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INFRASTRUCTURE FOR A LUNAR BASE 

Willy Z. Sadeh1 and Marvin E. Crisweli2 
Center for Engineering Infrastructure and Sciences in Space (CEISS) 

Colorado State University 
Fort Collins, Colorado 

ABSTRACT 

Exploration of the Moon is the most crucial and decisive step for human expansion into the 
vast reaches of space. The Moon is the natural and ideal testbed for determining human 
capability to survive, function, expand and senle into the space environment. Scientific studies, 
as1ronomic observations, and exploitation and utilization of space resources .culminating in the 
establishment of a self-sufficient permanently human-tended lunar base are ihe £0als of lunar 
exploration. Four development stages in the evolutionary exploration of the Moon are suggested: 
(I) exploratory; (2) pioneering; (3) outpost; and (4) base. Overall goals and specific objectives, 
functional requirements, construction conditions, and life support systems requirements needed 
in each stage are identified. 

INTRODUCTION 

The return of humans 10 the Moon early in the next century is inevitable. Exploration and 
settlement of the Moon are the most crucial and decisive steps toward human expansion into the 
vast reaches of space. The Moon is the natural and ideal testbed for determining the human 
capability to explore, function, exploit and settle the endless Space Frontier to !he benefit of 
Earth. The primary goal is the establislunent of a self-sufficient permanently human-tended lunar 
base. This base may include the construction of a lunar spaceport for the launching of spaceships 
to Mars and beyond. All these ac~ivities requires the construction and operation of structures 
housing a Lunar Engineered Closed/Controlled EcoSystem (L-ECCES). An L-ECCES includes 
initially a human module, next a plant module, and in a much later stage an animal module, along 
with continuously growing scientific, manufacturing and mining modules. 

Human fascination with Moon exploration and its settlement dates back to the Greek 
mythology and the Roman culture, and continued throughout the development of astronomy. A 
unique synergism of science and imagination can be found in the inspiring book From Earth 10 

rhe Moon by Jules Verne published in the second half of the last century. The Moon has long 
been viewed as the Earth's seventh continent waiting and pleading for millennia to be explored 
and utilized to the benefit of humanity. 

The establishment of a lunar base has been widely studied and recommended since the Apollo 
era of the I 960's. Papers addressing many aspects of a lw1ar base can be found in the 
proceedings of the I st and 2nd symposium on lunar bases held in 1984 and 1988 {1,2]. 
respectively. Numerous papers by Duke, Mendell and Roberts since 1985 offer unique insights 
into the issues associated with the lunar exploration and the establishment of a lunar base 
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[3,4,5,6,7,8]. A human-tended base on the Moon was recommended by the 1986 National 
Commission on Space Report [9]. the 1987 Sally Ride Report [I 0]. the 1988 studies of the 
fonner NASA Office of Exploration [I\]. the 1989 NASA 90-Day Report [11]. the 1990 
Augustine Report [13], and the 1991 Synthesis Group Report [14]. 

A lunar base involves a 101ally different mix of technical and scientific challenges from those 
faced by the short "camping" trips of the Apollo Program and the current Shuttle !lights. Tht: 
difficult technical problems of transportation dominated these programs. Short-term support of 
astronauts with several days supplies "backpacked in" is a much simpler task than support for 
long-duration missions. A permanently human-tended base on the Moon requires long-term 
support for human settlement. Although both space transportation and lil'"e support systems arc 
important, the latter becomes the dominant factor for a lunar base. 

DEVELOPMENT STAGE RATIONALE 

The primary parameter determining the development stage of a lunar hasc is its ft11Ktional 
maturity with particular emphasis on the level of human operations. This maturity arti:i:ts: (I l 
the base functions and physical size; (2) the number and duty tour of the human oi:rnpants: (3) 
the available technological, material and human resources: and (4) the dcgrct: of hasc scl f
sufficiency. The same structural solution cannot always be optimal for all these conditions as the 
optimum changes according to the maturity level. 

Development stages must be defined to facilitate: (I) the grouping. sorting out and 
comparison of various concepts for lunar structures: (2) assessing tht: interrelationships between 
base size and functions; (3) ma1ehing the base maturity with the optimum structural systt:m 
considering available technologies, indigenous and imported materials. construction methods. and 
time; and (4) detennining the base design criteria considering base maturity and pcrform:mct: 
requirements. 

The functional requirements driving the design of a lunar basc depend upon four basic 
requirements which a lunar ecosystem must provide: (I) shelter and support for human li!i:: (2) 
support for plant growth and. later, animal life; (3) housing for support t:4uipmcnt an<l controls 
for the base life support system. communications. scientifi c operations. working i:rn·irnnmcnt and 
other functions; and (4) support for general and mission-specific base operations such as rt:sourccs 
utilization, manufacturing. material processing. mining. power generation. sp:iceport :md othcr 
activities. Many of these functional design conditions changt: with time. This grm\ th n .. ·4uircs 
a flexible design and an easily expandable modular base which can he rccon!igurcd :is the base 
evolves and expands. 

LUNAR DESIGN CONDITIONS 

The Moon is simultaneously a benign and a \·cry harsh location for structurcs. Limiting 
design constraints in the lunar en\"ironmcnt arc \·ery difti:rcnt from those on Earth. and the~ 

require a return to basic principles rather than rout inc aprlicatinn of Earth-hound design prncticcs. 
The lunar design conditions require the exploration of uncon,·cntional and 110\ cl approached in 
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the design of efficient and economical structures. They can be divided into three general classes: 
(1) environmental; (2) remoteness; and (3) pristine nature preservation conditions. 

Lunar Environmental Conditions--The lunar environmental conditions can be hostile, bening or 
of mixed effect with respect to structural design. Hostile design conditions arise from the lack 
of a lunar atmosphere and an external atmospheric pressure. The structural deleterious 
implications include: (\)the internal pressure of the artificial atmosphere is the dominant load 
due to the lack of an atmosphere and, consequently, a structure becomes effectively a pressure 
vessel; (2) the extremely large lunar surface temperature changes (diurnal temperature change 
from 127 deg C (26 1 deg F) during daytime to -173 deg C (-279 deg F) during night time, i.e., 
a diurnal temperature change of 300 deg C (540 deg F)) can produce large thermal stresses and 
strains leading to thermal damage of materials and requiring significant insulation for acceptable 
thermal stability and adequate heat rejection systems; (3) for adequate protection from harmful 
radiation and micrometeoroid impacts, a layer of regolith is needed to cover the structure; (4) 
offgasing from exposed materials can result because of the external vacuurri; an'd (5) workers 
must be suited fo r EVA construction activities. 

Conditions beneficial for structural design include: (I) very low seismic activity, with few 
moonquakes above I to 2 on the Richter scale; and (2) no terrestrial-l ike weather loadings, such 
as those induced by wind, rain, ice or snow. Lunar environmental conditions of mixed structural 
impact are: (I) a hypogravity of about 1/6 Earth gravity which greatly reduces the gravity loads, 
including this from the shielding regolith cover, to at most 10% of the internal pressure loadi ng, 
but which reduces vehicle surface traction and the capacity of soil anchors and fo undations, and 
affects nuid now; (2) the anhydrous condition that precludes outer surface corrosion and increases 
the strength of materials such as glass; (3) the long day-night cycle, 28-Earth days, reduces the 
rate and frequency of the thermal change cycle, but adversely affects power and lighting demands 
and limits construction schedules. 

Moon Remoteness Conditions--Although the Moon is the largest celestial body closest to Earth, 
it is very remote in terms of terrestrial distances. The mean Moon to Earth distance is about 
386,000 km (240,000 miles) and .. the round trip communication delay is about 2.6 s. This 
remoteness leads to the following critical conditions: (I) The transportation cost for material 
shipped from Earth, which presently is estimated to amount to about $66,000/kg ($30,000/lb), 
is very high. This cost encourages the development of cheaper modes of transportation, efficient 
new materials, lunar manufacturing of materials using indigenous resources, and light 
construction/manufacturing equipment; (2) The number of astronauts on duty tour is limited 
because of the extensive life support resources (food, air, water, temperature control, etc.) 
required to support humans on the Moon. As a result, this promotes the development and use 
of automation and robotics; (3) A must for first time success ex ists. There is little latitude for 
and great ri sks from on-site modifications. Th is promotes thorough planning, proof testing, and 
use of advanced controls. 

Moon Pristine Conditions--The construction and operation of a lunar base must not excessively 
impact the inherently stable and pristine lunar environment. Concerns include both a 
philosophical sense of responsibility to preserve the unique conditions of the Moon and pragmatic 
desires to maintain these conditions for the ir scientific merit. including to facilita te astronomical 
observatories. To ensure this preservation, base construction and operations must minimize dust 
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production and atmospheric contamination through a self-contained and sel f-regulated ecosystem 
that fully controls and recycles all wastes and pollutants. Appropriate space treaties and lunar 
environmental laws must be formulated to guide and regulate the development of a human-tended 
base and associated utilization of lunar resources. 

DEVELOPMENT STAGES 

The size, characteristics, and development schedule for a lunar base depend on the specific 
mission objectives, national priorities and financial resources. A prime goal is to pro\·idc the typ1;.• 
of structure and the associated infrastructure required to eflicicntly house the ecos) stem to 
support humans and to carry ou1 the planned base objectives. These requirements and ussodatt•d 
level of maturity affect the general base layout and size. type of structun:s. construction l\:atures 
and facilities needed. Four evolutionary development stages spanning from a simple cnc;unpmcnt 
to a mature base, likely extending over 50 to I 00 years. an~ proposed. These four stage are: f / J 

exploratory; (2) pioneering; (3) oulpost: and (-I} a .l"e(Fn!ffh:ielll pamcmenlly l111111ct11-h'11ded hct.H'. 

The characteristics of each development stage can be described in only a general manni:r sinci: 
the details can change according to the mission objectives. priorities. and :m1ilahle enahling 
technologies. Althoug.h many types of structures can be considt:ri:d. it is appari:nt that a mnst 
desirable candidate type is a modular inflatable structure that can evo!n: from a single module 
in an early stage to an expanding full base. The proposed inflatable structure slum n in Fig. 1 
is fanned with modules consisting of(!) membranes forming the roof. subtloor and sidi: w;ills. 
and (2) a framing system composed of four tension columns and four upper and four [m,i:r 
compression arches [15). Using Kevlar 49 as membrane material. an internal pr1;.·ssuri: of 69 kPa 
(IO psi), and a single inflated module of 6.1 x6. l x3 m (20x20x I 0 Ii). haseline re4uiri:d rnembrant' 
thicknesses range from 0.3 to 0.46 mm (0.01 2 to 0.0 18 in). Tuhular pri:ssurized framing 
components may be made of a similar membrane material. Thi: total baseline (pri11r to 
introducing a safety factor) mass of such a single inflatable module amounts to onl~ 195 kg H29 
lb). Moreover, such a module can be stowed in a volume many times smaller than its Jeployt•d 
shape. 

Exploratory Stage--The exploratory stage consists of unmanned probes. robotic sun·c~ s. anJ 
short-term manned missions building on previous lunar missions. including thi: six Apollo hu111;111 
landings from Apollo 11 on July 20. 1969 through Apollo 17 in December 1972. t-..foch \ ital 
information can be obtained from upgrades probes and rohotic missions thn1ugh utili1:atio11 1if 

technological advancements since the J960's. 

In this stage, crews of 2 to 4 astronauts with duty tours ranging from:; to 1:; l:arth da~s 
during the lunar daylight period are envisioned. The landing module must prm idt· the structure 
required to house the crew and the mission functions. similarly to the /\pol lo Lunar l ·:~cursion 

Module (LEM). Thus. it must be completely asscmbkd and tested as a human-ratt·d h;1bitation 
module capable of withstanding both the internal pressure and the forces induced h~ the tlight 
dynamics. Energy is expected to be supplied by <leployahk phntornltaic solar panels. No 
radiation shielding and micrometcoroid prolcction can he pro\ i<lcd in this stag.: heyond that of 
the landing module and the EV A suit. All life support is supplied h) physicalld1emical s~ stems 
with all supplies imported from Earth and all \\aste products ri:cmwcd and ri:turned tn 1:ar1h 
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Objectives of the exploratory stage include site selection and exploration for the establishment 
of a base, sampling and testing of regolith and subsurface materials, geochemical assessment, 
gathering of site topographical data, measurement of radiation, micrometeoroid impact, seismic 
and gravity data, testing of remote sensing systems, and testing and evaluation of a lunar rover. 
Testing of inflatable components must be undertaken as a precursor for the later use of inflatable 
structural modules. 

Pioneering Stage--This stage involves crews of 4 to 12 astronauts staying for up to one month, 
thus experiencing both the sizzling hot lunar daylight time and the frigid lunar night. Two 
structures are envisioned for a base in this stage, the landing module serving as the initial human 
shelter and a two-module inflatable structure preoutfitted to allow immediate deployment and 
utilization. One module serves as living and exercise quarters, with a second module housing a 
working area and airlock for input/output access. 

A prime task of this stage is to test the deployment, construction and operation of an 
inflatable structure. No radiation shielding and protection from micrometeoroid impacts can be 
provided within the resources and time schedule available in this stage. All life support is 
supplied by physical/chemical systems with all supplies imported from Earth and all waste 
products stored and returned to Earth. Energy is to be supplied by deployable photovoltaic solar 
panels. 

Objectives of the pioneering stage missions also include development and testing of regolith 
handling and moving operations, robotic construction and mining equipment, use of baueries for 
energy storage, introduction of a nuclear reactor for power supply during the lunar night, testing 
of heat rejection systems, initial trials of hydroponic plant growth, intensive assessment of lunar 
resources. initial testing for extraction of lunar resources such as oxygen and helium 3, and 
exploration trips with a lunar rover. 

Outoost Stage--The outpost stage marks the transition from an encampment to the establishment 
of a permanent infrastructure geared toward achieving a self-sufficient base. Rotating crews of 
10 to 20 astronauts for duty tours from I to 6 months are envisioned. To accommodate the 
outpost activities, an inflatable sfructure consisting of two clusters, each of about 10 identical 
modules connected by a passageway containing an airlock for access to the lunar surface, is 
needed. Such an inflatable structure is portrayed in Fig. 1. One cluster is for living, exercise 
and leisure use, with the second being the work area. All modules must be preoutfitted to allow 
1heir immediate deployment, occupancy and opera1ion. 

The deployment and construction of Ibis multi-module structure requires a high level of 
au1omation and robotics not yet available. Development of enabling automation and robotics for 
lunar construction is thus a mus! prior to the outpost stage. Radiation shielding and 
micrometeoroid proteclion is provided by covering the inflatable structure with a layer of regolith 
about 3 m ( IO ft) thick. Hence, development of methods and automated equipment to move large 
masses of regolith are another objectives. Nuclear power of about 5 MW mus! be supplied in 
addition to photovoltaic power to meet the power requirements of the outpost. 

Other objectives of the outposl stage include the testing and operation of advanced life 
support system and to further lay down the foundations for a flexible. expandable and permanent 
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lunar base infrastructure. Physical/chemical systems imported from Earth must still be used. but 
at the same time the building of a bioregenerative life support system must be initialed. 
Hydroponic plant growth must be expanded and experiments to weather regolith into a plant 
growth medium have to be undertaken. 

Mining and extraction of lunar resources (oxygen. helium 3. minerals) are to become 
pennanent ongoing activities. Manufacturing in the lunar hypogravity environment is to be 
initiated. Construction of a photovohaic solar farm with its energy to be beamed to Earth is 
another task. Lunar rover exploration of the Moon"s far side and planning of an astronomic 
observatory are to be undertaken in this stage. 

~--The base stage is the most advanced step before muhipte bas!! d!!vclopm!!nt and 
eventual lunar human settlements. A mature single base. with a permanent population o} 20 to 
50 astronauts with duty tours from 6 months to one year is foreseen. To accommodate such a 
large crew, the outpost inflatable structure needs 10 be expanded through the addition of similar 
clusters of about 10 modules each. In addition. an entire cluster should be dedicated for the 
bioregenerative life support system, i.e .. a plant module. Power requirements up to alxmt I 00 
MW are to be met from nuclear and photovoltaic sources. 

The goal of the base stage is to establish a permanent lunar infrastructure capable of reaching 
an acceptable level of self-sufficiency, i.e .. capable of sustaining a Lunar Engineered 
Closed/Controlled Ecosystem (L-ECCES). Life support systems should include both 
physical/chemical and bioregenerative systems. with the later in the dominant role and the former 
in a backup and support role. Objectives of the base are to bring the tasks outlined for 1hc 
outpost to the level of a continuous activity. Additional tasks include the construction of an 
astronomic observatory on the far side of the Moon and of a lunar spaceport for launching of 
spaceships to Mars, the inner and outer solar systems and beyond. 

As the base becomes more mature. manufacturing of products using lunar indigenous 
resources for export to Earth and continuous expansion of the photovoltaic sol<1r form arc 
envisioned. The ultimate goal is to establish a base that becomes economically \·iahle and \\·hieh 
can lead to the construction of additional lunar bases and possibly similar infrastructure (1n Mars. 

CONCLUDING REMARKS 

Establishment of a self-sufficient permanently human-tended lunar base is the major goal :.md 
challenge of space exploration and human expansion into space in the next century. /\ rationale 
for an evolutionary development of a lunar base and the governing function;il design 
considerations are briefly outlined. Four evolutionary development stages are suggested. The 
first two encampment stages are the exploratory and pioneering stages. Initial exploration ;md 
establishment of the clements required to develop a lunar infras1ructurc arc the hasic ohjectin:s 
of these two stages. In the following outpost stage. the enabling technologies for the huild up 
of a lunar infrastructure arc demonstrated and refined. Finally. the last stage inrnh·es the 
de.velopment of a permanently human-tended lunar base with an acceptable !e\·el of self· 
sufficiency to support a permanent crew of 20 to 50 astronauts for tours from 6 months to one 
year. 



The future of humanity will undoubtedly be affected by the hwnan expansion into space. Any 
civilization that does not challenge the impossible is doomed to fail. And, the impossible for our 
civilization is the conquest of the endless Space Frontier. The first step in this immense 
enterprise is a human-tended lunar base 
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Fig. I An overall view ofa lunar inflatable structure consisting of two clusters of identical 
modules. 
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