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 Arsenic is a metalloid that contaminates drinking water supplies worldwide.  Due to 

concerns for human health, the World Health Organization (WHO) and the U.S. Environmental 

Protection Agency (EPA) have established a safe level in drinking water of ≤ 10 ppb.  Arsenic 

has been shown to have carcinogenic effects in humans at high and low doses.  Chronic exposure 

may result in dermal conditions such as hyperkeratosis and hyperpigmentation.  Recently, 

arsenic exposure has also been linked to lower IQ values in children.  The effect of arsenic on 

neurogenesis, specifically eye development, has not been widely explored. This study aimed to 

examine the effect of environmentally relevant concentrations of arsenic on early eye 

development by morphological and molecular analysis. 

 The zebrafish (Danio rerio) was chosen to model the impacts of arsenic on retinogenesis 

because of its similarities to human eye development both structurally and genetically.  The 

effect of arsenic exposure on the gross morphology of the eye and tissue development via 

histology were examined at three larval stages.  It was found that exposure to arsenic has an 

effect on eye morphology resulting in a significant increase in eye diameter at 14 dpf (days post 



	

fertilization) relative to control under all treatment conditions.  This was coupled with a trend in 

thinning of the retinal pigmented epithelium (RPE) layer in fish exposed to 500 ppb arsenic.  

 The impacts of arsenic exposure on gene expression were analyzed following treatments 

of 10, 50, and 500 ppb from 1 – 72 hpf (hours post fertilization).  Molecular analysis of genes 

associated with eye development was investigated by RT-qPCR at 32 and 48 hpf.  RT-qPCR 

results revealed differential expression of Pax6a, Pax2a, Ngn1, Sox2, and Shha relative to 

control.  Specifically Pax6a, Pax2a, and Sox2 are found to be important in the formation of the 

RPE.  Proper formation of the RPE is necessary for growth of the sclera which, in turn, is 

responsible for maintaining the shape of the eye.  Although we observed a thinning of the RPE 

we also noted an overall increase in eye size of 14 dpf zebrafish.  This could potentially be 

explained by the disruption of gene expression under arsenic exposure during critical time points 

in early eye development.  
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CHAPTER 1 
 

BACKGROUND 
  
1.1 Environmental Arsenic Contamination  
 
 Arsenic is considered one of the World Health Organization’s (WHO’s) top 10 chemicals 

of concern for public health.  Arsenic can enter the environment naturally through bedrock 

aquifers and volcanic off gassing as well as anthropogenically via industry and fertilizers (Figure 

1.1).  Two forms of arsenic exist in the environment, organic and inorganic.  Organic forms, 

which tend to be byproducts of plants and animals, contain at least one carbon atom.  

Monomethylarsonoic acid (MMA) and dimethylarsinic acid (DMA) are often found in fruits, 

vegetables, and grains. Arsenocholine and arsenobetaine are organic arsenicals commonly found 

in seafood.  Inorganic forms occur when arsenic, found in the environment, binds to sulfur, 

oxygen, or chlorine (ATSDR, 2011; Figure 1.2).  Although many pesticides containing inorganic 

arsenic such as lead arsenate (apple pesticide) have been banned in the U.S., production of 

chromated copper arsenate (CCA) still continues (Hughes et al. 2011).  CCA is used as a wood 

preservative in nonresidential facilities and is a current source of environmental arsenic 

pollution.  Inorganic arsenic contamination affects drinking water supplies worldwide.   Both the 

WHO and the U.S. Environmental Protection Agency (EPA) have established a safe drinking 

water level of less than or equal to 10 µg/L (10 ppb).  However, in many countries, such as 

Bangladesh and Chile, arsenic in drinking water supplies has been detected at levels up to 2,500 

and 800 µg/L, respectively (Naujokas et al. 2013).   Arsenic levels in drinking water in regions 

of the United States may also exceed safe levels, although the upper range generally lies between 

100 and 500 µg/L.  Arsenic is predicted to exceed 10 µg/L in basin-filled aquifers in the 

southwestern U.S. (i.e., Arizona and Utah; Anning et al. 2012) and has been found to exceed the 
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safe limit in Nevada (Thundiyil et al. 2006), North Carolina (Sanders et al. 2012), and 

throughout New England (Ayotte et al. 2003; Nielson et al. 2010). Private well owners are 

especially at risk for arsenic contamination as there are currently no regulations that require 

testing.  In the Northeastern United States private wells can contain arsenic concentrations 

greater than 50 µg/L (Focazio et al. 2000).  Although arsenic treatment systems can be 

implemented, they are expensive and may fail if not maintained properly.  Flanagan et al. (2015) 

showed a 15% failure rate in arsenic treatment systems in central Maine, suggesting that 

consumption of arsenic-contaminated well water may occur even if preventative actions have 

been taken.   

 
Figure 1.1: Arsenic sources of transfer.  Natural and manmade sources of arsenic in the 
environment.  Retrieved from https://www.slideshare.net/MSTomlinson/oahu-soil-sediment-as, 
adapted from NRC, 1977. 
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1.2 When Humans are Exposed to Arsenic: Arsenic Metabolism  
 
 Humans are most likely exposed to inorganic arsenic in drinking water, however they 

may also be exposed by consuming arsenic contaminated foods.  Some forms of dietary organic 

arsenic, such as aresnobentaine in fish (Li et al. 2017), are not known to be toxic to humans.  

More toxic inorganic forms are found to accumulate in rice and seaweed and are found to be at 

similar concentrations compared to drinking water (Brandon et al. 2014).  Arsenic in drinking 

water is commonly in the form of sodium arsenite (AsNaO2; Figure 1.3A).  Sodium arsenite (also 

known as sodium-meta arsenite) is the sodium salt of arsenous acid and disassociates upon 

entrance to the cell (Escudero-Lourdes 2016).  The trivalent form of arsenic (AsIII) enters the 

cell primarily through aquaglyceroporins (Drobna et al. 2010).  The pentavalent form of arsenic, 

sodium arsenate (Figure 1.3B), which also contaminates surface waters, enters the cell via 

phosphate transporters.  Upon entry into the cell, sodium arsenate is reduced to AsIII.  AsIII is 

conjugated to glutathione and is then methylated resulting in dimethylated or monomethylated 

forms (Watanabe and Hirano 2013).  At this time it can be excreted from the body via urine or 

feces, but much of it is stored in tissues such as the kidney, lung, heart, and brain (Leslie et al. 

2004).  Kleiman et al. (2016) showed that chronic exposure to 10 ppm AsNaO2 resulted in 

arsenic accumulation in the eye (lens) that was significantly higher than µg arsenic in the lung, 

liver, heart, and brain at 4 weeks and 6 months of continuous exposure in male mice.  A similar 

study was conducted in zebrafish, in which there was an elevated accumulation of arsenic in the 

eye at 100 and 300 ppb treatment conditions compared to brain, gill, and muscle at 6 months of 

chronic exposure (Hallauer et al. 2016). 
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Figure 1.2: Structures of inorganic and organic arsenic compounds (Hikita et al. 2011).  

 

Figure 1.3: Structures of common inorganic arsenic compounds in water supplies. Sodium 
arsenite (A) and sodium arsenate (B), retrieved from https://pubchem.ncbi.nlm.nih.gov. 
 
1.2.1 The Impacts of Arsenic on Human Health 
 
 Chronic exposure to high levels of arsenic has been linked to bladder, lung, and skin 

cancer (Smith et al. 2006; Applebaum et al. 2007; Baris et al. 2016) as well as neuropathy, 

diabetes, liver disorders, and cardiovascular disease (Liu and Waalkes, 2008; Kundu et al. 2011; 

Gong and O’Bryant, 2012; Bräuner et al. 2014).  Most studies have focused on how arsenic may 

A B 
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impact adults in contaminated regions but there has been growing interest in understanding how 

arsenic is affecting early childhood development.  A meta-analysis of data collected from 2000-

2012 revealed neurological deficits in children residing in areas with arsenic levels ranging from 

120 to 470 ppb found in drinking supplies (Rodriguez-Barranco et al. 2013).  A comparison was 

made between the level of arsenic in the drinking water and the percent arsenic detected in urine, 

to determine potential neurological damage in children ages 5 – 15.  It was shown that an 

increase of arsenic above the safe limit in drinking water was correlated with an increase of 

arsenic in urine samples which correlated with a decreased intelligence quotient (Rodriguez-

Barranco et al. 2013).  More recently, studies have been conducted on the transplacental transfer 

of arsenic from the mother to her fetus during pregnancy and have associated low levels of 

arsenic with effects on fetal growth (Gilbert-Diamond et al. 2016).  Similar laboratory studies 

have also been executed on mice, in which transplacental transfer of arsenic to the fetus resulted 

in increased tumor prevalence in male offspring at 2 years of age (Tokar et al. 2012).  

1.2.2 Impacts of Arsenic on the Visual System  
 
 There is increasing evidence that arsenic may have a widespread negative impact on 

neurogenesis during early development but the effects of arsenic on the ocular system 

specifically have yet to be determined.  Banerjee et al. (2011) showed that individuals with 

specific genotypes were more susceptible to arsenic-induced ocular diseases, but there has been 

little other research exploring the impact of arsenic on the developing visual system.  A study 

done in southwestern Taiwan showed evidence that arsenic exposure is associated with the 

development of pterygium, a condition that can lead to blindness by outgrowth of the surface 

membrane of the eye (Lin et al. 2008).  
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1.3 Retinogenesis and Genetic Regulators  
 
 Retinogenesis requires a complex network of developmental genes to be expressed at 

specific times to induce formation of the optic cup, differentiation of the neural retina from 

retinal pigmented epithelium (RPE), and generation of retinal vasculature and maturation of the 

optic nerve (Malicki et al. 2016).  One way to analyze development of the visual system is to 

track changes in genes critical for successful eye development and neurogenesis.  One such gene, 

Pax6, acts as a transcription factor with two DNA binding domains, a homeodomain and paired 

domain (Figure 1.3) allowing it to regulate a number of genes critical for eye development 

(Haubst et al. 2004).  

 

Figure 1.4: Pax6 protein structure.  Paired domain (N-ter domain) and homeodomain (C-ter 
domain) interacting with DNA to regulate gene expression (Alibes et al. 2010). 
 
 Pax6 is highly conserved and is essential for the development of a functional eye, specifically 

lens formation and neural retina organization.  Pax6 works closely with Pax2 to define RPE 

boundaries (Ashery-Padan et al. 2000).  In most cases, humans heterozygous for the functional 

loss of one Pax6 allele develop aniridia, a genetic disorder characterized by small iris size, 

impaired vision, and the onset of glaucoma (Hingorani et al. 2012).   Pax6 mutations in mice and 

rats cause micropthalmia, or small eye size, and a phenotype analogous to that of human aniridia 

(Hill et al. 1991).  Because of its early embryonic involvement in eye, brain, and spinal cord 
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formation Pax6 is critical for survival.  Homozygous loss of Pax6 results in loss of functional 

eyes, CNS abnormalities and is typically fatal before or soon after birth (Hogan et al. 1986; 

Glaser et al. 1994).  By determining the expression of Pax6, along with genes that are located up- 

and down-stream in the ocular development pathway, such as Pax2, Shh, Sox2, Ngn1 and Six3b 

(ortholog to Six6), we can gain insight on how arsenic may be affecting eye development on a 

molecular level (Figure 3.1A). 

1.4 Using the Zebrafish to Model Human Retinogenesis  
 
 This study used the zebrafish, Danio rerio, as a model organism to investigate how 

environmentally relevant levels of arsenic may be affecting eye development.  The zebrafish, 

along with other fish species, have shown neurological deficits when exposed to arsenic.  These 

include facial and cranial malformations, deficits in sensory-motor response (Li et al. 2009), and 

alterations in swimming patterns (Baldissarelli et al. 2012).  Zebrafish have also become useful 

in modeling vertebrate retinal disease because of their rapid eye development and structural and 

functional similarities to the mammalian retina (Gestri et al. 2012).  The first morphological 

event in zebrafish eye development is the formation of the optic lobe (optic vesicle) from 

primordial CNS at 11.5 hours post fertilization (hpf).  The RPE first becomes distinguished at 15 

hpf and continues development through 48 hpf.  Subsequently, the optic lobe transforms into the 

optic cup and the lens placode becomes more pronounced. At 48 hpf, ganglion cells and other 

retinal neurons begin differentiating and are post mitotic by 60 hpf.  Developing retinal cell 

layers include the following:  ganglion cell layer (ganglion cells), inner plexiform layer 

(amacrine cells), inner nuclear layer (horizontal & bipolar cells), and photoreceptor layer (rods 

and cones; Figure 1.3).  
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Although retinogenesis is mostly complete by 60 hpf and the zebrafish is hatched by 72 hpf 

(dependent upon temperature), the eye still grows in size throughout development and 

neurogenesis continues throughout the organism’s life span (Malicki et al. 2016).     

 

 
 
Figure 1.5: Anatomy of the zebrafish retina.  Hematoxylin and eosin (H & E) stained 6 µM axial 
section of zebrafish retina at 14dpf with labeled layers of the retina.  From outer to inner retina: 
ganglion cell layer, inner plexiform layer, inner nuclear layer, photoreceptor layer, RPE.  The 
sclera, cornea, and lens (important components of the eye) are also labeled for visualization. 
Photo by R. Babich. 
 
1.5 Summary 
 
 Arsenic exposure has been detected at levels that exceed the safe drinking standard of 10 

ppb in water supplies worldwide.  Given that many individuals are exposed to concentrations of 

arsenic exceeding 10 ppb throughout their lifetime, it is important to understand how arsenic 

may be impacting early development.  Epidemiological studies have been conducted and there is 

a growing awareness that early exposure to arsenic may be resulting in decreased intelligence 
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quotients in children.  How arsenic may be impacting neurogenesis on a molecular level has yet 

to be determined.  Very few studies have been conducted on the impacts arsenic may have on the 

visual system specifically.  Successful development of the visual system requires a complex 

network of genes, including paired box genes Pax6 and Pax2, and is critical to a functional 

lifestyle.  The zebrafish, which shares functional and structural similarity with human eyes, 

offers the ability to model the effects of arsenic on the visual system.  This Master’s Thesis aims 

to use the zebrafish model to identify changes in the expression of genes associated with eye 

development during neurogenesis correlated with the morphological consequences and impacts 

on retinal tissue development.  The results of this study could be extrapolated to give insight into 

the effect of arsenic on neurogenesis and early development of humans living in areas with 

contaminated drinking water supplies.  
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CHAPTER 2 
 

IDENTIFYING THE IMPACTS OF ARSENIC ON RETINOGENESIS 
 
2.1 Materials and Methods 
 
2.1.1 Fish Care and Exposure 
 
 One-cell AB-strain zebrafish embryos (University of Maine Zebrafish Facility) were 

treated with 0, 10, 50 or 500 ppb (500 µg/L) AsNaO2 (Sigma Aldrich, St. Louis, MO) in egg 

water  (60 µg/mL salt concentration made from Instant Ocean ®, St. Blacksburg, VA in D.I 

water).  The treatment regimen was chosen based upon the following:  10 ppb arsenic treatment 

is the current EPA safe drinking water limit, 50 ppb was the previous EPA limit (10 ppb 

regulations were enforced in 2006), and 500 ppb is at the upper level found in private wells in 

the U.S.  All treatments are environmentally relevant. Approximately 500 embryos were 

maintained in groups of 20 in a 28.5°C, 14:10 light -dark cycle incubator with 2.5 mL of solution 

per embryo in 50mL petri dishes for RNA extractions at 32 and 48 hpf.  Approximately 200 

embryos were maintained in groups of 20 in a 28.5°C, 14:10 light -dark cycle incubator with 2.5 

mL of solution per embryo in 50mL petri dishes for morphological and histological analysis. 

Throughout arsenic exposure the chorion was left on (until a natural hatch between 48 and 72 

hpf) so that the study was more biologically relevant.  Although the chorion has been seen to 

hinder the effects of arsenic reaching the embryo, arsenic is still able to pass through (Olivares, 

et al. 2016). Following hatch (~72 hpf), larvae were moved to 200 mL clean egg water at room 

temperature at a density of 50 fish/250mL beaker with 50% water changes every two days.  Fish 

were fed ground Tetrafin flakes until sacrificed.  This protocol was approved by the University 

of Maine IACUC, protocol number A2017-05-04.    
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2.1.2 Morphological and Histological Analysis 
 
 Fish were euthanized with buffered 0.025% MS-222 at 4, 7, and 14 days post fertilization 

(dpf), fixed in 10% buffered formalin for 24 hours, then transferred to 70% ethanol. Zebrafish 

were imaged under a Nikon P-DSL32 dissecting scope using a Nikon DS-Fi2 digital camera and 

examined for head and eye malformations.  Eye diameters were measured and compared to those 

of controls using ImageJ software.  A randomized subset of 6 fish per treatment and stage was 

used for histology. Tissues were dehydrated using an ethanol bath series to 100% citrosolv and 

embedded in paraffin (Freitag et al. 2016).  The following modifications were used to orient the 

eyes for uniform sectioning.  Fish were cured in paraffin overnight and extracted after 24 hours.  

This extra step, to allow the fish to harden in paraffin overnight, stabilized the larval body, which 

enabled more consistent positioning in paraffin in step 2.  Extracted fish were then re-embedded 

in paraffin in proper orientation for uniform eye sectioning. Serial sections of 6 µm were taken of 

the eyes, stained with hematoxylin and eosin (University of Maine Animal Health Lab) and 

analyzed using ImageJ software to measure retinal cell layer thickness. 

2.1.3 RNA Extraction and Quantitative Expression using RT-qPCR 

 Embryos were collected from exposure solutions at 32 and 48 hpf, mechanically 

dechorinated, and homogenized.  RNA was extracted from homogenates using Qiashredders and 

RNEasy minikit (Qiagen, Valencia, CA) following manufacturer’s protocol.  In each biological 

replicate there consisted 10 whole embryos per each RNA extraction.  A total of 6 extractions 

were done per treatment and stage (60 embryos).  cDNA was synthesized using an iScript cDNA 

synthesis kit and used for RT-qPCR (BioRad, Hercules, CA).  Genes of interest, Pax6a, Pax2a, 

Shha, Six3b, Sox2, Ngn1, and Ascl1a, were amplified using iTaq Universal SYBR green reagents 

(BioRad, Hercules, CA).  Efficiency was optimized between 90% - 110%.  Amplification 



	12 

procedures were completed using a CFX96 real time thermocycler (Biorad, Hercules, CA). See 

Appendix for thermocycler protocol details (Table A1) and primer sequences (Table A2); 

primers were synthesized by Integrated DNA Technologies (Skokie, IL). 

2.1.4 Statistical Analysis  
 
 qPCR target genes were normalized to B-actin expression and fold change was calculated 

using the Pfaffl method (Pfaffl 2001).  A one-way ANOVA was performed to test for 

significance between treatments at 32 and 48 hours post fertilization (hpf).   Levene’s test was 

used to determine variance homogeneity and Shapiro-Wilke was used to determine if data were 

normally distributed.  Significance was confirmed using post-hoc Tukey’s test. Upon failure of 

Levene’s test, Games and Howell post-hoc was used to determine significance among 

treatments.  Linear regression analysis was used to test the affect of AsNaO2 treatment on 

peripheral and posterior RPE thickness.  Statistical tests were conducted using SPSS software 

(IBM, Armonk, NY).  A one-way ANOVA was also used to test for significance between 

treatments at 4, 7, and 14 dpf for morphological and histological analysis. 

2.2 Results 
 
2.2.1 Morphological Analysis  
 
 At 4, 7, and 14 dpf, arsenic-exposed larvae were analyzed for alterations in eye size 

(Figure 2.1C).  At 14 dpf all three treatment levels resulted in a significantly increased horizontal 

eye diameter compared to the control (Figure 2.1A).  Fish exposed to 10 and 500 ppb showed a 

significantly larger vertical eye diameter relative to control (Figure 2.1B).  Fish from 50 ppb 

treatments had a slightly increased vertical diameter relative to controls but data were not 

significant (Figure 2.1B).   
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Horizontal to vertical ratios were calculated to distinguish if eye shape was round or oblong.   

There was no significant effect of treatment on the ratios (data not shown).  

 

  
Figure 2.1: Morphological analysis. (A) Horizontal and (B) vertical measurements of zebrafish 
eyes under 0, 10, 50, and 500 ppb AsNaO2 treatments from 1 – 72  hpf at 4, 7, and 14 dpf.  Bars 
represent length measured in mm ± SEM.  * p ≤ 0.05 from respective control, see Appendix  
Table A3 for specific p values. (C) Measurements were taken by imaging individual zebrafish 
eyes and using ImageJ software to calculate both horizontal (solid line) and vertical (dashed line) 
diameters.	
 
2.2.2 Histological Analysis  
 
 Following morphological analysis, whole zebrafish were sectioned and eye tissue was 

analyzed histologically.  The ganglion cell layer, inner plexiform layer, inner nuclear layer, outer 

plexiform and photoreceptor layers, and RPE were measured axially using ImageJ software 

(Figure 2.2).  There was a trend of reduced RPE cell layer thickness, both peripherally (near the 

lens) and posteriorly (mid-back of the eye), from 7 to 14 dpf at 500 ppb AsNaO2 treatments.  A 

linear regression was calculated to predict if RPE thickness is affected by AsNaO2 treatment.  A 
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significant regression equation was found (F(1,21) = 7.390, p = 0.013), with an R2 of 0.260.  

Posterior RPE thickness decreased at 14 dpf as treatment increased (β = -0.005).  Controls, 10 

ppb, and 50 ppb treatments show a pattern of increasing posterior RPE thickness from 4 to 14 

dpf (Figure 2.3B).  This pattern is also seen in controls for peripheral RPE thickness (Figure 

2.3A).  In 10 and 50 ppb treatments there is a slight decrease in peripheral RPE thickness at 7 dpf 

(not significant) followed by an increase in thickness at 14 dpf (Figure 2.3A). 

 

 
Figure 2.2: H & E stained sections of the zebrafish eye. Shown at 14 dpf cropped to emphasize 
differences in RPE thickness layer (yellow triangle) under AsNaO2 treatments. Sclera/choroid 
location indicated by red arrow.  The neural retina lies directly below RPE. 
 

 
Figure 2.3: Histological analysis.  (A) Peripheral and (B) posterior RPE cell layer thickness 
under 0, 10, 50, and 500 ppb AsNaO2 treatments from 1 – 72  hpf at 4, 7, and 14 dpf.  Bars 
represent cell layer thickness measured in µm ± SEM. * p ≤ 0.05 from respective control. See 
Appendix Table A3 for specific p values.  There was a significant regression in the posterior 
RPE thickness at 14 dpf with a p = 0.013   
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2.2.3 Quantitative Analysis of Genes Associated with Eye Development and Neurogenesis 

 Seven genes were analyzed by RT-qPCR for potential alterations in expression in 

response to AsNaO2 exposure.  Pax6a, Pax2a, Shha, Sox2, Ngn1, Six3b, and Ascl1a were chosen 

because of their prominent roles in early eye development and neurogenesis (Pébay et al. 2014).  

These genes are also shown to interact during neurogenesis (Figure 2.4) as determined by 

Ingenuity Pathway Analysis (Qiagen Bioinformatics, Redwood City, CA; see Appendix Figure 

A1-2).  Gene expression was analyzed at 32 and 48 hpf as these are critical time points in 

zebrafish in the development of the neural retina and the RPE.  Arsenic has also been seen to 

have a previous effect on mRNA expression levels of Sox2, Pax6, Ascl1, and Shha (Al – Eryani 

et al. 2012, Tyler and Allan 2013, Fei et al. 2010). 

 

Figure 2.4: Interactions between genes of interest during neurogenesis.  Pathway modified from 
Ingenuity Pathway Analysis software (Qiagen Bioinformatics, Redwood City, CA).  
 
 Pax6a, Pax2a, Shha, Sox2, and Ngn1 were differentially expressed among treatments at 

both 32 and 48 hpf (Figure 2.5A-E).  Six3b showed trends in expression among treatments but 
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data were not statistically significant (Figure 2.5F).  Ascl1a expression was differentially 

expressed at 32 hpf but shows little variation from control expression levels at 48 hpf (Fig. 

2.5G).   

 Pax6a, Ngn1, Shha, and Pax2a were significantly upregulated with 50 ppb AsNaO2 

treatment at 32 hpf (Figure 2.5A-D).  Ngn1 and Pax2a were significantly upregulated under 50 

ppb AsNaO2 treatments (Fig. 2.5B-C) at 48 hpf and Sox2 was significantly upregulated under 

500 ppb AsNaO2 (Figure 2.5E).  At 500 ppb arsenic exposure Pax6a, Pax2a, Shha, and Ascl1a 

expression at both 32 and 48 hpf were downregulated relative to control (Figure 2.5A,B,D,G).  A 

similar downregulation occurs under 10 ppb treatments at 32 and 48 hpf of Pax6a, Pax2a, Six3b, 

and Ascl1a (Figure 2.5A,B,F-G).  There was increased expression at 32 and 48 hpf under 50 ppb 

treatment of Six3b, Shha, Sox2, Ngn1, and Pax2a (Figure 2.5B-F).  The greatest effect of 

AsNaO2 on gene expression occurred in fish exposed to 50 ppb arsenic at both 32 and 48 hpf.  

See appendix Figure A4 and A5 for further visualization of gene expression data by heat map 

clustering.  We have noted that at 50 ppb there is a lack of correlation between the gene 

expression data and alterations in morphology.  Previous studies have suggested that arsenic may 

go through a different toxicity mechanism at high and low doses (Davey et al. 2007, Bodwell et 

al. 2004), which could possibly explain the gene expression irregularity seen at 50 ppb 

treatments.  
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Figure 2.5: RT-qPCR results of gene expression associated with eye development.  RT-qPCR 
results of gene expression associated with eye development (A-G) and neurogenesis following 
10, 50, and 500 ppb AsNaO2 treatment conditions from ~1 hpf until time of extraction at 32 and 
48 hpf.  Bars represent fold change (Pfaffl method) relative to control (0 ppb) ± SEM. 
indicates significant difference between two treatment groups, indicates significant difference 
between treatment and control p ≤  0.05, see Appendix Table A4 for specific p values.  
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CHAPTER 3 
 

DISCUSSION 
 
 The findings of the present study indicate that arsenic exposure may affect eye 

development and retinogenesis in the zebrafish. Analysis of expression of genes key to retinal 

and RPE development coupled with the observed thinning of the RPE and an increase in eye size 

over 14 days under arsenic treatment conditions suggest that arsenic exposure may affect eye 

development and retinogenesis. This can be seen in an overall larger eye diameter at 14 dpf 

under treatment conditions as well as a decrease in both the posterior and peripheral RPE.  The 

RPE is a pigmented layer that acts as an interface between the neural retina and the choroid and 

sclera, absorbing stray light that has passed through the photoreceptors (Sparrow et al. 2010).  

Besides protecting the integrity of visual images from additional light it also acts as a blood- 

retina barrier and contains receptors necessary for retina – sclera communication.  The sclera, 

primarily composed of collagens and fibers, is responsible for maintaining the shape of the eye 

while providing protection for intraocular structures and acting as a stable base for ciliary muscle 

contractions.   

 Normal scleral development is highly dependent on cues from the neural retina and RPE. 

These include dopamine and growth factors FGF-β and TGF-β  (Zhang and Wildsoet, 2015). 

Dopamine antagonist apomorphine has been shown to inhibit scleral growth and dopamine 

combined with FGF-β has been seen to reduce scleral thinning (Rohrer et al. 1995).  FGF-β is 

produced in the developing neural retina (Desire, 1998). The RPE contains FGFR1, FGFR2 

(Rosenthal, 2005), and Dopamine receptors to initiate signals to the sclera for growth. The RPE 

also has the ability to produce FGF-β and FGF-β, TGF-β specifically have been shown to inhibit 

scleral thinning by decreasing collagen degradation (Uchida et al. 2008), and may modulate 
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scleral growth via cell matrix interactions (Shelton et al. 2008).  Arsenic has also been seen to 

have an effect on DAR mRNA expression levels (Rodríguez et al. 2010) and TGF-β production 

(Allison et al. 2013) which may also be playing a role in reduced communication of growth 

factor signals to the sclera.  

 The arsenic-induced decrease in RPE thickness over time could impact the ability of the 

RPE to communicate with the sclera.  Miscommunication of the RPE with important growth 

factors such as FGF-β and TGF-β could result in collagen degradation and thinning of the sclera.  

As the sclera thins, it loses its strength and elasticity, which leads to abnormal eye growth and 

the potential for an increased vitreous chamber at later stages.  A thinning of the sclera has been 

associated with the development of myopia, or nearsightedness, and is characterized by an 

increase in axial length of the eye causing refractive error (McBrien and Gentle, 2003).  Axial 

length is most commonly elongated when there is scleral thinning and an increase in the vitreous 

chamber.  

The length of the retina, from the ganglion cell layer to the RPE, was also measured axially (see 

Appendix Figure A3) but the data was not significant.  Other cellular layers (such as ganglion, 

inner plexiform, and nuclear cell layers) under treatments remained similar to control values.  

The thinning of the RPE and possible scleral degradation could account for the increase seen in 

overall all eye size under treatment conditions even though the retina does not appear to be 

increasing at the same rate axially.  There may be extraneous fluid stored in the eye that is not 

visible by histological analysis, or that may have been lost during the fixation process.  

 To investigate the effects of arsenic on a molecular level, we studied genes essential for 

successful eye formation within 60 hpf.  The paired box genes, Pax6a and Pax2a, are known to 

be involved in retinogenesis, and co-expression is necessary for the development of the RPE.  
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Both Pax6a and Pax2a bind to the RPE genetic marker Mitf. Mitf or micropthalmia-associated 

transcription factor is involved in early development of the eye and null mutants result in 

transdifferentiation of the RPE into the neural retina. Specifically, Mitf expression patterning in 

the optic vesicle is necessary to mark boundaries of the presumptive RPE and distinguish it from 

the neural retina (Baumer et al. 2003).  At 500 ppb AsNaO2 treatments, both Pax6a and Pax2a 

are downregulated at 48 hpf relative to controls (Figure A5).  

 Shha, Six3b, and Sox2 are also involved in the development of the RPE.  Differential 

expression of these key developmental genes supports histological data of decreasing RPE 

thickness with higher exposure levels of arsenic.  Although differences in Six3b gene expression 

were not significant, Six3b was upregulated at 48 hpf.  In a study done on early embryogenesis in 

Xenopus, an overexpression of Six6 (Six3b) led to a reduction in RPE cells (Bernier et al. 2000).  

Therefore, arsenic effects on early Six3b expression may be playing a role in the reduced 

zebrafish RPE cellular layer seen at 14 dpf.  Similarly, continued expression of Sox2, which has 

been studied in avian RPE development, disrupts RPE morphogenesis and cellular differentiation 

(Yasou et al. 2009).  

 At 48 hpf there is an upregulation of Sox2 in all three treatments. Pax6a, Pax2a, Six3b, 

and Sox2 gene expression levels that correlate with disrupted RPE development are consistent 

with our own gene expression observations at 48 hpf under 500 ppb treatment (Figure A5).  This 

may suggest a mechanism for RPE is thinning at later stages (Figure 3.2).  
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Figure 3.1: Predicted molecular interactions in the normal developing eye.  Pax6a, Pax2a, Sox2, 
Six3b, and Shha are expressed in the developing neural retina and RPE.  Growth factors 
dopamine (DA) and FGF-β are produced in the neural retina, pass through the RPE via dopamine 
and FGF receptors and ultimately are transported to the sclera.  FGF-β and TGF-β are also 
produced by the RPE and are transported to the sclera.  These growth factors stimulate collagen 
fibril formation and prevent collagen degradation.  Both are necessary for the development of a 
functional sclera.   
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Figure 3.2: Predicted molecular interactions in the developing eye following arsenic exposure. 
Pax6a, Pax2a, Sox2, Six3b, and Shha are differentially expressed relative to controls in the 
developing neural retina and RPE.  The effect of arsenic on expression of these genes may be 
inhibiting proper development of the RPE (observed by RPE thinning), resulting in an inability 
of important growth factors from the neural retina to communicate with the sclera or the inability 
of the RPE to properly produce FGF-β and TGF-β.  Without functional communication of 
growth factors to the sclera collagen fibrils begin to degrade and the sclera loses its stability.  
This could result in an overall larger eye and an increased chance for the development of 
myopia. 
 
 AsNaO2 treatments of 10 and 500 ppb show a similar downregulation of Pax6a, Pax2a, 

and Ascl1a at both 32 and 48 hpf.  Given the importance of Pax6a / Pax2a interactions as 

transcription factors in the developing retina and RPE this may explain the similarities of 

increased eye size at 14 dpf.  Although there is a significant increase in eye size at 14 dpf under 

all treatments horizontally and 10 and 500 ppb vertically there is not a noticeable decrease in 

RPE cell layer thickness at 10 and 50 ppb.  Given the ability of the zebrafish to regenerate retinal 

cells, it is possible that we would not observe a difference in 10 and 50 ppb treatments, but 

communication between the sclera and neural retina through the RPE may still be compromised.  
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Since there is a distinct thinning of the RPE at 14 dpf under 500 ppb treatments this may be 

indicative of higher arsenic concentrations inhibiting or delaying their regenerative capacity.   

 To our knowledge, this study is the first to link arsenic to the developing eye and its 

indirect impact on RPE and scleral development through changes in genes critical to the 

developing visual system. The molecular analysis of core genes related to retina and RPE 

development coupled with the histological thinning of the RPE and an increase in eye size over 

14 days under treatment conditions suggest arsenic may affect eye development and 

retinogenesis.  The thinning of the RPE cellular layer suggests disruption in RPE development.  

If the RPE is not properly formed its role in the communication of growth signals from the retina 

to the sclera may be compromised.   Improper sclera development could lead to decreased 

elasticity and collagen degradation, allowing the vitreous chamber and overall eye to increase in 

size.  In this study the fish have not yet reached an age at which their vitreous chambers are 

developed.  It would be interesting to further investigate morphology and histology in adult 

zebrafish who were exposed to arsenic during embryonic development to see if the RPE 

continues to thin under treatment and if it is coupled with increased vitreous chambers.   
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CHAPTER 4 
 

FUTURE DIRECTIONS 
 
 Arsenic exposure produced larger eyes and a thinned RPE layer in zebrafish larvae as 

well as differential expression of genes key to retinogenesis. In order to gain a clearer 

understanding of how arsenic may be affecting eye development, a variety of analyses using the 

zebrafish model can be explored.  These include studying arsenic impact on zebrafish eye 

regeneration, protein expression analysis, and behavioral studies to test vision impairment. 

4.1 Exploring the Impacts of Arsenic on Zebrafish Regeneration 

 An inhibition or delay in the zebrafish regenerative capacity could be explored further by 

an embryonic exposure to arsenic followed by morphological and histological analysis of adult 

fish.   Zebrafish are known to regenerate eyes after mechanical and light injury (Thummel et al. 

2010).  If fish were treated with arsenic during embryogenesis and later sustained damage to the 

eye as adults, it would be interesting to see if their regenerative response was still at full capacity 

or hindered by arsenic exposure.  

 Although in this study, Ascl1a did not show a significant difference in expression from 

control levels, it may be more informative to examine Ascl1a expression in the adult.  Ascl1a is 

considered to be the master gene in zebrafish eye regeneration, being one of the first genes to be 

upregulated upon injury activating WNT, Notch, and Hedgehog pathways in the regeneration 

response (Ramachandran et al. 2010; 2011).  If Ascl1a is not upregulated upon injury then other 

factors could be inhibited in the regenerative pathway including, but not limited to, activation of 

Mueller glia for phagocytosis, dedifferentiation and proliferation of retinal progenitor cells, and 

differentiation of cells by genetic markers.  

 



	25 

4.2 Protein Analysis  

 It would also be interesting to explore how arsenic exposure may be affecting protein 

expression of the target genes.  Protein expression can be analyzed by western blot and protein-

arsenic interactions can be explored via an arsenic pull down assay.  Western blot analysis would 

give insight on the effects of arsenic on successful protein translation.  If arsenic exposure 

resulted in decreased protein expression, then protein formation may have been inhibited or post-

translational modifications may have been disrupted.  Pax6 is known to be phosphorylated by 

homeodomain-interacting protein kinase 2 (HIPK2; Kim et al. 2006), thus phosphorylation could 

be investigated using phospho-specific antibodies.  An arsenic-biotin pull down assay would 

provide evidence that arsenic was interacting directly with target proteins (Heredia-Moya and 

Kirk 2008, Zhang et al. 2015). AsIII has a high binding affinity to sulfyhydryl and cysteine 

groups in polypeptides (Shengwen et al. 2013).  Both Pax6 and Pax2 contain cysteine groups.  

There are 7 total cysteines in Pax6, 4 of which are in the paired domain, and 4 total cysteines in 

Pax2 (3 in paired domain).  An interaction of arsenic with a Pax6 cysteine could result in a 

conformational change and could potentially hinder the ability of Pax6 to bind and regulate gene 

expression necessary for eye development.   

4.3 Behavioral Assays  

 Given that our data suggest that arsenic affects eye development both morphologically 

and genetically, it may also be inhibiting visual function.  Improper eye formation or an inability 

to transmit visual signals from the eye to the brain could impair vision.  Behavioral assays could 

identify the functional impact of the observed genetic and morphological changes.  These assays 

could include an optokinetic response (OKR), which is used to track eye movement in response 

to a stimulus (Brockerhoff, 2006).  Other visual behavioral tests include the startle response 
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(SR), optomotor response (OR), and escape response (ER) (Chhetri et al. 2014).  Although a 

behavioral assay is not yet available to specifically measure myopia in zebrafish, there have been 

studies done using laser technology (spectral domain-optical coherence tomography) to measure 

axial length of the retina in the developing zebrafish (Collery et al. 2014).  This method is non-

invasive, allowing the ability to track axial length throughout development, and provides a more 

acute insight into myopia progression in the zebrafish model.  

 The zebrafish offers a variety of ways to study toxicological impacts of arsenic on 

neurogenesis and the developing eye.  By utilizing the above technologies we can gain greater 

insights as to the direct and indirect impacts of arsenic exposure on proteins, visual functionality, 

and the regenerative capacity of the zebrafish. Given that eye development is an essential part of 

neurogenesis, knowledge gained from these studies could be related to arsenic effects on early 

child development and be implemented to show the severity of arsenic on neurogenesis.    
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APPENDIX 
SUPPLEMENTAL MATERIAL FOR A GREATER UNDERSTANDING OF FINDINGS 

FROM THE CURRENT STUDY  
 

Table A1: BioRad thermocycler protocol.  BioRad thermocycler protocol used for RT-qPCR 
analysis. 
 
Thermocycler protocol 
Step 1 Step 2  Step 3  Step 4 Step 5 Step 6 
95°C for 
30 sec 

95°C for 5 
sec 

Annealing temp for 
45 sec 

Repeat steps 2 – 3 
39x 

95°C 
for 10 
sec 

Melt curve 
analysis 

 
Table A2: qPCR specifications.  List of genes, reverse and forward primers, annealing 
temperature, primer nm used, and % efficiency (E) for all genes analyzed by RT-qPCR. 

 

Gene 

F primer 5’! 3’ R primer 5’! 3’ Annealing 
Temperat
ure C° 

Reacti
on 
Quantit
y (nm) 

% 
E  

Pax6
a  

CTGACGTTTTTGCACGA
GAA  

AAAGGATACTGGCGTT
GTGG  

50.4 300 10
6 

Pax2
a  

TCTCACCCGCAGTACAC
AAC  

CTAGTGGCGGTCATAG
GCAG  

58.5 300 11
1 

Ngn1  CAGAAGCAGGGCAAGTC
AAG  

CACTACGTCGGTTTGCA
AGT  

51.6 350 10
2 

Six3b  CACATCTTTTCCTGCCCA
AT  

GATGGACTCGTGCTTGT
TGA  

53.5 400 10
5 

Sox2  GAGTCTAGTTCGAGTCC
GCC  

CAGGTGCGCTCTGGTAA
TGT  

59.8 400 10
3 

Shha  TGTCCTCGACAACTCAA
CGG  

TCCGTGTATATCCGCTG
CAC  

57.7 300 94 

Ascl1
a 

GCCAGACGGAACGAGA
GAGA  

AGGGTTGCAAAGCCGT
TG  

60.7 400 10
5 

Bacti
n 

CGAGCAGGAGATGGGA
ACC 

CAACGGAAACGCTCAT
TGC 

58.3 400 10
2 
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Table A3: P values of morphological and histological data.  A one-way ANOVA was performed 
to test for significance between treatments at 4, 7, and 14 hpf.  Significance was confirmed using 
post-hoc Tukey’s test. Upon failure of Levene’s test, Games and Howell post-hoc was used to 
determine significance among treatments (corresponds to Figures 2 and 4).   

 

Measured 

Treatments 
Compared 
(µg/L) 

P value  

 
Measured 

Treatments 
Compared 
(µg/L) 

P 
value  

Morphology at 4 dpf      

 

Histology at 4 
dpf    

Horizontal eye diameter 0-10 0.903 
 

Posterior RPE 0-10 0.789 
  0-50 0.91 

 
  0-50 1 

  0-500 0.12 
 

  0-500 0.662 
  10-50 1 

 
  10-50 0.954 

  10 - 500 0.072 
 

  10 - 500 0.702 
  50 – 500  0.073 

 
  50 – 500  0.968 

Vertical eye diameter 0-10 0.971 
 

Peripheral RPE 0-10 0.936 
  0-50 0.84 

 
  0-50 0.694 

  0-500 0.616 
 

  0-500 0.293 
  10-50 0.98 

 
  10-50 0.157 

  10-500 0.86 
 

  10-500 0.888 
  50-500 0.977 

 
  50-500 0.694 

Morphology at 7 dpf     
 

Histology at 7 
dpf    

Horizontal eye diameter 0-10 0.899 
 

Posterior RPE 0-10 0.981 
  0-50 0.998 

 
  0-50 0.993 

  0-500 0.997 
 

  0-500 0.865 
  10-50 0.815 

 
  10-50 0.949 

  10 - 500 0.803 
 

  10 - 500 1 
  50 – 500  1 

 
  50 – 500  0.949 

Vertical eye diameter 0-10 0.789 
 

Peripheral RPE 0-10 0.999 
  0-50 0.774 

 
  0-50 0.995 

  0-500 0.811 
 

  0-500 0.803 
  10-50 1 

 
  10-50 0.999 

  10-500 1 
 

  10-500 0.736 
  50-500 1 

 
  50-500 0.664 

Morphology at 14 dpf     
 

Histology at 14 
dpf    

Horizontal eye diameter 0-10 0.001 
 

Posterior RPE 0-10 0.889 
  0-50 0 

 
  0-50 0.112 

  0-500 0.011 
 

  0-500 0.892 
  10-50 0.175 

 
  10-50 0.037 
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  10 - 500 0.678 
 

  10 - 500 0.311 
  50 – 500  0.871 

 
  50 – 500  0.311 

Vertical eye diameter 0-10 0.025 
 

Peripheral RPE 0-10 1 
  0-50 0.115 

 
  0-50 0.817 

  0-500 0.028 
 

  0-500 0.336 
  10-50 0.266 

 
  10-50 0.066 

  10-500 0.939 
 

  10-500 0.789 
  50-500 0.461 

 
  50-500 1 

 
 

Table A4: P values of RT-qPCR data.  A one-way ANOVA was performed to test for 
significance between treatments at 32 and 48 hpf.  Significance was confirmed using post-hoc 
Tukey’s test. Upon failure of Levene’s test, Games and Howell post-hoc was used to determine 
significance among treatments (corresponds to Figure 2).   

 

32 hpf 

 

48 hpf 

Gene 
Treatments 
Compared 
(µg/L)  

P value  

 

Gene 
Treatments 
Compared 
(µg/L)  

P value  

Pax6a 0-10 0.674 
 

Pax6a 0-10 0.666 
  0-50 0.062 

 
  0-50 0.106 

  0-500 0.936 
 

  0-500 0.85 
  10-50 0.005 

 
  10-50 0.651 

  10 - 500 0.945 
 

  10 - 500 0.988 
  50 – 500  0.018 

 
  50 – 500  0.45 

Pax2a 0-10 0.984 
 

Pax2a 0-10 0.998 
  0-50 0.059 

 
  0-50 0.05 

  0-500 0.988 
 

  0-500 0.831 
  10-50 0.021 

 
  10-50 0.041 

  10-500 1 
 

  10-500 0.857 
  50-500 0.022 

 
  50-500 0.03 

Ngn1 0-10 0.816 
 

Ngn1 0-10 0.999 
  0-50 0.66 

 
  0-50 0.041 

  0-500 0.899 
 

  0-500 0.996 
  10-50 0.011 

 
  10-50 0.042 

  10 - 500 0.48 
 

  10 - 500 0.987 
  50 – 500  0.999 

 
  50 – 500  0.063 

Six3b 0-10 0.582 
 

Six3b 0-10 0.586 
  0-50 1 

 
  0-50 0.155 

  0-500 0.961 
 

  0-500 0.335 

Table A3 continued 
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  10-50 0.051 
 

  10-50 0.761 
  10-500 0.65 

 
  10-500 0.964 

  50-500 0.899 
 

  50-500 0.956 
Sox2 0-10 0.998 

 
Sox2 0-10 0.325 

  0-50 0.992 
 

  0-50 0.233 
  0-500 0.999 

 
  0-500 0.012 

  10-50 0.973 
 

  10-50 0.277 
  10 - 500 0.987 

 
  10 - 500 1 

  50 – 500  0.973 
 

  50 – 500  0.816 
Shha 0-10 1 

 
Shha 0-10 0.731 

  0-50 0.341 
 

  0-50 0.699 
  0-500 0.903 

 
  0-500 0.795 

  10-50 0.022 
 

  10-50 1 
  10-500 0.681 

 
  10-500 0.238 

  50-500 0.039 
 

  50-500 0.218 
Ascl1a 0-10 0.654 

 
Ascl1a 0-10 0.935 

  0-50 0.854 
 

  0-50 0.998 
  0-500 0.933 

 
  0-500 0.998 

  10-50 0.505 
 

  10-50 0.876 
  10 - 500 0.6 

 
  10 - 500 0.994 

  50 – 500  0.977 
 

  50 – 500  0.961 
 

 
 

Table A4 continued 
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Figure A1: Genetic pathway designed by Ingenuity software displaying genes that are upstream 
of Pax6.  Genes circled in black were chosen as target genes for this study. 
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Figure A2: Genetic pathway designed by Ingenuity software, displaying genes that are 
downstream of Pax6.  Genes circled in black were chosen as target genes for this study. 
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Figure A3: Retinal axial length.  Retinal axial length measured from the ganglion cell layer to 
the RPE cell under 0, 10, 50, and 500 ppb AsNaO2 treatments from 1 – 72 hpf at 4, 7, and 14 
dpf.  Bars represent cell layer thickness measured in µm ± SEM.  
 

 
 
Figure A4: Heat map of target gene fold change relative to control at 32 hpf.  Heat map of target 
gene fold change (Pfaffl method) relative to control at 32 hpf   under 10, 50, and 500 ppb 
AsNaO2 treatments from 1 – 72 hpf.  Genes are clustered by similarities among fold change.  
Colors represent a gene that is downregulated (blue) or upregulated (red) compared to control 
under treatments.  This heat map was designed by Morpheus® software.  
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Figure A5: Heat map of target gene fold change relative to control at 48 hpf.  Heat map of target 
gene fold change (Pfaffl method) relative to control at 48 hpf under 10, 50, and 500 ppb AsNaO2 
treatments from 1 – 72 hpf.  Genes are clustered by similarities among fold change.  Colors 
represent a gene that is downregulated (blue) or upregulated (red) compared to control under 
treatments.  This heat map was designed by Morpheus® software.   
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