
The Space Congress® Proceedings 1988 (25th) Heritage - Dedication - Vision 

Apr 1st, 8:00 AM 

Software Engineering Development Environment For The Launch Software Engineering Development Environment For The Launch 

Processing System Processing System 

Marcia W. Burch 

Debra K. Moyer 

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings 

Scholarly Commons Citation Scholarly Commons Citation 
Burch, Marcia W. and Moyer, Debra K., "Software Engineering Development Environment For The Launch 
Processing System" (1988). The Space Congress® Proceedings. 5. 
https://commons.erau.edu/space-congress-proceedings/proceedings-1988-25th/session-9/5 

This Event is brought to you for free and open access by 
the Conferences at Scholarly Commons. It has been 
accepted for inclusion in The Space Congress® 
Proceedings by an authorized administrator of Scholarly 
Commons. For more information, please contact 
commons@erau.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217145914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1988-25th
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1988-25th%2Fsession-9%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1988-25th/session-9/5?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1988-25th%2Fsession-9%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/


SOFTWARE ENGINEERING DEVELOPMENT ENVIRONMENT FOR THE LAUNCH
PROCESSING SYSTEM

Marcia W. Burch Debra K. Moyer

INTRODUCTION

Tasked with supporting a progressive 
Shuttle launch rate, Lockheed 
Engineering and Software Production 
set out in 1984 to address the need to 
increase software productivity. 
Attention was focused on innovative 
tools since existing computer 
development systems were being 
reallocated for Shuttle operational 
testing and launch activities. It 
became apparent that due to the highly 
integrated nature of software production 
activities, a solution involving a local 
area network of engineering 
workstations was required. After 
prototyping and proving the design for 
increasing productivity, Lockheed 
procured and installed a networked 
computing system which generated a 
state-of-the-art environment for 
software engineering. The introduction 
of this new technology not only brought 
about new methods of implementing 
software changes, it resulted in a 
culture change for nearly everyone 
involved in the development cycle.

HISTORY

To investigate the concept, a prototype 
network of 12 individual workstations 
and 4 file servers was established to 
determine methods for improving 
productivity and to provide development 
facilities separate from the Launch 
Processing System (LPS) firing room 
equipment. In April of 1985, the

prototype team demonstrated to 
Lockheed and NASA management the 
capabilities inherent in the system. 
Following the proof-of-concept an 
acquisition plan was generated and 
competitive procurement initiated. The 
contract was awarded and delivery of 
Phase 1 of the acquisition plan 
equipment was completed in December, 
1985. The final phase of the equipment 
purchase was installed in March, 1987.

EQUIPMENT DESCRIPTION

The local area network, referred to as 
the LPS Software Development Network 
(LSDN), is a 12 megabit-per-second 
token passing ring architecture 
connecting individual nodes in a series. 
Each node contains a 32-bit VLSI CPU 
(integrated MC68020 processor and 
MC68881 floating point co-processor) 
and 4M bytes of main memory. Most 
nodes are equipped with at least an 
86M byte Winchester disk and either a 
5-1/4" floppy disk drive or a 1/4" 
cartridge tape drive.

The network's distributed file system is 
based on storage objects accessible 
from anywhere on the network. This 
distribution of resources allows sharing 
of programs, data and peripherals from 
anywhere on the network without the 
overhead of sharing computing power. 
A node can be a file server, a gateway 
to external communications, or a 
personal

9-77



workstation. In addition, each 
workstation includes a high resolution 
display subsystem utilizing bit-mapped 
raster graphics which facilitates display 
of output from multiple programs 
simultaneously in multiple windows.

The native operating system provides a 
comprehensive set of standard 
computing operations such as 
compiling, binding and copying 
files/directories, as well as commands, 
pipes, filters and shell program 
interpreter. Additionally, the system 
offers a UNIX System V operating 
environment with mapping to the native 
operating system environment.

NETWORK TOPOLOGY

The LSDN spans several buildings 
within the boundaries of KSC as shown 
in Figure 1. Cable connections 
between buildings are fiber optics. 
Within each building workstations are 
connected to the token ring network 
with coaxial cable laid out in subloop 
rings and separated by network 
switches. Each subloop is configured 
based on the following guidelines:

o Each subloop contains an average 
of 10 workstations

o One server node or file server is 
placed in each physical ring with a 
full complement of the operating 
system plus all optional operating 
system software

o One node in each subloop 
contains a site registry of user 
accounts which will allow users to 
log on to the system even if the 
LSDN master registry becomes 
unavailable due to switching out a 
subloop

o The server node or file server in 
each subloop contains the UNIX 
permission files so that UNIX 
utilities are not affected by 
switching the subloop out

o All working directories for users 
residing within the boundaries of 
the physical subloop are located 
on the server node for that loop

o A low-capacity printer is provided 
in each physical subloop

Figure 2 illustrates a typical 
subloop configuration. Subloops 
are configured in this manner to 
allow all users to continue to be 
operational within the bounds of 
their working directories in the 
event of a failure elsewhere on the 
network. In the event of a failure 
on that subloop, it can be 
physically switched out of the 
network. Only the users of the 
inoperative loop are affected; 
whereas all other network users 
remain unaffected.

In addition to the physical 
subloops for user groups, the 
LSDN support group maintains a 
subloop of mass storage devices 
and peripherals which 
accommodate network-wide 
resources and databases.

Each node is loaded with a 
standard operating system based 
upon its configuration within the 
physical loop. Deviations from the 
standard are based on user 
requirements for the node. The 
configuration of the system 
software on the node can only be 
altered by a network system 
administrator.

9-78



Industrial Area

n n
CIF M7-502

/ Cape Canaveral

/ D

Figure 1 KSC LSDN Topology

9-79



Figure 2 Typical LSDN Subloop Configuration

9-80



SYSTEM IMPLEMENTATION

During the prototype and first phase of 
LSDN implementation there were 
several projects initiated which 
demonstrated the capability to develop 
portable software, communicate with 
other computer systems and maintain 
access and configuration control over 
projects on a distributed bases. The 
following paragraphs describe some of 
the projects developed on the new 
system:

GOAL COMPILER

Previously all applications software to 
support Shuttle launch and ground 
operations testing was generated on 
terminals connected to the Central Data 
Subsystem (CDS) mainframe. These 
jobs were processed in batch mode and 
would be queued typically for 4 to 8 
hours. In addition, engineers would 
take turns traveling to the building which 
housed the mainframe to pick up truck 
loads of compile listings which they 
would then sort and distribute to the 
software engineering department.

With the advent of the LSDN, a GOAL 
compiler was generated which could 
execute from any node on the network. 
While maintaining all source code in the 
existing CDS, software developers 
began transferring their code over a 
communications link to the LSDN, 
editing the code using the full screen 
editor, and then compiling the code with 
immediate test results before running 
the final compile on CDS. The result 
was an environment whereby the 
workload became distributed down to an 
individual level, giving more time to 
concentrate on the design of the code 
rather than on clerical tasks. Because 
of the multi-tasking capabilities of the

system, developers could also take 
advantage of executing multiple 
compiles concurrent with debug 
activities. Additionally, the full screen 
edit cut-and-paste capabilities 
generated a time saving mechanism for 
copying common information between 
programs which had been typed 
laboriously in the past.

CCMS DEVELOPMENT SUPPORT

In the past, all development and testing 
of the Checkout, Control and Monitor 
Subsystem was performed on a 
software development laboratory of 
MODCOMP 11/45's. Since the lab was 
being disassembled to support the firing 
rooms, these developers were being 
forced to schedule time in the firing 
rooms to do code changes and 
compiles. One of the first tasks on the 
new system involved providing this 
group with a tool to perform their work.

A cross-compiler was developed and 
implemented whereby the engineers 
could maintain their source code on the 
host, control and track it automatically 
as they transferred it to the LSDN for 
changes, then return it in a controlled 
manner to the host. This has allowed 
the developers to work on a normal 
schedule and perform multiple 
concurrent tasks.

SHUTTLE CONNECTOR ANALYSIS

One of the most expensive tasks of the 
SPC has been insuring the flight 
readiness of the wiring within the 
Shuttle. There are over 7000 
connectors containing more than .25 
million connector pins involved in each 
orbiter. Each vehicle must undergo 
from 400-1000 connector demates,

9-81



mates and retests per launch due to 
changing payloads and other 
requirements. The effects of every such 
operation have to be thoroughly 
analyzed and extensively tested. The 
traditional method of handling these 
requirements has been manual analysis 
using engineering drawings.

Upon the procurement of the LSDN a 
team of senior engineers was employed 
to generate an on-line system for 
tracking changing configurations in pin 
connections. The system uses a frame 
based knowledge base with an 
"inference engine" and rule-like 
functions coded directly in LISP. The 
intent was to mirror the thinking of 
systems analysts as they trace shuttle 
wiring, while remaining fast enough to 
permit rapid analysis of a complex 
situation involving a vast knowledge 
base. Ultimately, each workstation on 
the network is able to access the latest 
status of any one of the Shuttle vehicles 
being processed. Furthermore, each 
node can independently perform "what 
if" and minimized impact approaches to 
work under consideration, or assist in 
troubleshooting vehicle test problems.

COMPUTER AIDED GRAPHICS

Prior to the introduction of the LSDN, 
drafting to support LPS Engineering was 
performed entirely on the drafting board 
by hand. Eighteen months after loading 
a CAD package onto the system, 50% 
of the engineering drawings were being 
maintained on-line. This time included 
training users who had virtually no 
experience with computer equipment.

Although the drafting group reports that 
training is a continuing effort, they enjoy 
working on the computer and learning 
new and easier ways to accomplish their

tasks. They expect to continue to 
increase their ratio of drawings 
generated and maintained on the 
system to at least 90% since they have 
already discovered marked increases in 
throughput.

CONFIGURATION MANAGEMENT

To support change status accounting, 
implementation status accounting and 
baseline status accounting, 
development was begin to generate the 
Shuttle Data Systems Configuration 
Management System. Its purpose is to 
provide a single source of configuration 
accounting data for management of 
Shuttle Data System baselines. Prior to 
SPC, this function was managed by 
various contractors using individualized 
tracking systems, some of which were 
manual systems.

Because of the increased capabilities of 
the LSDN the following support can be 
afforded the users of the system:

o Start to finish configuration 
accounting data to the end item 
identifier level

o Automated extractions (via a user 
friendly interface) of requirement 
status reports supporting vehicle 
flows and/or milestones

o Cross-referencing, audit trails, 
and backward/forward paper 
traceability

o Integration of change package 
approval and implementation 
processing into a single database

o Automation of as-designed versus 
as-built accounting

9-82



Because the system is generated and 
implemented on the LSDN, the 
developers and users are sharing both 
the environment and resources for a 
fully integrated tool.

SWITCH CONTROLLER PROTOTYPE

The Math Model group of LPS 
Application Software developed a 
model switch controller prototype to run 
on the LSDN. This controller is a 
graphic simulation of the Shuttle Orbiter 
cockpit switches and talk-back 
instrumentation.

The workstation Mouse is used to select 
any one of the Orbiter switch panels. A 
replica of the switch panel then provides 
the current status of each panel switch 
and talk-back. Mouse movement 
highlights the selected switch and 
button depression changes the switch 
position by sending the appropriate 
command via the serial port to the math 
model which is executing resident in a 
Honeywell 66/80. Switch position 
indicators within the model then change 
to reflect the current switch positions, 
enter the telemetry path, are decoded 
by Front End Processors, and arrive at 
the Firing Room buffers for display on 
color CRTs.

The graphics of the switch controller 
was coded using a software package 
available to all developers on the 
network. Logic code for math model 
communication was originally coded in 
Pascal, with the final version to be 
converted to the "C" language to ease 
porting to a standard UNIX system.

APLM CONFIGURE REQUESTS

In order to automate a wholly manual 
paper system, the System Build group

of LSOC created an computer based 
APLM/Configure Request system. This 
allows an engineer using any of a 
couple hundred engineering 
workstations located throughout the 
Launch Complex 39 area to request a 
Firing Room application program to be 
installed in the Application Program 
Library and/or one of many Test 
Configuration IDentifiers (TCID). A 
TCID is the collection of System 
Software, Data Structures, and 
Application programs specifically 
combined to provide support for Vehicle 
testing/Launch or software 
development.

The ACR system validates the user's 
request using several criteria such as: 
Valid ACR access, proper TCID name 
and sub-level partition, and correct 
Support Software version identifier. The 
user provides data to the ACR through a 
user friendly Dialogue interface provided 
by the network environment.

The ACR routes the request through the 
proper groups for approval and finally 
presents the request to the System 
Build group for action. When the 
request is complete, the System Build 
group can send the completed status 
back to the originator. The request is 
also logged for historical retrieval. At 
any time, any valid user may status a 
request to see where it is in the 
processing chain.

Future enhancements of ACR will 
automate the integration of several 
requests and as a background process, 
connect to a host computer, activate the 
necessary routines to effect the user 
request, all without the need for human 
intervention.

9-83



DOCUMENTATION SUPPORT writing and editing of the paper.

Prior to SPC, documentation of software 
had been performed by multiple 
contractors on a variety of word 
processing systems, some of which 
were obsolete. Under the ISDN 
proof-of-concept it was demonstrated 
that software documentation could be 
transferred to the LSDN for on-line 
access, maintenance and review. 
Software was purchased that supports 
"what you see is what you get" full page 
editing with the capability to generate 
and integrate graphics on-line. The 
programmability of the software also 
allowed for generation of standard 
templates to support government 
publishing standards and graphics 
conventions.

This capability, distributed across the 
network, allows developers to generate 
documentation changes concurrently 
with their code changes using one tool. 
The documentation staff has also 
substantially reduced the need for 
outside assistance in the generation of 
graphics. Furthermore, the manual 
processes of generating table of 
contents, indices and cutting-in of 
artwork have been virtually eliminated.

To further illustrate this concept, this 
paper was generated with the 
documentation software loaded on 
LSDN using diagrams which are shared 
with other documents. Users located at 
different workstations around the 
network submitted information 
electronically to be included as ideas for 
the paper. The paper was printed on 
one of the laser printers which is 
accessible by any user on the network. 
All of this was accomplished while the 
author continued to perform other tasks 
to support the network concurrently with

CULTURE CHANGE

Because most of the functions 
performed in the Software Engineering 
environment had been primarily manual, 
the transition to the new networked 
environment proved to be a challenge.

Training

Since one of the primary objectives of 
the new environment was to provide an 
industry standard tool, UNIX was 
selected as the primary operating 
system in hopes of taking advantange 
of software engineers available in the 
marketplace. Because the majority of 
the existing work force consisted of 
developers skilled on the existing 
proprietary systems, most had to be 
trained for the new system. This impact 
was negligible, however, since the 
engineers were enthusiastic about 
learning new skills.

Standard Configuration

In implementing the new system, the 
network support group realized that the 
LSDN was different from most "industry 
standard" distributed networks in the 
area of configuration management. 
Typically, other sites do not have the 
requirement to support a controlled 
effort such as vehicle processing and 
therefore their nodes are "owned" by 
the developers who use them and can 
be configured in a variety of states. 
Since users of the LSDN need to expect 
a specific environment across the board, 
a standard had to be developed for 
controlling the configuration of all 
devices on the network.

9-84



This has been accomplished by creating 
a generic master load of the operating 
system and copying the master or a 
subset of it to all nodes on the network. 
By protecting the top level directories 
against user update, only system 
administrators are able to implement 
changes to the system. Engineering 
Support Requests are required for any 
changes in configuration, including the 
addition of optional software and 
peripheral devices. Configuration data 
is stored in a database maintained on 
the network.

NEW TECHNOLOGY

Probably the most significant change 
has been in dealing with new ideas. 
Along with the introduction of new tools 
came a plethora of new ideas on ways 
to use them. Therefore the largest 
burden in the entire upgrade has been 
for management to determine^which 
innovations to implement and when.

9-85


	Software Engineering Development Environment For The Launch Processing System
	Scholarly Commons Citation

	tmp.1396989396.pdf.oom56

