
The Space Congress® Proceedings 1993 (30th) Yesterday's Vision is Tomorrow's
Reality

Apr 27th, 2:00 PM - 5:00 PM

Paper Session I-A - Modeling Current and Future Launch Vehicle Paper Session I-A - Modeling Current and Future Launch Vehicle

Processing Using Object-Oriented Simulation Techniques Processing Using Object-Oriented Simulation Techniques

D. G. Linton
Dept Engineering Bldg-407 Univ of Central Florida

S. Khajenoori
Dept Engineering Bldg-407 Univ of Central Florida

M. Heileman
Space Systems Division

K. Halder
Graduate Research Assists, UCF

H. Cat
Graduate Research Assists, UCF

See next page for additional authors

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation Scholarly Commons Citation
Linton, D. G.; Khajenoori, S.; Heileman, M.; Halder, K.; Cat, H.; Hebert, G.; and Bullington, V., "Paper Session
I-A - Modeling Current and Future Launch Vehicle Processing Using Object-Oriented Simulation
Techniques" (1993). The Space Congress® Proceedings. 17.
https://commons.erau.edu/space-congress-proceedings/proceedings-1993-30th/april-27-1993/17

This Event is brought to you for free and open access by
the Conferences at Scholarly Commons. It has been
accepted for inclusion in The Space Congress®
Proceedings by an authorized administrator of Scholarly
Commons. For more information, please contact
commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217146381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1993-30th
https://commons.erau.edu/space-congress-proceedings/proceedings-1993-30th
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1993-30th%2Fapril-27-1993%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1993-30th/april-27-1993/17?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1993-30th%2Fapril-27-1993%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/

Presenter Information Presenter Information
D. G. Linton, S. Khajenoori, M. Heileman, K. Halder, H. Cat, G. Hebert, and V. Bullington

This event is available at Scholarly Commons: https://commons.erau.edu/space-congress-proceedings/
proceedings-1993-30th/april-27-1993/17

https://commons.erau.edu/space-congress-proceedings/proceedings-1993-30th/april-27-1993/17
https://commons.erau.edu/space-congress-proceedings/proceedings-1993-30th/april-27-1993/17

Session: Advanced Technology Development

Modeling Current and Future Launch Vehicle Processing
Using Object-Oriented Simulation Techniques

by

D. G. Linton
Assoc Prof
Elec & Comp Engr Dept
Engineering Bldg-407
Univ of Central Florida
P. O. Box 162450
Orlando,FL 32816-2450
Voice:407-823-2320
FAX:407-823-5835
E-mail: dgl@engr.ucf.edu

S. Khajenoori
Assist Prof
Elec & Comp Engr Dept
Engineering Bldg-407
Univ of Central Florida
P. O. Box 162450
Orlando, FL 32816-2450

M. Heileman
Advanced Pgms Engr
Space Systems Division
MSZK11
Rockwell Int'l Corp
P.O. Box 21105
KSC,FL 32815

K. Halder, H. Cat,
V. Bullington, G. Hebert
Graduate Research Assists
Elec & Comp Engr Dept
Univ of Central Florida
P. O. Box 162450
Orlando, FL 32816-2450

Abstract

STARSIM, an acronym for Space Transportation Activities and Resources Simulation, is an object-
oriented, menu-driven, user-friendly, decision support system for simulating National Space
Transportation System (NSTS) processing, as well as Personnel Launch System (PLS)-National Launch
System (NLS), PLS-Proton, PLS-Titan IV, Hermes-Ariane 5 and Cargo Transfer Return Vehicle (CTRV)
processing. For each launch system modeled, output is displayed numerically (for global statistical
information), in pie chart form (to visualize percentages of subcategories associated with a main category)
and in Gantt chart form (for visualizing when and where each launch vehicle experiences waiting,
processing, blocking and maintenance periods, and the reasons for blocking). Users may input a
comprehensive set of system parameters (e.g., number of launch vehicles, processing times at each
facility, number of bays at a particular facility) using a window-based environment, or by supplying an
existing input data file. Data for existing launch systems and representative data for proposed systems are
used to illustrate output for the models mentioned above. The object-oriented methodology employed in
the initial model (i.e., NSTS processing) permitted additional models to be implemented in a minimum
amount of time and effort.

INTRODUCTION

STARSIM is an object-oriented, discrete-event simulation tool to model scenarios such as the space-
shuttle ground processing activities at the Kennedy Space Center. Originally designed to model only the
critical path portion of the space-shuttle turn-around flow, STARSIM was later easily adapted to include
the processing of the Solid Rocket Boosters (SRBs) and the External Tank (ET), as well as models of
processing for PLS/NLS, PLS-Proton, PLS-Titan IV, Hermes-Ariane 5 and CTRV. It is the object-
oriented design technique incorporated during the initial development of STARSIM which allows models
of existing and future space-vehicle processing scenarios to be developed within a relatively short period
of time.

1-56

OVERVIEW OF THE NATIONAL SPACE TRANSPORTATION SYSTEM (NSTS) MODEL

A flow diagram of NSTS processing is shown in Figure 1 (oval shapes represent servers, parallel lines

indicate queues, rectangles are resource stores and arrows show the path of an entity with, where

appropriate, the name of the entity adjacent to the arrow). An alphabetized list of important acronyms is

shown at the conclusion of this paper. As depicted in Fig. 1, space-shuttle orbiters or orbiter vehicles

(OVs) which are launched from Kennedy Space Center (KSC) may land at Edwards Air Force Base

(EAFB) or KSC. OVs landing at EAFB are serviced by a crew which, using a ferry kit, prepares the OV

for return to KSC aboard a shuttle carrier aircraft (SCA). Ferry kits return to EAFB by truck and SCAs

are flown back to EAFB. An OV which either arrives at KSC from EAFB aboard an SCA, or which lands

at KSC, is first linked with a Firing Room (FR) at the Launch Control Center (LCC) and then begins

processing in a bay at the Orbiter Processing Facility (OPF). As OPF servicing is initiated, the OVs main

engines and hypergolic-fueled engines (HGUs, for hypergolic units) begin parallel processing at the

Engine Shop (ES) and Hypergolic Maintenance Facility (HMF), respectively. OPF processing is

completed when the OV main engines and hypergolic-fueled engines are reinstalled and checked out. If a

mobile launch platform (MLP) is available, OVs which complete OPF processing join with an MLP in one

of the bays in the Vehicle Assembly Building (VAB). MLP availability implies that the solid rocket

boosters and external tank have been integrated with the MLP. After VAB processing, if one of two

launch pads are empty, the OV-MLP pair begins processing at the launch pad (LP). If at least twenty-one

days has elapsed since the last launch (a NASA requirement) and no other OVs are on a mission, shuttles

which finish servicing at the pad are launched. During a mission, an OV is under control of the Mission

Control Center (MCC), which selects the eventual landing site (EAFB or KSC). The OV completes its

mission and lands at either KSC or EAFB, while the MLP begins post-launch processing in preparation

for an eventual match with an OV at the VAB, and the solid rocket boosters (SRBs) splash down in the

ocean for eventual recovery by ship. After the SRBs are brought to Port Canaveral via ship, SRB

disassembly begins. After disassembly and refurbishment (at the Refurbishment Subassembly Facility

(RSF)), the SRB components, the parachute and the Solid Rocket Motor (SRM) are processed at the

Rotatation Processing and Surge Facility (RPSF) in preparation for integration with the External Tank

(ET), which was checked out in the VAB, and the previously mated OV-MLP-FR triple.

Prior to entering the OPF, each OV is attached to a Firing Room (FR) associated with the Launch Control

Center (LCC). After a launch, the FR becomes available for use by other OVs. Each OV which enters the

OPF after three continuous years of operation experiences an Orbiter Maintenance Down Period (OMDP).

Only one OV may undergo OMDP at a time and each OMDP requires about four additional months of

processing in the OPF. A FR is not linked with an OV during OMDP but must be re-linked with the OV

before normal OPF processing begins.

By incorporating the object-oriented approach during the design of the STARSIM version of NSTS shown

in Fig. 1, the adaptation of models for the PLS/NLS, PLS-Proton, PLS-Titan IV, Hermes-Ariane 5 and

CTRV systems was completed in about four man-months. An outline of the design process is described

below.

DESIGN ASPECTS OF STARSIM

The object-oriented approach used to design STARSIM resulted in the creation of eight basic class types

named ENTITY, QUEUE, SERVER, RESOURCE, RANDOM, GENERATOR, MANAGER and a special

graphics object, REPORTER, for producing graphical output. REPORTER Object was designed especially

to display Pie Chart and Gantt Chart output from any model in a Windowed environment. For example,

with OV index numbers (1, 2, ...) and processing facility acronyms (EAFB, SCA, ...) on the vertical axis

and time (in days) along the horizontal axis, Fig. 2 shows all waiting, servicing, blocking and OMDP

times at each facility for all OV flows through the NSTS model during the first 150-plus days of a 3650-

day simulation run. The user may scroll up or down (to see data for other OVs), scroll right or left (to

view visible OVs at different periods of time) and may change the time scale (to zoom-in or zoom-out on a

particular area of interest). By consulting the accompanying legend for color or black-and-white terminals

1-57

(see Fig. 2), notice that OV 3 experiences blocking at the OFF. By clicking a mouse on this area of
blocking, the specific reason for the blocking is displayed (see Fig. 3); namely, the 45-day MLP
preparation time in the VAB is not completed. A sample Pie Chart (based on a cost model for NSTS) is
shown in Fig. 4.

The eight base object-classes may be employed in a cookie-cutter-like approach to stamp out similar
objects. A description of the base classes used in STARSIM and the adapted models for PLS/NLS, PLS
Titan IV, PLS Proton, Hermes/Ariane 5, and CTRV are described below:

ENTITY:
An ENTITY is an item that flows through the simulation network with a pre-determined path
encompassing various activities. There are three different types of entities. The first type is used
to represent reusable components like OVs and SRBs. The second type, ET for example, is
destroyed after launch. The third type (e.g., Solid Rocket Motor (SRM), Parachute, and Engine)
flows through the model network as a part of the first type of entity, is separated at some location
to follow its own route, and then is re-assembled with the parent entity.

SERVER:
A location (e.g., OPF, RPSF, Parachute Facility) where other entities (e.g., OV, SRB, Parachute)
spend time being processed by a server. Any delay experienced by an entity is modeled by
passing the entity to a server. Servers do not have to be fixed (e.g., movable servers include SCA,
SRB Ship and ET Barge).

RESOURCE:
A resource (e.g., MLP and the Ferry Kit) is needed by a server in order to process an entity. The
server may have to prepare the required resource before being able to process the next entity.
Some amount of post-processing time may also be needed.

QUEUE:
A QUEUE models a location where entities may wait for an available server. The capacity of a
queue can range from any non-negative number to infinity; a zero-size queue is used to hold
entities at blocked server locations when no server is available at the following location along a
route.

RANDOM:
This class is used to instantiate the Pseudo-Random Number Generator (PRNG) for the different
models. The PRNG is used to generate random numbers from various user-defined distributions.

GENERATOR:
Entities are created by generators. Different types of generators are needed in order to generate
different types of entities (e.g., OV, ET, SRB). Generators can be attached at any point in a
model, resulting in the created entities entering the system at that location.

MANAGER:
Only one manager object exists in a model. The simulation is controlled by this manager object
in the sense that all the scheduling, as well as invoking of objects associated with a specific event,
is performed by the manager.

REPORTER:
As discussed above, this object permits graphical output to be displayed.

There is a common ancestor class, ANY_NODE, from which the SERVER, RESOURCE, QUEUE and
GENERATOR classes have been inherited. The ANY_NODE class contains the common attributes (e.g.,
an integer-valued identifier used to differentiate between OVs) present in the derived classes and allows

1-58

the derived classes to be considered generic types. An abbreviated set of hierarchical charts for the basic

classes are shown below:

ANY_NODE ENTITY MANAGER RANDOM REPORTER

I I

I I I I II
SERVER RESOURCE QUEUE GENERATOR GANTT PIE

CHART CHART

ENTITY (Base entity class)

OV SRB ET SRM Engine HGU Parachute (Specific entity classes)

RESOURCE (Base resource class)

I

I I
FERRYJKJT MLP (Specific resource classes)

SERVER (Base server class)

I
| (Specific server classes)

I II I I I I I
EAFB_CREW SCA KSC_CREW OPF VAB PAD MISN_CNTRL FIR_ROOM

In order to instantiate (or create an instance of) the entities, facilities/servers and resources belonging to

any specific group, a separate class for that group must be inherited from the base object-class. For

example, OVs are not instantiated directly from the ENTITY class. Instead, a class named OrbiterVehicle

is first derived from ENTITY, and then all the OVs are instantiated from this derived class. In this way,

features belonging exclusively to any particular group of entities can be incorporated into the appropriate

derived class. Any method (e.g., update_cum_served, a subprogram which updates the cumulative number

of OVs processed by a server group) can be easily overridden to fit the needs of each individual group.

A graphical representation of the above description was developed for documentation purposes. Figure 5

is the legend for all graphical depictions of objects/classes. Referring to Fig. 5, ENTITY is an example of

a SUPER_CLASS_NAME and OrbiterVehicle is an example of a CLASS_NAME. The legend briefly

defines public and private methods and attributes, shows how these methods and attributes will appear

inside a rectangle representing a class, defines the concepts of static variables and virtual methods and

depicts interface representations for all methods.

Figure 6 shows the graphical version of the base class ENTITY. Since the intent of this paper is to give an

overview of the object-oriented approach, details (e.g., definitions of all parameters in Fig. 6) will be

ignored in the ensuing discussions. As seen in the heirarchial diagram for ENTITY, there are seven

objects (OV, SRB, ET, SRM, Engine, HGU, and Parachute) which may be inherited from the ENTITY

1-59

base class. Figure 7 is a graphical version of one of these inheritable classes, OrbiterVehicle (used to
model OVs in the NSTS STARSIM model). Some of these attributes (see Fig. 7), e.g. no_units,
time_param and firing_room_type, are declared as static this permits a single copy of these attributes to
be maintained for all the OVs instantiated from this class. The attribute firing_room_type identifies the
group of firing rooms needed for the NSTS simulation. Note that even though this variable could have
been made a global variable, placing it in the OV class as a static member reduces the chance of side-
effects. The attribute time_param is a data structure used to hold the different types of timing parameters
associated with OVs for generating the length of service required at different server locations. These
timing parameters include the fixed-length service time for a deterministic-mode simulation, or minimum,
maximum and mode parameters for a triangular distribution used to generate random service times during
a stochastic-mode simulation. There are also some new methods (e.g., get_fir_room) used only for this
class of entity, while some other methods (e.g., clear_history) have been overridden to gain extra or
completely different functionality than obtainable from the base methods.

The same type of discussion as above applies to the derivation (i.e., inheritance) of other types of entity
classes. It is worth mentioning that the time_param data structure is contained in each of these instance
classes. If these times (or parameters), necessary to obtain service times, were included with each of the
specific servers, any of these servers processing more than one type of entity would have to maintain
separate data structures for each type of entity. Thus, including the time_param with each entity class
relieves the server of this burden. This design approach also makes it possible to incorporate new
parameters for generating service times with a minimum amount of additional effort and code, since new
parameters can be added to the specific type of entity class, rather than to all the server classes attending
that particular type of entity.

ADDITIONAL MODELS DEVELOPED

Using the class-objects designed for NSTS, the following systems were also modeled:

> 1.5 STAGE PLS/NLS-2 (without Boosers):
This is a model of a proposed system that simulates the flow of the manned PLS
(Personnel Launch System) vehicle along with the ET-like core-stage module called
NLS (National Launch System). Included in this model is also the flow and processing
for another entity called ADAPTER, which is used to mount the PLS on top of the NLS.
The PLS is a reusable entity, while the NLS and ADAPTER units are destroyed upon
each launch.

> PLS/NLS-1 (with Boosters):
An extension to the previous model, PLS/NLS-1 includes the detailed processing
activities at the various SRB facilities. The SRB is mated to the NLS and ADAPTER
assembly on top of the MLT (Mobile Launch Transporter) in the VAB bay, before a PLS
can be attached to them. Similar to the NSTS model with SRB processing, this model
also includes parachute as well as SRM processing.

> 2-STAGE PLS/NLS-2:
This model is also an extension to the 1.5-STAGE PLS/NLS-2 model. The model
processes an extra module called the 2nd stage, which is mounted on top of an NLS core
stage (hence the term NLS 2-stage). The PLS can then be attached on top of this
assembly via an ADAPTER unit. This 2nd stage unit is an expendible.

> PLS/TITAN-IV:
This model simulates another proposed launch activity which includes the PLS as the
major entity which is launched on top of the core-stage called the TITAN-IV rocket.
After being created at the manufacturer's site, the core stage is brought via a barge to
KSC, where it is assembled on an MLP in the Vehicle Integration Building (VIB).

1-60

Afterwards, it is sent to the SRM Mate Assembly Building (SMAB) where it is mated to
a Solid Rocket Motor (SRM) that has been processed by the SRM Preparation Facility
after being created by the manufacturer. This assembly is then passed to the launch
complex where a PLS is mated via the processed ADAPTER and then launched. All the
entities in this model except the PLS are expendible and are terminated after launch.

> PLS/PROTON:
This models another proposed scenario with the PLS as the reusable, main entity. The
other entity modules present in this model are the 1st STAGE, 2nd STAGE, 3rd
STAGE, Strap-on-tank and ADAPTER. All these entities, upon finishing their own
processing chore, are mated with the PLS in the Horizontal Integration and Testing
Facility, sent via a transporter to the pad for further processing and finally launched.
Only the PLS is recovered after a mission.

> HERMES/ARIANE-5:
This is also a model simulating proposed scenarios including the European HERMES
space plane on an ARIANE-5 rocket as the main entity. The other required entities are
the P230 Booster Pairs, Central Body or CORE and Resource Module or ADAPTER.
Every type of entity except the HERMES is expendible.

^ Medium Reusable CTRV:
This is the most recent model adapted from the STARSIM project. The main entity is
the CTRV (Cargo Transport and Return Vehicle) which is used to ferry the different
types of cargoes to and from the space-station.

First, flow charts similar to Fig. 1 were developed for each of the above systems. Then the appropriate
STARSIM base classes were used to inherit objects with the required characteristics. Output analagous to
Figures 2-4 may be obtained for each of the above systems.

SUMMARY AND CONCLUSIONS

The nature of the physical situations to be simulated (e.g., various kinds of servers, resources, and entities)
resulted in the choice of the object-oriented language C++ for implementing STARSIM and the adapted

models. The processing scenarios of all systems are similar to one another in their overall structure,

differing only in the behavior of the different objects. These characteristics require code and interface

inheritance for the objects in each of the simulation models. As a result, the core of STARSIM consists of

a set of base objects needed by each model. Inheriting code within core object modules helps avoid

redundancy. Inheriting the interfaces of the base object classes allows the derived specialized classes to

obtain additional and/or completely different behaviors. These capabilities would not be possible in a non-

object-oriented implementation.

Another advantage of using an object-oriented design methodology resulted in the locality of code. For
instance, any modification to be performed to a specific model can be achieved by making changes to a
single location within one method. If a change is to be made to a specific type of derived object, only the

methods of that particular instance class need be altered. If a change is to be made which will affect all of

the derived classes of some base class, then the base class method is the place to make those changes,
since they will be propagated through the hierarchy to the derived classes. In short, the object-oriented

approach resulted in more reliable code that was easier to maintain and, consequently, created an

environment which enhanced productivity (i.e., seven distinct systems were adapted and verified in four

man-months)

1-61

29
-1

- Fi
gu

re
 I

ST

A
R

SI
M

 F
lo

w
 D

ia
gr

am
 w

ith
 P

=P
R

 (
L

an
di

ng
 a

t
K

SC
).

o>

ALPHABETIZED LIST OF IMPORTANT ACRONYMS

Cargo Transfer Relurn Vehicle
Edwards Air Force Base
Engine Shop
External Tank
Firing Room
Hypcrgolic Unit
Hypcrgolic Maintenance Facility
Hypcrgolic Processing Facility
Kennedy Space Center
Launch Control Center (where FRs are located)
Launch Pad
Mission Control Center
Mobile Launch Platform
Mobile Launch Transporter
National Aeronautics and Space Administration
National Launch System
National Space Transportation System
Original Equipment Manufacturer
Orbiter Maintenance Down Period
Orbilcr Processing Facility
Orbiter Vehicle
Personnel Launch System
Reporter Object
Rotation, Processing and Surge Facility
Refurbishment Subasscmbly Facility
Shuttle Carrier Aircraft
Shuttle Landing Facility (at KSC)
Solid Rocket Booster
Solid Rocket Motor
Space Transportation Activities and Resources SIMulation
Vehicle Assembly Building

Figure 6 Graphical depiction of methods, attribute* and interfaces of bnsc class FNTITY

	Paper Session I-A - Modeling Current and Future Launch Vehicle Processing Using Object-Oriented Simulation Techniques
	Scholarly Commons Citation
	Presenter Information

	tmp.1394383994.pdf.VLmAk

