
The Space Congress® Proceedings 1988 (25th) Heritage - Dedication - Vision

Apr 1st, 8:00 AM

Ada and Knowledge-Based Systems: A Prototype Combining the Ada and Knowledge-Based Systems: A Prototype Combining the

Best of Both Worlds Best of Both Worlds

David C. Brauer

Patrick P. Roach

Michael S. Frank

Richard P. Knackstedt

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation Scholarly Commons Citation
Brauer, David C.; Roach, Patrick P.; Frank, Michael S.; and Knackstedt, Richard P., "Ada and Knowledge-
Based Systems: A Prototype Combining the Best of Both Worlds" (1988). The Space Congress®
Proceedings. 5.
https://commons.erau.edu/space-congress-proceedings/proceedings-1988-25th/session-6/5

This Event is brought to you for free and open access by
the Conferences at Scholarly Commons. It has been
accepted for inclusion in The Space Congress®
Proceedings by an authorized administrator of Scholarly
Commons. For more information, please contact
commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217145883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1988-25th
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1988-25th%2Fsession-6%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1988-25th/session-6/5?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1988-25th%2Fsession-6%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/

MDC H1570A
AUGUST 1986

ADA AND KNOWLEDGE-BASED SYSTEMS:
A PROTOTYPE COMBINING THE BEST OF BOTH WORLDS

DAVID C. BRAUER, PATRICK P. ROACH
MICHAEL S. FRANK, AND RICHARD P. KNACKSTEDT

Presented by : Patrick Parker Roach
Artificial Intelligence Consultant
Network Solution Technology Center

IHDIDDSD Digital E"uipmem
MM^HMHIH Centre Technique Europe

B.P. 29 - 06561 Valbonne Cedex
France - Tel. 92 95 51 11
Telex 461 837 F

MGDO/VJVH.4. DOUGLAS A9TT9ONAUTIC9 COMBAIW-HUNTiJVGTO/V BEACH

5301 Bolsa Avenue, Huntingdon Beach, California 92647 (714) 896-3311

ry
/VfOOO/V/Vf I.L. DOUGI-A9 XL-——

6-35

ADA* AND KNOWLEDGE-BASED SYSTEMS:
A PROTOTYPE COMBINING THE BEST OF BOTH WORLDS

David C. Brauer, Patrick P. Roach,** Michael S. Frank,
and Richard P. Knackstedt

McDonnell Douglas Astronautics Company
5301 Bolsa Avenue

Huntington Beach, California 92647

ABSTRACT

We describe a software architecture based on Ada tasking
and packaging which facilitates the construction of distributed
knowledge-based systems. We used this architecture to build
the Knowledge-Based Maintenance Expert System
(KNOMES) prototype for the Remote Manipulator System
(RMS) of the NASA Space Station Mobile Service Center.
Each module of the system contains Ada packages of standard
systems services, which interface with an artificial intelligence/
knowledge-based system (AI/KBS) language component that
performs knowledge-based reasoning. By using Ada as the fun
damental structure, we achieved a well-structured, maintain
able program; by retaining the AI/KBS language component,
we were able to capture the knowledge needed to solve ill-
structured, dynamic, and/or nonalgorithmic problems.

1. INTRODUCTION

In general, the more complex a system is, the more difficult
it is to maintain. As systems developed for NASA and the
Department of Defense have become more complex, this prob
lem has begun to increase life-cycle costs, especially for mon
itoring, fault detection and isolation, fault diagnosis, and
repair. McDonnell Douglas began in 1985 an independent re
search and development (IRAD) project, titled Knowledge-
Based Maintenance Systems (KBMS), whose primary objective
was to apply knowledge-based (expert) systems techniques to
these maintenance tasks.

The KBMS project has now expanded into three major ef
forts. The first is to establish requirements and designs for a
generic Knowledge-Based Maintenance Systems Support En
vironment (KBSSE) tool, which will be used to construct and
maintain knowledge-based maintenance systems in a variety of
domains.

The other two efforts are under, the heading of advanced
development for the Space Station Definition and Preliminary
Design, WP-02, contract. One is a requirements study to iden
tify and classify the knowledge that should be collected to sup
port the construction of knowledge-based maintenance systems
when a system such as the Space Station is designed and de
veloped. The study will recommend additional requirements
on Space Station design data bases to facilitate this knowledge

*Ada is a trademark of the US Government,
(Ada Joint Program Office).
**Digital Equipment Corporation, Artificial In
telligence Consultant

collection. The remaining part of the KBMS project, and the
one which will be covered in detail in this paper, is the devel
opment of a prototype knowledge-based maintenance system.

The purpose of the prototype, which we have named
KNOMES for Knowledge-Based Maintenance Expert System,
is to apply knowledge-based monitoring and fault management
systems to Space Station subsystems. For our initial work, we
selected the Remote Manipulator System (RMS) component
of the Space Station Mobile Service Center (MSC), primarily
because representative test case data in the form of shuttle
telemetry tapes was available. However, the RMS KNOMES
prototype is representative of the type of knowledge-based
systems which will be needed for the Space Station. In addition,
we expect our KNOMES prototype to support the choice of
Ada as the primary language for organizing and implementing
on-orbit expert systems. We believe the documentation and
guidelines for our prototype will establish the basic technology
for Space Station KNOMES applications.

2. CONCEPT

We feel that a KNOMES application will be part of the Space
Station operational flight software. If it is, there are two di
rectives of the Space Station Program that are particularly rel
evant. The first is the selection by NASA of Ada as the
programming language for all flight software. The second is
the congressional mandate that at least ten percent of the total
budget for the Space Station will be spent on advanced auto
mation and robotics, including artificial intelligence. Efforts on
the KNOMES prototype have been guided by both of these
directives.

2.1 Requirement*
As a potential component of the Space Station computing

environment, the KNOMES prototype must address certain
requirements. The first follows from the Ada directive: the
KNOMES prototype should be implemented to the greatest
extent possible in Ada. It follows that the KNOMES prototype
should be implemented on a standard processor supporting a
verified Ada compiler. In addition, a KNOMES application
will be performing monitoring and diagnosis functions in a time-
critical, potentially life-threatening environment. For this rea
son, the system should function in real time or near real time
and be fault tolerant. To meet these needs, the system should
have built-in concurrency for eventual implementation on dis
tributed and/or parallel computer architectures.

Consideration must also be given to integrating KNOMES
applications into identified Space Station configuration items.
As a software item aboard the Space Station, a KNOMES

6-36

application will draw on the computational resources of the
Data Management System (DMS). The DMS as currently
defined 1 will include a variety of hardware and software services
such as:
• Local area network.
• Network interface units.
• Standard data processors.
• Interface devices.
• Mass storage.
• Display/control devices.
• Network operating system.
• Mass memory management.

Interfaces to each of these services can be defined as Ada
packages. Then if the character of the services changes, only
the affected package need be changed; the KNOMES appli
cation will remain unaltered. We will define these interface
packages as the DMS services required by KNOMES are
identified.

The other pertinent configuration item is the Operations
Management System (OMS). The OMS is "intended to provide
sufficient automation to remove the need for manned-inter
vention for conduct of operations except where it is required
and/or necessary." 2 Requirements have been established for
the OMS in three major areas:
• Operations scheduling and execution.
• Monitoring and reactive control.
• Sustaining operations support.

A KNOMES application within the OMS software config
uration would fulfill requirements in the areas of monitoring
and reactive control and sustaining operations support. In par
ticular, KNOMES would play a central role in monitoring a
system or subsystem and assisting in the correction of any de
tected or predicted failures. We describe the processes a
KNOMES application would use to carry out these tasks next.

2.2 Proce««»«
A complete KNOMES application carries out five processes

within the OMS:
• Monitor system behavior.
• Isolate detected failures and/or anomalies.
• Diagnose systems to identify faults.
• Predict potential failures or functional loss.
• Perform health checks on newly replaced components.

KNOMES will monitor subsystem data from sensors. Built-
in Test Equipment (BITE), and occasional human input. If an
anomaly is detected in the incoming data, KNOMES will per
form a rapid isolation to determine if any critical functions or
missions are impaired and, if so, will notify an external caution
and warning system. At the same time, KNOMES will diagnose
the anomaly to determine the actual fault or failure. Diagnosis
may at times require data from the isolation process, historical
data, and detailed monitoring under checkout procedures.
KNOMES will carry out prediction of faults or failures based
upon trends in the subsystem data. It will also be called upon
at times to perform health check procedures on newly replaced
components.

In the early KNOMES prototypes, we focused on the mon
itor and diagnose_processes. We will add the. isolate, predict,
and health check processes as future enhancements. We de
scribe the Ada-based architecture and implementation of the
current prototype version below.

3. KNOMES PROTOTYPE

Before we describe the architecture of the KNOMES pro
totype, it is worthwhile to mention other research efforts in
artificial intelligence and Ada. The majority of these efforts
have focused on implementating artificial intelligence algo
rithms in Ada. This research indicates that a significant portion
of AI/KBS algorithms can be receded in Ada, but that this
receding takes much time and effort. 1 There are also skeptics
who believe that true AI will not be possible in Ada without
important changes to the Ada specification, such as the passing
of procedures as parameters. 4

Rather than debate whether or not true AI can be done in
Ada, we intend to build upon those features of the language
that are consistent with the Al/KBS philosophy. Object-ori
ented programming, data abstraction, process abstraction, and
a programming language support environment are common to
both Ada and AI. 5 Our approach is to build upon this common
ground, constructing the basic framework of our program in
Ada. However, for portions of the KNOMES prototype it will
be necessary to use AI/KBS algorithms that cannot be imple
mented in Ada or that cannot be implemented within the scope
of this project. Our strategy for these cases is to create an Ada
interface to AI/KBS algorithms coded in AI/KBS languages
like Ops5, Lisp, or Prolog.

Our approach, then, represents a hybrid solution composed
of state-of-the-art Ada and AI/KBS. Experienced developers
of real-world AI/KBS systems have indicated that only twenty
to thirty-five percent of their systems could be classified as AI/
KBS algorithms. 5 Thus, the use of Ada as a primary program
ming language is not ruled out. Interfacing Ada to AI/KBS
languages, of course, gives Ada access to a variety of powerful
knowledge-based systems. We will be able to experiment with
these systems and identify the knowledge structures and infer
ence engines most suitable to meeting reasoning requirements
for KNOMES. Furthermore, as research on the implementa
tion of AI/KBS algorithms in Ada comes to fruition, we can
use the resulting packages in our solution. Promising work has
already been done on a Lisp implementation in Ada'1 and on
an Ada-based inference engine. 7

3.1 Analysis and D»«lqn t«»ue«
3.1.1 Common Routine* Upon analyzing the primary processes
of KNOMES, it became apparent that they had common needs:
all of them needed to communicate with at least one other
process at some time; most needed access to data bases and/
or the actual input data stream; and some needed the ability
to interface with humans. We identified the common routines
and mapped them into Ada packages which could then be
combined into a Common_Routines package for inclusion in
any KNOMES process.
3.1.2. Concurrent Routines Analysis also indicated that the pri
mary KNOMES processes were not strictly sequential. The
monitor process, for instance, must remain active and fully
functional while diagnosis is carried out. The potential exists
for several diagnosis processes to be active at the same time,
and the isolation process will definitely overlap both monitoring
and diagnosis. We looked at two possible solutions to this con
currency problem. The processes can bo implemented (I) as
separate tasks in the Ada sense, or (2) as separate, indepen
dent, communicating processes on one or more processors. Our

6-37

preference is to pursue the first option, coding our application
within the Ada tasking mechanism. However, there are situ
ations where a single processor is not sufficient. Currently we
must use option two to take advantage of multiple processors.
However, as multiprocessor architectures for Ada become
available we will return to option one, concurrent tasks within
Ada.
3.1.3 Knowledge-Intensive Activities The intent of KNOMES
applications is to aid humans in performing the monitoring,
diagnosis, isolation, prediction, and health check functions and
eliminate rote redundant activities. To do this, it will be nec
essary to capture and apply the knowledge human experts nor
mally use in performing these tasks. Where we can capture this
knowledge in the form of an algorithm, we will code it in Ada.
However, much of human knowledge cannot be expressed as
a well-formed algorithm, and here we must rely on AI tech
niques to capture this knowledge.

The Ada interface with traditional AI/KBS languages is ac
complished, as mentioned above, by constructing the interface
as an Ada package. The knowledge-based component of a
KNOMES application is then coded in the appropriate AI/KBS
language. Procedures and packages communicating with the
knowledge-based component do so strictly via this interface.
We are currently using Vax* Ops5, a forward-chaining pro
duction rule system, for knowledge-based components. The
interface between Vax Ops5 and Vax Ada is fully functional.
3.1.4 Flexibility and Modularity We intend to create KNOMES
applications when Space Station systems and subsystems are
designed and developed. This means that the targets of
KNOMES applications will be dynamic and rapidly changing.
KNOMES must be flexible enough to easily accommodate
these changes and highly modular so that changes- in one mod
ule do not affect others. Being both flexible and modular, a
KNOMES application can grow with a subsystem design. In
the same way, on-orbit growth can be accomplished.

We allow for flexibility and modularity by treating the major
processes of KNOMES as discrete objects in Ada. s Interfaces
between Ada objects need only be defined once in the package
specifications. The internal processing of an object is hidden
from the rest of the system and can be altered as required.
Because the package specification does not change, the overall
behavior of the system is not affected. We have already been
able to take advantage of this feature. When the first version
of the KNOMES prototype was coded, the exact format of the
telemetry data used to drive the system was not available. We
coded the data input as a separate package. The package spec
ification for this data input established how data would be sent
to the rest of the KNOMES prototype. We have since been
able to change the body of the input package to process telem
etry data of the correct format. These changes have not altered
the package specification or how the rest of the system uses
the data input package.
3.2 Prototype Architecture
3.2.1 ACTORS. We have called the basic architecture that sup
ports the KNOMES prototype ACTORS,** for Ada Cognitive
Task Organization Scheme. The key element in this scheme is
a standard framework for all of the functional components of
the KNOMES architecture. This framework is called an Ada
Cognitive Task Organization (Actor). An Actor is a discrete

software module that can operate either as an Ada task or as
a detached process. All Actor modules have similar structures,
but in a working application each Actor in the system plays a
particular role. An Actor can be a process, a function, or a
service, determined by the role-specific Ada procedures added
to the basic structure and by the knowledge added to the know
ledge-based component of the Actor.

Each Actor is composed of two discrete sections with an
interface between the two (Figure I). The first section is a
collection of Ada packages and procedures which represent the
basic capabilities of the Actor. The section includes the Com-
mon_Routines package (see Section 3.1.1 above) which pro
vides communication and data access routines. This section may
also contain role-specific procedures or packages which imple
ment algorithms necessary for the role the Actor is playing.

Common Support Routines

Role-Specific Routines

o o
•2
2c

Knowledge-
Based

Component

*Vax is a trademark of Digital Equipment
Corporation.
**McDonnell Douglas Astronautics proprietary
development.

Figure 1 . A Generic Actor.

The second section of the Actor is the knowledge-based
component. Here the knowledge which enables an Actor to
effectively perform its role is encoded. In the current prototype,
this knowledge is written as rules. The Ops5 inference engine
matches these rules against data describing the state of the
Remote Manipulator System (RMS). This data is accessed via
the interface and the Ada Common_Routines. The results of
successful rule firings may also be communicated via this path.

The interface between the two sections is written as an Ada
package. The advantage of defining the interface as a discrete
object lies in the flexibility it provides. If it is discovered that
a different AI/KBS language is appropriate for the knowledge-
based component of an Actor, only the knowledge-base section
and the interface need be changed; the Common_Routines and
role-specific routines of the first section remain unchanged.

A KNOMES application using this architecture is simply a
collection of Actors playing specific roles, which cooperate to
accomplish the tasks assigned to the KNOMES application.
Each Actor is a separate compilation unit which can function
as an Ada task or as a detached process. These Actors can
have different priority levels which can be dynamically adjusted
so that when resources are constrained, the most important
Actors receive resources first.
3.2.2 Community of Experts The cooperative framework of Ac
tors which constitutes a KNOMES application can be viewed
as a community of experts. 9 Each modular Actor within this
framework is in effect a semi-autonomous expert system with
its own self-contained knowledge base and inference engine.
The Actor is an expert at performing the role it was assigned.
For example, a Manipulator Controller Interface Unit (MCIU)
Diagnose Actor contains heuristic knowledge on diagnosing a
failure in the MCIU of the RMS.

These modular experts are organized hierarchically, with
some Actors having jurisdiction over lower level Actors, de
termining when they are used and examining their results. Ac
tors within a level, such as diagnostics, may cooperate to
achieve a desired goal (i.e., fault identification). Thus, a

6-38

KNOMES application displays both of the general organiza
tional schemes for distributed expert systems-hierarchical and
cooperative. 1^ Communication within this framework is via
pipelines between parents and children in the hierarchy. For
cooperative problem solving, two or more Actors at the same
level may use a common parent as an active "blackboard" for
communicating hypotheses and results.
3.3 Prototype Implementation

The current KNOMES prototype is assigned the tasks of
monitoring data from an RMS, detecting anomalies in the data,
and diagnosing the cause of the anomaly. The Actors used to
perform these tasks, their communication relationships and
data access are shown in Figure 2.

Other Diagnostics

Figure 2. KNOMES Prototype Actors.

The Director is the first Actor invoked when the KNOMES
prototype is started. It oversees the creation of the other Actors
and keeps track of their status and relative priorities. The Di
rector also has the capability to respond to resource conflicts
and to modify the priority of other Actors. To make decisions
on priority, the Director must have knowledge about which
tasks are the most important in the current operational context.
For example, if the RMS is being used for a critical operation,
then monitoring the arm must receive highest priority. How
ever, if the RMS is not being moved, a Diagnose Actor can
be allocated a higher priority. The Director may also adjust
the amount of data being sampled by Data Acquisition. Finally,
when an active Diagnose Actor arrives at a diagnosis, the Di
rector is responsible for comparing this result with other di
agnoses, deciding if the diagnosis is valid and/or determining
if the anomaly was a false alarm, and notifying the rest of the
system.

The Data Acquisition Actor retrieves and formats data for
the other Actors in the system and also puts time-stamped data
into mass storage. This requires knowledge about what Actors
require which data in the current operational context. The Data
Acquisition Actojiserves as the KNOMES wmdow to the out
side world. It uses the DMS services to acquire the data needed
by the Monitor and Diagnose Actors. The intent is to have
Data Acquisition keep up with the sensor and BITE data from
the RMS which is transmitted over the DMS network in near
real time.

The Monitor Actor receives data from Data Acquisition and
watches for any data which may indicate an anomaly in the
RMS. If it detects an anomaly, the Monitor Actor will notify

or activate the appropriate Diagnose Actor. This requires that
the Monitor have knowledge of when data is indicative of an
anomaly, and which Diagnose Actors handle which anomalies.
It should be noted that the criteria for when data are anomalous
change with the current operational mode and configuration
of the RMS.

There are distinct Diagnose Actors for different diagnosable
entities in the RMS. The current strategy is to assign a Diagnose
Actor to each of the line replaceable units (LRU) in the system.
The Director Actor will resolve conflicts that may arise from
faults that propagate to more than one LRU. Each Diagnose
Actor has the knowledge needed to determine if a fault or
failure in its domain was responsible for observed anomalies.
The current prototype has diagnostics for the MCIU and for
Arm Based Electronics (ABE). Additional Diagnose Actors
are being created. There are advantages to partitioning diag
nosis knowledge among distinct Actors in this fashion. The
knowledge base for each Diagnose Actor is kept relatively
small, making it easier to verify the knowledge base. Also,
several Diagnose Actors can be operating on parts of an ob
served anomaly in parallel, which should decrease the diagnosis
time.

One final Actor of the current prototype is not shown in
Figure 2. The Display Actor handles the interface between the
KNOMES prototype and the human user. It contains very little
knowledge at this point. However, the potential exists for add
ing knowledge about users and their respective display needs.
Currently, the Display Actor can present a variety of displays
to the user to aid understanding the system behavior. These
displays include a simulated mission control console to display
telemetry data, and windows which appear as an Actor is ac
tivated. The Actor windows display trace data showing how
the particular Actor is functioning.

4. FUTURE DIRECTIONS

As the KNOMES prototype is improved, additional Actors
will be added. First, more Diagnose Actors covering more of
the LRUs in the system will be added. Isolate Actors will be
added which are responsible for determining potential degra
dation of the RMS based on observed anomalies. This process
is different from diagnosis because it proceeds on the assump
tion that the anomaly definitely indicates a failure. Using know
ledge of how the components of the RMS function, the Isolate
Actors will quickly determine if reconfiguration is needed to
insure the safety of the crew or system.

We will also be adding Actors that can analyze trends in
data and intermittent faults and predict potential failures in the
system. These Predict Actors will use data on maintenance
histories and mean time between failure (MTBF). They will
use knowledge to correlate this data and predict failures. Users
and/or other systems (schedulers) will be notified so that prev-
entative maintenance can be performed.

The Explanation Actor is currently a high priority item to
complete. It will be able to analyze and display reasoning chains
used in any of the other Actors and answer user queries about
the reasoning used. This capability is critical to the knowledge
engineering process. If the reasoning process that led to a con
clusion can be examined, mistakes can be identified and cor
rected. This will be particularly important in fine-tuning the
Diagnose and Predict Actors.

We will also be improving current Actors. We are in the
process of adding more knowledge to the Director so that task
priority assignment and conflict resolution can be performed.
We are adding more knowledge to the existing Diagnose Actors

6-39

so that they can diagnose a greater number of faults in their
respective LRUs and do so with more accuracy. The amount
of data handled by the Monitor is being increased. Finally, the
graphics capabilities of the Display Actor are being enhanced.

Interfaces to other Al/KBS languages are another important
capability being addressed. A CommonLisp interface will be
constructed which should provide access to any CommonLisp
based tool (e.g., Art,* KEE,** Knowledge Craft'). This inter
face will expand the variety of inference engines available for
use, significantly increasing the ability of our prototype to ad
dress highly complex diagnostic tasks. If we find the need for
computational logic capabilities, we may develop an interface
to Prolog. Interfaces to other languages may be desirable: for
example, we may interface to C to take advantage of the C
version of Art or the NASA Clips inference engine.

Finally, we intend to adopt Ada-based inference engines as
they become available, moving towards a full Ada application.
Of particular interest is the proposed Ada-based versions of
Art, Ops5, and Clips. We also foresee the possibility of building
our own Ada inference engines as we identify those that are
most effective for the KNOMES prototype.

5. CONCLUSIONS

Ada packages that support knowledge-based systems are not
readily available yet. However, many features of Ada do sup
port some of the requirements of knowledge-based systems.
True concurrent processing seems more feasible for Ada be
cause of its tasking mechanisms. Ada also supports object-
oriented programming via packages, generics, and data/process
abstraction.

Until Al/KBS packages are available for Ada, it is reasonable
to work in both Ada and Al/KBS languages. We use Ada for
the more traditional programming segments of our prototype.
This decision is important because 30 to 70 percent of Al/KBS
systems are standard algorithmic or procedural code. 5 Ada's
software engineering emphasizes well-structured and well-doc
umented standard code. Retaining Al/KBS languages for the
knowledge-based portion of the prototype has also proven
worthwhile. Knowledge-based systems and the languages used
to implement them are inherently easy to update. This flexi
bility is important for ill-structured problems such as those in
our prototype application. Using the Al/KBS languages, we
can experiment and try different combinations of knowledge
until we find an acceptable solution.

We have found there are extra benefits to using the Actors
architecture, especially in terms of code verification. Ada's

code structure is highly testable and verifiable. Because most
of our prototype is written in Ada, it can be verified to a large
extent using conventional methods. However, the Actors ar
chitecture also yields a more verifiable knowledge-based seg
ment. An Actors knowledge base is highly modular.
Knowledge is allocated across many Actors, each having a
relatively small knowledge base. Small knowledge bases are
inherently easier to trace and verify. Finally, as the knowledge-
based component of an Actor is repeatedly exercised, algo
rithmic solutions to parts of the reasoning process sometimes
become apparent. These algorithms can be readily migrated
over to the Ada section of an Actor. Thus, the knowledge-
based component of the prototype can be constantly minimized
and the Ada portion maximized, the result being a more ver
ifiable system.

REFERENCES

1. Space Station Definition and Preliminary Design (WP-02), Prelim
inary Analysis and Design Document (DR-02), Book 12, Data Man
agement System (Section 4.9), Technical Report, McDonnell
Douglas Astronautics Company, MDC H2028, December 1985.

2. Space Station Definition and Preliminary Design (WP-02), Prelim
inary Analysis and Design Document (DR-02), Book 18, Operations
Management System Software (Section 4.14), Technical Report,
McDonnell Douglas Astronautics Company, MDC H2028, December
1985.
3. R. L. Schwartz'and P. M. Melliar-Smith, On the Suitability of Ada
for Artificial Intelligence Applications, SRI International, July 1980.

4. R. F. Rosen, Knowledge Representation in Ada, MDC Internal
Memorandum A3-370-AEDO-85-RFR-33, June 1985.

5. D. Naedel, "Ada and Embedded Al," Defense Electronics, April
1986.
6. D. C. Dietz, "AdaLISP: A Tool For Artificial Intelligence Im
plementation," in Proceedings of the IEEE 1984 National Aerospace
and Electronics Conference, Vol 2, IEEE 1984.

7. D. B. LaVallee, "An Ada Inference Engine for Expert Systems,"
in Proceedings of the First International Conference on Ada Program
ming Language Applications for the NASA Space Station, Houston.
June 1986.
8. G. Booch, Software Engineering with Ada, The Benjamin/Cum
mins Publishing Company, 1983.

9. M. S. Frank and R. P. Knackstedt. "Using Ada to Implement the
Operations Management System as a Community of Experts," pre
sented at The First International Conference on Ada Programming
Language Applications for the NASA Space Station, Houston, June
1986.

*Art is a trademark of Inference Corporation.
**KEE is a trademark of Intellicorp.

'KnowledgeCraft is a trademark of Carnegie Group.

6-40

	Ada and Knowledge-Based Systems: A Prototype Combining the Best of Both Worlds
	Scholarly Commons Citation

	tmp.1396895368.pdf.dJbhD

