
The Space Congress® Proceedings 1968 (5th) The Challenge of the 1970's 

Apr 1st, 8:00 AM 

Determining the Magnetism of Small Spacecraft Determining the Magnetism of Small Spacecraft 

M. H. Lackey 
U. S. Naval Ordnance Laboratory White Oak, Maryland 

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings 

Scholarly Commons Citation Scholarly Commons Citation 
Lackey, M. H., "Determining the Magnetism of Small Spacecraft" (1968). The Space Congress® 
Proceedings. 1. 
https://commons.erau.edu/space-congress-proceedings/proceedings-1968-5th/session-11/1 

This Event is brought to you for free and open access by 
the Conferences at Scholarly Commons. It has been 
accepted for inclusion in The Space Congress® 
Proceedings by an authorized administrator of Scholarly 
Commons. For more information, please contact 
commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1968-5th
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1968-5th%2Fsession-11%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1968-5th/session-11/1?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1968-5th%2Fsession-11%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/


DETERMINING THE MAGNETISM OF SMALL SPACECRAFT

by M. H. Lackey
U. S. Naval Ordnance Laboratory 

White Oak, Maryland

Introduction

A satellite has permanent magnetism 
associated with it resulting from the magnetization 
of ferrous items distributed about its volume. 
The magnetism will interact with the earth ! s 
magnetic field producing a torque about the 
center of gravity of the satellite. If this 
torque is large, it can misalign the satellite 
and cause it to oscillate in its orbit. Prior to 
launch the magnetic field from the permanent 
magnetism can be measured and analyzed to 
determine how much torque will be produced by an 
external magnetic field. Ideally there exists 
some dipole moment called the "effective or 
resultant dipole moment of the satellite," which 
produces an equivalent interaction with respect 
to torque in the earth f s magnetic field.

This paper contains a general discussion 
of the process for defining the effective dipole 
moment of a satellite. Illustrations are included 
to clarify the discussion. A description is given 
of the coil facility in which the magnetic testing 
is accomplished and of the method for measuring 
the magnetic field of the satellite. Parameters 
that affect the measurements are described, e.g., 
the effect of instrument sensitivity and distance 
of measurement on the smallest measurable dipole 
moment. Basic analysis procedures are discussed, 
and possible methods for improving and extending 
the procedures are given. Computer generated 
curves are included as examples of typical 
measurement data. No attempt is made in this 
paper to provide thorough mathematical details 
although mention is made of harmonic analysis 
techniques and methods of least squares approx 
imation. The purpose herein is to survey the 
general procedures for measuring and analyzing 
the magnetism of satellites.

Coil Facility

The Naval Ordnance Laboratory (NOL) has 
coil facilities in which background magnetic 
fields can be set up in any direction with 
amplitudes from 0 to 600 millioersted. The 
background field is uniform to better than 0.1 
percent over a sphere eight feet in diameter. 
The stability of the field is better than ±2 
gamma for typical measurement periods (2 to 3 
minutes). The facility generally used for 
spacecraft testing contains a 24-foot cubical 
coil system as shown in Figure 1. The system 
contains coils for generating fields along 
three orthogonal axes. There are two independent 
coils for each axis. The magnetic axis for the 
x-coils is horizontal and parallel to magnetic 
north. The magnetic axis for the y-coils is

horizontal and perpendicular to magnetic north. 
The number of turns in each coil segment has 
been adjusted to give optimum uniformity in the 
generated field. The center z-coil segment 
is pivoted to permit items with diameters as 
large as eight feet to be placed inside the coil 
system. The facility contains a 6 x 3 foot 
concrete monolith. The top of the monolith is 
even with the floor at five feet two inches 
below the center of the coil system. This 
allows heavy items to be tested with rigid 
support.

The sensitivity of the test facility is in 
the range of 1 to 4 gamma. This sensitivity, 
along with the measurement distance, determines 
the smallest measurable dipole moment. Figure 2 
shows this relationship for a sensitivity of 
4 gamma when the axial field of the dipole is 
considered. The vertical scale has been 
increased to extend the range of the curve. For 
measurements at a distance of 4 feet the smallest 
measurable dipole moment is about 18 gauss-cm . 
For 10 feet the value is 283 gauss-cm-*.

Measurement Techniques

Facility equipment for measuring and 
recording components of the magnetic field 
includes magnetometers, an xy-recorder and a 
turntable. Voltage outputs from a magnetometer 
and the turntable feed the xy-recorder producing 
graphs representing a component of the magnetic 
field versus the turntable rotation angle. The 
measurements can be recorded with a sensitivity 
of 10 gamma/inch and 3Q°/incn - F^r future 
measurements a gimballing structure will b« 
needed to give a tilt axis as shown in Jlgure 3. 
This will provide the 2 degrees of freedom 
necessary for adequate data. The coordinate 
axes for the satellite are initially aligned 
as shown. With this orientation the measurements 
can easily be identified by the spherical 
coordinates (r,9,q>) where r is the measurement 
distance, 9 is the azimuth or tilt angle, 
and qj is the zenith or rotation angle.

Measurements are made of the normal 
component of the magnetic field on the surface 
of a sphere surrounding the satellite. Sensitive 
magnetometers are used to determine the measure 
ment data while the satellite is in a zero 
magnetic environment. At positions close to the 
satellite local magnetic effects generally 
dominate the magnetometer readings. In the 
past, measurements were made remote enough to 
reduce the local effects and to simplify th«



analysis procedures. This technique is no longer 
satisfactory with current requirements to measure 
small dipole moments. The remote measurements 
are limited as a result of background fluctuations 
which obscure the measurements, and from the lack 
of magnetometer sensitivity. Measurements must 
therefore be made at some intermediate distance 
and analysis techniques must be developed which 
are not hampered by any local effects that might 
still show up.

The test sequence starts when a zero magnetic 
environment has been set up within the facility 
reducing the possibility of interference from any 
induced magnetism that might occur. Next, 
recordings are made of the normal component of 
the magnetic field along the great circle in the 
xz-plane (horizontal plane). The curve begins 
with a measurement along the +z axis and continues 
to +x, -z, -x, and back to -Hz. The turntable 
rotation is used to generate the curve. The 
satellite is then titled through some given 
angle and a new recording is made beginning with 
+z. The process is repeated and more recordings 
are made until measurements have been made along 
the great circles of a sphere (the measurement 
sphere) as shown in Figure 4. The circles can 
be designated by a set of azimuth angles 9. 
(tilt angles). Assume, for example, that the 
function

represents the normal component of the magnetic 
field on the measurement sphere of radius a. 
Then the family of measurement curves are the 
set of 1-dimensional functions

where n is the number of curves in the family. 

Analysis Techniques

A computer program was devised to provide 
data to use in the study of analysis techniques. 
The program generates curves that would be 
obtained from measurements around given systems 
of symmetric multipole magnets. Specifications 
for a system of magnets are fed into the computer. 
Curves are then calculated and plotted representing 
the resulting magnetic field around the system. 
The program has the capability to vary certain 
parameters associated with the system of magnets, 
and then to generate families of curves 
representing the effects of these parameters. The 
program can also reduce each curve to its Fourier 
components if desired.

The mathematical models shown in Figure 5 
are used to represent the individual magnets of 
a system. These models are used to simplify 
the mathematics for calculating the field around 
the system. Each arrow represents a dipole. 
The poles at the center of each magnet cancel, 
and the resulting configuration is identical to 
the one in the actual model.

Parametric Effects

A series of figures is presented to display 
the effects of certain parameters on measurements 
around dipoles in the xy-plane. The curves in 
each figure represent the normal component of the 
magnetic field around a circle with 4 foot radius 
in the xy-plane. Figure 6 shows a family of 
curves obtained by varying the dipole length 
L from 2 to 20 inches. The dipole moment was 
held constant. Figure 7 shows a family of curves 
generated by offsetting the dipole along the 
x-axis from 0 to -14 inches. Figure 8 shows a 
family of curves resulting from dipole offsets 
along the y-axis from 0 to -14 inches. The 
dipole for Figures 7 and 8 was 4 inches long. 
The axis of the dipole was parallel to the 
y-axis. Table 1 gives a comparison of the 
fundamental components of the individual curves. 
These were obtained from a numerical Fourier 
analysis. There is less than four percent 
variation in the amplitudes between curves from 
a 2 inch dipole and a 20 inch dipole measured 
at 4 feet. Families of curves similar to those 
in Figures 7 and 8, and based on actual measure 
ments of a dipole, are given in [1].

The variation in the amplitudes of the 
fundamental components of the curves in Curve 
Families I and II (see Table 1) gives some 
indication of the accuracies to be expected when 
fitting a centered dipole to the measured data 
from near measurements. The fundamental 
component determines the direction and magnitude 
of the centered dipole which approximates the 
data with a least squares error. (Fourier 
analysis is a least squares approximation. ) 
This suggests that the eccentricity or offset 
of a dipole should be considered when fitting 
the data as described by Chapman and Bartels2 
(p. 648). Of course if the curves were calculated 
for a greater measurement distance (r»4 feet) 
then the fundamental components would show less 
variation. They would represent the magnitude 
and direction of the actual offset dipole 
more closely. This is one advantage of using 
remote measurements.

Torque Relationships

Before beginning any detailed discussion 
of basic analysis procedures it will be instructive 
to justify our concern with only the dipole 
component of the magnetism. This can be shown 
by investigating torque diagrams as shown in 
Figures 9 and 10. Figure 9 shows a diagram of 
the interaction between a dipole of moment 
m(r, - rp ) and a uniform field of strength H.

The torque f ̂ about some arbitrary point P is

! fi=1 i x I =i r x1 (mH) + r, x (-mH)

x H

if.1-2



which is independent of P, as expected. Figure 10 
shows a diagram of the interaction between a 
square quadrupole with poles of strength m, 
and the uniform field 3. The torque TQ about P 
is - w

V
= ?! x (-mH) + f 2 x (mfi) + ?3 x (-mH) + 

= [(f - r + (p - ?)] xmH= 0

where F. = m.H is the force vector acting on the

ith monopole. TQ is zero since the vectors
(f0 - f T ) and (f, - r0 ) have equal magnitudes <> ± 4+ j
and are antiparallel. It can be shown likewise 
that the net torque on any higher order magnet 
is zero (in a uniform field). Therefore, only 
the dipole moment has to be determined to 
represent the satellite magnetism when torque 
equations are considered.

Monopole System

Consider a hypothetical system of N monopoles 
of pole strengths m, and position vectors r^.
Then the torque f about the origin due to a 
uniform field of strength S is

T =

where

f. x F = m.f, 
i=l 1

xfi = M x H

- E mtf ±

is the effective dipole moment of the system 
about the origin. If

m. = 0

(1)

(2)

(3)
1=1

then (1) and (2) are independent of the origin . 
Let

.3 .

U)

be the "magnetic center C 11 of the system and let

fi = ?i - V

If (3) does not hold then M consists of two terns 
as shown in (5). The first term on the right 
represents the net dipole moment of the system 
about the magnetic center. The second term 
represents the monopole moment relative to the 
origin. Assume for example that all the monopoles 
are positive or all are negative. Then

( 8 8 ( 8 v / 8 v = 1 Vi 1=1 i x 1=1 x 1=1 i 1
and (5) implies

= 0.

Then

Therefore the moment of the system results strict^ 
from the monopole moment. (The dipole moment 
relative to the magnetic center is zero. j Of 
course the problem still remains of finding the 
proper system of monopoles. This could be 
difficult since in general there is no unique 
system based solely on the measured data*

Basic Dipole Moment Calculations

Procedures for calculating the resultant 
dipole moment from measured data can be relatively 
simple, depending on the complexity of this data. 
If the measurements were made around a large 
enough sphere, then geometric effects and the 
field from high order magnets would be greatly 
reduced relative to the field from the dipole. 
Figure 11 shows fall-off curves for the aiial 
field from magnets with equal pole strengths 
and equal diameters or lengths. Ho particular 
units were used. Figures 12 and 13 show a 
comparison between near and remote fields 
around a system of five dipoles with different 
locations and orientations* The near field 
was computed for a radius of 4 feet and the 
remote field for 40,000 feet. Curves from the 
remote measurements reduce to simple sine waves 
representing the field from the resultant dipole, 
The components of the resultant dipole moment 
of the system can be calculated from the sine 
curves. The calculations are described below 
using curves from a known dipole. Only the 
curves for two perpendicular planes are necessary 
to determine the magnitude and direction of 
the dipole.

Curves were computed to represent the 
normal component of the field around the dipole 
illustrated in Figure 14* Figure 15 displays 
the curves for a measurement sphere of 4 foot 
radius. The curves for the xy- and the xz-planes 
are used to demonstrate the procedures for 
calculating the components of the dipole moment 
vector M where

M = E miri = g n^rj + ( | m± )\. (5)
in rectangular coordinates. From each curve we 
determine the amplitude and .phase angle as shown 
la Figures 16 and 17. This gives •

II.1-3



H = 0.400 gamma

H = 0.4T7 gamma xz

(These values were determined accurately from 
a numerical Fourier analysis.) The components 
are calculated from the following approximate 
relationships.

where

= (Hxz sin

r = 122 cm (4 feet).

H and H are in gauss. This gives

M = 3.14 gauss - cm

M = 1.82 gauss - cm3

M =2.10 gauss - cm

The spherical representation of the vector, 
), can be calculated as follows;

gauss - cmM = (*£ + M2 + M2 )1/2 = 4.20

= 30

= 60
where M is the resultant moment, 0 is the 
azimuth angle, and <p is the zenith angle.

Opposing Dipoles

Figure 18 is given to show the field 
resulting from two equal and opposite dipoles. 
Their positions are shown in the diagram. The 
geometry of the dipoles represents a situation 
that might arise in a test in which the dipole 
moment of a spacecraft (centered dipole) has 
been compensated by a dipole attached to the 
outside of the craft. The condition results 
in a zero net torque when a uniform external 
field is applied, but this is not obvious 
from a study of the resulting curve. Figure 19 
displays the first six Fourier components of 
the curve including the constant component. 
The fundamental or "dipole H component is not 
zero implying that a harmonic analysis will 
not give the desired result. Therefore, more 
information is needed along with more 
sophisticated analysis techniques.

Another implied result of this example 
relates to the possibility of approximating the 
data with the field from an offset dipole by the 
method of least squares error as previously men 
tioned. In a least squares approximation the 
dipole position, direction, and magnitude are 
allowed to vary. The desired resultant dipole 
in this example is zero since the torque would 
be zero. But the implication is that the 
offset dipole determined by the least squares 
approximation would be non-zero. This 
follows from the fact that the centered dipole 
from the Fourier analysis is a special case of 
an offset dipole approximation. Therefore the 
offset dipole determined by least squares 
would necessarily approximate the data as good 
as or better than the centered dipole. Therefore 
the curve from the offset dipole would have an 
amplitude other than zero which is not the 
desired result.

Since the centered dipole method and the 
general offset dipole method have both failed to 
give the desired result, an additional step 
might prove helpful. Some means should be devised 
to specify the dipole position prior to applying 
the method of least squares approximation. Then 
only the dipole direction and magnitude are 
allowed to vary. Chapman and Bartel^ (page 648) 
define the dipole position as the magnetic 
center, and give a method for finding it.

Miscellaneous Methods

Some analysis techniques are presently 
being evaluated with the aid of a computer. In 
one method near field measurements are used as 
a basis for an extrapolation process which 
defines the field on a sphere of large diameter. 
The dipole may then be estimated by applying 
the method described above to the remote field 
values calculated from the extrapolation process. 
One method of performing the extrapolation would 
involve the numerical solution of the Neumann 
problem^-'* using the measurement data as the 
boundary condition. The solution gives the 
potential at any point outside the sphere. 
We can determine the field at points on a large 
sphere, say 10^ times greater than the measure 
ment sphere. On this large sphere the ratio 
of the quadrupole field to the dipole field 
will be 10 ~4 times the value on the measurement 
sphere. The ratio for higher order multipoles 
will be even smaller.

A study of the components of spherical 
harmonics may also result in a practical solution 
of the problem since each harmonic represents the 
potential from a multipole magnet of an orthogonal 
system of magnets, i.e., monopole, dipole, 
quadrupole, etc. This analysis would involve 
the determination of the harmonic coefficients 
of the second harmonic. In this case an 
extrapolation process is unnecessary. Chapman 
and Bartels2 (page 631) describe a method for 
the numerical calculation of the spherical 
harmonic coefficients. A close study of the

I 1.1-4



data in Figures 7, 8, 18, and 19 and in Table 1 
seems to imply that the dipole component in 
the spherical harmonic analysis is not the 
one desired. If it were then the amplitudes of 
the fundamental components in Curve Families 
I and II in Table 1 would all be identical. 
And in Figure 19 the fundamental component 
would be zero.

Another method being studied is to define 
a system of pure monopoles or dipoles which 
represents the measured data. Fictitious 
magnets are located on the surface of a small 
sphere within and concentric to the measurement 
sphere. This system can be used to calculate 
the resultant dipole directly or to provide 
a basis for the extrapolation process mentioned 
above. The sphere of magnets can best be des 
cribed as follows. Locate a magnet at each 
measurement point on the measurement sphere. 
If a system of dipoles is used then place the 
center of a dipole at each measurement point 
and align the dipole axis normal to the sphere. 
Now shrink the sphere to the prescribed 
diameter of the magnet sphere. The polarity 
and moment (or pole strength for monopoles) for 
each magnet is determined by fitting a unit 
system (magnets of unit moment) to the measured 
data points by the numerical method of least 
squares or from the solution of simultaneous 
linear equations. Figure 20 shows the xy-plane 
for a system of dipoles. As shown in equation 
(2) the effective dipole moment of a system 
of monopoles or dipoles can be calculated simply 
by summing over all the products of the position 
vectors and the pole strengths of the poles.

Results and Conclusions

Other methods for estimating the effective 
dipole moment, or the net torque produced by 
an external magnetic field, have been devised. 
Tossman describes a method for measuring each 
of the three components of the dipole moment. 
In this method the satellite is suspended from 
a cable along an axis perpendicular to the 
component to be determined. A pulsing magnetic 
field is applied in a horizontal direction 
which is also perpendicular to the unknown 
component. The square-wave field produces a 
rotational oscillation with steadily increasing 
amplitude. The dipole component is determined 
from its relationship to the applied field 
and to the rate of increase in the amplitude 
of the oscillation. The other two components 
are determined similarly.

Another method, to be tested at the Goddard 
Space Flight Center (NASA), consists of the 
direct measurement of the torque on a satellite 
in an applied field. The satellite is floated 
on a fluid, and the torque is determined by 
measuring the increase in tension on a restraining 
wire when the external field is applied. Each 
of the torque components along the two horizontal 
axes is determined by applying a field perpen 
dicular to each axis and noting the increase in 
tension in the wire. The craft is then tilted

90 and the component along the third axis is 
measured.

The study presented here is not complete. 
Numerical methods should be devised for fitting 
an offset dipole, a system of monopoles, and 
a system of magnets to the measured data. 
Investigations should be made to determine the 
required accuracy for the measuring instruments 
and for the positions of the measurements. 
Considerable information may be obtained using 
a computer program which calculates the field 
around a dipole (or system of symmetric magnets). 
Slight angular offsets can be introduced into the 
calculated data to simulate errors in measurement 
positions. Also the numerical values of the data 
can be truncated to simulate the instrument 
inaccuracies.

The method described in this paper is based 
on the measurement and analysis of the normal 
component of the magnetic field on a sphere 
surrounding the satellite. The measurements 
are made without the application of a net 
external field, and are used to estimate the 
resultant dipole moment. The necessity of 
gimballing the craft could present problems with 
the accuracy of the measurement positions. 
Nevertheless, measurements are not sensitive 
to normal air currents, and the setup and 
measurement time is relatively short. The method 
involves the use of a high-speed computer and 
indicates the feasibility of developing improved 
techniques of analysis.
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