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Characterization of potential ISS/Space Shuttle environmental 
conditions on growth and development of R. sativus: Ground studies 

for the RASTA Space flight experiment. 
 

E. Stryjewski, I. Eraso and G. Stutte 
Dynamac Corporation, Kennedy Space Center, FL 32899 

 
Using radish as a model system, the RASTA project (Radish Assimilation in Spaceflight Testbed 
Atmospheres) will be investigating carbon partitioning of salad crops in microgravity. Before this goal 
can be accomplished, the effects of the unique environment of orbiting spacecraft on growth and 
development of radish must be characterized so they can be separated from those of microgravity. The 
environmental conditions on ISS and the space shuttle most likely to effect carbon partitioning in radish 
are air temperature, CO2 concentration and atmospheric contaminants. Several radish cultivars were 
grown in temperatures ranging from 18-30°C at ambient  (400 part per million [ppm]) or elevated (1,500, 
3,000 and 10,000 ppm) CO2. The effects of temperature and CO2 on growth and development of these 
cultivars were characterized and a high temperature cultivar was identified. In a separate series of 
experiments, radishes were exposed to different levels of ethylene, a biologically active volatile organic 
compound, to characterize its impact on radish growth and development over a range of concentrations. 
With these environmental characterizations, the effect of microgravity on carbon partitioning can be more 
readily separated from environmental factors coincidental to the spacecraft environment.  

 
Introduction  
 

Crops that require minimal processing prior to consumption are being considered as dietary 
supplements for short-duration spaceflight missions. The RASTA (Radish Assimilation in Spaceflight 
Testbed Atmospheres) experiment will study carbon partitioning in radish  to characterize the production 
of the edible portion of plants in the weightless environment. Radish is an example of a crop that is ready 
for consumption at harvest and combined with the advantage of a short life cycle (21 days), it is an 
excellent model system for the RASTA experiment. Ground studies are underway to determine the effects 
of the space shuttle/ISS environment on the growth and development of radish so spacecraft environment 
effects can be distinguished from microgravity-induced effects. Among the environmental conditions 
typically found on orbiting spacecraft that may effect plant growth and thus mask the effects of 
microgravity are elevated air temperature, CO2 and atmospheric contaminant  (eg. ethylene) levels.  

Temperatures aboard the space shuttle are typically below 24oC, but excursions to 30oC or higher are 
not uncommon. Elevated temperatures have profound effects on photosynthesis and plant growth, 
especially in a cool temperature crop such as radish. As temperatures increase, thermal energy is 
introduced which affects enzymatic activity, enhances chemical reaction rates and alters membrane 
permeability (Geigenberger et al, 1998; Huang and Gao, 2000). High temperatures also inhibit 
photosynthetic CO2 fixation (by inhibiting Rubisco activity) and damage photosynthetic electron transport 
(Feller et al, 1998; Geigenberger et al, 1998).   

In addition to heat accumulation in this closed environment, atmospheric gases accumulate as well. 
Two biologically active atmospheric constituents that can accumulate are CO2 and ethylene. Sources of 
these compounds in a spacecraft are both biogenic (human respiration, plant and microbial metabolism) 
and anthrogenic (derived from man-made sources such as off-gassing of materials) in origin (Stutte & 
Wheeler, 1997). Human respiration, along with other factors in this confined environment, produce CO2 
levels that are typically elevated above 1,500 ppm and are often higher than 5,000 ppm. Because 
atmospheric CO2 levels on Earth are expected double in the 21st century, many studies have concentrated 
on the physiological effects of approximately twice ambient CO2 on plant growth (Mulholland et al., 



1997; Will and Ceulemans, 1997; Murthy et al, 1997) but only a few have examined the effects of super-
elevated CO2 levels (Wheeler et al., 1993; Wheeler et al., 1999).  

Ethylene (C2H4) is a volatile plant hormone that regulates many aspects of plant development 
including germination, leaf expansion, flower formation and senescence (Abeles et al., 1992). Ethylene 
accumulation in this closed environment may have profound effects on plant growth. In addition to 
chronic exposure created by this closed environment, acute expose may occur as well. In the absence of 
convective currents that on Earth move ethylene from the immediate vicinity of the plant, ethylene may 
accumulate adjacent to where it is produced, causing acute exposure. It is important to identify the 
threshold of ethylene exposure that produces morphological and developmental effects in ground 
experiments for effective control systems to be implemented.  

 Before the effects of microgravity on plant growth can be defined, the compounding effects of the 
spacecraft environment, such as elevated temperature, exposure to ethylene and super-elevated CO2 levels 
must first be understood. Once this characterization is made, the effects of microgravity can be better 
differentiated from those of the spacecraft environment. 

 
Materials and Methods 

 
Temperature and CO2 exposure studies 
 

For temperature studies, seeds of 20 different cultivars of Raphanus sativus were obtained from 
Burpee (Warminster, PA), Ferry-Morse Seed Co. (Fulton, KY), OSC Seeds (Waterloo, Ontario), Seiger’s 
Seed Company (Zeeland, MI), Park Seed Co. (Greenwood, SC) and Johnny’s Selected Seeds (Albion, 
ME). A cultivar, SORA, obtained from Johnny’s Selected Seeds was used for CO2 exposure studies.  
Seeds were sown in blocks of Oasis™ (Kent, OH) foam. The blocks were placed in plastic containers and 
the foam was saturated to 75% of its holding capacity with Hoagland’s nutrient solution. The containers 
were then sealed to maintain high humidity levels through the first 4 days after planting (DAP), after 
which the covers were removed. The containers were placed in environmentally controlled growth 
chambers (Percival Scientific, Perry IA). Plants were grown under a diurnal photoperiod (16 h light /8 h 
dark) with cool white fluorescent lamps (Sylvania, Danvers. MA, product number F15T12). Relative 
humidity was maintained at 75% and PPF ranged from 180-200µmol•m-2s-1. For temperature studies, CO2 
levels were maintained at 1,500 ppm and temperature was maintained at either 18, 22, 26 or 30°C. For 
CO2 studies, temperature was maintained at 23°C and CO2 levels ranged from 400, 1,500 and 10,000 
ppm. After 4 DAP, the containers were re-supplied daily with 1X Hoagland’s solution to maintain the 
75% saturation level throughout the growth cycle. As the plants grew, they were lowered to maintain the 
same light level at the top of the canopy throughout the growth cycle. Daily water loss was tracked by 
weighing the containers before and after nutrient replenishment. To distinguish between transpirational 
water loss and evaporation from the surface of the planting foam, an empty foam block (without plants) 
was placed in each chamber and the daily water loss from it was tracked as well. Radishes were harvested 
at 21 DAP. Plant height, root and shoot fresh and dry mass and leaf area were determined. Tissue was 
then oven-dried at 70°C and dry mass determined. 
 
Ethylene exposure  
 
Radish seeds (cv. Cherry Belle) were sown as described above. The containers were placed into small 
clear Lexan chambers (76.2 x 96.5 x 91.4 cm).  These chambers were installed in a controlled 
environment chamber (CEC; Conviron, Winnipeg Canada). Plants were grown at 23°C, relative humidity 
of 75%, 18 h light and 6 h dark photoperiod under 300 µmol m-1s-1 PAR with cool white fluorescent 
lamps. CO2 levels were maintained at 1,500 ppm. Ethylene concentration was monitored with a Photovac 
10S Plus Portable Gas Chromatograph and with a 6890 Plus GC system. A f1ow control system provided 
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Figure 1: Total biomass production (plant 
dry weight) at 18, 22, 26 and 30°C. Standard 
error bars are shown. 
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Figure 2: Dry weight of radishes from cultivars 
that produced a radish at 30°C that was within 
80% of the optimum. 

   
   

 
   

  W
ei

gh
t (

g)
 

0

5

10

15

20

1 2 3 4

Overall Bioma

Radish Biomas

400 1,500 3,000 10,000 
 

CO2 concentration (ppm) 
 

Figure 3: Biomass production and radish weight at 
different CO2 levels. Standard error bars are shown. 

independent control of ethylene levels in each of the small chambers in the CEC.  Eight different ethylene 
concentrations (25, 40, 100, 200, 300, 500, 1000 and 10,000 parts per billion [ppb]) were evaluated.   
 
Results 

 
Temperature 
 

Germination and initial growth rates  (plant 
height) were greater at the higher temperatures for all 
the cultivars tested. Stem elongation at elevated 
temperature was evident after 7 DAP (days after 
planting) and continued throughout the growth cycle, 
leading to generally taller plants at 30°C. Leaf area 
was greatest between 22 and 26°C but was reduced 
at 30°C for all cultivars tested. Therefore, although 
stem elongation led to taller plants at 30°C in some 
of the cultivars, shoot biomass produced was reduced 
in all cultivars. This was observed in both shoot fresh 
and dry weights where maximum levels were 
reached between 22 and 26°C but were lower at 
30°C (Figure 1).  

Many of the cultivars tested failed to 
produce appreciable radish swelling at 30°C. 
These cultivars tended to instead have 
elongated hypocotyl regions. Of the cultivars 
that produced a radish at 30°C, radish size and 
weight were greatest between 22 and 26°C. 
Four cultivars were identified that produced a 
radish at 30°C that was within 80% of that 
optimal radish size (Figure 2). Of these 
cultivars, SORA (Johnny’s Selected Seeds, 
Albion ME) had the highest germination rate.  

Transpirational water loss increased with 
increasing temperature for all cultivars. For 
most, transpirational water loss doubled as the 

temperature was increased from  22°C to 
30°C.  For some cultivars,  this increase in 
transpiration rate was as high as 300%.  
  
Elevated CO2 Exposure 
 
Although plant height was greater at 7 DAP in 
the plants grown at elevated CO2, this did not 
persist and there was no significant differences 
in plant height between treatments after 21 
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DAP. In contrast, overall biomass production was significantly affected by CO2 concentration. Biomass 
production was greatest at 1,500ppm and reduced to control (400 ppm) levels at 3,000 and 10,000ppm. 
Similarly, radish size was greatest at 1,500 ppm CO2 but not significantly different between the control 
and the 3,000 and 10,000ppm treatments (Figure 3). Harvest index was therefore greatest at 1,500 ppm 
CO2 but was not significantly reduced at higher CO2 concentrations. 
 

 
Ethylene Exposure 
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Figure 4: Physiological responses at 21 DAP due to Ethylene exposure.  
(Data reproduced from Eraso et al, 2001) 

 Alterations in plant growth and development became apparent at ethylene concentrations of 40 
ppb. Between 40 and 100 ppb, leaves curved downward and stem and root lengths were reduced. These 

changes in morphology were only evident for the first week of growth. After the first week, there were no 
statistically significant differences in shoot length associated with ethylene exposure at 40 and 100 ppb. 
At ethylene concentrations higher than 200 ppb, plants showed chronic injuries which included: reduced 
biomass, smaller roots, leaf epinasty, leaf curling, increased root hair initiation and delayed hook opening. 
Plants exposed to even higher concentrations of ethylene (300, 500 and 1000 ppb) showed increasingly 
severe leaf epinasty, stem and root growth and enlargement inhibition (i.e. harvest index greatly reduced) 
and formation of roots with a corkscrew shape.  As early as 3 days after germination, plants showed 
inhibited hypocotyl elongation at concentrations >300 ppb.  These results are similar to those reported by 
Vreugdenhil and Bowmeester (1989) with radish and Vreugdenhil and Van Dijk (1989) with potato. 
Finally, at ethylene concentrations greater than 1,000 ppb, plants exhibit symptoms of acute toxicity, 
including severe stunting of growth, stem swelling, and failure of leaves to develop.   
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Discussion 
 

To varying extents, high temperature (30°C) had adverse effects on growth in all radish cultivars. Of 
the parameters tested in this study, temperatures between 22  and 26°C enhanced growth but temperatures 
of 30°C reduced growth. The adverse effects of high temperature on shoot growth could be due to 
increased media temperature since high temperatures directly inhibit root growth and activity. Limited 
root production and accelerated root death in high temperatures also interrupts synthesis and transport of 



root-produced hormones (Huang and Gao, 2000; Xu and Huang, 2000). Cytokinin for example, is a shoot 
growth regulator that is synthesized mainly in the roots and its transport is inhibited by elevated root zone 
temperature.  

Increased temperature also increases evaporative demand because the water capacity of the air 
increases as temperatures increase (Maherali and DeLucia, 2000). The adverse effects of high temperature 
on shoot growth are thus compounded because this increased demand is on roots whose function is 
impaired by the elevated temperature of the growth media. Increased transpiration rates and diminished 
root activity could lead to negative water and nutrient balances and thus account for the reductions seen in 
root and shoot weight.  

Four of the 20 cultivars tested were tolerant of the effects of elevated temperature. These cultivars 
showed increased transpiration rates, but less reduction in overall biomass. This suggests that these 
cultivars are not suffering from accelerated root death. Healthier roots will increase tolerance of elevated 
temperature because sustained transpiration rates will cool the leaves through evapotranpirative cooling. 
This tolerance of high temperature makes these cultivars desirable selections for use in the RASTA 
spaceflight experiment because they would be less affected by the temperature excursions typical of the 
spacecraft environment.  

Another attribute that makes one cultivar more attractive than another is a high and consistent 
germination rate. One of the high temperature tolerant cultivars, SORA, had germination rates >98% and 
has been selected as the cultivar for the spaceflight experiment. 

The characterization of elevated CO2 on plant development is important to allow for separation of 
microgravity effects from CO2 effects. CO2 concentrations of 1,500 ppm enhanced growth over control 
(400 ppm) levels yet when these levels were increased above 1,500 ppm, this enhancement was lost and 
growth returned to control levels. Therefore, since CO2 levels typically fluctuate between 1,000 and up to 
10,000 ppm and above on the space shuttle and ISS, these may significantly alter radish growth and 
development.  These results highlight the need for good atmospheric control of CO2 in microgravity-rated 
plant growth chambers. Other physiological effects that were not investigated in this study may occur due 
to these super-elevated CO2 levels (Wheeler et al., 1999) and require further study.  

Ethylene exposure also affected growth and development in radish. The threshold level necessary to 
produce a morphological response (40 ppb) was identified.  By knowing this threshold level and 
understanding the subsequence physiological responses, we will be better able to separate the effects of 
microgravity on crop growth from those of ethylene. Physiological effects produced at higher ethylene 
concentrations were characterized as well. Again, an understanding of these effects will enable us to 
better interpret our data upon the return of the RASTA experiment from space flight.  These data also 
highlight the importance of removing ethylene in microgravity-rated plant growth chambers. 

 In addition to super-elevated CO2 and ethylene, other volatile organic compounds have been 
identified as space shuttle/ISS atmospheric constituents (Stutte and Peterson, 1996). Characterization of 
the effects of these contaminants on growth and development of Raphanus sativus L. are currently 
underway as part of the RASTA project as well.  

 
Acknowledgements  

 
The authors thank Seiger’s Seed Company of Zeeland, MI, Burpee of Warminster, PA and Johnny’s 

Selected Seeds of Albion, ME for their generous donations of seed. The authors also thank Jennifer 
Meyer and Georgiana Tynes for their technical support. This research is supported in part by NASA’s 
Fundamental Biology Program grant # NCC10-037. 

 
References  

 
Abeles, F. B., P. W. Morgan, and M. S. Saltveit, Jr. 1992. Ethylene in Plant Biology, 2nd edition. 
Academic Press, New York. 



 
Eraso, I, Stutte, G, Stryjewski E (2001) Effects of ethylene on the growth and development of radish. 
Proceedings Plant Growth Regulation Society of America. Miami Beach, FL 28:118-123. 
 
Feller U., Crafts-Brandner J., Salvucci (1998) Moderately high temperatures inhibit ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol. 
116:539-546. 
 
Geigenberger P., Geiger M. and Stitt M. (1998) High-temperature perturbation of starch synthesis is 
attributable to inhibition of ADP-glucose pyrophosphorylase by decreased levels of glycerate-3-
phosphate in growing potato tubers. Plant Physiol. 117: 1307-1316. 

 
Huang B. and Gao H. (2000) Growth and carbohydrate metabolism of creeping bentgrass cultivars in 
response to increasing temperatures. Crop Science 40:1115-1120. 
 
Maherali H. and DeLucia E. (2000) Interactive effects of elevated CO2 and temperature on water 
transport in Ponderosa pine. Amer. J Bot. 87: 243-249. 
 
Mulholland BJ, Craigon J, Black CR, Colls JJ, Athorton J, Landon G (1997) Impact of elevated 
atmospheric CO2 + O3 on gas exchange and chlorophyll content in spring wheat (Triticum aestiuum L.). J. 
of Exp. Bot. 48: (315) 1853-1863. 
 
Murthy R, Zarnoch SJ, Dougherty PM (1997) Seasonal trends of light-saturated net photosynthesis and 
stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and 
carbon dioxide. Plant, Cell and Environ. 20: 558-568. 
 
Stutte, GW, and Peterson, BV (1996) Biogenic volatile organic compound Production by soybean and 
tomato. Proc. Plant Growth Regul. Soc. Amer. Calgary, Alberta, Canada 23: 295-300. 
 
Stutte, G. W., and Wheeler, RM (1997) Accumulation and effect of volatile organic compounds in closed 
life support systems. Adv. Space Res. Vol. 20, No. 10, pp. 1913-1922. 
 
Vreugdenhil, D. and Bouwmeester, H (1989) Effects of ethylene on tuberization in radish (Raphanus 

sativus). Plant Growth Regulation 8: 21-30. 
 
Vreugdenhi, D. and Van Dijk, W (1989) Effects of ethylene on the tuberization of potato (Solanum 
tuberosum) cuttings. Plant Growth Regulation 8: 31-39. 
 
Will RE, Ceulemans R (1997) Effects of elevated CO2 concentration on photosynthesis, respiration and 
carbohydrate status of Coppice populus hybrids. Physiologia Plantarum. 100: 933-939. 
 
Wheeler RM, Mackowiak CL, Siegriest LM, Sager JC (1993) Supraoptimal carbon dioxide effects on 
growth of soybean [Glycine max (L.) Merr.]. J. Plant Physiol. 142: 173-178. 
 
Wheeler RM, Mackowiak CL, Yorio NC, Sager JC (1999) Effects of CO2 on stomatal conductance: Do 
stomata open at very high CO2 concentrations? Ann. Bot. 83: 243-251. 
 
Xu Q. and Huang B. (2000) Growth and physiological responses of creeping bentgrass to changes in air 
and soil temperature. Crop Science 40:1363-1368. 
 


	Paper Session III-B - Characterization of Potential ISS/Space Shuttle Environmental Conditions on Growth and Development of R. Sativus: Ground Studies for the Rasta Space Flight Experiment
	Scholarly Commons Citation

	Paper Session III-B - Characterization of Potential ISS/Space Shuttle Environmental Conditions on Growth and Development of R. Sativus: Ground Studies for the Rasta Space Flight Experiment

