
The Space Congress® Proceedings 1998 (35th) Horizons Unlimited

Apr 28th, 2:00 PM

Paper Session I-B - Modeling Methodology: The Use of Vehicle Paper Session I-B - Modeling Methodology: The Use of Vehicle

Control System Modeling for the International Space Station (ISS) Control System Modeling for the International Space Station (ISS)

Program Program

Scott C. Haase
Boeing

Jimmy L. Williams
Boeing

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation Scholarly Commons Citation
Haase, Scott C. and Williams, Jimmy L., "Paper Session I-B - Modeling Methodology: The Use of Vehicle
Control System Modeling for the International Space Station (ISS) Program" (1998). The Space
Congress® Proceedings. 19.
https://commons.erau.edu/space-congress-proceedings/proceedings-1998-35th/april-28-1998/19

This Event is brought to you for free and open access by
the Conferences at Scholarly Commons. It has been
accepted for inclusion in The Space Congress®
Proceedings by an authorized administrator of Scholarly
Commons. For more information, please contact
commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217144687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1998-35th
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1998-35th%2Fapril-28-1998%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1998-35th/april-28-1998/19?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1998-35th%2Fapril-28-1998%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/

Modeling as Methodology:
The Use of Vehicle Level Control System Modeling for the

International Space Station (ISS) Program
Scott C. Haase (Boeing), Jimmy L. Williams (Boeing)

This paper presents a new control system software development approach entitled, RAPid
Modeling and Analysis Philosophy (RAPMAP), and presents an example of the application of
this approach on the International Space Station (ISS) program. RAPMAP embraces control
system behavior modeling as an integral and ongoing part of the nominal development and
integration process. Through a process called ‘Predictive-Verification,’ the RAPMAP approach
ensures that development proceeds based on known and demonstrable performance and
behavior throughout the development life cycle. The RAPMAP approach provides early identifi-
cation of system integration issues and support for test and operational procedure development
and training long before development products, which normally support these activities, are
available. Section 1 of this paper introduces the concept of control system behavior modeling.
Section 2 describes the RAPMAP approach and Section 3 provides a description of the the
RAPMAP approach including a detailed description of its application on the ISS program.
Section 4 summarizes the benefits of the RAPMAP approach.

1. Control System Behavior Assessment
In most large system developments, technical performance measures (e.g., weight, logistics
usage, computer throughput, processor memory usage) are selected and models of the system
are used throughout the definition and design phases to predict the performance of the inte-
grated system against corresponding required levels. As products become available, actual test
and measurement data replaces model data, and the analysis becomes a part of the system
verification. Similarly, specialty engineering analyses (e.g., safety, reliability, electromagnetic
compatibility) are performed using either system models or actual products. Control system
software, particularly real-time embedded avionics development currently relies on such mea-
sures as Input/Output (I/O) throughput, memory usage, and Source Lines of Code (SLOCs) to
predict and assess software viability. These measures are, at best, only tangentially related to
the viability and acceptability of the required, designed and encoded software behavior. There
is currently no corresponding standard or effective method for performing early validation and
integration of control system behavior. However, recent technological modeling advancements
provide new mechanisms for accomplishing predictive analysis of control system behavior. This
paper presents the RAPMAP development approach which incorporates these advancements
into the standard control system development to achieve the benefits of early and ongoing
systems integration and analysis.

2. The RAPMAP Development Approach
The RAPMAP approach incorporates control system behavior modeling to provide tangible and
ongoing evidence that the integrated control system will perform its allocated function(s) accept-
ably and as intended. In RAPMAP, models of the control system hardware, software and envi-
ronment are built and maintained throughout the development and model-based analyses are
used to:

• Analyze system control concepts as early as possible without expending the time and
resources generally required for more formal up-front system prototyping

• Engage both the developer and customer in validating system control (pre-) conceptions
or identifying necessary changes to eventual product behavior during more or less formal
interactive analysis sessions

• Communicate desired control behavior between the system engineering organization and
the design and code organization

• Assess behavior during selected system stressing conditions through scripted and re-
peatable behavior analyses

• Perform concept, requirement and design trade-studies during normal development or
when evaluating change implementation options

• Perform early training or system operations familiarization exercises
• Develop product test and usage procedures
• Perform, given appropriate expansion of fidelity, full-blown training or operations analysis
• Interactively demonstrate system behavior at major program reviews to help provide a

rational basis for approving the developing control system to proceed into subsequent
development phases

1 RAPMAP Modeling Tool
In order to maximize these benefits, in our experience, the toolset selected to implement

the RAPMAP models must perform at reasonably close to real-time, provide both interactive
and script driven controls, and allow the models to reflect the actual system definition status. An
interactive interface supports early developer, customer, and user familiarization with the de-
fined system, later operations usage (e.g., procedure development and training), and allows for
informal exercising (and more formal demonstration) of the control system during its develop-
ment. Scriptable controls (along with automatic data gathering capabilities) allow the execution
of strictly controlled and repeatable scenarios which are necessary to support system stressing
behavior analyses.
In order for the RAPMAP models to reflect the system definition status, the toolset must provide:

a) Flexible, easy model modification - Allows model to be refined throughout the develop-
ment as the system definition evolves without requiring wholesale model redevelopment.

b) An ability to interface with other tools or software - Allows integration of non-host tool
models or even development products wherever the host tool or model is determined to
be inadequate. Note that this is particularly crucial for the Product-based RAPMAP
implementation discussed below.

c) Support for mixed fidelity operation - See the discussion below.
d) Support for immature functional definitions without compromising model execution or

validity - Allows model to reflect the actual state of the system definition, regardless of its
completion status. See the discussion below.
The modeling toolset must simultaneously support models at varying degrees of fidelity.

System definitions do not mature as a unit, therefore, it is important that models of these sys-
tems allow for parallel evolutionary fidelity growth (as opposed to requiring revolutionary up-
grades for every minor system change). Initial, low fidelity models and analysis results give
engineers a general feel for the functional behavior of the system. But, as the life cycle
progresses and the increase in system definition is progressively reflected in the model, the
confidence resulting from the analysis and the insight into the integrated performance of the
system grows.
A subset of the variable fidelity modeling requirement is that the toolset must not force the user
to model a ‘fully realized’ control system. It is crucial that the RAPMAP models reflect the actual
status of the system definition. Many available modeling tools are actually built to directly
support the definition of the system. As such, in an effort to apply the strictures of good systems
engineering practices, these modeling tools often force a complete system definition long before
the system is mature enough to support this sort of analysis. Thus, modelers using these tools
are stymied until system definition inadequacies are resolved, or in an effort to make forward

modeling progress, models becomes riddled with assumptions that nullify the value of the
resulting analyses.

2 RAPMAP Implementation
There are two basic approaches to implementing RAPMAP: Analysis-based and Prod-

uct-based. Analysis-based RAPMAP implements a control system behavior modeling analysis
effort which is separate but parallel to the standard software development. In this implementa-
tion, the model is primarily used as an analysis tool and results are used to inform the ongoing
software development. Product-based RAPMAP is an implementation in which the final product
flows directly from the initial modeling.
Analysis-based RAPMAP is summarized along development life cycle lines in Table 2.2-1. This
table lists each development phase along with its associated modeling and analysis activities.
This table implies serial and distinct model content and usage based on development phases;
however, in practice this is not the case. The variability of model fidelity, a central RAPMAP
tenet discussed above, allows the model and its associated analyses to simultaneously benefit
multiple development phases. Further, the modeling efforts are not independent, the modeling
required in each development phase relies on the modeling effort accomplished for the previous
phase.

Product-based RAPMAP wholly encompasses the Analysis-based implementation
processes, but goes one more step by merging the model and control system software develop-
ment. In this implementation, initial models are assembled and, after proving out control system
performance, pieces of the model are replaced with progressively higher fidelity models, ulti-
mately including the actual product. For example, the toolset used on the ISS program,
MATRIX

x
, supports the following progression: from initial low fidelity logic models to progres-

sively higher fidelity models to automatically generated code versions to hand-coded software.
This approach provides a gradual top-down development of the product which supports ongoing
demonstration and examination of the functional and performance behavior of the control

system starting very early in the development process. Additionally, there are benefits to the
test program. A complete control system model includes models of the hardware and the
environment. As these portions of the control system model are gradually increased in fidelity
and are validated against actual product performance data, they become the test suite for the
product software without having to go through a separate development process.
Notably, in Product-based RAPMAP there are significant organizational implications. Most
obvious is the merging of the Systems Engineering and Software Engineering functions. Tradi-
tionally, these organizations interface primarily through requirement allocation documentation;
however, using a Product-based RAPMAP implementation, the model which defines the System
behavior (functionally a Systems Engineering product) becomes the skeleton upon which the
Software Engineering function progressively builds its product. Obviously, because of the
difficulty of maintaining and coordinating separate models for separate organizations, this will be
best accommodated if these organizations are the same.

To maximize the benefits of the RAPMAP approach, the modeling effort must be allowed
flexibility not normally found in product development, Ideally, stringent documentation, program
and customer review, and configuration management which must be present in the development
of fielded (flight or operational) products should not be imposed on the model development
process until very late in the life cycle. In an Analysis-based RAPMAP implementation, re-
sources should be diverted from model development and use to formal model validation, docu-
mentation and configuration management only when real-time anomaly resolution/performance
prediction is intended. However, in a Product-based RAPMAP implementation, this ideal is not
possible. Since the model becomes the product, it must also be formally documented, con-
trolled and reviewed. As a result, in this implementation, a balance needs to be found which
maximizes the flexibility of the modeling but also provides the necessary control and insight into

the model development. This balance may entail new documentation approaches which di-
verge from the standard concentration on the structure and content of hand-coded software and
concentrate instead on functional control system behavior. In the current engineering environ-
ment where emphasis is being placed on cheaper, faster, better process performance, exploring
the Product-based implementation implications is likely to be a direction taken by future control
system developments.

While commitment to a cogent development philosophy which relies on control system
behavior modeling has the potential for producing significant rewards, an early, overall imple-
mentation of the RAPMAP process is not the only option. As experienced on the ISS, even a
gradual or partial implementation can benefit overall development quality with the potential
additional benefit that modeling resource expenditures are reduced when compared to a perva-
sive modeling methodology. In a partial, most likely Analysis-based, implementation of
RAPMAP however, early emphasis should be placed on identifying an appropriate modeling
methodology and maintaining a clear picture of the resulting processes to accomplish the
overall product development goals.

2.3 Predictive-Verification
The classical approach to control system software development and review, the software engi-
neering “Waterfall,” (see Figure 2.3-1) is characterized by a progressive stepwise development
of products starting with concepts and requirements and flowing through design, implementa-
tion, test and integration onward to product delivery. The basis for the development half of the
‘waterfall’ approach (requirements-implementation) is a ‘Top-Down’ methodology which layers
progressively more detailed definitions on top of previous definitions which are presumably
more mature but of a broader scope. Conversely, the verification half of the waterfall process
proceeds in the opposite, ‘Bottom-Up’ direction demonstrating the performance of progressively
more broad-based functionality as the affected portions of the system are integrated and tested.
As a result, the system’s most broad-based, horizontal functional layers are actually demon-
strated last because they can only be examined once the necessary large functional system
segments become available. Clearly, this can be a risky approach since flaws in the broad
System and Subsystem functional basis for the product may not be found until very late in the
development cycle.

The RAPMAP approach addresses this risk by implementing a continuous Top-Down
‘Predictive-Verification’ of eventual system behavior. As the development proceeds, the models
built as part of the RAPMAP approach are used to predict and validate the eventual behavior
and performance of the integrated system. As seen in Figure 2.3-2, Top-Down Predictive-
Verification complements the later development phase Bottom-Up verification strategy, and
ensures that, during the early development phases, the program proceeds based on proven
system behavior.

‘Predictive-Verification’ of control system behavior is accomplished through the modeling
effort itself and through model use during control system behavior analyses, trade-study efforts
and program reviews. Similar to the benefits associated with early product prototyping, the
modeling effort exposes issues with the system definition by forcing modelers to examine,
understand, and translate the available system definitions into coherent executing control
system models. Issues are provided to the system definers for the product in question and
result in either modifications to the system definition or corrections to modeler interpretations.
‘Predictive-Verification’ is also achieved when the models are used to assess system behavior
through pre-scripted scenario-based analyses or more informal interactive analysis sessions.

One of the less tangible, but most notable benefits of the Predictive-Verification process
is an increased level of technical communication. During a product development, customers,
systems and design engineers often miscommunicate due to their differing perspectives, con-
cerns and roles. However, in our experience, interactive model execution sessions between
these groups often lead to quick understanding of system operation and the issues and options
inherent therein. This communication benefit is achieved in both small group technical inter-

changes and program review demonstration forums. It is simply easier to understand and
discuss a system when it can be seen running than when it is only found in a paper document,
or even worse, when it is only realized in someone’s mind.

3. Station Management and Control (SMC) Prototype Top Level Architecture and Pur-
pose

The ISS Command and Data Handling (C&DH) architecture is a highly complex and distrib-
uted MIL-STD-1553B network comprising hundreds of processors with functionality which
includes Power generation and distribution, Guidance, Navigation and Control, maintenance of
the internal habitable environment, Communications and Tracking, and control of robotic opera-
tions and payload experiments. During the development of the software requirements for the
two highest level processors in this architecture it became apparent that their complexity and
interaction required some sort of early functional concept validation. This realization provided
the genesis for the model now called the SMC Prototype. The use of this model led to the
development of the RAPMAP approach and demonstrates the value of control system behavior
modeling as an adjunct to the standard program development processes.

As a general statement, the SMC Prototype is a model of ISS vehicle-level autonomous
functionality including related subsystem and cross-subsystem behavior. The primary goal of the
model is to evaluate the viability of the vehicle-level control concepts and required behavior and
to assess the interaction of these behaviors with affected subsystems. In terms of the ISS,
vehicle-level control behaviors include Station Modes, Vehicle Failure Detection, Isolation and
Recovery (FDIR) and Safing, Power and Thermal Load Shedding, and Crew Interfaces.

As can be seen in Figure 3-1, at the top level, the SMC Prototype architecture mirrors that of
the actual space station. Within each station element are the software and hardware compo-
nent models and their appropriate connectivity and control loops that are designed to be a part
of that element on the ISS. In general, elements are simply turned on or off to simulate the
progressive on-orbit assembly of the ISS. However, where necessary, assembly-stage specific
functionality and connectivity has also been modeled

[Insert Figure 3-1 Stage 10A Top Level Vehicle Model Diagram]
The behavior modeled by the SMC Prototype is primarily based on ISS program requirements
and design documentation including:

• System, Segment and End Item requirements documents and Interface Control Docu-
ments (ICDs)

• Software Requirements Specifications and Software ICDs
• Software Design documentation
• Instrumentation, Program and Command List (IPCL)
• Architecture team documentation including Architecture Description Documents (ADDs)

and Schematics
• assorted less formal program information sources

Where externally developed models of appropriate fidelity and functionality were avail-
able that could be integrated with minimum impact, these models have been included. Addition-
ally, actual Crew/Ground control displays - including Caution and Warning panels, alarms and
displays - have been incorporated into the model to support interactive assessments of vehicle
operability.

Where necessary to support analysis of the interaction of the vehicle-level control behav-
ior, vertical subsystem functionality has also been modeled. For example, since the majority of
the vehicle-level control behavior affects the on/off state of ISS devices, the whole of the Sec-
ondary Power Distribution system (connectivity and steady state power draw) is included in the
model; and, since the orientation of the model is on control behavior, the Command and Data
Handling (C&DH) connectivity, functionality and command and data flow has also been mod-
eled.

Many of the conditions that are necessary to stress the vehicle-level control concepts
involve failure scenarios. The SMC Prototype accommodates these scenarios by allowing for
the injection of selected failure conditions. These conditions, selected based on assessments of
failure likelihood and expected cross-functional impact, are modeled to the extent that they
affect vehicle-level control concepts. When a failure is injected, related intra- and inter-sub-
system reactions to the failures are captured through modeling of failure effects to the environ-
ment and to device communications, power usage, and connectivity.
The SMC Prototype model also provides an ability to inject environmental conditions. These
conditions usually take the form of singular sensor readings, but may be more complex condi-
tions (e.g., ‘Fire’) which normally involve a series of readings. Again, environmental aspects are
controllable to the extent that they elicit or effect a vehicle-level control concept or selected
failure or alarm condition.

At the Vehicle level, the SMC Prototype was used as part of an Analysis-based RAPMAP
implementation. However, several of the SMC Prototype components provided by external
organizations are or will directly produce actual flight products, and so are part of Product-based
RAPMAP implementations. The following sections detail examples of the use of the SMC
Prototype model. As noted, each of these uses exposed issues during the early development
phases, long before the traditional development process would nominally have identified them.

3.1 Integrated Subsystem Requirements Allocation
The SMC Prototype model was utilized to map all of the ISS software and hardware it

controls, to the Elements in which they reside along with the necessary power, thermal and data
utility connectivity and flow required to make a viable system. This map was then used to
determine where functional requirements should be levied in the Element specifications. As a
result, many of the program specifications were updated to reflect the necessary subsystem
performance, control, and connectivity allocations. Notably, this analysis did not require a

functioning model, however, the existing functional behavior models and the interactive func-
tional analyses being performed for other reasons increased the accuracy of the software to
hardware to Element correlation.

3.2 Computer Failure Recovery Logic
The ISS has a multi-tiered computer system with the Command and Control computer at

the top of the hierarchy. The C&C computer (Tier I) controls numerous Tier II Remote Terminals
(RTs) including the Guidance, Navigation, and Control (GNC), the Power Management and
Control Unit (PMCU), and the Internal (INT) computers. A static analysis of the failure recovery
logic, data flow, and resource connectivity for each individual Tier II computer indicated a fully
functional and complete concept and requirements set. However, when multiple computers
where brought down through injection of a power channel trip in the SMC Prototype model, the
redundant GNC computer did not recover properly.

Analysis of the data recorded during the Prototype scenario revealed that the backup
GNC computer was powered through a switch which was in turn controlled by the INT computer.
When both the INT and the GNC primary computers failed due to loss of the power channel, the
C&C computer initiated the GNC and INT recoveries simultaneously, as then required. How-
ever, because the INT was still being recovered, the command to provide power to the backup
GNC never progressed to the controlling switch. By the time the INT had completed its recov-
ery and was ready to process a GNC switch command, because the backup GNC had failed to
recover as commanded, the C&C had already determined that the backup GNC was inoperable,
designated it as failed, activated appropriate Caution & Warning alarms, and halted its attempt
to recover the GNC processor.

Of particular note for this issue is the likelihood that it would not have been identified until
very late in the verification process since integrated testing would only occur after completion of
all of the applicable components. Individual component tests and connectivity analyses would
not have revealed this issue.

3.3 Operational Initialization
During the execution of 2A stage assembly scenario scripts, the entire set of primary

heaters for the Node 1 module shell were reported as failed. Since heater control functionality
is one of the first automated software functions to be enabled on the Vehicle, the immediate
failure of the entire primary string was of significant concern.

Analysis of recorded data revealed two problems. The first was that the specified heater
failure levels neglected to account for the expected shell temperatures at heater control initial-
ization. The second was that because the required failure recovery logic did not specify re-
moval of power from the failed heaters, and because once a string was declared failed, the
nominal control logic that would have turned them off when the shell temperatures reached the
upper limits would not execute, the integrated primary heater string control system demon-
strated an unexpected and unhandled failed-on failure mode.

Because these errors were discovered during the execution of operational scenarios
against a model that simulated the on-orbit conditions, it is highly likely that these problems
would not have been detected until the on-orbit assembly operations. However, because the
SMC Prototype was being used to ‘Predictively-verify’ the assembly operations, this error was
discovered and corrected early in the design phase of the program.

4. Conclusion
The overall results currently experienced on the International Space Station program due to the
application of the RAPMAP approach benefit a wide range of development areas, including:

•Early identification of concept deficiencies
•Rapid functional review of software requirements
•Early operations procedure development and review
•Early software-based Hardware/Software Integration analysis
•Software functionality implementation trade study
•Early operator training
•Software test procedure development and review
•Customer system operations familiarization
•Software to software interface analysis

Another realized benefit, which is less tangible but still of note, is an improvement in
system communication with the customer, particularly at a technical level, and the correspond-
ing increase in confidence exhibited in the customer regarding integrated product analyses and
reviews. Based upon the benefits achieved on the ISS program from an evolution into the
RAPMAP process, implementation of this philosophy from program inception throughout the
development cycle has the potential to yield even greater cost reduction and engineering excel-
lence benefits to the development of large software control systems.

	Paper Session I-B - Modeling Methodology: The Use of Vehicle Control System Modeling for the International Space Station (ISS) Program
	Scholarly Commons Citation

	Paper Session I-B - Modeling Methodology: The Use of Vehicle Control System Modeling for the International Space Station (ISS) Program

