
University of Redlands
InSPIRe @ Redlands

Undergraduate Honors Theses Theses, Dissertations, and Honors Projects

2011

Zero Knowledge Protocols
Caitlin Bonnar
University of Redlands

Follow this and additional works at: https://inspire.redlands.edu/cas_honors

Part of the Analysis Commons, and the Logic and Foundations Commons

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License
This material may be protected by copyright law (Title 17 U.S. Code).
This Open Access is brought to you for free and open access by the Theses, Dissertations, and Honors Projects at InSPIRe @ Redlands. It has been
accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of InSPIRe @ Redlands. For more information, please contact
inspire@redlands.edu.

Recommended Citation
Bonnar, C. (2011). Zero Knowledge Protocols (Undergraduate honors thesis, University of Redlands). Retrieved from
https://inspire.redlands.edu/cas_honors/504

https://inspire.redlands.edu?utm_source=inspire.redlands.edu%2Fcas_honors%2F504&utm_medium=PDF&utm_campaign=PDFCoverPages
https://inspire.redlands.edu/cas_honors?utm_source=inspire.redlands.edu%2Fcas_honors%2F504&utm_medium=PDF&utm_campaign=PDFCoverPages
https://inspire.redlands.edu/etd?utm_source=inspire.redlands.edu%2Fcas_honors%2F504&utm_medium=PDF&utm_campaign=PDFCoverPages
https://inspire.redlands.edu/cas_honors?utm_source=inspire.redlands.edu%2Fcas_honors%2F504&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=inspire.redlands.edu%2Fcas_honors%2F504&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=inspire.redlands.edu%2Fcas_honors%2F504&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:inspire@redlands.edu

ZE:RO KNOI.JLE:DGE: PROTOCOLS

B!:J CAITUN BONNAR

SPRING 2011

Table of Contents

I. Int:r'oduction ... 3

II. Zero Knowledge Protocols .. 4

1. A Simple Exam.ple ... 4

2. F orm.al Definitions ... 6

III. ZKP for Hamiltonian Cycles .. 8

N. NP-Complete Problems .. 17

1. Turi.ng Machines ... 18

2. The Classes P and NP ... 22

3. NP-Hard and NP-Complete Problems 24

V. A ZKP for every NP-complete problem 26

1. Bit Commitln.ent Schemes ... 26

2. A Protocol for the Graph 3-Colorability Problem 27

VI. Cryptographic Application: Identification 36

VII. Conclusion ... 39

VITI. References .. 41

2

I. Introduction

In this day and age, it is commonplace to spend part of our day on the Internet.

Whether to check e~mail, purchase goods, manage a bank account, or merely browse

interesting sites, we rely on certain security measures to keep personal information safe

from unwanted outsiders. Within the field of cryptography there are many techniques and

algorithms that have provided top~notch security for our methods of communication

today, yet as technology advances and as loopholes are found, we are constantly looking

for novel ways to protect our information. Introduced approximately 25 years ago by

Goldwasser, Micali, and Rackoff [7], zero knowledge protocols seek to do just that. This

paper will explore these protocols, their application to NP~complete problems (problems

with no efficient way of finding a solution), and their use in modem day cryptosystems.

Informally stated, a zero knowledge protocol (abbreviated ZKP from here on) is

an interactive method between two parties that allows one party (the prover) to prove to

the other party (the verifier) the veracity of a statement without revealing anything about

the statement itself. In other words, 'zero knowledge' is leaked to the verifier other than

knowledge of whether the statement is true or not. Note that in the case of ZKPs, the

usage of the word "prove" is different from its strict mathematical meaning-in this case,

it refers to an overwhelming probability (one that can be made arbitrarily close to 1) that

the prover is not cheating the verifier. For example, assume that someone knows the

location of a secret treasure chest. They would like to convince someone else that they

truly know where this treasure chest is without revealing anything about its location, in

order to make sure they will not try and steal it. Therefore the two come up with an

3

interactive procedure that will allow the prover to prove only the fact that they know this

secret knowledge and nothing else. If they accomplish this goal, the procedure is known

asaZKP.

II. Zero Knowledge Protocols

ZKPs rely on three mathematical properties, which will be stated intuitively

below and formalized later:

• the completeness property: the protocol should allow an honest prover to be able

to prove to the verifier that they know what they claim to know with probability 1; that is,

an honest prover should succeed every time,

• the soundness property: the probability that a dishonest prover who does not

hold the secret knowledge can deceive the verifier can be made arbitrarily close to 0,

and • the zero knowledge property: no information about the prover's secret knowledge

is learned by the verifier during the process.

1. A Simple Example

To illustrate these properties, consider the following classic example, introduced

by Neal Koblitz in 1994 [10]:

Suppose that Peggy (our prover) knows the secret code to a magical cave door.

Victor (our verifier) wishes to purchase this code from her, but he wants to make sure

that she is indeed telling the truth before he pays her for it. On the other hand, Peggy

does not wish to reveal the secret code to Victor until he has paid her, for fear of not

4

receiving payment once he learns it. Say that our cave consists of a circular tunnel

consisting of two paths, A and B, which are separated by the magical door, as depicted

below:

Figure 2.1: A magical cave

Magical
Door

The two decide to solve this problem by executing the following protocol:

Protocol2.1:

The following steps are repeated k times, where k is a positive integer specified by

Victor.

1) Peggy chooses at random to travel down either path A or path B while

Victor waits outside so that he does not see the path Peggy travels down,

as shown in Figure 2.1.

2) Standing at the cave entrance, Victor calls out a random path on which

he wishes Peggy to exit.

5

3) Since Victor is now inside the cave and able to see which path Peggy

exits from, if he sees her exit from the path he called out, he accepts and

continues. Otherwise, Victor rejects Peggy's proof and the protocol ends.

We can see that if Peggy initially chose path A to travel down and Victor asked

her to come out from path B, she would have to use the secret code to open the door. Of

course, there is a SO% chance that both Peggy and Victor will choose the same path in a

single round, but the overall probability that they will choose the same path every round

is G)' -;, , which becomes extremely small with a large value k. Therefore, if Victor is

satisfied with a 1 in S 12 chance that Peggy could be cheating, they will repeat the steps

nine times before Victor accepts Peggy's proof that she knows the secret code.

It is simple to show that this protocol satisfies all three properties described

above. Peggy should be able to exit down the path Victor calls out each round without

fail since she knows the secret code (thus this protocol is complete), the chance that

someone else could exit from the requested path each time without knowing the code can

be made arbitrarily close to zero as k gets large (thus the protocol is sound), and finally

no information about the code is leaked since Victor is outside the cave and cannot see or

hear Peggy when she opens the door (thus it is zero knowledge).

2. Formal Definitions

Using these ideas, we will now formalize our definitions.

6

Definition 2.1 (Completeness Property): An interactive proof protocol is said to

be complete if, given an honest prover and an honest verifier, the prover convinces the

verifier to accept the proof with probability 1.

Defmition 2.2 (Soundness Property): An interactive proof protocol is said to be

sound if, given a dishonest prover (that is, a prover who does not actually know what they

claim to know) and a positive integer k chosen by the verifier as a security parameter, the

verifier rejects the proofwith probability at least 1- ;A:.

Definition .1.3 (Zero Knowledge Property): An interactive proof protocol is said

to hold the zero knowledge property if there exists a method or procedure that produces a

transcript of the proof made with a dishonest prover that is indistinguishable from a real

transcript made with an honest prover, called a simulator [14, pp. S-6].

A proof holding the first two properties is referred to as a proof of knowledge.

Together with the third property, the proof is known as a zero knowledge proof.

The only definition that does not seem to fit with our intuitive definitions given

earlier is our definition of the zero knowledge property. However, we can think of it in

the following manner, borrowing again from our example: Suppose that Victor were to

videotape an execution of the protocol from his point of view (that is, from the verifier's

point of view) with a prover that does not actually know the secret password to the cave

door. The two can predetermine the path that Victor will call out each round so that the

dishonest prover can travel down this predetermined path each time and never actually

have to use the secret code to open the door. If Victor were to then show another party

this tape along with a videotape of the honest protocol execution between him and Peggy,

7

the third party would not be able to determine which tape was the honest one. Since

Victor was able to simulate a successful execution of this protocol without an honest

prover, we can see that whatever information that is learned by watching the honest

interaction with Peggy can also be extracted from an interaction without an honest prover,

meaning that the information learned during the protocol's execution does not have

anything to do with the secret information. Thus the verifier learns nothing about the

secret information, which implies our informal definition of zero knowledge given earlier

[12, pp. 2-3].

III. ZKP for Hamiltonian Cycles

To provide a more detailed example, we will produce a ZKP that proves whether

or not a person knows of a Hamiltonian cycle within a graph. However, before we are

able to define what a Hamiltonian cycle is and specify our protocol, we must introduce

some basic definitions and concepts from elementary graph theory. We start with the

definition of a graph.

Definition 3.1: A graph G is a diagram consisting of points, or vertices, joined

together by lines, called edges. Each edge either joins exactly two vertices or it connects

a vertex to itself; the latter is known as a loop [2, p. 26].

The above definition is the more intuitive way we think about graphs; we could

also say that a graph consists oftwo sets: a set of vertices and a set of edges, where each

edge is labeled vw for the vertices v and w that they connect (for a loop, v = w). For this

8

paper, however, we will use the above pictorial definition. Next, we make the idea of

"touching" in a graph more precise:

Defmition 3.2: Let v and w be vertices of a graph. Then v and ware adjacent if

they are joined by an edge e. In addition, we say that v and ware incident with the edge

e, and e is incident with vertices v and w.

Defmition 3.3: In a graph, two or more edges joining the same pair of vertices are

called multiple edges. A graph with no multiple edges or loops is called a simple graph

[1, pp. 26-27].

Figure 3.1: A loop at vertex a Figure 3.2: Multiple edges joining a and b

Definition 3.4: A graph G is planar if it can be drawn in the plane in such a way

that no two edges meet except at a vertex with which they are both incident. Any such

drawing is said to be a plane drawing of G. A graph is non-planar if no plane drawing of

G exists [2, p. 244].

Now, take the simple graph below:

e

Figure3.3

d

9

Suppose this graph represents a network of cities connected by roads, and suppose

Bob is currently in the city represented by the vertex a. Bob would like to make his way

to the city represented by d through the cities and roads depicted in this graph, and so he

travels from a to b to c and finally to d.

Definition 3.5: A walk of length kin a graph is a succession of kedges of the

form: uv, vw, wx, ... ,yz. This is denoted by uvwx ... yz and is referred to as a walk between u

and z [2, p. 39].

In this example, Bob took a walk between a and d, in particular abed. Note that

another walk from a to d could have been abed or even abcdebcd. In addition, we can

apply the following definition:

Definition 3.6: A path is a walk in which all edges and vertices visited are

distinct [2, p. 40].

In this case, both abed and abde are paths, since Bob visited each city and

traveled down each road in the walk only once. However, the walk abcdebcd is not

considered a path since b, c, and dare all visited twice.

Definition 3. 7: A closed walk in a graph is a succession of edges of the form uv,

vw, wx, ... ,y~ zu, that starts and ends at the same vertex. A cycle is a closed walk in which

all edges traveled are distinct and all intermediate vertices are distinct [2, p. 42].

Therefore, continuing with our example, if Bob takes the path abcdeba in order to

return to the same city he started out in, we say that he took a closed walk. However,

there is no cycle starting at vertex a, since we would have to travel back down the edge

10

joining a and b in order to return to a, and thus all edges traveled would not be distinct.

The closed walk bcdeb is a cycle however, since every edge traveled is distinct as are the

intermediate vertices.

We can now use the above concepts to define more complex forms of graphs.

Definition 3.8: A graph G is connected if there exists a path between each pair of

vertices of G. We say a graph is disconnected otherwise. Every disconnected graph H can

be split up into a number of connected subgraphs, that is, smaller graphs within H, called

components [2, p. 41].

a b c a b c JT-- J7 •

Figure 3.4 Figure 3.5

For example, the graph in Figure 3.4 is an example of a connected graph because

there exists at least one path between each pair of vertices. However, if we remove the

edge from b to cas depicted in Figure 3.5, there is no longer a path from vertex a to c

(nor from any other vertex to c) and thus. it becomes a disconnected graph with two

components, the subgraph c and the subgraph abd.

11

Definition 3.9: A cycle graph is a connected graph consisting of a single

cycle of vertices and edges. A cycle graph with n vertices will be denoted by Cn.

Figure 3.6: Cycle graphs for n = 1, 2, ... , 6 [2, pp. 45-46].

These graphs are a subset of the set of Hamiltonian graphs, which we will now

define.

Defmition 3.10: A Hamiltonian graph is a connected graph in which there exists

a cycle passing through every vertex [2, p. 71]. We call such a cycle a Hamiltonian

cycle.

The graph Cn is obviously Hamiltonian for all n by definition, and we can easily

see the cycle that passes through each vertex in the examples depicted in Figure 3.6.

However, we cannot easily classify most graphs as Hamiltonian or not. Take, for

example, the labeled graph of the planar dodecahedron.

12

s

Figure 3. 7: A planar dodecahedron

This graph was used by Sir William Rowan HB.milton in a game he invented

under the title A voyage round the world, in which the labels on the vertices represented

places such as Brussels, Canton, and Delhi. In this game, he challenged players to find

Hamiltonian cycles starting with five given letters. For example, if the five letters given

were BCPNM, there are exactly two ways of completing a Hamiltonian cycle: i)

BCPNMDFKLTSRQZXWVJHGB and ii) BCPNMDFGHXWVJKLTSRQZB [2, p. 71].

Even though there are many Hamiltonian cycles in this graph, we can see that it is

not as easily classifiable as Hamiltonian as C,. and also that it can take some work to find

all the Hamiltonian cycles starting with five given letters. Determining whether or a not

a graph is Hamiltonian becomes an incredibly difficult problem the more large and

complex a graph becomes; in fact, there are no known efficient algorithms that allow us

to find a Hamiltonian cycle in a large graph today. Therefore we are left with an

exhaustive search method, which becomes more and more time-consuming as the number

of vertices in a graph increases.

13

Finally, we present one more definition before presenting our protocol for

knowing of a Hamiltonian cycle in a graph.

Defmition 3.11: Two graphs G and Hare isomorphic if there exists a way to re­

label the vertices of G and arrive at H. That is, there is a one-to-one correspondence

between the vertices of G and those of H such that the number of edges joining each pair

ofvertices in G is equal to the number of edges joining the corresponding pair ofvertices

in H. Such a one-to-one correspondence is an isomorphism [2, p. 29].

We will now provide a ZKP associated with Hamiltonian cycles.

Suppose that Peggy knows of a Hamiltonian cycle in a large graph G, and she

must convince Victor that she knows of this cycle without showing him where it is. They

therefore execute the following protocol:

Protocol3.1:

Input: A graph G in which Peggy knows of a Hamiltonian cycle; Victor also

knows G. This protocol repeats m times, where Victor decides upon m:

1) Peggy constructs a graph H that is isomorphic to graph G and sends H to

Victor.

2) Victor asks Peggy to either i) fmd a Hamiltonian cycle in H or ii) to prove that

His isomorphic to G.

We can intuitively see that this satisfies the three properties of a ZKP, because if

Peggy truly knows of a Hamiltonian cycle in a graph, it will be simple to find a

Hamiltonian cycle in the isomorphic graph, and Victor will not learn anything about the

14

actual cycle in G; also, since Peggy doesn't know which of the two tasks Victor will

require her to perfonn, she cannot cheat by creating a non-isomorphic graph in which she

already knows a Hamiltonian cycle. Therefore she must know of a Hamiltonian cycle in

G and will be able to convince Victor of this fact through the protocol, satisfying the first

two properties, and in the process Victor will not learn anything about the Hamiltonian

cycle in G [13, p. 259].

To prove this more formally, we need to satisfy Defmitions 2.1-2.3.

Proof

Completeness: To prove that ProtocolS. I is complete, assume that Peggy

truly knows of a Hamiltonian cycle in G, and that she and Victor will execute the

protocol as directed. In other words, assume Peggy and Victor are both honest. Then

Peggy should be able to construct an isomorphic graph G by first permuting the vertices

and edges of G and then making sure each pair of vertices of Hhas the same number of

edges incident with it as the corresponding pair in G. Therefore, if Victor asks her to

prove that the two graphs are isomorphic, she should be able to do so with probability 1

because she knows the one-to-one correspondence. Suppose instead Victor asks Peggy to

find a Hamiltonian cycle in H. Since Peggy knows of the Hamiltonian cycle in G, she

should be able to use her one-to-one mapping to construct a Hamiltonian cycle in H with

probability 1. Therefore she should be able to satisfy either one of Victor's requests each

round with probability 1 and convince Victor to accept her proof of knowledge of a

Hamiltonian cycle in G. Thus this protocol is complete.

15

Soundness: To prove soundness, we must show that ifPeggy is dishonest,

the protocol will fail with a probability greater than or equal to 1 - ;k for some security

parameter k chosen by Victor. In this case, suppose Victor chooses k = m. Assume that

Peggy does not know a Hamiltonian cycle in G. She can try and fool Victor in one of

two ways: either she can provide him with a graph H that is not isomorphic to G in which

she already knows of a Hamiltonian cycle, or she can construct an isomorphic graph and

hope that he asks her to prove that they are isomorphic. In the former case, if he asks her

to show him a Hamiltonian cycle in H she will be able to because she gave him a graph in

which she already knew of a Hamiltonian cycle, but if he asks her to prove that the two

graphs are isomorphic she will not be able to do so and thus he will reject her proof. In

the second case, if he asks her to show him a Hamiltonian cycle in H, she will not be able

to because she does not know of a cycle in G and thus cannot use her one-to-one mapping

in any helpful way. Therefore her chance of success of fooling Victor in any given round

is 'i· and her chance of success form iterations becomes (~r ... 2~ - ;1:, meaning she

will fail with probability 1 - ;k . Thus this protocol is sound.

Zero knowledge: Finally, to prove that this protocol is zero knowledge, we

must show that a simulator exists. That is, there exists an algorithm to fake the execution

of the protocol with a dishonest prover and verifier. In this case, a dishonest prover and

Victor could pre-arrange which tasks the prover will perform each round so that they can

cheat accordingly and then film the execution, as they did in the cave example in section

II. Then, if an outsider were to view this fake execution alongside a transcript (or

16

video/film) of the execution made with an honest prover, they would not be able to

distinguish between the two because they would only see that the prover was able to

prove either that G and H were isomorphic or that H contained a Hamiltonian cycle in

each case, which does not provide any information about the Hamiltonian cycle in G.

Therefore this protocol holds the zero knowledge property, and thus constitutes a ZKP. D

One could argue that the preceding protocol does not seem to be of much practical

use, since knowing a Hamiltonian cycle in a large graph does not seem to be related to

security in any way. However, the basis of most public and private cryptosystems rely on

problems that are not efficiently solved by any oftoday's technology, such as finding the

prime factorization of a very large composite number. Knowing a solution to one of

these "hard problems," such as finding a Hamiltonian circuit in a large graph, and then

proving knowledge of this solution with a ZKP can be used to prove the identity of a

message sender or party trying to enter a secure system, which eliminates the possibility

of a malicious party stealing the solution or key and using it to impersonate the honest

party.

Now that we have provided an example of a hard problem with an associated

ZKP, we would like to more formally describe what is meant by saying that a problem is

"hard," and later show that we can find a ZKP associated with each of these problems so

that we can implement them in cryptographic schemes.

IV. NP-Complete Problems

One of the most important results about ZKPs currently is that every NP-complete

problem has a ZKP associated with it, which is fundamental for implementing these

17

problems in zero knowledge cryptographic schemes. The reason the set of NP-complete

problems are of interest in cryptography is because of the fact that, as of today, these

problems have no known efficient algorithm to solve them. As a result, we can use a

solution to one of these problems as a private key, since no other party should be able to

figure out this solution without great time and effort.

Before getting into the formal definition of an NP-complete problem, we will

provide a basis of definitions that make up computational complexity theory in order to

gain insight into why these problems are not efficiently solvable by computers today.

Definition 4.1: A decision problem is a problem that has a binary (yes/no) answer

[5, p. 8].

Algorithms solving these problems can be simulated by a Turing machine, a

theoretical machine that reads in symbols from an input tape and deciphers them based on

a set of rules meant to mimic the logic of a computer. From this machine we formalize

the idea of an algorithm as well as the amount of time required to find a solution to a

decision problem.

1. Turing Machines

A Turing machine can be formally defined as follows:

Dermition 4.2: A one-tape Turing machine (TM) is a 7-tuple M = <Q, r, b, :E, S,

qo, F> where:

i) Q is a finite, non-empty set of states,

18

ii) r is a finite, non-empty set of symbols called the tape alphabet,

iii) b E r is the blank symbol (the only symbol allowed to occur infinitely often

on the tape),

iv) IS I\{b} is the set of input symbols,

v) qo E Q is the initial state,

vi) F s; Q is the set of .final or halting states,

and vii) 8 is the transition function specifying what symbol to write to the tape, which

direction (left or right) to shift the tape, and which state to move to [8, p. 148].

For example, take the 7-tuple for the 3-state "busy beaver" 1M [11]:

Q- { A,B, C,HALT}

r- { o, 1}

b = 0 = "blank"

I= { 1}

qo - A = initial state

F- {HALT}

8: see state-table in Figure 4.1

19

ftllet.ble for s--, 2 aymbolbaJ t.vw
Cui'Nftl.eate A CUJ'I'Mt .W. B Cunnt eta C

T .. aymbol wt11uym~! Mow tape ~ext state Write ayrm;l Move lape Ntlttlllte Write syl!lbol' ~ 1;~~, Next atatel
0 1 R B 1 L A 1 L B

1 1 L C 1 R I 1 R HALT

Figure 4.1

This particular machine acts on only two symbols, 0 and 1, where 0 is the blank

symbol that initially fills every cell on the input tape. The goal of this 1M is to simply

write the symbol 1 to the tape until the TM produces the HALT state in its transition

function. Therefore, since the initial state of this machine is A and the first symbol read

is 0, the TM will write the symbol 1 to the tape, then move the tape to the right, and then

transition to state B, as given in the table in Figure 4.1. From there, it will read in another

0, and since it is now in state B, it will write the symbol I, then move the tape left, then

transition back to state A. It will continue reading in symbols and acting according to the

transition function until it reaches the HALT state, when the procedure is considered

complete. At this point there will be six 1 's written to the tape. Note that for other

Turing machines, it is possible that a HALT state (or other final state) will never be

reached, in which case the procedure will continue forever in an infinite loop.

If a TM does halt, we would like to determine how long it takes and whether or

not the algorithm simulated by it is efficient. We therefore develop a notion of

computation time.

Definition 4.3: The time complexity jUnction /for an algorithm with input length

n expresses the time requirements of the algorithm by giving the largest amount of time

f(n) needed by the algorithm to solve a problem instance of size n. We will assume that

20

the encoding scheme used and the machine on which it is computed are fixed so that this

function is well defined.

We will say that a function/is O(g(n)) for a function g whenever there exists a

positive constant c such that lf(n)l :5 clg(n)l for all n ~ 0.

Definition 4.4: A decision problem X is said to be solvable in polynomial time if

the time complexity function ofthe algorithm used to solve Xis O(p(n)) for some

polynomial functionp. Any algorithm whose time complexity function cannot be so

bounded is called an exponential time algorithm [5, p. 6].

We generally think of problems that can be solved in polynomial time as

problems that can be solved "efficiently," whereas those solved in exponential time

generally have much more time-inefficient solutions.

We will now look at two different types of Turing machines.

Definition 4.S: A deterministic Turing machine (DTM) is one such that only one

action is performed in any given situation determined by its set of rules; that is, only one

path is taken for each computation. A nondeterministic Turing machine (NDTM) is one

that can take more than one computational path simultaneously. This can be thought of as

a split into "parallel'' TMs, given that these parallel TMs do not communicate with one

another [16].

The example of the busy beaver TM above is an example of a deterministic

Turing machine, for each cell of the table specifies only one course of action: write the

symbol 1, shift one direction, then transition to one other state. By contrast, if at least

21

one cell in the table specified to write a 1, shift left OR shift right, and then transition to

one other state, then this machine would start computing down two separate paths: one

path initiated by a left-shift and one initiated by a right-shift. These paths would continue

on simultaneously performing the actions specified by the TM's transition functions,

possibly splitting again into multiple paths. In this regard, an NDTM can be thought of

having computational paths resembling a tree graph. Note that any DTM can also be

simulated by an NDTM since it can be thought of as a single branch within the tree.

Furthermore, it is important to point out that an NDTM, as a theoretical machine,

is not limited by a finite number of processors, processor speed, memoey, or anything

else that a physical computer is limited by in its computations. Thus, something that is

quickly solved by an NDTM may take years to solve on today's fastest computer.

2. The Classes P and NP

With these definitions, we can now define the classes P and NP.

Defmition 4.6: P is the class of all decision problems that can be solved in

polynomial time by a DTM [5, p. 8].

For example, the problem of determining whether or not an integer is prime is in

P because an algorithm using Fermat's Little Theorem, cf =a (modp) for an integer a and

a prime p, allows for this problem to be solved on a DTM in polynomial time [1].

Definition 4. 7: NP is the class of all decision problems that can be solved by a

nondeterministic Turing machine in polynomial time.

22

It is important to note that a decision problem that can be solved by an NDTM in

polynomial time does not necessarily mean that the problem has a polynomial time

algorithm to solve it; in fact, many problems in NP do not yet have any such algorithm to

solve them. For example, the problem of whether or not a certain graph contains a

Hamiltonian cycle is a problem in NP without an efficient algorithm yet to solve it. Since

an NDTM allows for an "exhaustive search" method, we can essentially have the NDTM

travel down each path containing distinct vertices in the graph until it finds a Hamiltonian

cycle or reaches the conclusion that no such path is a Hamiltonian cycle.

As stated earlier, since any DTM can be simulated by an NDTM, then obviously

any decision problem that can be solved in polynomial time on a DTM can also be solved

in polynomial time on an NDTM, and thus PQVP. However, it has been a much debated

question whether or not NPSP, which would imply that P = NP. The consequences of

P = NP are important, for if it turns out that this is true, then every decision problem in

NP can be solved in polynomial time by a DTM, and thus there exist efficient algorithms

for solving these problems that we have not yet discovered. However, if Pi= NP, then the

problems in NP - P may not ever have an efficient algorithm to solve them.

Definition 4.8: A decision problem A is said to be reducible to another decision

problem B if an algorithm that solves A also solves B; that is, the answer to B is "yes" iff

the answer to A is "yes."

In other words, if we say that we are reducing a problem to another problem, we

mean that we can use the solution of one problem to solve the other problem. Therefore,

if we do not have a method to solve problem A, but we do have a method for solving

23

problem B, if there exists a way to reduce A to B then we can use the solution that we

compute forB as a solution for problemA. Thus we develop a method for solving

problemA.

Take, for example, the simple problem of multiplying. Suppose that we only

know how to add, subtract, divide by two, and take squares, but we do not know how to

multiply. Therefore we reduce the problem of multiplying to one that we already know:

(a+b)2
- a2 -b2

Equation 4.1: ab •
2

In this case, our reductions are algebraic, but we can see that our solution to the problem

(a+ b i - a2
- b2

2
is the same as the solution to ab. Even though the reductions of

decision problems to other decision problems used on Turing machines are much more

complex and thus beyond the scope of this paper, the idea remains the same.

3. NP-Hard and NP-Complete Problems

Definition 4.9: A decision problem is said to be NP·hard if it is reducible to any

other problem in NP [17].

As of today, this is the set of problems that do not yet have an efficient algorithm

to solve them with today's computers. Note that it is possible for a problem that is not in

NP to be NP-hard. For example, the decision problem known as the halting problem

which states, "given a program and its input, will it ever halt?" has been shown to be

reducible to any problem in NP, but it is not itself in NP because it is not generally

solvable in a finite number of steps.

24

Finally, we can define what it means for a problem to be NP-complete.

Definition 4.10: A decision problem X is said to be NP-complete if X E NP and X

isNP-hard.

In other words, if X is NP-complete it is at least as difficult to solve as any other

problem in NP and there is a way to solve it in polynomial time on an NDTM. This gives

us a set of the "hardest" problems to solve in NP.

Figure 4.2 contains a pictorial representation of the classes we have discussed so

far. One should observe that are currently problems in NP that are neither in P nor NP-

complete, known as the NP-intermediate problems. An example of an NP-intermediate

problem is the integer factorization problem, which involves finding the prime factors of

a large composite integer n. This problem is the basis of many cryptographic systems

today.

I
NP

NP-hard

Figure 4.2

25

The primary impact of the theory of NP-completeness on computer scientists is to assist

algorithm designers by having them focus on approaches that have the highest probability

of producing an efficient algorithm. However, the application of NP-complete problems

that is of the most interest in this paper, as well as in the field of cryptography, is that

because these problems cannot be efficiently solved by any oftoday's computers, they are

valuable in ensuring the security of most cryptosystems.

V. A ZKP for Every NP-Complete Problem

Now that we have discussed what NP-complete problems are and their role in

modem day cryptosystems, we will lead up to and present an outline of the proof that

every NP-complete problem has a ZK.P associated with it. First, however, we must

briefly introduce bit commitment schemes, which are used in many ZKPs, including the

ZKP given in the upcoming proof.

1. Bit Commitment Schemes

Most modem cryptographic ZKPs implement the notion of commitment, which

essentially means that once a party in a protocol chooses some value from a finite set,

they cannot change their mind from there on out. This is done to enforce honest behavior

from each party. A general protocol using a bit (or value) commitment scheme between

two parties, say Alice and Bob, occurs as follows: i) Alice commits to a single secret bit

and then sends the encrypted or hidden commitment (for example, you could think of it

as being locked inside an opaque box) to Bob, ii) Bob commits to a bit and sends it

unencrypted to Alice, and then iii) Alice sends a key to Bob that allows him to decrypt or

reveal Alice's commitment. There arc two essential properties of this scheme as well as

any other commitment scheme: that the original value or bit that Alice commits to cannot

26

change after she sends it to Bob, which is referred to as the binding property, and that

Bob cannot know Alice's bit until after he commits to his own bit by sending it to Alice,

known as the hiding property. These schemes are mainly used for hiding or encoding

secret information within protocols.

For a simple example, suppose that Alice would like to purchase an item from

Bob. They agree that the price that Alice will pay for the item will be a; b where a is
the price Alice is willing to pay for the item and b is the price that Bob is willing to sell it

for. In order to prevent one party from changing their price after hearing the other's

offer, they engage in the following protocol:

Protocol5.1:

i) Alice commits to her price a, writes it on a piece of paper, and sends it in a

locked box to Bob.

ii) Bob sends Alice his price, b.

iii) Alice reveals her commitment by giving Bob the key to open the box and

view the price.

Note that after Alice sends her price to Bob it cannot change, and Bob will not know

Alice's price until after he has sent her his price and she has given him the key; therefore

this protocol holds both the binding and hiding property [3, p. 7].

l. A Protocol for the Graph 3-Colorability Problem

In order to show that all NP-complete problems are associated with a ZKP, we

observe a zero knowledge protocol utilizing a bit commitment scheme for the graph 3-

27

colorability problem (G3C). This problem can be stated as follows: Given a graph, is

there a way to map each vertex to one of three colors in such a way that no two adjacent

vertices share the same color? If the answer to this question is 'yes' for a graph G, we say

that G E G3C, because decision problems that can be solved by Turing machines are

thought of in terms of sets, where the inputs (or problem instances) that lead to an answer

of 'yes' when executed on the 1M are in the set, and the problem instances where the

answer is 'no' are not.

Since this problem is known to be NP-complete [6, p. 99], showing that there

exists a ZKP for this problem implies that a ZK.P can be constructed for every NP­

complete problem. This is because each problem that is NP-complete is reducible to

every other, thus you can reduce any problem that is NP-complete to G3C and then

execute the ZKP that will be shown to be associated with G3C. Therefore, if you cannot

produce a ZKP for any particular problem, this method is always available, albeit

impractical.

The following protocol is a proof of knowledge of a 3-coloring in a given graph

between a prover P and verifier V:

Protocol5.2:

Input: A graph G with no loops containing n vertices and m edges, known to both

prover and verifier.

The following is executed m2 times, each time requiring distinct decisions:

28

1) P randomly permutes the set of colors of the 3-coloring, and sends V n opaque

locked boxes, where the ith box contains the color of the ith vertex

2) V chooses a random edge and sends it to P

3) P returns keys to the two boxes corresponding to the two vertices incident

with this edge

4) Vopens these boxes, and if the colors are distinct he accepts and continues; if

they are the same color, he rejects the proof

If all m2 iterations are completed successfully, V accepts P' s proof.

To illustrate this protocol, take the following 3-colored graph G:

82

Figure 4.1: A 3-colored graph

Suppose Peggy would like to prove with zero-knowledge to Victor that she knows

ofthis 3-coloring. Therefore the two execute Protocol4.2 in the following

manner:

In the first round, suppose that the random permutation Peggy generates is

{R, G, B}- {G, R, B} (that is, red is replaced by green, green by red, and blue remains

the same). After applying this permutation, the vertex coloring becomes:

29

82

Figure 5.2: G after color permutation is applied

Peggy now places each vertex along with its color in its own box, which she locks and

sends to Victor. Next, Victor returns the edge (1, 3) to Peggy, and so she sends him the

keys to open the boxes containing vertices 1 and 3. Victor opens each box, and seeing

that vertex 1 is colored green and vertex 3 is colored red, accepts Peggy's proof this round

and continues on to the next round.

In the next round, assume that the pennutation generated for the application to the

original coloring is {R, G, B}- {B, R, G} and the edge selected is (2, 3). After

opening, Victor sees that the vertex 2 is colored green and vertex 3 is colored red, so he

again accepts and continues.

Suppose now that after this second round Victor wants to try to see if he can put

together any information about the original 3-coloring based on the colors he has seen for

each vertex. Piecing together the colors he has received for vertices 1, 2, and 3 so far, he

arrives at the following coloring:

30

G2

Figure 5.3: Victor's coloring based on the fint two rounda

We can see that this is obviously not a valid 3-coloring, since adjacent vertices 1

and 2 are both colored green. This stems from the fact that separate randomly selected

permutations are used in between rounds, which is key in describing why this protocol

holds the zero-knowledge property.

Peggy and Victor perform 23 more rounds until Victor accepts Peggy's proof and

the protocol is complete.

In order to prove that this is a ZKP, we must show that it holds the soundness,

completeness, and zero-knowledge properties.

Proof:

Let G be a graph with no loops containing n vertices and m edges.

Completeness: Assume our prover knows of a 3-coloring within a graph. Then

any pair of boxes u and v corresponding to some edge of G that the verifier selects will be

colored differently even after permuting the colors, according to the definition of a 3-

coloring. Therefore, an honest verifier will be able to complete all m2 iterations and

accept with probability 1.

31

Soundness: Assume our prover does not know of a 3-coloring in a graph. Then at

least one of them edges of G is not properly colored, and thus two adjacent vertices share

a color. Therefore, each round has probability at least _!_ that the verifier will reject and
m

for m2 rounds, the total probability of the verifier rejecting is at least

1-(1- ~ r 0 Recall that from our definition of soundness, we need this probability to

be greater than or equal to 1 - ;t for some positive integer k chosen as a security

parameter. If we let k = m, we must show that:

(1) 1-(1-~r .. 1- 2~. which i• satisfied if

If we look at the sequence (r- !)"'for m~l we observe that it is strictly

Using the product rule and chain rule and then simplifying, we arrive at,

where, for x> 1,

32

Next we must check that this sequence converges, and if so, see that it is bounded above

1
by "2. Indeed, we find that:

(6) By definition of e, e •lim(I +.!.)z, so if we let x- m,
z-~ x r

Ill

(7) lim~l+ _!_)-;- - lim (1 + !..)~ => lim (1 + !..)111

- [. lim (1 + !..)~] ,. -e".
1ft- m lfi-CII m lft-CII m 111-CII m

r

Finally, if we let r = -1, we have

(8) lim(l- .!..)"' - e·1
• .3679, where .3679 <.5, and thus we have reached what ,._.., m

we were trying to show, and our protocol is sound.

Zero-knowledge: Recall that an interactive proof holds the zero-knowledge

property iff there exists a simulator for the protocol. In other words, there exists a way to

simulate this protocol in such a way that a fake transcript (for example, the output of a

Turing machine) is indistinguishable from a real one.

A machine that represents an honest prover successfully executing· this protocol

will output only two randomly permuted, distinct colors at the end of each round, for that

is all that the verifier is able to see each round. Therefore, if we construct a machine that

33

merely outputs two random, distinct colors to act as om simulator, we will be left with a

transcript that is indistinguishable from a real one, which was our goal. Since each color

is equally likely to be an output each round due to the application of random

permutations, then probabilistically these two transcripts will be identical. Therefore by

definition, our protocol holds the zero-knowledge property, and thus constitutes a zero

knowledge protocol for the graph 3-colorability problem (G3C) [12, p. 6-7]. D

We can think of the proof of zero-knowledge more intuitively by thinking about

why the verifier does not learn anything about the original 3-coloring of G during

execution of Protocol 5 .2. One should note that the most important part of this protocol

is that the permutation of the colors is applied randomly and independently each round,

so that the verifier cannot gather any information about the original 3-coloring. In other

words, if the permutation did not change between rounds (and the verifier knew of this),

they could decipher the coloring of possibly two pairs of adjacent vertices after only two

rounds, depending on the edges chosen. This would be a leak of information and thus

violate the zero knowledge property. However, knowing only the coloring of two

adjacent vertices each round would not allow the verifier to put together any significant

information about the original coloring, since it is obvious that the two vertices must be

colored distinct colors already.

Finally, we can formaHze our main result:

Theorem 5.1: Every NP-complete problem has a zero knowledge proof.

Proof (Sketch): LetL be an NP-complete decision problem, and lett be an

invertible polynomial-time reduction of L to G3C. Since by our definition of reducibility,

34

the answer to Lis yes iff the answer to G3C is yes, we can say that x EL iff t(x) EG3C,

where x is an input specified by the problem instance of L. (In the case of G3C, it is a

graph without loops; this is our t(x).)

Protocol 5.3:

1) Given input x, both prover and verifier compute t(x) = G.

2) The prover then uses Protocol 5.2 to show that G is 3-colorable. The

verifier accepts proof of knowledge of x based on the acceptance of lmowledge of a 3-

coloring in G. In other words, the verifier accepts that x EL based on the fact that

t(x)EG3C.

Since Protocol 4.2 has been shown to constitute a ZKP for G3C, Protocol 5.3 is

therefore a ZKP for L. To see that it is indeed zero-knowledge, one should note that

since nothing is learned about the 3-coloring of G through Protocol4.2, nothing is

learned about the lmowledge ofx when G is reduced back to x via f 1(t{x)) =x, where we

know f 1 exists because tis invertible [12, p. 8]. D

Furthermore, it has been shown that a ZKP can be constructed for any problem in

NP (that is, any decision problem that can be verified in polynomial time on a non­

deterministic Turing Machine) [6, p. 184]. These results provide us with a set of

problems, many of them inefficient to solve with any current technology, that can be used

with ZKPs in cryptographic identification schemes.

35

VI. Cryptographic Application: Identification

One of the more practical aims of zero knowledge protocols in cryptography is

identification, or the act of proving that an individual or party is who they claim to be.

For example, take the situation of a user logging into a server. In a typical Unix setup,

the user has a password x, and the server holds a hash of the user's passwordj{x), where/

is a one-way function. That is, it is easy to findj{x) given x but infeasible to find x given

j{x). To log in, the user will send the server x, for which the server computes .I{ x) and

then compares with its storedj{x) in order to grant or deny access to the user. However,

this procedure is considered insecure because x can be stolen through various means by a

hacker or "eavesdropper'' and then used to impersonate the user. To create a more secure

identification scheme, suppose that a user P picks a random secret key x and then

generates a public key j{x), where[is a one-way function. In order for P to prove their

identity, they will enter into a ZKP with the server where Pacts as the prover and the

server acts as the verifier. In this case, P will prove that they know an inverse ofj{x), in

this case x. This is only possible if P knows x sincefis one-way and therefore P cannot

derive x fromj{x), and since no information about x itself is leaked during the protocol,

no eavesdropper can steal x and impersonate P.

In order for any identification scheme to be successful, it must rely on information

that is unique to the individual identifying himself. In the above example, this

information is a password, which can be created by the user or assigned by the server. In

general this information is a secret key that only the user and perhaps a trusted,

independent entity (such as a server) knows. In many modern identification schemes,

these secret keys are solutions to difficult problems such as NP-complete problems. In

36

fact, many popular cryptosystems, such as RSA, rely on the inefficiency of solving a

difficult problem for security purposes. For example, since finding the prime

factorization of a large number n is considered to be infeasible with today's technology,

using such an n as a modulus ensures that figuring out a secret key that is computed using

the prime factors of n is also infeasible.

One such example that relies on the solution to a hard problem is the Feige-Fiat­

Shamir proof of identity, introduced in [4]. This scheme is one of the most popular zero

knowledge identification schemes today. As in the example of logging into a server

given above, the goal of this scheme is to prove the prover's identity to the verifier by

showing that they know a secrets that only the prover would know. In this case, the

prover has a set of public keys and private keys, as we will see below.

Protocol6.l: (l'he Feige-Fiat-Shamir Proof of Identity)

Setup: An arbitrator (that is, a trusted independent entity) generates a random

number n, the product of two large primesp and q, as a common modulus. Peggy has /c

secret integer valued keys, s11 ••• , St such that gcd(s1, n) = I for 1 :S i :S /c, and creates

v1 • s,-2(mod n) (where we know s;2 is an integer since Si is relatively prime to nand thus

an integer inverse si1 exists modulo n). Each v1 is sent to Victor, or in other words, the v,'s

are Peggy's public keys. They then execute the following steps t times, where t is a

parameter chosen by Victor, with each round consisting of different random choices.

1) Peggy chooses a random integer r, computes x • r2(mod n), and sends x to

Victor.

37

2) Victor chooses bits bt. ... , b~c where each b1 E{O,l}. He sends these to Peggy.

3) Peggy computes y • r~ b1 s2 b~ • • • sk b• (mod n) and sends y to Victor.

4) Victor then checks thatx • y'lv1b1v2~ ••• v/•(modn) and iftrue, accepts and

continues. After t successful iterations, Victor accepts Peggy's proof of identity.

To illustrate why this will work if Peggy truly knows the secret keys, take the case

when /c = 1. Then Peggy is asked for either r or rs1 depending on whether or not Victor

chooses b1 to be 0 or 1. Ifhe chooses b1=0, then obviously this will work

becausey • r(modn)~ y 2
• r2

• x(modn). lfbt=1, theny • rs1{modn). IfPeggytruly

knows s1, then Victor will be able to successfully compute x because

y2v1 • (r~)
2v1 • r2~2v1 • r2~2s1-2 • r2

• x(modn), sincev1 • s1-
2(modn).

Obviously in this case Victor should never choose b1. to be 0, since Peggy can get away

without knowing st, so for a more interesting case we will look at when k > 1.

To illustrate this case, suppose that Victor sends bt = b2 = b4 = 1 and lets all other

b, = 0. Peggy must then producey • rs1s2s4{modn), which is a square root ofxv1-
1v2-

1v4 -l

modulo n. In fact, for each round Victor will ask for a square root of the form rs,_ s.,_ • • • s1J,

which Peggy will only be able to supply if she knows r, s~, ... , s1J since computing such a

square root modulo n is just as hard as factoring n itself [15, pp. 81-82].

If Peggy does not know any of the s1, ... , st, she could guess the string of bits that

Victor will send. If she guesses correctly before she sends x, she could let y be a random

number and then sendx • y'lv1btv2b1
"' v/1*(modn). However, if she guesses incorrectly,

she will have to modify her choice ofy, which means she will need to compute some of

38

the square roots of the v/s, which as we stated before is a difficult task. Of course, her

chances of guessing the correct bit string in one round is only ;k, and for an entire

execution oft iterations, her chance of guessing the correct bit string every time is 2~

and thus the probability that the verifier will reject if she is cheating is 1- 2~ ~ 1- ;J:

which satisfies soundness [15, pp. 231-232].

Note that intuitively this protocol is zero-knowledge because the only values

learned by Victor each round are x andy, where x is the square of a random integer

unrelated to any Stand where factoringy into the correcty • r~61 s262 ••• s/11 (modn) is

highly infeasible, especially because r is different each round. A video recording in

which Peggy and Victor have worked out the bit strings beforehand could also easily

simulate this protocol.

The Feige-Fiat-Shamir identification scheme can be implemented in several

situations requiring identification, including logging into a server, withdrawing money

from an A TM, and proving that you are the party you claim to be in a secure

communication. In fact, it is the basis of many cryptographic identification schemes

today.

VII. Conclusion

Even though zero knowledge protocols are still a relatively new structure, they

already have important applications in the fields of mathematics and computer science.

Their use in cryptographic identification schemes such as the Feige-Fiat-Shamir

39

Identification Scheme not only allows for a person to identify himself, but also

guarantees that an eavesdropper cannot steal and use their secret information.

Furthermore, the result that every NP-complete problem has a ZKP associated with it

means that there will always be a set of difficult problems that can be implemented in

cryptographic schemes implementing a ZKP.

Finally, one of the more fascinating aspects of zero lmowledge protocols is that

they are not limited to one particular area of mathematics. Protocols can be designed for

problems in graph theory, such as knowing of a Hamiltonian cycle or a graph 3-coloring;

they can be designed to test the knowledge of a large square root modulo n; they can even

be constructed to prove that you know how to prove a mathematical theorem. The fact

that their applicability extends to such diverse fields shows that we may still have many

uses for them in times to come.

40

~II. lleferences

[1] Agrawal, Manindra and Kayal, Neeraj. "Primes in P.'' Department of Computer

Science and Engineering at the Indian Institute of Technology Kanpur.

http://www.cse.iitk.ac.in/users/manindra/algebra/primality _ v6.pdf

Proof that an algorithm solving the decision problem of whether or not an

integer is prime or not is in the class P.

[2] Aldous, Joan M. and Wilson, Robin J. Graphs and Applications: An Introductory

Approach. London: Springer. 2000.

As the title suggests, provided an introduction to graph theory and served

as a basis for most of my graph theory definitions.

[3] Caha, Libor. "Applications of Bit Commitment." [Lecture Slides].

http://www .fi.muni.cz/kd/events/ci.khaj· 20 I O·feb/slides/caha_ bit_COiliDlitment.pdf

Reference for the Protocol4.1, the bit commitment example.

[4] Feige, Uriel, Fiat, Amos, and Shamir, Adi. "Zero Knowledge Proofs ofldentity."

Proceedings of the nineteenth annual ACM symposium on theory of computing.

New York, NY, 1987.

Origin of the Feige-Fiat-Shamir identification scheme.

41

[S] Garey, Michael R. and Johnson, David S. Computers and Intractability: A Guide to

the Theory ofNP-Completeness. New York: W.H. Freeman and Company. 1979.

An introductory text to the classes P and NP, and NP-completeness.

Provided definitions used in the paper.

[6] Goldreich, Oded, Micali, Silvio, and Wigderson, A vi. "Proofs that Yield Nothing But

their Validity and a Methodology of Cryptographic Protocol Design." Paper

presented at Proceedings of the 27th Annual Symposium on Foundations of

Computer Science (SFCS '86), Washington D.C., 1986.

Reference for Protocol4.2 as well as the proofthat all NP-complete

problems have a ZKP associated with them. (In particular, the proof that

Protocol4.2 holds the zero-knowledge property.)

[7] Goldwasser, Shafi, Micali, Silvio, and Rackoff, Charles. "The Knowledge

Complexity of Interactive Proof Systems." SIAM Journal on Computing (1989):

291-304.

The article in which zero knowledge protocols were originally introduced

and defined. Includes their applications to the complexity class NP, as

well as quadratic residues.

[8] Hopcroft, John and Ullman, Jeffrey. Introduction to Automata Theory, Languages

and Computation. Addison-Wesley, Reading Mass. 1979.

Provided the definition for a Turing machine.

42

[9] Karp, Richard M. Miller, Raymond E., and Thatcher, James W. "Reducibility Among

Combinatorial Problems." The Journal of Symbolic Logic, 40, no. 4. (December

1975).

Reference for proof that the 03C problem is NP-complete.

[10] Koblitz, Neal. A Course in Number Theory and Cryptography. New York: Springer.

1994.

Source for the magical cave example.

[11] Lin, Shen and Rad6, Tibor. "Computer Studies of Turing Machine Problems,"

Journal of the ACM. 12 (1965): 196-212.

Provided the 2-symbol 3-state busy beaver Turing machine example.

[12] Mohr, Austin. "A Survey of Zero-Knowledge Proofs with Applications to

Cryptography." Southern Illinois University at Carbondale.

http ://www.austinmohr .com/Home files/zkp__.ndf

Reference for the proof that Protocol 4.2 is a ZKP.

[13] Mollin, Richard A. An Introduction to Cryptography. Florida: Chapman &

HalVCRC. 2001.

Applies ZKPs to Hamiltonian Cycles and other noninteractive protocols.

[14] Simari, Gerardo I. "A Primer on Zero Knowledge Protocols." Universidad Nacional

del Sur. http://cs. uns.edu.ar/-gis/publications/zkp-simari2002.pdf

43

An introductory text to Zero Knowledge Protocols and their applications.

Provides a general array of applications of zero knowledge protocols and

provides a basis for complexity classes.

[15] Trappe, Wade and Washington, Lawrence C. Introduction to Cryptography with

Coding Theory. New Jersey: Prentice Hall. 2002.

Used as reference for the Feige-Fiat-Shamir identification scheme.

[16] Weisstein, Eric W. ''Nondeterministic Turing Machine." Wolfram Mathworld

http://mathworld.wolfram.com/NondeterministicTuringMachine.html

Provided a definition of a nondeterministic Turing machine.

[17] Weisstein, Eric W. "NP-Hard Problem." Wolfram Mathworld.

http://mathworld. wolfram.com!NP-HardProblem.html

Provided a definition of NP-hard problems.

44

	University of Redlands
	InSPIRe @ Redlands
	2011

	Zero Knowledge Protocols
	Caitlin Bonnar
	Recommended Citation

	SKM_368e18062911420

