
The Space Congress® Proceedings 1986 (23rd) Developing Space For Tomorrow's 
Society 

Apr 1st, 8:00 AM 

The Use of UNIX in a Real-Time Environment The Use of UNIX in a Real-Time Environment 

Robert D. Luken 
Chief, Digitial Applications Branch Engineering Development Directorate NASA, John F. Kennedy Space 
Center, Florida 

Peter C. Simons 
Project Lead, LPS-II Scientific Systems Services Melbourne, Florida 

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings 

Scholarly Commons Citation Scholarly Commons Citation 
Luken, Robert D. and Simons, Peter C., "The Use of UNIX in a Real-Time Environment" (1986). The Space 
Congress® Proceedings. 1. 
https://commons.erau.edu/space-congress-proceedings/proceedings-1986-23rd/session-2/1 

This Event is brought to you for free and open access by 
the Conferences at Scholarly Commons. It has been 
accepted for inclusion in The Space Congress® 
Proceedings by an authorized administrator of Scholarly 
Commons. For more information, please contact 
commons@erau.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217146523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1986-23rd
https://commons.erau.edu/space-congress-proceedings/proceedings-1986-23rd
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1986-23rd%2Fsession-2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1986-23rd/session-2/1?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1986-23rd%2Fsession-2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/


THE USE OF UNIX IN A REAL-TIME ENVIRONMENT

Robert D. Luken
Chief, Digitial Applications Branch
Engineering Development Directorate

NASA, John F. Kennedy Space Center, Florida

Peter C. Simons 
Project Lead, LPS-II 

Scientific Systems Services 
Melbourne, Florida

ABSTRACT

This paper describes a project to evaluate the feasibility of using commercial off the shelf 
hardware and the UNIX (trademark of AT&T Bell Laboratories) operating system, to implement a 
real time control and monitor system. A functional subset of the Checkout, Control and Monitor 
System (CCMS) was chosen as the testbed for the project. The project consists of three separate 
architecture implementations. A local area bus network, a star network, and a central host. The 
motivation for this project stemmed from the need to find a way to implement real-time systems, 
without the cost burden of developing and maintaining custom hardware and unique software. This 
has always been accepted as the only option because of the need to optimize the implementation 
for performance. However, with the cost/performance of today's hardware, the inefficiencies of 
high-level languages and portable operating systems can be effectively overcome.

INTRODUCTION

To understand the problems posed by the use of UNIX in a real-time environment, it is necessary 
to have some understanding of the history of UNIX, the history of CCMS, and the hardware 
configurations being implemented. The project entails the detailed development of three 
prototype configurations for evaluating the feasibility of "OFF-THE-SHELF" hardware and software 
for use in a second generation Launch Processing System (LPS). The first stage of this 
prototyping effort was to implement the Ground Operations Aerospace Language (GOAL) and its 
related interfaces to ground support equipment. GOAL is a unique language designed to run in a 
supporting real-time environment custom designed for the Checkout Control and Monitor System 
(CCMS) used for Shuttle launch operations. The groundrules for accomplishing this task were as 
follows:

Use a highly portable high level language for all coding functions. The "C" language was 
selected because of its demonstrated capability for implementing system level software.

Use an unmodified off the shelf operating system. The AT&T UNIX System V release 2 was selected 
for portability (available for most vendors hardware) and compatibility with the "C" language.

Use an unmodified commercially available computer with UNIX System V capability. The AT&T 3Bx 
family of computers was chosen, because of its full compatibility with System V and vendor 
support for UNIX. The models used for prototyping ranged from the 3B2/400 to the 3B15, both 32 
bit machines.

Use an industry standard network interface for communications between remote CPU's. These 
include Host 3B Computers, Data Acquisition Processors and Display Processors. Ethernet was 
chosen as the test network, due to its wide availability.

Use an off the shelf PC type computer to develop a Data Acquisition Processor, using "C" to do 
data polling and exception monitoring on analog and discrete measurement data. The AT&T 6300 PC 
was chosen for this task because of its performance (8 mhz clock) and availability.

Use an off the shelf PC type computer to develop a Display Processor, using "C" and the Graphics 
Kernel System (GKS) graphics standard to provide the operator interface. The IBM PC AT with 
Professional Graphics Adapter and Monitor was chosen for this task because of its graphics 
capability and availability.

2-59



HISTORY OF UNIX

During the early 1960's, computers were expensive and had small memories. For example, one 
middle-priced work horse of that day, the IBM - 1620, had only 24K words of memory, and was 
capable of storing about 40,000 numbers. The primary design criteria at that time, was for all 
software (languages, programs, and operating systems) to use memory efficiently and to make 
programs execute as fast as possible. This was usually at the cost of being unwieldy for the 
programmer and other users.

UNIX grew out of the need for a more productive alternative to this early time - consuming 
software. UNIX was created in 1969 at Bell Laboratories, the research arm of the American 
Telephone and Telegraph Company. It began when Ken Thompson, a programmer at Bell Labs, decided 
to try to create a more cost effective and usable programming environment.

Ken Thompson was working on a program called SPACE TRAVEL that simulated the motion of the 
planets in the solar system. The program was being run on a large computer made by General 
Electric, the GE-645, which ran an operating system called Multics. Multics was developed at 
MIT and was one of the first operating systems designed to handle multi-tasking. However, its 
use on the GE computer was expensive and awkward. Thompson obtained a small computer made by 
Digital Equipment Corporation called the PDP-7. He began the burden of transferring his SPACE 
TRAVEL program to run on the smaller computer. In order to use the PDP-7 conveniently, Thompson 
created a new operating system that he christened UNIX, a play on the word Multics, since it 
incorporated a simpler implementation of the multi-tasking feature of that system. Thompson was 
successful enough in this effort to attract the attention of Dennis Ritchie and others at Bell 
Laboratories, where they continued the process of creating a streamlined multi-user multi­ 
tasking environment.

Under Thompson, Ritchie and others, UNIX became operational in the Bell Laboratories patent 
organization in 1971 on a PDP-11/20. UNIX had evolved from the best ideas of its predecessors. 
During the early 1970's UNIX ran primarily on computers that were manufactured by Digital 
Equipment Corporation; first on the PDP-7 and, then, on the PDP-11 family, where it achieved 
widespread acceptance throughout Bell Labs. During the same time, universities and colleges, 
many of which were using the PDP-11/70 computers, were given license to run UNIX at minimal 
cost, since AT&T was not allowed to sell computers and software. This move by AT&T eventually 
led to UNIX being run at over 80% of all university computer science departments in the United 
States. Each year, thousands of computer science students graduate with some experience in 
running and in modifying UNIX.

UNIX, like most operating systems, was originally written in what is called "assembly language." 
This is the primitive set of instructions that controls the computer's operations. Since each 
computer has its own unique set of internal instructions, moving UNIX or any other operating 
system to another computer involves a significant programming effort. The solution to this 
problem, and perhaps the key to UNIX's popularity today was the decision to rewrite the 
operating system in a higher level language; - one more portable than assembly language.

The language was called B. In 1973 it was modified extensively by Dennis Ritchie and renamed C. 
A powerful control language featuring modern data structures, C is much easier to use and 
understand than assembly language. Although there is some overhead in program execution, it is 
outweighed by its productivity as compared to assembly code.

The use of C makes UNIX easily portable to other computer systems, since only a small portion of 
the UNIX kernel is written in assembly code. This has allowed the system to be easily ported to 
a number of other computers, including IBM 370, Honeywell, Amdahl 470 and Cray II.

In January of 1983, AT&T announced that it was licensing a standard version of UNIX for the 
commercial marketplace. This version was called UNIX System V, and was based on the version in 
use internally at Bell Labs. It contained many of the features found in Berkely UNIX 4.2 BSD, a 
derivative of UNIX System III.

At the same time that AT&T announced UNIX System V, it also announced that it was licensing the 
top three semiconductor manufacturers of 16/32 bit microprocessors (Intel, Motorola and 
National) to develop "ports" for their products. Each port consisted of a microprocessor, a 
ROM, and System V software.

2-60



AT&T required manufacturers to reproduce 98% of all known bugs in UNIX System V. This means 
that except for execution speed, the operating system will behave the same regardless of which 
hardware it is running on. This standardization means that software developers are assured that 
their programs will work on the largest number of machines. This also means that hardware can 
be improved without affecting software compatibility.

HISTORY OF CCMS

The Checkout Control and Monitor System (CCMS) was developed at the Kennedy Space Center during 
the early 1970's and became operational in 1976. CCMS is a system of hardware and software used 
to monitor and control the operations associated with the checkout and launch of the Space 
Shuttle. This includes facilities, ground support equipment (GSE), and flight interfaces. Also 
included are systems at other locations, such as Vandenburg AFB and the Shuttle Avionics 
Integration Laboratory at Johnson Space Center.

The CCMS is a distributed set of minicomputers (up to 64 in a cluster), performing front end 
processing (FEP) and application program processing (CONSOLE), tied together through a Common 
Data Buffer (CDBFR). The CDBFR is a high speed multi-ported memory subsystem that can be 
partitioned into read/write areas for the computers connected to it. The CDBFR acts as a global 
data storage area and as a communications switch. Through an interrupt structure within the 
CDBFR, one computer can send a packet of data or commands to another computer.

Each FEP is a Modcomp minicomputer with special interfaces and two auxiliary processors, that is 
used for data acquisition and control of a GSE or flight interface. Data rates require FEP's to 
process a data byte in real-time, as often as one every 100 microseconds. The processing 
consists of two sets of high and low limit checks, significant change checks, control logic 
responses, exception handling, CDBFR interface handling, and responses to commands from consoles 
to change sampling rates, inhibit exception checking, etc. The operating system contained 
within the FEP is a special purpose, highly optimized design that takes advantage of the 
pipeline capability of the three processors. It is implemented in assembly language, with the 
auxiliary processor functions being implemented in microcode (a level below assembly).

Each CONSOLE is a Modcomp minicomputer similar to the one used in the FEP. It has the same two 
auxiliary processors, but has additional peripherals. The peripherals consist of moving head 
disk, auxiliary storage, and three-channel display generator. The processing in the CONSOLE 
consists of executing up to six concurrent GOAL (Ground Operations Aerospace Language) 
application programs (with three levels each), exception monitoring, display monitoring, and the 
associated data interface handling. The operating system contained in the CONSOLE is a superset 
of the one used in the FEP. It too is implemented in assembly code with microcoded functions in 
the auxiliary processors.

The GOAL executor is at the heart of the CCMS and is the portion of the system which attempts to 
utilize the operating system in a real-time environment. GOAL is an interpretive language, that 
is, it is compiled to an intermediate form which is, in turn, interpreted by an operating system 
resident executor. GOAL has the ability to react to external interrupts from various sources, 
these sources include, measurement exceptions, programmable function keys and panels, count down 
time and GMT interrupts and interrupts from other keyboard functions. At the center of the GOAL 
system is the Interpretive Code Processor, its responsibility is to parse and execute the GOAL 
intermediate code to carry out program execution. This is also the module which redirects flow 
of control when informed of an interrupt it is expecting.

When the CCMS was designed and implemented, the power and performance of minicomputers was very 
limited. At that time only about four minicomputers could contain and address more than 64k 
bytes of main memory (core). They were also very slow, about one microsecond for a memory 
access, compared with today's 100 to 200 nanosecond access. This resulted in a real need to 
squeeze the maximum amount of performance out of the hardware and to make it all fit in less 
than 64k words of memory. Therefore software could not be kept hardware independent and 
portable, nor implemented in a high level language. The use of processors with microcoded 
functions, further locked the hardware and software into an inseparable combination^ with no 
easy replacement options; but was necessary to get the needed performance from the hardware 
available.

2-61



PROTOTYPE DESCRIPTION

The prototype for the evaluation project consists of a functional representation of a single 
string of the CCMS composed of off the shelf hardware and software. The intent of the prototype 
is to evaluate the performance of existing CCMS GOAL language applications running under the 
UNIX operating system hosted on three different hardware configuration phases. The hardware 
implementation for the first phase of the project has a Data Acquisition Processor that is 
interfaced with standard CCMS GSE, two Display Processors, and an Application Processor, 
connected together with Ethernet. The purpose of this phase is to represent a typical local 
area network.

The hardware implementation for the second phase of the project consists of the same hardware 
modules as the first but connected together with a CDBFR, as used in CCMS, instead of Ethernet. 
The purpose of this phase is to represent a CCMS hardware compatible configuration and evaluate 
the feasibility of replacing existing FEP's and CONSOLES.

The hardware implementation for the third phase of the project consists of the Data Acquisition 
Processors and Display Processors connected to a large Host computer that handles all the 
application and data processing functions. The software implementation for the project 
consists of a rewritten (in the "C" language) version of the GOAL executor (CGOAL), an 
Interrupt Processor, an External Events Driver, and the Broadcast Receiver. The Interrupt 
Processor handles the routing of interrupt data between the Data Acquisition and Display 
Processors. The External Events Driver provides the interface between the GOAL executor 
and the outside world, and allows existing application programs to execute as if they were in 
the CCMS environment. The Broadcast Receiver handles exception messages sent by the Data 
Acquisition Processor.

SOFTWARE DESIGN

The CGOAL executor is at the heart of the prototype and is the portion of the system which 
attempts to utilize the UNIX system in a real-time environment. GOAL has the ability to react 
to external interrupts from various sources, these sources include: measurement exceptions, 
programmable function keys and panels, count down time and GMT interrupts and interrupts from 
other keyboard functions. Interrupts posed the biggest problem in the development of the CGOAL 
real-time system. There is no access to the actual interrupt structure of the 32100 
microprocessor because this would threaten the portability of the UNIX system. This factor 
made it obvious that immediate attention to interrupts was not possible in an unmodified System 
V UNIX. The Interpretive Code Processor is responsible for parsing and executing the GOAL 
intermediate code. This is also the module which would redirect flow of control when informed 
of an interrupt it is expecting. It became obvious that the I/C Processor was busy enough 
processing interpretive code and did not need the added responsibility of managing the network, 
handling requests to external CPU's and processing possible interrupt data. For this reason it 
was decided to take advantage of UNIX's powerful multiprocessing capabilities.

The CGOAL system was planned to run as several co-processes: the I/C Processor, the Interrupt 
the External Events Driver (EED) and the Broadcast Receiver. The I/C Processor operates as 
previously stated. The Interrupt Processor acts as a clearing house for interrupt data received 
from the Display or Data Acquisition Processors. It is the Interrupt Processor's duty to sort 
through incoming data and pick out information for which the I/C Processor has specified an 
interrupt vector. Should an interrupt be detected, the specified interrupt vector is passed to 
the I/C Processor who re-routes flow of control depending on that vector. Interrupts not 
specified are ignored by the processor. The External Events Driver is the systems link to the 
outside world. The EED's major task is to accept requests from the I/C Processor to manipulate 
or read outside data, format the data into an Ethernet packet structure, send the packet via 
the Ethernet LAN and wait on the response. The same sequence of events occurs for requests to 
the Display Processor work station. The Broadcast Receiver has a single, clear cut task: 
monitor the network's Broadcast Port to receive exception message Broadcasts from Data Acquisi­ 
tion Processors. These Broadcasts are sent to the Interrupt Processor for processing.

Since several processes run concurrently, for CGOAL, the problem of interprocess communication 
became apparent. The UNIX System V Interprocess Communications package (IPC) handled this 
problem easily. Several queues were set up and dedicated to specified communication paths 
between processes. The only problem expected with this was linked to the fact that 10 separate 
CGOAL processes can run system-wide, which could cause some confusion as to the ownership of the

2-62



messages on the queues. This was corrected by placing task numbers in the messages as protocols 

[Drawing attention to the fact that a message was pending on an incoming queue for a process]. 
The IPC package provided several sets of semaphores which were used to solve this problem. 
Various semaphores are set to signal arrival of messages and the number of messages pending on 
the queue. These semaphores are also used to keep general system data and to signal processes 

to perform actions for which an IPC message is not necessary. These semaphore values are 
checked periodically in each process as they loop through a predetermined sequence. The I/C 

Processor checks for interrupts pending and other messages after completion of execution for 
each statement. The EED checks for incoming Ethernet data or IPC requests from the I/C 
Processor each time through its idle loop, etc.

The major stumbling block is overcoming UNIX's context switching routine. Context switch times 

and orders are entirely controlled by the UNIX kernel. Changing these routines would require 

access to kernel-level procedures. This access has been restricted by the creators of UNIX to 

insure portability between target machines. Because of this task switching routine, the 
processes can spend too much time in idle loops waiting on semaphores to change when the 
processes required to change them are not even running. A means exists to cause a process to 

suspend until a time value expires, but this time value can at best be 1 second which is far too 

long for a critical process to be idle. Research is currently being conducted into the use of 

system signals to wake up an idle process, but the lack of available signals and the various 
scenarios in which a process can be activated leave little hope for this method.

UNIX overhead in process accounting also steals execution time from the real-time system. It is 

possible to deactivate some of the process accounting, but the general system and disk 
accounting tasks are firmly anchored in the system kernel.

Some research was also done into the possibility of changing the priorities on various modules 

in the CGOAL system to try and improve performance. This did not seem to solve anything because 
a higher priority task could steal CPU time from a lower priority, though equally important, 

task. No significant performance enhancement was observed.

PRELIMINARY RESULTS

Completion of the Phase 1 of the prototype revealed some important results:

UNIX would support a pseudo real time system for demonstration purposes. A real system 
implementation would require architectural refinements that would optimize the strengths and 

weaknesses of a UNIX based system.

Though slower than the current IPS system (only the 3b2 has been tested), faster UNIX based 

machines would allow the performance levels needed for actual control and checkout functions. 

Use of the 3bl5 should give a good indication of the difference in performance due to a faster 

processor. This coupled with handling the critical real-time functions with front-end hardware 

would isolate the event driven processes from the majority of the application tasks. UNIX task 

switching functions and system accounting provide too much overhead for actual real-time 
execution. The system degrades rapidly as more real-time concurrencies are run. Some 
modification to task switching and an ability for a process to relinquish control to the task 

dispatcher is necessary. For actual control of interrupt functions some access to UNIX kernel 

level programming will probably be needed. New developments in real-time UNIX enhancements by 

private companies appear to greatly improve performance of UNIX in a real-time environment.

Ethernet is probably not fast enough to transfer large amounts of data to and from processors in 

an acceptable time. This is due mostly to the layers of protocol involved with Ethernet 

interfacing. Intelligent controllers could alleviate part of this problem, by handling higher 

levels of the protocol in the controller. Also token passing networks appear to offer less 

degradation at higher utilization rates than collision detection type networks, such as 

Ethernet.

2-63


	The Use of UNIX in a Real-Time Environment
	Scholarly Commons Citation

	tmp.1397162350.pdf.UP5Qy

