 

the definition of the baseline Shuttle acoustic en-i 

vironments, a series of tests was conducted with a 

small SRB opening in the ML, i.e., approximately 

407o of the length of the current baseline SRB open 

ing. The results of these "reduced SRB hole" tests 

indicated that the inherent Shuttle drift was such 

that it caused very early impingement of the SRB ex 

haust flow, and this caused the OASPL to increase 

dramatically. Attempts to further reduce the base 

line SRB opening were then abandoned. The remaining 

tests in the, "baseline" series were conducted with 

the large (baseline) SRB opening. Tests utilizing 

the large and small SRB opening resulted in varying 

amounts of impingement at different elevations, so 

the data from these tests have been utilized in an 

attempt to determine the sensitivity of the genera 

ted noise environment (OASPL) to vehicle altitude 

and decree of SRB exhaust impingement. The results 

of this analysis are presented in figure 23. Al 

though a limited amount of data is available, the 

results do show a consistent trend with increasing 

elevation and percentage of impingement, and the 

general trend is considered to be indicative of the 

actual conditions for the mid-payload bay area.

The percentage of SRB exhaust impingement was com 

puted by projecting the SRB nozzle exit plane onto 

the top surface of the ML deck. The resulting area 

of the SRB nozzle exit plane was computed and plot 

ted as a function of the OASPL that was obtained 

for that elevation. The OASPL value for the on-pad 

condition is indicated at the zero percentage im 

pingement point. It is clearly seen that a small 

amount of exhaust impingement from a low vehicle 

elevation results in very significant increases in 

the OASPL. As the Shuttle altitude Increases, the 

effects of increased impingement become less. Even 

at full scale altitudes of about 200 feet, the 

effects of impingement are still important. The 

data points at 100% impingement delineate how the 

OASPL changes solely as a function of altitude. 

The lowest OASPL that could be achieved at this lo 

cation is the free field condition or that set of 

conditions without any exhaust impingement inter 

action with the ML and/or ground plane. This free 

field level has been determined through tests, meas 

ured data, to be 146 dB OASPL.

As can be seen from figure 16, the overall sound 

pressure level time history peaks during the on-pad 

period for the external payload bay. The acoustic 

contribution from the SSME's dominates if suppres 

sion is not utilized. It is obvious that if the 

SSME-induced environment were radically suppressed, 

then the total resultant environment would be the 

sum of the SRB and that remaining SSME contribution. 

Thus, a total elimination of one contribution with 

out some suppression of the other would still leave 

environments no less than that from the remaining 

source. Thus, the environmental contribution from 

each source, ideally, should be commensurate with 

the other, otherwise the more significantly sup 

pressed acoustic energy cannot be realized since it 

will be "masked" by the other source.

Shown in figure 24 is the acoustic environment for 

the on-pad baseline case and that resulting from 

the best suppression approaches for the total SSV 

(SSME's and SRB's). The horseshoe used on the SRB 

side and the water ring/bar/grid technique on the 

SSME side result in the total SSV environment for 

the on-pad case. A reduction of 13.6 dB is noted 

in the composite OASPL and about a 17 dB reduction 

is observed for the 100 Hz one-third octave band. 

Also shown is the internal payload bay design cri 

teria in spectral form with an OASPL of 145 dB. 

This suppression has been demonstrated via use of 

the noted techniques and requires only small reduc 

tions between the external and internal environments, 

gen rally termed "transmission loss " of the payload 

bay structure. It is seen that the internal cri 

teria shown can be met with only modest transmission 

losses for the payload bay.

CONCLUSIONS

The various suppression modes covered herein for the 

KSC model launch system provide several candidates 

which have, indeed, demonstrated significant reduc 

tions in the engine-generated acoustic environments 

on the launch vehicle. At the time of this writing, 

no selection of a specific configuration has been 

made for use at KSC. Several options are available 

and the design and operational constraints as well 

as cost must be weighed to determine the best over 

all suppression mode(s). Decisions are to be made 

involving the necessary tradeoff studies and then 

design of full scale hardware should begin in the 

near future.

It is thought that the basic objectives of providing 

model tests for various alternatives or modes of 

environmental suppression for the vehicle has been 

successfully met. It is likewise thought that a 

full-scale suppression system can be dnvelnp^d from 

this model study to improve the environmental con 

ditions, particularly for the payload bay, and that 

vehicle modifications are not likely needed nor will 

"hardening" of the payloads themselves be required.

Upon completion of this program, all model system 

specifications and a rather detailed synopsis of all 

data will be published in a form hopefully useful 

for other noise generation and suppression related 

efforts.
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