
The Space Congress® Proceedings 2002 (39th) Beginning a New Era - Initiatives In
Space

May 1st, 2:00 PM - 5:00 PM

Paper Session II-A - Operations and Maintenance Requirements Paper Session II-A - Operations and Maintenance Requirements

Specifications - Automated Buy-Off System Specifications - Automated Buy-Off System

Todd Flato
Riptide Software Incorporated

Barry Rubel
Riptide Software Incorporated

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation Scholarly Commons Citation
Flato, Todd and Rubel, Barry, "Paper Session II-A - Operations and Maintenance Requirements
Specifications - Automated Buy-Off System" (2002). The Space Congress® Proceedings. 7.
https://commons.erau.edu/space-congress-proceedings/proceedings-2002-39th/may-1-2002/7

This Event is brought to you for free and open access by
the Conferences at Scholarly Commons. It has been
accepted for inclusion in The Space Congress®
Proceedings by an authorized administrator of Scholarly
Commons. For more information, please contact
commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217144193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-2002-39th
https://commons.erau.edu/space-congress-proceedings/proceedings-2002-39th
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-2002-39th%2Fmay-1-2002%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-2002-39th/may-1-2002/7?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-2002-39th%2Fmay-1-2002%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/

Operations and Maintenance Requirement Specification –
Automated Buy Off System

(OMRS-ABOS)

By

Todd Flato
and

Barry Rubel

Riptide Software Incorporated
P.O. Box 360857

Melbourne, Florida 32936-0857
todd.flato@riptidesoft.com

(321) 773-9233 Office
(321) 779-9943 Facsimile

mailto:todd.flato@riptidesoft.com

Problem Domain

Project Engineering is the Kennedy Space Center (KSC) organization responsible for monitoring
the progress of milestone-closure as part of Space Shuttle processing, also known as a flow.

An Operations Maintenance Plan (OMP) is a plan used to process a Space Shuttle as it is in a
flow for a single mission. Each requirement-line-item in an OMP is known as an Operations and
Maintenance Requirement Specification (OMRS). Each OMRS must be verified and closed separately by
a configuration management person and an engineer.

An Operations and Maintenance Instructions (OMI) document, which is a type of Work
Authorization Document (WAD), consists of sequences of steps of tasks performed on a Space Shuttle
used to satisfy a set of OMRS's. Performing steps in an OMI is a prerequisite for an OMRS to be verified
and closed.

Project Engineering monitors verification-closure status, i.e. open or accomplished, of OMRSs
with software known as Operations and Maintenance Requirement Specification Flow Planning
(OMRSFP). The manual verification-closure of an OMRS in OMRSFP is known as buy-off.

Ground-based checkout-systems are used to checkout the Space Shuttle at KSC. The Checkout
and Launch Control System (CLCS) is an example of a new checkout-system replacing the Checkout and
Control Monitor Subsystem (CCMS). Checkout-systems consist partly of software to perform checkout
of the Space Shuttle. Checkout console operators utilize checkout-systems to perform automated and
semi-automated tests on Space Shuttle systems.

During a test, checkout-systems software detects major OMRS events for Space Shuttle flight-
hardware. Major events include:

1. Pass/verify event of an OMRS
2. Events that would require the Space Shuttle processing personnel to recheck flight-hardware, e.g.

removing flight-hardware and reinstalling it.
3. Fail/invalidate event of an OMRS.

There are about 8000 OMRSs per flow, i.e., shuttle processing to support a mission. The required
OMRSs need to pass before advancing the Shuttle from the current processing location to the next, i.e.,
from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB), from the VAB to
the pad, and from the pad to launch.

Operational Scenarios (Legacy)

This Operational Scenarios (Legacy) section describes how the legacy applications are used for
Space Shuttle processing.

Operational Scenario 1a: Checkout Operation (Legacy)

A system engineer arrives at the firing room console for testing. The system engineer reports
ready to perform a checkout to the Test Conductor on station. The system engineer references the OMI
required. The system engineer activates the CCMS software required to perform the checkout. The
system engineer commands the CCMS console for the checkout. CCMS interrogates Space Shuttle
systems. Space Shuttle systems return return-data to the CCMS console. CCMS indicates as to whether
 Space Shuttle systems' return-data meets OMRS specified-data requirements. The system

 1

1. Activates software required to perform the checkout

System
Engineer 5. Indicates as to whether Space Shuttle systems' return-data meets

OMRS specified-data requirements

3. Interrogates

4. Return return-data

6. De-activates

CCMS

2. Commands for the checkout

Space
Shuttle

Systems

Figure 1 Use Case: Checkout Operation (Legacy)

engineer records the checkout conclusion in the OMI. The system engineer de-activates the CCMS
software required to perform the checkout.

Operational Scenario 1b: SPDMS-OMRSFP OMRS Verification Entry (Legacy)
 The system engineer arrives at a Shuttle Processing Data Management System (SPDMS)
SPDMS-OMRSFP. The system engineer activates the SPDMS-OMRSFP software required to perform
OMRS verification entry. The system engineer commands the SPDMS-OMRSFP software to update the
OMRS verification status based on the checkout conclusion. SPDMS-OMRSFP indicates the successful
update of the OMRS's verification status. The system engineer de-activates the SPDMS-OMRSFP
software required to perform OMRS verification entry.

System
Engineer

2. Updates the OMRS verification status based on the checkout
conclusion

1. Activates to perform OMRS verification entry

SPDMS-
OMRSFP 3. Indicates the successful update of the OMRS's verification status

4. De-activates

Figure 2 Use Case: SPDMS-OMRSFP OMRS Verification Entry (Legacy)

Solution Domain

The Operations and Maintenance Requirement Specification - Automated Buy Off System
(OMRS-ABOS) is the application that provides an integrated software capability to automatically buy-off
those OMRS's that can be verified by checkout-systems software. OMRS-ABOS provides
communication between OMRS producers, such as CLCS, and OMRS consumers, such as Project
Engineering.

Operational Scenarios (OMRS-ABOS)

This Operational Scenarios (OMRS-ABOS) section describes how the solution applications will
be used for Space Shuttle processing.

Operational Scenario 2: Checkout Operation (OMRS-ABOS)

 2

 A system engineer arrives at the CLCS console for testing. The system engineer reports ready to
perform a checkout to the Test Conductor on station. The system engineer references the OMI required.
The system engineer activates the CLCS software required to perform the checkout. The system engineer
commands the CLCS console for the checkout. CLCS interrogates Space Shuttle systems. Space Shuttle
systems return data to the CLCS console. CLCS application software evaluates as to whether Space
Shuttle systems' data meets OMRS specified-data requirements. If an OMRS event occurred, the CLCS
application persists the OMRS-event-data to the SDC. The CLCS console indicates the checkout's
OMRS event. The system engineer records the checkout evaluation-result in the OMI. The system
engineer de-activates the CLCS software required to perform the checkout.

1. Activates software required to perform the checkout

System
Engineer

6. Indicates the checkout's evaluation-result

3. Interrogates

5. Persist OMRS-event-data

7. De-activates

CLCS

Space
Shuttle
Systems

2. Commands for the checkout

Flow
Planning
Database

4. Return data

Figure 3 Use Case: Checkout Operation (OMRS-ABOS)

System Architecture

This section provides a high-level overview of how the functionality and responsibilities of the
system were partitioned and then assigned to subsystems or components.

Upon realization of an OMRS event, CLCS application software simply calls a pass or fail
operation on the appropriate OMRS model, e.g., V41AN0.010-A. This model then writes the OMRS-
event-data to a Function Designator (FD). The FD’s new value is transmitted to the Shuttle Data Center
(SDC) via the CLCS Service Network.

At periodic time intervals, the OMRS-ABOS Application Server calls the SDC Application
Programming Interface (API) to retrieve OMRS-event-data that occurred since the last time the OMRS-
ABOS Application Server called the SDC API. The OMRS-ABOS Application Server receives the
CLCS-generated FD data, extracts OMRS-event-data from FD data, and then stores the OMRS-event-data
in the OMRSFP-database-staging-table.

OMRSFP retrieves the stored OMRS-event-data periodically from the staging table and writes the
data to the same database table populated during manual entry, i.e., the legacy use case (figure 2).

When the application starts and restarts, the application calls the SDC API to retrieve OMRS-
event-data that occurred during the time that the application was unavailable. CLCS-generated FD’s are
then received by the application.

 3

Checkout-System: CLCS

Application Software

OMRS Model

FD

OMRSFP

OMRS-ABOS Server

OMRS event data

OMRS Staging Table

Shuttle Data Center

OMRS event data

Flow Planning Database

Archive
API

Shuttle Hardware

pass()

fail()

FD retrieval
request

FD data

Figure 4 Platform Model: OMRS-ABOS

Platform Architecture

Computer Hardware

Operating System Software

OMRS-ABOS
Application Software

Application Server Software I/O Software
P
l
a
t
f
o
r
m

OMRS-ABOS
Application

Server

Figure 5 Conceptual Model: OMRS-ABOS

The computer hardware consists of one Compaq ProLiant DL380 Model DL380R01 P667-256K

with 512MB PC133MHz Registered ECC SDRAM DIMM Memory, four 18.2 GB Wide Pluggable
Ultra2 Drives, one Compaq NC3134 Fast Ethernet NIC 64 PCI Dual Base 10/100 network card, and one

 4

Compaq Hot Plug redundant Power Supply Module. The computer hardware is designed for use in
conjunction with DataCenter Operations (DCO). The operating system software consists of the Microsoft
Windows 2000 Server operating system. The application server software consists of BEA Systems
WebLogic Server 6.1 (non-clustered).

Software Development Process

The software development model offered an efficient process to enable rapid development of
requirements. The software development process utilized a quality-designed-in philosophy. Each
software component was associated with an appropriate level of test. The process captured user
requirements, infused requirements into the design, provided quality control, and developed software as
object oriented components.

The software development process made extensive use of industry best practices to ensure
consistent high quality production. To further enhance efficiency, rapid prototyping was used.

The application software development process considered current system functionality, proposed
operational concepts and developed user requirements. Software was reviewed against the total system
architecture. The review process considered the total software lifecycle including sustaining.

A type of software development methodology used for the application development was
evolutionary prototyping. In evolutionary prototyping, the goal is to achieve functionality for
demonstrating a node of the application to the users for feedback and application evolution. The
prototype emerges as the application later in the lifecycle. As with each spiral, functionality is enhanced
and implemented. This method benefits the software development process in the following ways:
potential problems are identified early in the product lifecycle and the application is executable early in
the product lifecycle, with the breadth of the application increasing as evolutionary prototype sub nodes
are replaced by released software

A major problem with introducing new technology into a legacy environment is the large
investment that exists in systems already in sustaining. Completely reengineering a legacy system with
new technology may not be realistic. A threshold does exist, however, where the expected life of a
system justifies that it would be better for it to be sustained after being reengineered with new technology.
Evolutionary prototyping can be utilized on critical nodes of a legacy system. This approach can be used
as a means to inexpensively transition to broader reengineering efforts by incrementally building an
evolving framework from which to build. This reduces potential risk and aids in expense and
performance control.

Architectural Strategies

Java was chosen as the programming language due to Java’s object oriented nature, cross-
operating-system capability, and reusability aspects of Java components. Java 2 Enterprise Edition
(J2EE) was chosen as the host platform for services required of the Java components developed. J2EE
offered timesavings, cost-savings, and access to expert knowledge. J2EE provided extensibility above the
Java API Library to include high-level services that facilitate Rapid Application Development (RAD).
This was accomplished by an aggregation, the pooling of common problem domain constructs, from
across the enterprise, as packages of services. J2EE provided transactional processing services ensuring
Atomic, Consistent, Isolated, and Durable (ACID) transactions between application data stores.

The choice of database is primarily constrained by OMRSFP in that the database is implemented
in Oracle. The Oracle database product line is very popular and robust. The standard language to access
Oracle databases is Structured Query Language (SQL), which is just that, a standard with most database

 5

vendors. Java, J2EE, with SQL allow for migration paths from differing data structures from internal
memory data constructs to relational database record sets.

 Component architectures facilitate a divide and conquer solution in that the software development
team extracts the problem domain constructs as separate software components. J2EE provided a
component architecture known as Enterprise JavaBean (EJB). An EJB is a server-side component that
provides an interface between the caller and the J2EE server hosting the EJB. EJB’s facilitate component
reusability and mobility. Components developed for the application will be EJB’s. Component-based
programming facilitates good cohesion with minimal coupling between components. Maintenance and
extensibility of the application are therefore enhanced.

Due to the network-centric aspects of J2EE, distributed data was handled quite easily via the
J2EE Java Naming and Directory Interface (JNDI) services. Though the data flow for the application
does not include distributed data, as defined by commercial industries, J2EE provided a solution if that
were ever a necessity.

The Future

The benefits provided by OMRS-ABOS supports KSC Roadmap Objective 1.1A – Provide Safe,
Reliable, Cost Effective Processing of Shuttle and Expendable Launch Vehicle (ELV) Launches. Benefits
include reduced clerical labor expenses by eliminating the time required for manual OMRS status entry
and increased reliability by eliminating the possibility of human error during OMRS status entry.

The buy off pattern between an information producer and information consumer is not limited to
OMRS’s. This project is the beginning of addressing the OMRS market at KSC/NASA. Businesses in
that market include CLCS and OMRSFP within the project’s scope. An additional business in the OMRS
market includes the Space Shuttle Remote Manipulator System (RMS).

OMRS-ABOS created a channel for a market. There are more markets at KSC/NASA than the
OMRS market. OMRS-ABOS was designed in such an abstract manner such that the architecture is
extendible to address additional markets. Accommodations for distributed data communications have
been implemented via the encapsulation that eXtensible Markup Language (XML) provides. By utilizing
XML as a data transport vehicle, OMRS-ABOS is able to communicate more easily with commercial
enterprise platforms.

 6

	Paper Session II-A - Operations and Maintenance Requirements Specifications - Automated Buy-Off System
	Scholarly Commons Citation

	Paper Session II-A - Operations and Maintenance Requirements Specifications - Automated Buy-Off System

