

The Space Congress® Proceedings

1995 (32nd) People and Technology - The Case For Space

Apr 25th, 2:00 PM - 5:00 PM

Paper Session I-B - From Space to 911- The Peace Dividend for Public Safety

Scott R. Johnson Rockwell Engineering

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation

Johnson, Scott R., "Paper Session I-B - From Space to 911- The Peace Dividend for Public Safety" (1995). *The Space Congress® Proceedings*. 16.

https://commons.erau.edu/space-congress-proceedings/proceedings-1995-32nd/april-25-1995/16

This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

FROM SPACE TO 911 - THE PEACE DIVIDEND FOR PUBLIC SAFETY

Scott R. Johnson

Rockwell Advance Engineering

Public Safety Systems are our first line of reaction and response for any emergency, whether personal, local or regional. Described are ways in which we are applying military and space technology to improve the capability and efficiency of our Public Safety Systems community. Law Enforcement. Firefighters and Emergency Medical Services provide us with safety, security and help as well as our first line of response to major disasters, such as hurricanes, floods, earthquakes and civil disorder. However, as economic realities act to reduce the amount of money available for these essential services, the Public Safety Systems community is forced to operate with less and less money. Yet, the jobs they perform, and the disasters to which they respond, will continue to occur. Affordable solutions to this looming crisis are available by exploiting the significant investments was as a nation have already made in our defense and space programs. Examples include the application of Global Positioning Satellites, Infrared Night Vision, Virtual Reality, Distributed Integrated Simulations, Battle Management and Command, Control, Communications and Intelligence. We propose the initial elements of an evolutionary, national, integrated safety system that uses proven DoD and NASA derived technology.

45

U.S. EXPENDABLE LAUNCH VEHICLES

		PERFORMANCE (LBS)				
	VEHICLE	LEO (I = 28.5°) 100 NM CIRC	GTO 100 x 19,323 NM	POLAR (I = 90°) 100 NM CIRC	PAYLOAD FAIRING	LAUNCH SITES
PEGASUS	PEGASUS (STANDARD) PEGASUS-XL	810 1,010	תן ע	610 730	4.2 FT 4.2 FT	VAFB, WFF
TAURUS	TAURUS (STANDARD) TAURUS-XL	3,100 3,450	980 1,140	2,200 2,550	4.5 FT 4.5 FT	VAFB
DELTAIL	MODEL 7320 MODEL 7320 MODEL 7920 MODEL 7920 MODEL 7925 MODEL 7925	6,420 6,100 11,200 10,700 -1/ -1/	-1/ -1/ -1/ 4,060 3,860	4,700 4,450 8,600 8,220 -1/ -1/	9.5 FT 10 FT 9.5 FT 10 FT 9.5 FT 10 FT	CCAFS (2 Pade) VAFB (1 Pad)
ATLAS	FATLAS II ATLAS IIA ATLAS IIAS	14,700 14,150 16,450 15,900 19,450 18,850	6,300 6,000 7,000 6,700 8,250 8,150	12,300 11,900 14,000 13,500 16,500 16,000	11 FT 14 FT 11 FT 14 FT 11 FT 14 FT	CCAFS (2 Pade) VAFB (1 Pad Under Construction)
TITAN	ITTIAN II ITTIAN IV / NUS SRMU ITTIAN IV / IUS SRMU ITTIAN IV / CENTAUR SRMU	38,100 47,160 	- 4 - 4 - 4 - 4 - 4 - 4	4,750 31,100 38,800 	9.5 FT 16.7 FT (66 ft length) 16.7 FT (56 ft length) 16.7 FT (86 ft length)	VAFB (2 Pads) CCAFS (2 T-IV Pads)

^{1/} CONFIGURATION NOT NORMALLY USED FOR THIS MISSION PROFILE 2/ WITH ADDED UPPER STAGE

⁴ ALL ATLAS I/II VEHICLES ASSIGNED 5/ TITAN IV/CENTAUR STRUCTURALLY LIMITED

^{3/} NOT COMMERCIALLY AVAILABLE