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MODEL SHUTTLE VEHICLE DEVELOPED 
TO SUPPORT VANDENBERG HYDROGEN DISPOSAL

INVESTIGATION

Charles L. Heckart
Lockheed Space Operations Co.
Vandenberg AFB, California

Jack D. Ronda
Lockheed Missiles & Space Co.
Santa Cruz, California

INTRODUCTION
Space Shuttle Main Engines (SSME) discharge 
a significant quantity of unburned hydrogen 
during normal start and shutdown operations. 
At Vandenberg Air Force Base (VAFB), a 
Flight Readiness Firing (FRF) or launch abort 
could introduce this unburned hydrogen into 
the enclosed SSME exhaust duct. This 
hydrogen in a closed duct creates a risk of 
detonation which could result in significant 
overpressure at the aft heat shield thereby caus 
ing damage to the Space Shuttle Vehicle (SSV).

To mitigate the detonation hazard the Air 
Force (AF) initiated a Hydrogen Disposal Sys 
tem (HDS) program. Extensive analyses and 
feasibility testing were conducted on possible 
solutions. In December 1986 the AF Shuttle 
Test Group (STG) selected the Steam Inerting 
System (SIS) concept as the most technically 
feasible resolution to the unburned hydrogen 
issue. The following January, STG directed the 
Shuttle Processing Contractor (SPC) to com 
plete the development and design of a SIS for 
the VAFB SSV launch pad (Refs. A & B).

As part of the SPC SIS Program development, 
test agencies which participated in the 
feasibility program were evaluated for their 
continuing contribution. Astron Research and 
Engineering, Sunnyvale, California; Wyle 
Laboratories, Norco, California and Martin 
Marietta Corporation, Denver, Colorado had

each made major contributions in establishing 
SIS feasibility. A decision was made to continue 
using their experienced staffs and facilities to 
support SIS development testing which ulti 
mately resolved many of the development and 
design issues.

Resolution of the remaining issues required the 
services of additional test agencies. Cermak, 
Peterka, Petersen, Incorporated of Fort Col- 
lins, Colorado performed testing which estab 
lished effects of wind on the VAFB SSV launch 
pad and SIS. Marshall Space Flight Center 
(MSFC), HuntsvilJe, Alabama was selected to 
determine the effects of SIS on the VAFB 
launch pad induced environments. The exist 
ing MSFC 6.4% model SSV test facility, con 
taining hot firing hydrogen/oxygen engines, had 
previously established an acoustic, thermal and 
overpressure data base for VAFB's launch pad 
design.

The MSFC 6.4% scale model did not provide 
variable control of engine power levels or start 
and shutdown sequences. These control fea 
tures are critical to SSME start and shutdown 
transients simulation. Therefore, a different 
facility was needed to resolve the SSME tran 
sient operation issues (Ref. C).

SPC selected Lockheed Missiles and Space 
Company's Santa Cruz Facility (LMSC/SCF) to 
design and construct a SSV model which could 
provide the transient data necessary to assure 
SIS operational success.

This paper examines the requirements, engine 
and facility configuration, and instrumentation 
for the model SSV transient test facility 
developed for SPC at LMSC/SCF. Also 
presented are comparisons between model en-
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gine test results and predictions and the con 
clusions drawn from the program.

FACILITY DESIGN REQUIREMENTS 
Scaling
The scaling relationships developed for the 
model SSV transient test facility design were 
derived from the basic equations of mass, 
momentum and energy conservation. These 
equations were normalized utilizing ap 
propriate system parameters. The resulting 
non-dimensional parameters were then 
evaluated for relative magnitude and a deter 
mination made as to which were most impor 
tant for the HDS development.

The critical issues to be resolved by the testing 
program dictated that the "features of the duct 
flow which must be preserved in the scale 
model tests include air entrainment and jet 
mixing at the inlet to the duct, the combustion 
of the hydrogen entering the duct, the flashing 
and mixing of the steam inerting spray system 
and the interaction between the burning 
hydrogen-air mixture and the water-steam 
spray which may extinguish the hydrogen flame 
at the duct inlet." (Ref. D) The model charac 
teristics shown in Table 1 satisfy these require 
ments.

Additionally, the model test facility was re 
quired to be flexible enough to accommodate 
changes in the exhaust duct velocity and media 
flow rates. This flexibility would allow detailed 
experiments in plume behavior at the duct exit 
if dictated by future requirements.

In order to achieve direct correlation of ap 
propriate results with the 6.4% model at 
MSFC, the size selected for the transient inves 
tigation model facility was 6.4% of full scale 
(scale factor 0.064).

TABLE 1 

SCALE MODEL CHARACTERISTICS

PARAMETER

Velocities 
Mach Number 
Temperatures 
Thermal Properties 
Pressures 
Geometry 
Time 
Flow Rates

MODEL 
CHARACTERISTICS

Full Scale 
Full Scale 
Full Scale 
Full Scale 
Full Scale 
Scale Factor 
Scale Factor
Scale Factor 
Squared

Vehicle and Launch Pad
As previously noted, critical parameters to be 
simulated by the model were entrained air, en 
gine exhaust, steam flashing and their sub 
sequent mixing. To meet these requirements 
the model needed to properly scale:

• Pertinent external geometry of the SSV 
and the VAFB launch facility

• SSME exhaust conditions
• SIS injection nozzles in the SSME exhaust 

duct
• SIS nozzle upstream pressure and tempera 

ture
• Time

Engine
A model engine was required to simulate full 
scale SSME exhaust conditions. Based on the 
scaling criteria, exit plane velocity and Mach 
number were to be the full scale engine values 
and the mass flow rate was to be the full scale 
value multiplied by the scale factor squared. 
Table 2 compares the model engine characteris 
tics with a full scale SSME and a scaled SSME 
(Ref. E). Three model engine compromises
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were accepted: chamber pressure, mixture 
ratio and the method of thrust chamber igni 
tion. The effects of these compromises on the 
engine exit conditions were considered minor 
and acceptable for meeting the program objec 
tives (Ref. E).

TABLE2 

ENGINE COMPARISON

SSME 
FULL SCLD MODEL

1029 

6:1 

3005 

4.23 

13445

4.21 

6:1 

3005

4.23 

13445

4.10 

5:1 

1100 

4.02 

13195

CHARACTERISTIC

Total Flow LBS/SEC 

Mixture Ratio 

Chamber Pres PSIA 

Exit Mach Number 

Exit Vel FT/SEC

The SSME thrust chamber pressure at Rated 
Power Level (RPL) is 3005 PSIA. Since pres 
sure levels to feed high chamber pressure 
model engines would have caused a significant 
propellant feed system design impact, the cham 
ber pressure requirement for the model was es 
tablished at 1100 PSIA. However, the scaling 
requirement to produce the SSME exit velocity 
and Mach number was maintained.

The SSME mixture ratio (MR) (the ratio of 
oxidizer to fuel flow rates) was set at 6.0 for op 
timum thrust and specific impulse. The MR for 
the model engine was limited to approximately 
5.0. The lower MR permitted using a simple 
water-cooled chamber design without causing 
film boiling at the highest heat transfer area 
near the throat. The mixture ratio compromise 
caused two major effects: the model nozzle 
exit temperature is lowered slightly, and more 
unburned hydrogen relative to the scaled 
SSME is discharged at RPL.

For main thrust chamber ignition the SSMEs 
utilize an Augmented Spark Igniter (ASI) sys 
tem. A small quantity of hydrogen and oxygen

is injected into a small chamber located at the 
center of the injector. The propellants are ig 
nited by a spark ignition system. The resulting 
flame ignites the main propellants as they are 
introduced into the main thrust chamber. Be 
cause of the complexity of modeling the SSME 
ASI system, a decision was made to use a 
pyrophoric mixture (triethylborane (TEB) and 
gaseous oxygen (GOX)) ignition system. This 
TEB/GOX system is similar to one previously 
utilized in engines of this scale.

Control System
Engine system operation requirements for 
HDS development were defined by the 
"Hydrogen Disposal System Specification" 
(Ref. F). To meet these requirements an en 
gine propellant feed system control must 
provide a large variation in oxygen and 
hydrogen flow rates as functions of time. This 
variation capability would provide for testing 
with normal SSME start and shutdown or with 
special simulations such as an abort shutdown. 
In addition, the overall control system was re 
quired to provide order and timing variations in 
the initiation of the three engine starts and shut 
downs. These features would allow simulation 
of normal shuttle firings and potential abort 
cases.

FACILITY CONFIGURATION 

Model Engine
Technology obtained by LMSC/SCF from 
development of similar thrust rocket engines 
for other programs was utilized to minimize 
model engine development. A 6.4% scale liq 
uid oxygen/gaseous hydrogen rocket engine was 
designed, fabricated and developed. It con 
sisted of an injector, combustion chamber and 
25:1 exit-to-throat-area-ratio bell shaped noz 
zle extension. Figure 1 shows the major ele 
ments of the SSV transient test model engine.

The injector design incorporates fuel cooling 
and a coaxial propellant injection technique 
similar to the full scale SSME injector.
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Figure 1 Model Engine Components

Liquid oxygen propellant is injected through an 
array of nickel tubes which penetrate the injec 
tor face. The upstream end of these tubes con 
tains an orifice providing stable oxidizer flow 
control. The injector face is fabricated of a 
nickel alloy sintered woven wire material com 
monly known as Rigimesh. Cooling of this face 
is accomplished by flowing a portion of the 
gaseous hydrogen propellant through the 
Rigimesh material. The balance of the 
hydrogen propellant flows through an annulus 
around the periphery of the oxidizer injection 
post.

The center of the injector contains a triaxial 
tube which supplies the engine ignition propel- 
lants. A 0.062 inch diameter inner tube carries 
gaseous oxygen, a 0.125 inch diameter middle 
tube carries triethylborane, and a 0.250 inch 
diameter outer tube is used to measure cham 
ber pressure.

The engine combustion zone consists of a 
cooled chamber/throat section and an uncooled 
nozzle extension section. The one piece com 
bustion chamber and nozzle throat area ele 
ment is machined from oxygen-free high

conductivity copper. Axial water coolant pas 
sages are machined into the outside surface of 
the copper element which is enclosed within a 
stainless steel housing. For the uncooled bell- 
shaped stainless steel nozzle extension, resis 
tance to erosion by the high temperature 
combustion process is provided by a zirconium 
oxide ceramic coating on its internal surface.

The assembled engine is shown in Figure 2.

Figure 2 Assembled Model Engine

Ignition System
The SSME fuel-lead start provided a departure 
from the normal LMSC/SCF engine design.

Previous fast-start sequence LMSC/SCF rocket 
engines used an oxidizer lead with TEB in-
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jected for ignition. The oxidizer lead provided a 
smooth start by preventing excess fuel buildup, 
which could lead to delayed ignition and/or 
detonation. The technique developed for the 
model fuel-lead engine provided an ignition 
flame at the center of the main injector face 
prior to initiating flow of hydrogen propellant. 
This flame was generated by mixing GOX and 
TEB fed through the center post of the model 
engine injector - corresponding to the location 
of the SSME ASI system. TEB/GOX igni 
tion/combustion was detected by burn wires lo 
cated below each nozzle exit. Burning open 
these wires enabled computer control of the 
main propellant valves. Ignition TEB/GOX 
flow was terminated after 80% of RPL cham 
ber pressure was achieved. The TEB/GOX en 
gine ignition system also satisfied a 
requirement for ignition of the unburned 
hydrogen which exists during engine start. The 
ignition occurs because the TEB/GOX flame 
extends beyond the nozzle exit where the ex 
cess hydrogen becomes flammable as it mixes 
with the surrounding air. A series of develop 
ment tests perfected this ignition technique, 
resulting in a successful fuel-lead start se 
quence.

Propellant Feed System/Computer Control
Model engine transient conditions were ob 
tained by utilizing hydraulic, servo controlled, 
variable cavitating venturi propellant valves. 
An IBM PC "AT1 computer and amplifier sys 
tem established closed loop control of the main 
propellant valve positions resulting in ap 
propriate flow - time histories to meet the 
specific requirements for each test. The master 
command computer, used for facility functions 
and initial start sequencing, was a SYMAX sys 
tem manufactured by the Square D Company. 
The SYMAX was also used for ground safety 
monitoring. During the start sequencing the 
SYMAX transferred control to the IBM PC 
"AT1 computer which commanded the main 
propellant valves servo amplifiers through shut 
down.

The necessary propellant valve flow calibration 
characteristics for engine ignition, RPL and 
shutdown conditions, were obtained from cold 
flow and hot fire tests on a single prototype en 
gine. The variable venturi valves were incre 
mented from minimum to maximum flow to 
determine the command settings for each run 
condition. Utilizing these data, LMSC/SCF 
personnel generated the required control soft 
ware programs for each planned type of test.

Vehicle and Launch Pad
The model SSV orbiter, external tank, and 
solid rocket boosters were configured to 
provide aerodynamic similarity to the full scale 
vehicle/launch pad interface zone. The model 
of the VAFB SSV launch pad included the 
Launch Mount structure with its Tail Service 
Masts, the SSME exhaust duct, and a simulated 
ground plane at the exit of the duct. Two view 
ing ports in the duct inlet section provided ac 
cess for motion picture recording of the engine 
plume impingement area.

SIS simulation was accomplished by utilizing a 
pressurized water-filled serpentine section of 
pipe with clamp-on electric heaters, a com 
puter-controlled valve to initiate water flow, 
and scaled water flow manifolds and spray noz 
zles fitted into the duct entrance section.

The model SSV was serviced with high pressure 
water, liquid oxygen, gaseous hydrogen, 
gaseous oxygen, triethylborane, LOX purge, 
fuel purge, igniter purge, a LOX bleed, 
hydraulics, carbon dioxide deluge, pressure and 
temperature transducers, and associated valv- 
ing for controlling these systems. These ser 
vices were housed within or fed through the 
external tank and orbiter model. The engines 
were mounted in the scale positions with en 
gine one in the 16 degree pitch up mode and en 
gines two and three at 10 degree pitch up and 3 
degree outward yaw mode.

The three engine module with all of the re 
quired service hardware is shown in Figure 3 
and installed in the model orbiter in Figure 4.
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The complete SSV model is shown performing 
a hot firing test in Figure 5. This model SSV, 
with its computer controlled engines, provided 
the required precise scaling of SSME transient 
and steady state performance conditions.

FigureS Three Engine Module

Safety Features
A variety of safety features were incorporated 
into the firing sequence and the procedures to 
protect both hardware and personnel. Shut 
down was initiated automatically for any of the 
following reasons:

• Low coolant pressure
• Loss of burn wire prior to ignition
• No ignition detected on any engine burn 

wire
• Loss of hydraulic pressure to main prop 

valves
• Loss of computer control function

Figure 4 Engine Module Installed in Orbiter

Instrumentation
There were 128 data parameters monitored 
using a Tustin Analog to Digital Data Acquisi 
tion System running at a throughput sample 
rate of 50,000 samples per second. This 
provided an average basic sample rate per chan 
nel of approximately 390 samples per second. 
Recorded data were processed using General 
Automation and IBM PC "AT1 type computers. 
Tabulated printouts and curve plots of each 
parameter were provided. Selected channels of 
information which required high frequency 
response were recorded directly on a 2 
megahertz tape recorder and data processing 
was run on a playback through a Transient Data 
Acquisition System and VAX computer link.

The basic types of instrumentation transducers 
utilized in this program are listed in Table 3.
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TABLES 

INSTRUMENTATION TYPE

ITEM/MFC.
PRESSURE
Sensotec®

Taber®

Statham®
PCB®

TEMPERATURE 
Beckman Co.®

Beckman Co.®

Omega®

Rosemont®

MODEL INFO.

Strain Gage Type 

Strain Gage Type 

Strain Gage Type 

Piezo Type

Platinum/Platinum 
13% rhodium .001 
open tip T/C
Chromel/Alumel 
.001 open tip T/C
Chromel/Alumel 
.010 open tip T/C
Platinum Resist. 
Temp Device

FLOWMETERS 
Fox®

Flow Measurinent® 

Potter Aero Co. ®

TSI®

Cavitatin Venturi 

Turbine

Turbine (H20) 
Model 3C-50189
Anemometers Model 
1210-60 Platinum 
Hot Film

HYDROGEN SENSORS
Gas Tech® Model 2312

A. G. & C.® Models 813 and 821

LMSC® 

Xybion®

Grab Bottles

Multispectral Solid 
State Video

Measurement of air entrainment flow rate and 
the SSME exhaust duct internal temperature 
were critical in meeting the model program ob 
jectives. In both cases, because the model

Figure5. Operating Model SSV
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operates on a compressed time scale, the 
model facility required fast response instrumen 
tation to record the model transient characteris 
tics. For example, the full scale SSME 
requires 4.5 seconds to reach RPL whereas the 
model reaches RPL in less than 0.3 second.

Air entrainment velocity was measured by 24 
rapid-response, calibrated, hot film anemo 
meters placed above the duct entrance as 
shown in Figure 6. An algorithm was used to

Figured Duct Inlet Anemometers
calculate total air flow rate into the exhaust 
duct. The algorithm summed each flow rate of 
the 24 zones represented by the velocity 
measured by the anemometer and its repre 
sentative flow area and corrected for air den 
sity. A wide variety of specialized calibrations 
and computer reduction/matrix programs were 
developed. This program development im 
proved the state of the art for the difficult task 
of acquisition and reduction of information 
from these fast response hot film anemometers. 
The anemometers provided major inputs to the 
HDS transient analysis.

Measurement of the duct internal temperature 
response to the SIS and engine-caused tran 
sients was accomplished with an array of nine 
fast-response thermocouples. These thermo 
couples were located within the duct about 2/3 
of its length from the entrance. The ther 
mocouples were to be used for inferring the 
transient's effect on steam concentration. 
Open tip thermocouples with 0.001 inch 
diameter junction wire were selected to satisfy 
the fast response requirement. In order to en 
sure survivability during the engine hot firing 
period, platinum/platinum- 13% rhodium 
materials were utilized initially. However, 
since temperatures hotter than 2000 degrees F 
were not encountered, they were replaced with 
Chromel/Alumel thermocouples. This replace 
ment improved the data accuracy at lower 
temperatures while maintaining the required 
fast response characteristics. These instru 
ments provided the fidelity necessary to estab 
lish the duct internal temperature through the 
complete test cycle of ambient; steam injection; 
engine start, RPL and shutdown; and post test 
steam conditions.

COMPARISON OF MODEL 
PERFORMANCE TO PREDICTIONS

Start and Shutdown
Single-engine tests were used to develop the 
start and shutdown characteristics to be used 
during the three-engine HDS development test 
ing. Figure 7 shows the comparison of the total 
propellant flow rates for the actual model en 
gine to the mathematically scaled SSME. With 
these flow rate schedules established, the result 
ing rise rates of the chamber pressure and noz 
zle exit conditions were evaluated. The 
comparison of the chamber pressure during 
start is shown in Figure 8 and a calculated force 
parameter comparison in Figure 9. The calcu 
lated force parameter (wV/g) is the product of 
the engine total weight flow rate (w) and the 
calculated exit plane velocity (V) divided by 
gravity (g). Even though the chamber pressure
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TIME, SECONDS

Fugure 7 Total Weight Flow Rate Compraison

Q MODEL ENGINE 

-(- SCALED SSME

TIME, SECONDS

Figure 8 Chamber Pressure Compraison

6.12 6.16 6:2 6.24 6.28 6.32 6.36 
TIME, SECONDS

Figure 9 Calculated Force Comparison

rise rates and maximum values do not coincide, 
the critical exit conditions, represented by the 
calculated force parameters, show excellent 
agreement.

Three-Engine Integration
Sequencing of the initiation of the three-model- 
engine starts and shutdowns was controlled by 
the same computer which regulated the control

valve position. The orbiter-controlled SSME 
start sequence begins with position three fol 
lowed by positions two and then one at 120 
millisecond intervals. A normal full scale FRF 
shutdown initiates with engine position one fol 
lowed 1100 milliseconds later by position two 
which is then followed 1300 milliseconds later 
by position three. Figure 10 shows the FRF 
model hydrogen and oxygen valve position 
schedules which controlled the start and shut 
down conditions. Figure 11 shows the response 
of the three engine chamber pressures. The 
curve clearly shows the staggered start and shut 
down intervals. The interval values at start are 
within three milliseconds and at shutdown are 
within ten milliseconds of the scaled SSME 
values.

TIME (MILLISECONDS)

Figure 10 Valve Position Schedule

One abort case was tested. This Clustered 
Abort (Ref. F) postulated that engine position 
one is commanded off while at RPL, and that 
an avionics failure causes engine positions two 
and three to initiate shutdown simultaneously
1.19 seconds later (full scale). The Clustered 
Abort occurrence is considered a low prob 
ability; however, it is the three-engine shut 
down scenario which discharges the maximum 
unburned hydrogen. The scale model Clustered 
Abort simulation is shown in Figure 12. The 
start sequence is normal - engine position one 
reaches RPL and begins its shutdown followed
120 milliseconds later by shutdown initiation 
for positions two and three.
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Figure 11 Model Engine Chamber Pressures - 
FRF

CONCLUSIONS
The SSV transient model provided an excellent 
scaled simulation of the physics of the start, 
RPL and shutdown operations of the SSMEs. 
By performing the FRF and the Clustered 
Abort cases, the model engine, with its com 
puter-controlled fuel and oxidizer valve design, 
demonstrated the potential for being 
programmed to produce any desired start, 
mainstage level or shutdown scenario. This 
6.4% model test facility, along with major con 
tributions by the other five test facilities, ac 
complished the development and sub-scale 
verification testing of the SIS.

Installation of the SIS, developed by this 
program, will alleviate the hydrogen detonation 
hazard at VAFB (Ref. C).

160.00

140.00

120.00 

100.00 

80.00 

60.00 

40.00 

20.00 

0.00

SSME CLSTD ABORT 
22 SEP 1987 25115 LMSC/SCF
oPC1 
-PC2 
+ PC3

I

I

K

f*~^fl-H
f̂V\

6.00 6.25 6.50 6.75 7.00 7.25 7.5 

TIME (SECS)

Figure 12 Model Engine Chamber Pressures - 
Clustered Abort
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