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Space Station On-Orbit Solar Array Loads 
During Assembly

S. Ghofiranian , E. Fujii, C. R. Larson * 
Rockwell International, Space Systems Division, Downey, California

This paper is concerned with the closed-loop dynamic analysis of on-orbit 
maneuvers when the Space Shuttle is fully mated to the Space Station 
Freedom. A flexible model of the Space Station in the form of component 
modes is attached to a rigid orbiter and on-orbit maneuvers are performed 
using the Shuttle Primary Reaction Control System jets. The traditional 
approach for this type of problems is to perform an open-loop analysis to 
determine the attitude control system jet profiles based on rigid vehicles • 
and apply the resulting profile to a flexible Space Station. In this study a 
closed-loop Structure/Control model was developed in the Dynamic 
Analysis and Design System (DADS) program and the solar array loads 
were determined for single axis maneuvers with various delay times 
between jet firings. It is shown that the Digital Auto Pilot jet selection is 
affected by Space Station flexibility. It is also shown that for obtaining 
solar array loads the effect of high frequency modes cannot be ignored.

I. Introduction

When the Space Station Freedom (SSF) and the Space Shuttle are mated to each other on orbit, 
the Shuttle attitude control system will be used to control and maneuver the combined vehicles 
until control authority is switched over to SSF on Mission Build (MB) flight 5. The Shuttle 
Reaction Control System (RCS) consists of 6 Vernier RCS (VRCS) jets, each providing 25 Ib. of 
thrust, and 38 Primary RCS (PRCS) jets where each jet provides 875 Ib. of thrust. The heavy 
weight of the SSF structure causes large center of gravity offsets for the Shuttle. This, combined 
with the non-redundant nature of the VRCS system, causes the PRCS system to be used for 
attitude control. The standard PRCS system induces large loads on the SSF. Therefore an 
alternate mode of operation (ALT Mode) in which the number of jets that can be fired 
simultaneously as well as maximum duration of firing and minimum delay between firings can 
all be controlled by the crew. The PRCS ALT Mode reduces induced loads on the SSF systems 
via the following restrictions: using minimum pulse duration (80 milliseconds), a maximum of 
two simultaneous jet firings, and long delay times. But, at some point the delay times and firing 
durations can cause controllability problems. Furthermore, since the SSF structure is highly 
flexible, the effect of structural flexure can affect the jet firing selection by the Digital Auto Pilot 
(DAP). This paper does not attempt to address the controllability issues of the SSF assembly 
flights. Extensive studies have been performed at NASA/JSC to study the controllability 
problems. Results of those studies indicate that when PRCS pulse durations are limited to 80 
milliseconds, the delay times between each firing cannot be extended beyond 10 seconds without 
degrading control performance. From a control point of view smaller delay times are desirable 
but, internal SSF loads can limit the minimum allowable delay time.

* Members of technical staff at Rockwell International Space Systems Division.
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Normally, tie mated Qtbiter/SSF loads analysis is performed in an open-loop manner. The 
controllaMHly studies are performed with rigid vehicles and PRCS jet profiles are generated for 
a number of cases. Certain profiles are selected for loads analysis based on the frequency of 
firings and the specific jets that were active. For very stiff payloads this is a proper approach 
since high frequency modes do not affect the jet firing selection. The SSF structure, however, is 
a very flexible system with primary bending modes below 1 Hz., and mass properties in the 
same order of magnitude as that of the Space Shuttle. Therefore it is expected that the attitude 
control jet firings will be affected due to system flexibility. An open-loop rigid-body approach 
to detennining jet firing sequences does not take this effect into account and can produce 
unrealistic profiles..

In this study a flexible model of the SSF MB2 in the form of component modes is attached to a 
rigid Shuttle model using the DADS software. The Shuttle DAP is coupled with- the dynamics 
model of the combined vehicles to obtain a closed-loop model. The DAP is then commanded to 
perform single axis maneuvers with various time delays. Interface loads between the Shuttle and 
SSF are recovered. A Load Transformation Matrix (LTM) is also used to recover SSF Solar 
Array loads as well as desired displacements and accelerations at various internal points. 
Closed-loop flexible body analysis results are compared with rigid body analysis. A simplified 
model is also set up to study modal contribution for on-orbit loads analysis. The DADS 
dynamics model developed has the capability to include multiple flexible articulating/non- 
articulating payloads and perform on-orbit attitude control or general maneuvers using any of the 
operational modes of the Shuttle RCS system. The results of this study and the models 
developed can be used to further study the on-orbit loads and controllability issues for critical 
SSF assembly flights.

II. Dynamic Model

The dynamic analysis for this study was performed using the DADS software. DADS was 
selected for its general purpose capability to simulate large angle/displacement multi- 
body/multi-disciplinary systems. The ability to link the program with existing in-house codes 
makes it an ideal tool for this type of analysis.

The SSF MB-2 configuration is shown in Figure-1 attached to the Orbiter. It consists of a center 
truss, an electrical power system radiator, a port-side solar power module and two photovoltaic 
arrays. The finite element model consists of 1267 grid points and 1825 elements. This model 
reflects the design as of May 1991. The assumption is that the alpha and beta gimbals that rotate 
the solar array about its base are locked in the position shown in Figure-1. The truss structure is 
represented by an equivalent beam model. The total mass of this configuration is 70874 Ib. The 
finite element model was fixed at the interface with the Shuttle and normal modes were 
generated. Forty two modes with a frequency range of 0.07-4.8 Hz were recovered. An LTM 
for 130 items was also generated. Details of this work can be found in Ref. 1.

The Shuttle DAP software (Ref. 6) determines jet firing commands for attitude control or 
general single- or multi-axis on-orbit maneuvers. In a typical scenario the desired Shuttle 
attitude and/or rates are requested by the crew. The DAP then attempts to achieve and maintain 
these attitude and rate commands within the crew-specified error margins. The error margins are 
the attitude dead bands and rate limits. The error is defined as the difference between the DAP
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commands and estimates of the states derived from Inertial Measuring Unit (IMU) data. Jet 
firings are commanded whenever the errors exceed the margins. The DAP has two major 
operational modes; manual and automatic control. When manual control of Shuttle attitude or 
rate is required, the pilot requests rate changes through the hand controllers, which are converted 
to jet-firing commands by the DAP. In the automatic mode the DAP determines when jet firings 
are required. Since PRCS firings induce flexure in the mated vehicles the Shuttle IMU data will 
include a component due to flexure. The IMU data is then used to generate subsequent jet firing 
commands. Therefore, a rigid-body simulation may produce inaccurate jet firing histories 
compared to a flex-body simulation. The Shuttle Flight Control System Simulator (FCSSIM) is 
a FORTRAN program that simulates all the operational modes of the RCS system. This is an in- 
house developed program that is used for controllability studies by control analysts.

The Shuttle is modeled as a rigid body in DADS. From the controls standpoint a rigid body 
assumption is appropriate for this study since it is known that the shuttle flexible-modes do not 
affect the jet firing selection. From a loads point of view since SSF modes are below 5 Hz, it is 
assumed that there will be no significant coupling between Shuttle and SSF modes. 
Furthermore, since this study is the first attempt at performing closed-loop on-orbit loads 
analysis, simplifying the problem facilitates understanding of the system behavior. The SSF 
MB-2 component modes were translated to DADS format and were coupled to the Shuttle 
model. In a final modelling step, the FCSSIM program was linked to DADS via a subroutine 
call. Figure-2, shows a flow-chart of the coupled model. The attitude control system parameters 
are set in FCSSIM. These parameters include RCS mode of operation, maneuver command, 
dead bands, rate limits, delay time, initial rates, etc.. The Shuttle attitude and rates arc sensed 
from the DADS model and are passed to FCSSIM. FCSSIM operates on this data and 
determines which jets are to be fired. The resultant force and moments of the DAP-selected 
combination of RCS jets is then passed back to the DADS program to be applied to the Shuttle. 
At every integration step the SSF generalized coordinates response is used to recover desired 
data from the LTM.

The cases that were studied reflect a subset of the available control options. Automatic single- 
axis maneuvers were commanded in the Roll, Pitch, and Yaw directions. The maneuver angle 
was set to 10 degrees. Combined vehicle rates were initialized to 0.1 deg/sec about all axes in 
order to ensure prompt maneuver initiation. The SSF MB-2 configuration extends forward of 
the Shuttle when it is mated to it as shown in Figure-1. In this configuration the fourteen Shuttle 
PRCS jets in the nose cannot be fired because of contamination of the SSF structure and plume 
impingement on the SSF solar arrays. Therefore DAP was set for Tail-jets-only option. 
Furthermore a maximum of two jets were allowed to fire simultaneously with a maximum pulse 
duration of 80 milliseconds to reduce induced loads on the SSF. For each single-axis maneuver 
the delay times were set to 0, 4, and 10 seconds in separate runs. The delay time represents the 
minimum wait time between consecutive PRCS firings, A total, of nine cases were evaluated in 
this study. It is important to emphasize that a broader spectrum of conditions most be studied in 
order to adequately cover the entire envelope of SSF assembly operations, Although this study 
does not present a complete answer for the on-orbit loads issues with respect to SSF,, it 
represents a set of points within the realm of possible scenarios. The models Ihtt 
developed in the course of this study and the lessons learned can. 'be used in, any future work 
dealing with on-orbit loads issues. Future simulations should also include manual pulse trains 
(Ref: 2) designed to excite specific modes.
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HI. Results

Figure-3, compares the attitude rates of a rigid-body simulation of the SSF/Shuttle combination 
and a flexible simulation for a 10 degree Pitch maneuver with 4 seconds delay between PRCS firings. Attitude rates for Roll, Pitch, and Yaw are overlayed for the two cases. Curves 1, 2, and 
3 are the results of the rigid-body study. The impulsive changes seen in the Qrbiter rate are as a 
result of PRCS jet firings. In the Pitch direction a rate change is seen every 4 seconds. Curves 
4, 5, and 6 represent the flexible-body simulation. The oscillations seen on these curves are due 
to SSF flexure induced by the jet firings. The flex-body and the rigid-body results show the same jet firings until 32 seconds into the maneuver when a Roll jet is fired in the flex-body run. 
The most significant difference occurs at approximately 37 seconds when a Pitch correction is 
made which is in the opposite direction as that of the rigid-body simulation. The differences 
between the rigid-body and flex-body runs become more significant as the maneuver continues. These results show that even for SSF MB-2 configuration the effect of flexibility can be 
significant with respect to which jets are fired and in what direction. Heavier and more flexible 
configurations such as MB-5 will only amplify this effect. From a control point of view these 
differences are not considered significant as long as they do not cause instability but, with 
respect to loads a different jet profile can cause higher loads.

Figure-4, shows the bending moment at the solar array base for a 10 degree maneuver with 4 
seconds delay between jet firings. The peak load is approximately 22000 in-lb at 90 seconds into the maneuver. Load spikes occur every 4 seconds consistent with the jet firings. Highest loads were obtained for the pitch maneuver, as it was expected, since the solar arrays are 
positioned in the x-y plane. Although maximum solar array bending moment (24,500 in-lb) was 
obtained for the pitch maneuver with zero delay, it is not likely that PRCS ALT mode will be 
used with zero delay option during SSF assembly. The other conditions analyzed (4 sec. and 10 
sec. delays) also resulted in high bending moments as mentioned earlier. Figure-5, shows the 
interface pitch moment between SSF and Qrbiter in a pitch maneuver. Table-1. summarizes the 
peak bending moments about for the solar arrays and the Orbiter interface. The Qrbiter interface 
bending moments have to be reacted by the unpressurized berthing adapter. Closer examination 
of the solar array and Qrbiter interface responses revealed that the frequency range used for the 
SSF may not have been sufficient. Upon further investigation with a simplified model of the 
SSF it was shown that in problems where impulsive loading is present the contributions of the 
sixth bending mode of the system is also significant. Similar studies have shown the same 
results (Ref. 3). It was also shown that insufficient modal representation causes the interface 
loads to converge from the rigid body solution during the load application. Therefore impulsive 
changes in the interface response can be seen if higher bending modes are not included. Adding 
more modes results in a time-shift of the peak loads but, not a significant reduction in their 
magnitudes. The response amplitude between firings is higher when modal representation is 
sufficient. This means that the results of the present study are not conservative in spite of 
insufficient modal representation which usually results in a stiff system. This is because higher 
response amplitudes between PRCS pulses can result in peak loads greater than what was 
computed in this study when subsequent pulses occur. Considering the capability of the solar 
arrays, approximately 31,500 in-lb about their weak axis, and the results of this study which 
does not even include any uncertainty factors, it is possible to overload the arrays when Orbiter 
uses its PRCS jets for maneuvering and attitude control. This means that certain limitations have 
to be imposed on the PRCS ALT mode operations. At least one limitation is obvious; untuning
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of delay times from dominant bending modes. Other limitations need further studies using 
closed-loop models, such as the one developed for this study, where the effect of flexibility on 
jet selection can be accounted for. Future studies can perform parametric studies on different 
dead bands and rate limits, longer pulse durations and delay times, and notch filters for cases 
where dominant bending modes are of low-frequency nature and affect jet selection logic 
significantly. It is important to remember that one of the assumptions in this study is that the 
Orbiter is rigid. If higher bending modes with frequencies above 5 Hz need to be used in future 
studies then the potential of interaction with Orbiter modes cannot be neglected. Such studies 
have to consider using a flexible Orbiter for loads analysis.

IV. Conclusion

A closed-loop dynamic model of the SSF MB2 mated to the Space Shuttle Orbiter was 
developed in DADS. SSF flexibility was represented by means of forty two component modes 
with a frequency range of 0.07 - 4.8 Hz.. Orbiter DAP was coupled to the dynamic model and 
on-orbit single-axis maneuvers were performed. Solar array and Orbiter/SSF interface loads 
were recovered. The effect of structural flexibility on jet profiles was shown to be significant in 
some cases, however, from a controllability point of view the differences were not considered to 
be major. The solar array loads were found to be high for the cases studied. It was found that 
the frequency range used for the SSF component modes were not sufficient for loads analysis, 
however, further investigation using a simple beam model of SSF concluded that adding more 
modes can result in higher loads than what was obtained in this study. Any future work should 
consider using up to the sixth bending mode of the SSF. If SSF modes above 5 Hz are used then 
consideration should be given to using Orbiter flexible modes in order to account for any 
coupling effects. Additional studies should also be performed on the effect of longer pulse 
durations to compensate for longer delay times, multi-axis maneuvers, variations in dead bands 
and rate limits.
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Fig. 1 SSF MB2 mated to the Orbiter.
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Fig. 2 Closed-Loop Structure/Control model.

Fig. 3 Comparison of Rigid vs. Flex-body results.
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Fig. 4 YZ-plane Bending Moment at the solar array base (Ib-in vs. seconds). 
(10 degree pitch maneuver, 4 sec. delay)
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Fig. 5 Interface pitch moment between Orbiter and SSF (Ib-in vs. seconds). 
(10 degree pitch maneuver, 4 sec. delay)

Solar Array Interface

My (Ib-in)

24,500

Mz (Ib-in)

7,500

Orbiter/SSF Interface

MX (Ib-in)

85,000

My (Ib-in)

195,000

Mz (Ib-in)

145,000

Table 1 Maximum bending moments at the solar array and Orbiter interface.
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