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Optical Diagnostics: Reagentless Chemistry for Extended Space Flights 

1Glenn M. Cohen, 2Fredric M. Ham, and 3Brent R. Gooch 
1'2Florida Institute of Technology, 1Department of Biological Sciences 2Division of Electrical and 
Computer Engineering, Melbourne, FL, 3Holmes Regional Medical Center, Melbourne, FL 

ABSTRACT 
Maintaining the health and safety of the crews of spacecraft remain the highest priorities. Health 

monitoring requires at least two overlapping activities: (I) frequent or continuous monitoring of 
bodily functions to determine normalcy or deviation from normalcy, and (2) specific diagnosis and 
treatment of diseases. Thus, with a broad mandate and limited resources, the spacecraft must 
provide the diagnostic capabilities for quickly and accurately diagnosing a wide range of diseases. 
Optical devices, though still in the early developmental stages, diagnose diseases by analyzing and 
quantitating the spectra of metabolites and other substances non-invasively and without using 
chemical reagents. Once commercially available, optical devices will replace many clinical 1es1s 
that use chemical reagents for diagnostics. 

INTRODUCTION 
Ensuring the health of crews is essential for the successful completion of the various tasks of 

missions. Although crews are thoroughly examined and treated for their diseases prior 10 missions, 
they are subjected to various stresses during flights that can increase their susceptibilities to 
diseases. For extended missions, the spacecraft must stock an inventory of different diagnostic kits 
(each containing its own specific reagents) and medications in order to test for and treat a broad 
range of diseases accurately and quickly. The diagnostic kits and devices must conform to the 
constraints imposed by size, weight, and power consumption. After their use, the spacecraft must 
safely store or degrade the chemical reagents, blood and other body fluids, and non-reusable 
devices. In contrast, optical devices perform diagnoses non-invasively, do not require samples of 
blood or body fluids, can operate almost continuously, and use no reagents or supplies. Optical 
devices offer advantages for extended missions not provided by test kits that use chemical reagents. 

We are developing an optical device using near-infrared spectroscopy for monitoring blood 
chemistry (glucose) non-invasively (without drawing blood). This technique, sometimes called 
"reagentless chemistry" involves identification and quantitation of the spectra of different chemicals 
in the blood. When fully developed, the patient will illuminate a finger (Fig. 8), ear lobe or other 
optically translucent area and sensor detects the spectral signals on the other side. Using signal 
processing techniques, background noise iS removed and spectral signal are quantitated (Ham. 1994; 
Ham et al., 1994). 

For our research on blood glucose, we felt that the non-invasive device had to meet at a 
minimum of three requirements: (1) measures the substance in the blood directly using a safe, low
intensity, near infrared source; (2) determines concentrations of blood substances using an artificial 
neural network and signal processing techniques, and (3) measures the substance in the blood 
independently of both skin pigmentation and the finger site where the light impinges. 

METHODOLOGY AND PRELIMINA RY RESULTS 
The Data Sets and the Baseline Corrections 

A very comprehensive data set, consisting of 1251 near infrared (NIR) spectra of human blood 
serum, has been generated by Mi les, Inc. (Non- Invasive and In-Licensing Diabetes Business Unit). 
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This data has been acquired by our research team, and has been the basis for our research during the 
past year. The NIR data set of human blood serum gathered from hospitalized patients consists of 
834 spectra for which reference glucose data was determined for each sample using a YSJ (Yellow 
Springs Instruments) laboratory glucose analyzer (instrument error .S: 2%). The remaining 417 
spectra for prediction do not have any reference glucose data. The data were gathered with a 
modified NIRsystems 6500 model spectrophotometer over the wavelength region from 1100 nm to 
2498 nm (9091 cm· 1 to 4003 cm- I) with a spectral resolution of 2 nm. The region from 1888 nm to 
2428 nm (5297 cm· 1 to 4119 cm-1) is the most significant for determining glucose concentrations. 
There are 3 significant glucose absorption bands in this region which are combination bands 
associated with C-H stretching vibration transitions. This can be seen by observing Fig. 1 which 
shows the NIR absorption spectrum of anhydrous glucose in this spectral region. Miles, Inc. also 
supplied us with a data set consisting of 99 spectra of glucose in a simple aqueous matrix (water). 
The first 9 spectra were for water alone, and these were averaged and used to remove the intrinsic 
high background absorption due to the water. This was perfonned by logarithmically (according to 
the Lambert-Beer law) subtracting the averaged water spectrum from the remaining spectra. Figure 
2 shows the NIR spectra of water. Note the large absorption band centered around 5200 cm-1. 
However, the water does not absorb much energy in the region where glucose has predominate 
absorption bands (see Fig. 1). 

The same process was carried out for the blood serum data. This is also necessary in the case of 
the blood serum data because there doesn't exist a matrix-matched background spectrum available to 
use in processing the data (Ham et al., l 994a). This is precisely our systematic incremental 
complexity testing strategy, to develop one-step-at-a-time the matrix-matched background spectrum 
that will eventually yield, upon removal from the raw spectrophotometric data, that information 
which is associated with only glucose. This will involve obtaining NIR spectra for other blood 
constituents that have absorption characteristics in the same spectra region of glucose. 

Preprocessjng and the Statistjcal Approach 
Therefore, the first step in this process is to use the aqueous water matrix as the artificial 

background spectrum for the blood ~erum NIR spectroscopic data. As a basis of comparison, the 
water NIR spectrum was first removed from the glucose in water NIR spectra. A very powerful 
statistical modeling method, known as partial least squares (PLS) regression, was used to predict the 
glucose concentrations from NIR spectra used as monitoring (or test) data. The model is first 
developed (or trained) using a subset of the data (NIR spectral samples along with the associated 
reference glucose concentrations) and then tested on the remaining subset ofNIR spectra. 
Therefore, 48 of the samples were used for training and 41 were used for testing (monitoring). One 
of the samples was removed from the global data set because it was determined to be an outlier. 
The predicted glucose concentration values are then compared to the actual reference values to 
establish the accuracy of the developed model. Figure 3 shows the prediction results using the 
trained PLS model for the raw data (essentially the same spectral region was used for the blood 
serum data). The PLS model required 5 factors and the mean percent training error (MPTE), where 
MPTE = 5.13% (11.18 mg/di) and the mean percent monitoring error (MPME), MPME = 12.71% 
(21.78 mg/di), respectively. It is obvious from these results (and observing 
Fig. 3), that there is a considerable amount of error associated with the predictions made by the PLS 
model. However, the PLS model can only be as good as the data that is given for training. 
Therefore, if the data are pre-processed (digitally filtered) to remove the baseline variations and the 
high frequency noise then the PLS model will be more accurate when trained by the less noisy data 
(Arnold and Small, 1990). The filtering process involves coupling a digital 3rd-order Butterworth 



filter with the PLS regression method in an optimization process to simultaneously minimize the 
MPTE and MPME (Ham et al., 1994b). The procedure searches over defined ranges of the digital 
filter parameters and the number of PLS factors, to yield the best combination of filter parameters 
and PLS factors such that the MPTE and MPME are minimized. Figure 4 shows the results after the 
optimal filtering process for 7 PLS factors and the digital filter parameters: center frequency = 
0.2158/and bandwidth= 0.1992/ For the filtered data results, the MPTE = 3.13% (7.02 mg/dl) and 
the MPME = 4.43% (11.52 mg/di). Therefore, the filtered data results in much better results than 
the raw data. This is a result of removing the baseline variations and the high frequency noise in the 
data with the optimal digital filter (and also the selection of the optimal number of PLS factors). 

Qetennjnatjon of Glucose Concentrations 
Figure 5 shows the NIR spectrum of a one sample from the blood serum data set (for 605 mg/di 

reference glucose). Note that the absorption peaks that were prominent for the anhydrous glucose in 
Fig. I are now somewhat smeared. This is due to hydrogen bonding and interference from other 
molecules in the serum. However, the glucose bands are still recognizable. A PLS model was 

·developed on 509 NIR spectra, and tested on 301 (the results are shown in Fig. 6). There were 24 
outliers removed from the data set of 834 NIR spectra. Using the artificial background spectrum 
consisting of only water, the PLS prediction results are reasonable, but not acceptable for reliable 
glucose concentration predictions in a non-invasive monitoring system, especially for the 
hypoglycemic diabetic condition. A standard performance level for predicting glucose 
concentrations has not been established as yet. However, we feel that the diabetic hypoglycemic 
condition should dictate this standard performance level, and a mean percent error '.S 5% is a 
reasonable value . Therefore, the MPME = 11.01%, or 20.8 mg/di as shown for the prediction 
results in Fig. 6 would not be acceptable based on the above suggested scandard. This further 
reinforces the need for an increa<>ing complexity testing scenario which will incrementally build the 
matrix-matched background spectrum for blood serum data, and ultimately for whole human blood 
An integral part of this process is a technique that we have developed using the PLS regression 
calibration model building method. The PLS regression method involves a series vector projections 
of reference concentration information on principle PLS vectors in an abstract vector space. We 
have exploited these interrelationships that are utilized in the model building process for the PLS 
regression method and used them to extract very fine features of the spectroscopic data which are 
subtly related to the information that is sought, namely, glucose, and specifically the amount of the 
substance in a sample, i.e., the actual concentration. Figure 7 shows a 3-dimensional depiction of 
the use of 3 PLS principle vectors. The entire data set samples were averaged over each glucose 
concentration group (this subgroup consisted of 287 averaged samples), and the 3 PLS principle 
vectors were used to extract the salient glucose features from the data. The same process was 
carried out on the entire group of samples. Figure 7 shows how this extracted spectral information 
is basically related to the glucose reference concentration information by plotting the samples in 3-
dimensional space. The sample trend corresponds directly to the regression results in Fig. 6. This is 
a very powerful method of extracting as much information from the spectroscopic data with a 
limited matrix-matched background spectrum. Therefore, as the matrix-matched background 
spectrum is enhanced through the incremental complexity testing process, the PLS regression 
prediction results will continuously improve to the point that the :S 5% error figure can be met. 

DISCUSSION 
Buerk (1993) listed the behaviors of an ideal biosensor as follows: (I) high effective sensitivity, 

(2) ease of calibration, (3) linearity of sensitivity, (4) high limit of detection, (5) quantifiable back
ground signal, (6) negligible hysteresis, (7) low drift and high long-term stability, (8) high 

5-18 



selectivity [low interference], (9) fas t dynamic response, (10) temperature compensation, ( I I) high
signal-to-noise ratio, (12) long and predictable lifetimes, (13) safety and biocompatibility. Although 
these generic behaviors are shared among biosensor types, such as electrochemical, enzyme-based, 
and optical, only optical sensors can monitor blood chemistry non-invasively (Fig. 8) and without 
using chemical reagents . In short, optical sensors offer an advantage for routine tests that are 
frequently performed, such as glucose monitoring, and for extended space missions. 

Oximetry, a non-invasive technique, is widely used for monitoring oxygen levels in blood . 
Optical sensors detect the spectral properties of oxygenated and deoxygenated hemoglobi n and 
quantitate the spectra (Buerk, 1993; pgs. 137-139). The oxygen signal is strong because of the high 
concentration of hemoglobin in the blood. By comparison, most other chemicals in the blood are 
difficult to monitor because of their extremely low concentrations and overlapping spectra with 
other chemicals. Thus, the detection and prediction of the spectral signals of most blood chemicals 
requires far more elaborate signal processing than for monitoring oxygen levels. 

A robust discrimination strategy which can detect and predict glucose concentrations with an 
acceptable level of accuracy using spectrophotometric methods serves as a pivotal element in a 
highly reliable non-invasive monitoring system for measuring blood glucose (and other substances). 
Many technical obstacles must be overcome in developing an optical system, such as: (I) removal 
of baseline variations that instrumentation drift and ambient conditions introduce into the 
spectroscopic data (Hazen et aL, 1994; Small et al., 1993), (2) intrinsic high background absorption 
due to water, (3) high frequency noise Uue to the detector and removing the background absorption 
due to water, (4) optical properties of skin (scattering of light), which is an anistropic and 
inhomogeneous medium (Anderson and Parrish, 1982), (5) large numbers of overlapping absorption 
spectra and molecular interactions of other blood constituents with glucose, and (6) degradation of 
signal of interest due to interference of other blood substances, i.e., red blood cells (45% of blood 
volume). 

To date, we have overcome many of the technical obstacles described above and quantitated 
levels of blood glucose ranging in concentration from 0 to 600 mg/di (IOO mg/di is the normal 
value) (see Figs. 1-7). The develop,inent of the technique of optical monitoring of blood chemistry 
represents a high priority for people with diabetes who presently must prick their fi ngers several 
times each day to monitor blood glucose using chemical reagents (Robinson et al., 1992). Optical 
technologies are transferable to many other diagnostic applications, particularly for extended space 
missions. An optical device, which can fu nction over wide spectral ranges, can replace a single 
diagnostic test klt that is frequently used or replace many different types of test kits. 
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Figure 1. NIR spectrum of anhydrous glucose. 

Figure 3. PLS prediction performance results 
for the raw glucose in water data. 
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Figure 2. NIR spectrum of water. 

Figure 4. PLS prediction performance results 
for the optimally filtered glucose 
in water data. 
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Figure 5. NIR spectrum of blood scrum (605 mg/dl - Glucose) with water spectrum logarithmically 
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Figure 7. Three Pl..S projections on the training and monitoring data. 

Figure 8. 

Read-out Device 

\ 

Monitoring box (the read out device will display a quantitative measure of 
the actual glucose levels in mg/di). 
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