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I. Introduction 

In this day and age, it is commonplace to spend part of our day on the Internet. 

Whether to check e~mail, purchase goods, manage a bank account, or merely browse 

interesting sites, we rely on certain security measures to keep personal information safe 

from unwanted outsiders. Within the field of cryptography there are many techniques and 

algorithms that have provided top~notch security for our methods of communication 

today, yet as technology advances and as loopholes are found, we are constantly looking 

for novel ways to protect our information. Introduced approximately 25 years ago by 

Goldwasser, Micali, and Rackoff [7], zero knowledge protocols seek to do just that. This 

paper will explore these protocols, their application to NP~complete problems (problems 

with no efficient way of finding a solution), and their use in modem day cryptosystems. 

Informally stated, a zero knowledge protocol (abbreviated ZKP from here on) is 

an interactive method between two parties that allows one party (the prover) to prove to 

the other party (the verifier) the veracity of a statement without revealing anything about 

the statement itself. In other words, 'zero knowledge' is leaked to the verifier other than 

knowledge of whether the statement is true or not. Note that in the case of ZKPs, the 

usage of the word "prove" is different from its strict mathematical meaning-in this case, 

it refers to an overwhelming probability (one that can be made arbitrarily close to 1) that 

the prover is not cheating the verifier. For example, assume that someone knows the 

location of a secret treasure chest. They would like to convince someone else that they 

truly know where this treasure chest is without revealing anything about its location, in 

order to make sure they will not try and steal it. Therefore the two come up with an 
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interactive procedure that will allow the prover to prove only the fact that they know this 

secret knowledge and nothing else. If they accomplish this goal, the procedure is known 

asaZKP. 

II. Zero Knowledge Protocols 

ZKPs rely on three mathematical properties, which will be stated intuitively 

below and formalized later: 

• the completeness property: the protocol should allow an honest prover to be able 

to prove to the verifier that they know what they claim to know with probability 1; that is, 

an honest prover should succeed every time, 

• the soundness property: the probability that a dishonest prover who does not 

hold the secret knowledge can deceive the verifier can be made arbitrarily close to 0, 

and • the zero knowledge property: no information about the prover's secret knowledge 

is learned by the verifier during the process. 

1. A Simple Example 

To illustrate these properties, consider the following classic example, introduced 

by Neal Koblitz in 1994 [10]: 

Suppose that Peggy (our prover) knows the secret code to a magical cave door. 

Victor (our verifier) wishes to purchase this code from her, but he wants to make sure 

that she is indeed telling the truth before he pays her for it. On the other hand, Peggy 

does not wish to reveal the secret code to Victor until he has paid her, for fear of not 
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receiving payment once he learns it. Say that our cave consists of a circular tunnel 

consisting of two paths, A and B, which are separated by the magical door, as depicted 

below: 

Figure 2.1: A magical cave 

Magical 
Door 

The two decide to solve this problem by executing the following protocol: 

Protocol2.1: 

The following steps are repeated k times, where k is a positive integer specified by 

Victor. 

1) Peggy chooses at random to travel down either path A or path B while 

Victor waits outside so that he does not see the path Peggy travels down, 

as shown in Figure 2.1. 

2) Standing at the cave entrance, Victor calls out a random path on which 

he wishes Peggy to exit. 
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3) Since Victor is now inside the cave and able to see which path Peggy 

exits from, if he sees her exit from the path he called out, he accepts and 

continues. Otherwise, Victor rejects Peggy's proof and the protocol ends. 

We can see that if Peggy initially chose path A to travel down and Victor asked 

her to come out from path B, she would have to use the secret code to open the door. Of 

course, there is a SO% chance that both Peggy and Victor will choose the same path in a 

single round, but the overall probability that they will choose the same path every round 

is G)' -;, , which becomes extremely small with a large value k. Therefore, if Victor is 

satisfied with a 1 in S 12 chance that Peggy could be cheating, they will repeat the steps 

nine times before Victor accepts Peggy's proof that she knows the secret code. 

It is simple to show that this protocol satisfies all three properties described 

above. Peggy should be able to exit down the path Victor calls out each round without 

fail since she knows the secret code (thus this protocol is complete), the chance that 

someone else could exit from the requested path each time without knowing the code can 

be made arbitrarily close to zero as k gets large (thus the protocol is sound), and finally 

no information about the code is leaked since Victor is outside the cave and cannot see or 

hear Peggy when she opens the door (thus it is zero knowledge). 

2. Formal Definitions 

Using these ideas, we will now formalize our definitions. 
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Definition 2.1 (Completeness Property): An interactive proof protocol is said to 

be complete if, given an honest prover and an honest verifier, the prover convinces the 

verifier to accept the proof with probability 1. 

Defmition 2.2 (Soundness Property): An interactive proof protocol is said to be 

sound if, given a dishonest prover (that is, a prover who does not actually know what they 

claim to know) and a positive integer k chosen by the verifier as a security parameter, the 

verifier rejects the proofwith probability at least 1- ;A:. 

Definition .1.3 (Zero Knowledge Property): An interactive proof protocol is said 

to hold the zero knowledge property if there exists a method or procedure that produces a 

transcript of the proof made with a dishonest prover that is indistinguishable from a real 

transcript made with an honest prover, called a simulator [14, pp. S-6]. 

A proof holding the first two properties is referred to as a proof of knowledge. 

Together with the third property, the proof is known as a zero knowledge proof. 

The only definition that does not seem to fit with our intuitive definitions given 

earlier is our definition of the zero knowledge property. However, we can think of it in 

the following manner, borrowing again from our example: Suppose that Victor were to 

videotape an execution of the protocol from his point of view (that is, from the verifier's 

point of view) with a prover that does not actually know the secret password to the cave 

door. The two can predetermine the path that Victor will call out each round so that the 

dishonest prover can travel down this predetermined path each time and never actually 

have to use the secret code to open the door. If Victor were to then show another party 

this tape along with a videotape of the honest protocol execution between him and Peggy, 
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the third party would not be able to determine which tape was the honest one. Since 

Victor was able to simulate a successful execution of this protocol without an honest 

prover, we can see that whatever information that is learned by watching the honest 

interaction with Peggy can also be extracted from an interaction without an honest prover, 

meaning that the information learned during the protocol's execution does not have 

anything to do with the secret information. Thus the verifier learns nothing about the 

secret information, which implies our informal definition of zero knowledge given earlier 

[12, pp. 2-3]. 

III. ZKP for Hamiltonian Cycles 

To provide a more detailed example, we will produce a ZKP that proves whether 

or not a person knows of a Hamiltonian cycle within a graph. However, before we are 

able to define what a Hamiltonian cycle is and specify our protocol, we must introduce 

some basic definitions and concepts from elementary graph theory. We start with the 

definition of a graph. 

Definition 3.1: A graph G is a diagram consisting of points, or vertices, joined 

together by lines, called edges. Each edge either joins exactly two vertices or it connects 

a vertex to itself; the latter is known as a loop [2, p. 26]. 

The above definition is the more intuitive way we think about graphs; we could 

also say that a graph consists oftwo sets: a set of vertices and a set of edges, where each 

edge is labeled vw for the vertices v and w that they connect (for a loop, v = w). For this 
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paper, however, we will use the above pictorial definition. Next, we make the idea of 

"touching" in a graph more precise: 

Defmition 3.2: Let v and w be vertices of a graph. Then v and ware adjacent if 

they are joined by an edge e. In addition, we say that v and ware incident with the edge 

e, and e is incident with vertices v and w. 

Defmition 3.3: In a graph, two or more edges joining the same pair of vertices are 

called multiple edges. A graph with no multiple edges or loops is called a simple graph 

[1, pp. 26-27]. 

Figure 3.1: A loop at vertex a Figure 3.2: Multiple edges joining a and b 

Definition 3.4: A graph G is planar if it can be drawn in the plane in such a way 

that no two edges meet except at a vertex with which they are both incident. Any such 

drawing is said to be a plane drawing of G. A graph is non-planar if no plane drawing of 

G exists [2, p. 244]. 

Now, take the simple graph below: 

e 

Figure3.3 

d 
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Suppose this graph represents a network of cities connected by roads, and suppose 

Bob is currently in the city represented by the vertex a. Bob would like to make his way 

to the city represented by d through the cities and roads depicted in this graph, and so he 

travels from a to b to c and finally to d. 

Definition 3.5: A walk of length kin a graph is a succession of kedges of the 

form: uv, vw, wx, ... ,yz. This is denoted by uvwx ... yz and is referred to as a walk between u 

and z [2, p. 39]. 

In this example, Bob took a walk between a and d, in particular abed. Note that 

another walk from a to d could have been abed or even abcdebcd. In addition, we can 

apply the following definition: 

Definition 3.6: A path is a walk in which all edges and vertices visited are 

distinct [2, p. 40]. 

In this case, both abed and abde are paths, since Bob visited each city and 

traveled down each road in the walk only once. However, the walk abcdebcd is not 

considered a path since b, c, and dare all visited twice. 

Definition 3. 7: A closed walk in a graph is a succession of edges of the form uv, 

vw, wx, ... ,y~ zu, that starts and ends at the same vertex. A cycle is a closed walk in which 

all edges traveled are distinct and all intermediate vertices are distinct [2, p. 42]. 

Therefore, continuing with our example, if Bob takes the path abcdeba in order to 

return to the same city he started out in, we say that he took a closed walk. However, 

there is no cycle starting at vertex a, since we would have to travel back down the edge 
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joining a and b in order to return to a, and thus all edges traveled would not be distinct. 

The closed walk bcdeb is a cycle however, since every edge traveled is distinct as are the 

intermediate vertices. 

We can now use the above concepts to define more complex forms of graphs. 

Definition 3.8: A graph G is connected if there exists a path between each pair of 

vertices of G. We say a graph is disconnected otherwise. Every disconnected graph H can 

be split up into a number of connected subgraphs, that is, smaller graphs within H, called 

components [2, p. 41]. 

a b c a b c JT-- J7 • 

Figure 3.4 Figure 3.5 

For example, the graph in Figure 3.4 is an example of a connected graph because 

there exists at least one path between each pair of vertices. However, if we remove the 

edge from b to cas depicted in Figure 3.5, there is no longer a path from vertex a to c 

(nor from any other vertex to c) and thus. it becomes a disconnected graph with two 

components, the subgraph c and the subgraph abd. 
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Definition 3.9: A cycle graph is a connected graph consisting of a single 

cycle of vertices and edges. A cycle graph with n vertices will be denoted by Cn. 

Figure 3.6: Cycle graphs for n = 1, 2, ... , 6 [2, pp. 45-46]. 

These graphs are a subset of the set of Hamiltonian graphs, which we will now 

define. 

Defmition 3.10: A Hamiltonian graph is a connected graph in which there exists 

a cycle passing through every vertex [2, p. 71]. We call such a cycle a Hamiltonian 

cycle. 

The graph Cn is obviously Hamiltonian for all n by definition, and we can easily 

see the cycle that passes through each vertex in the examples depicted in Figure 3.6. 

However, we cannot easily classify most graphs as Hamiltonian or not. Take, for 

example, the labeled graph of the planar dodecahedron. 
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Figure 3. 7: A planar dodecahedron 

This graph was used by Sir William Rowan HB.milton in a game he invented 

under the title A voyage round the world, in which the labels on the vertices represented 

places such as Brussels, Canton, and Delhi. In this game, he challenged players to find 

Hamiltonian cycles starting with five given letters. For example, if the five letters given 

were BCPNM, there are exactly two ways of completing a Hamiltonian cycle: i) 

BCPNMDFKLTSRQZXWVJHGB and ii) BCPNMDFGHXWVJKLTSRQZB [2, p. 71]. 

Even though there are many Hamiltonian cycles in this graph, we can see that it is 

not as easily classifiable as Hamiltonian as C,. and also that it can take some work to find 

all the Hamiltonian cycles starting with five given letters. Determining whether or a not 

a graph is Hamiltonian becomes an incredibly difficult problem the more large and 

complex a graph becomes; in fact, there are no known efficient algorithms that allow us 

to find a Hamiltonian cycle in a large graph today. Therefore we are left with an 

exhaustive search method, which becomes more and more time-consuming as the number 

of vertices in a graph increases. 
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Finally, we present one more definition before presenting our protocol for 

knowing of a Hamiltonian cycle in a graph. 

Defmition 3.11: Two graphs G and Hare isomorphic if there exists a way to re­

label the vertices of G and arrive at H. That is, there is a one-to-one correspondence 

between the vertices of G and those of H such that the number of edges joining each pair 

ofvertices in G is equal to the number of edges joining the corresponding pair ofvertices 

in H. Such a one-to-one correspondence is an isomorphism [2, p. 29]. 

We will now provide a ZKP associated with Hamiltonian cycles. 

Suppose that Peggy knows of a Hamiltonian cycle in a large graph G, and she 

must convince Victor that she knows of this cycle without showing him where it is. They 

therefore execute the following protocol: 

Protocol3.1: 

Input: A graph G in which Peggy knows of a Hamiltonian cycle; Victor also 

knows G. This protocol repeats m times, where Victor decides upon m: 

1) Peggy constructs a graph H that is isomorphic to graph G and sends H to 

Victor. 

2) Victor asks Peggy to either i) fmd a Hamiltonian cycle in H or ii) to prove that 

His isomorphic to G. 

We can intuitively see that this satisfies the three properties of a ZKP, because if 

Peggy truly knows of a Hamiltonian cycle in a graph, it will be simple to find a 

Hamiltonian cycle in the isomorphic graph, and Victor will not learn anything about the 
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actual cycle in G; also, since Peggy doesn't know which of the two tasks Victor will 

require her to perfonn, she cannot cheat by creating a non-isomorphic graph in which she 

already knows a Hamiltonian cycle. Therefore she must know of a Hamiltonian cycle in 

G and will be able to convince Victor of this fact through the protocol, satisfying the first 

two properties, and in the process Victor will not learn anything about the Hamiltonian 

cycle in G [13, p. 259]. 

To prove this more formally, we need to satisfy Defmitions 2.1-2.3. 

Proof 

Completeness: To prove that ProtocolS. I is complete, assume that Peggy 

truly knows of a Hamiltonian cycle in G, and that she and Victor will execute the 

protocol as directed. In other words, assume Peggy and Victor are both honest. Then 

Peggy should be able to construct an isomorphic graph G by first permuting the vertices 

and edges of G and then making sure each pair of vertices of Hhas the same number of 

edges incident with it as the corresponding pair in G. Therefore, if Victor asks her to 

prove that the two graphs are isomorphic, she should be able to do so with probability 1 

because she knows the one-to-one correspondence. Suppose instead Victor asks Peggy to 

find a Hamiltonian cycle in H. Since Peggy knows of the Hamiltonian cycle in G, she 

should be able to use her one-to-one mapping to construct a Hamiltonian cycle in H with 

probability 1. Therefore she should be able to satisfy either one of Victor's requests each 

round with probability 1 and convince Victor to accept her proof of knowledge of a 

Hamiltonian cycle in G. Thus this protocol is complete. 
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Soundness: To prove soundness, we must show that ifPeggy is dishonest, 

the protocol will fail with a probability greater than or equal to 1 - ;k for some security 

parameter k chosen by Victor. In this case, suppose Victor chooses k = m. Assume that 

Peggy does not know a Hamiltonian cycle in G. She can try and fool Victor in one of 

two ways: either she can provide him with a graph H that is not isomorphic to G in which 

she already knows of a Hamiltonian cycle, or she can construct an isomorphic graph and 

hope that he asks her to prove that they are isomorphic. In the former case, if he asks her 

to show him a Hamiltonian cycle in H she will be able to because she gave him a graph in 

which she already knew of a Hamiltonian cycle, but if he asks her to prove that the two 

graphs are isomorphic she will not be able to do so and thus he will reject her proof. In 

the second case, if he asks her to show him a Hamiltonian cycle in H, she will not be able 

to because she does not know of a cycle in G and thus cannot use her one-to-one mapping 

in any helpful way. Therefore her chance of success of fooling Victor in any given round 

is 'i· and her chance of success form iterations becomes (~r ... 2~ - ;1:, meaning she 

will fail with probability 1 - ;k . Thus this protocol is sound. 

Zero knowledge: Finally, to prove that this protocol is zero knowledge, we 

must show that a simulator exists. That is, there exists an algorithm to fake the execution 

of the protocol with a dishonest prover and verifier. In this case, a dishonest prover and 

Victor could pre-arrange which tasks the prover will perform each round so that they can 

cheat accordingly and then film the execution, as they did in the cave example in section 

II. Then, if an outsider were to view this fake execution alongside a transcript (or 
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video/film) of the execution made with an honest prover, they would not be able to 

distinguish between the two because they would only see that the prover was able to 

prove either that G and H were isomorphic or that H contained a Hamiltonian cycle in 

each case, which does not provide any information about the Hamiltonian cycle in G. 

Therefore this protocol holds the zero knowledge property, and thus constitutes a ZKP. D 

One could argue that the preceding protocol does not seem to be of much practical 

use, since knowing a Hamiltonian cycle in a large graph does not seem to be related to 

security in any way. However, the basis of most public and private cryptosystems rely on 

problems that are not efficiently solved by any oftoday's technology, such as finding the 

prime factorization of a very large composite number. Knowing a solution to one of 

these "hard problems," such as finding a Hamiltonian circuit in a large graph, and then 

proving knowledge of this solution with a ZKP can be used to prove the identity of a 

message sender or party trying to enter a secure system, which eliminates the possibility 

of a malicious party stealing the solution or key and using it to impersonate the honest 

party. 

Now that we have provided an example of a hard problem with an associated 

ZKP, we would like to more formally describe what is meant by saying that a problem is 

"hard," and later show that we can find a ZKP associated with each of these problems so 

that we can implement them in cryptographic schemes. 

IV. NP-Complete Problems 

One of the most important results about ZKPs currently is that every NP-complete 

problem has a ZKP associated with it, which is fundamental for implementing these 
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problems in zero knowledge cryptographic schemes. The reason the set of NP-complete 

problems are of interest in cryptography is because of the fact that, as of today, these 

problems have no known efficient algorithm to solve them. As a result, we can use a 

solution to one of these problems as a private key, since no other party should be able to 

figure out this solution without great time and effort. 

Before getting into the formal definition of an NP-complete problem, we will 

provide a basis of definitions that make up computational complexity theory in order to 

gain insight into why these problems are not efficiently solvable by computers today. 

Definition 4.1: A decision problem is a problem that has a binary (yes/no) answer 

[5, p. 8]. 

Algorithms solving these problems can be simulated by a Turing machine, a 

theoretical machine that reads in symbols from an input tape and deciphers them based on 

a set of rules meant to mimic the logic of a computer. From this machine we formalize 

the idea of an algorithm as well as the amount of time required to find a solution to a 

decision problem. 

1. Turing Machines 

A Turing machine can be formally defined as follows: 

Dermition 4.2: A one-tape Turing machine (TM) is a 7-tuple M = <Q, r, b, :E, S, 

qo, F> where: 

i) Q is a finite, non-empty set of states, 
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ii) r is a finite, non-empty set of symbols called the tape alphabet, 

iii) b E r is the blank symbol (the only symbol allowed to occur infinitely often 

on the tape), 

iv) IS I\{b} is the set of input symbols, 

v) qo E Q is the initial state, 

vi) F s; Q is the set of .final or halting states, 

and vii) 8 is the transition function specifying what symbol to write to the tape, which 

direction (left or right) to shift the tape, and which state to move to [8, p. 148]. 

For example, take the 7-tuple for the 3-state "busy beaver" 1M [11]: 

Q- { A,B, C,HALT} 

r- { o, 1} 

b = 0 = "blank" 

I= { 1} 

qo - A = initial state 

F- {HALT} 

8: see state-table in Figure 4.1 
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1 1 L C 1 R I 1 R HALT 

Figure 4.1 

This particular machine acts on only two symbols, 0 and 1, where 0 is the blank 

symbol that initially fills every cell on the input tape. The goal of this 1M is to simply 

write the symbol 1 to the tape until the TM produces the HALT state in its transition 

function. Therefore, since the initial state of this machine is A and the first symbol read 

is 0, the TM will write the symbol 1 to the tape, then move the tape to the right, and then 

transition to state B, as given in the table in Figure 4.1. From there, it will read in another 

0, and since it is now in state B, it will write the symbol I, then move the tape left, then 

transition back to state A. It will continue reading in symbols and acting according to the 

transition function until it reaches the HALT state, when the procedure is considered 

complete. At this point there will be six 1 's written to the tape. Note that for other 

Turing machines, it is possible that a HALT state (or other final state) will never be 

reached, in which case the procedure will continue forever in an infinite loop. 

If a TM does halt, we would like to determine how long it takes and whether or 

not the algorithm simulated by it is efficient. We therefore develop a notion of 

computation time. 

Definition 4.3: The time complexity jUnction /for an algorithm with input length 

n expresses the time requirements of the algorithm by giving the largest amount of time 

f(n) needed by the algorithm to solve a problem instance of size n. We will assume that 
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the encoding scheme used and the machine on which it is computed are fixed so that this 

function is well defined. 

We will say that a function/is O(g(n)) for a function g whenever there exists a 

positive constant c such that lf(n)l :5 clg(n)l for all n ~ 0. 

Definition 4.4: A decision problem X is said to be solvable in polynomial time if 

the time complexity function ofthe algorithm used to solve Xis O(p(n)) for some 

polynomial functionp. Any algorithm whose time complexity function cannot be so 

bounded is called an exponential time algorithm [5, p. 6]. 

We generally think of problems that can be solved in polynomial time as 

problems that can be solved "efficiently," whereas those solved in exponential time 

generally have much more time-inefficient solutions. 

We will now look at two different types of Turing machines. 

Definition 4.S: A deterministic Turing machine (DTM) is one such that only one 

action is performed in any given situation determined by its set of rules; that is, only one 

path is taken for each computation. A nondeterministic Turing machine (NDTM) is one 

that can take more than one computational path simultaneously. This can be thought of as 

a split into "parallel'' TMs, given that these parallel TMs do not communicate with one 

another [16]. 

The example of the busy beaver TM above is an example of a deterministic 

Turing machine, for each cell of the table specifies only one course of action: write the 

symbol 1, shift one direction, then transition to one other state. By contrast, if at least 
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one cell in the table specified to write a 1, shift left OR shift right, and then transition to 

one other state, then this machine would start computing down two separate paths: one 

path initiated by a left-shift and one initiated by a right-shift. These paths would continue 

on simultaneously performing the actions specified by the TM's transition functions, 

possibly splitting again into multiple paths. In this regard, an NDTM can be thought of 

having computational paths resembling a tree graph. Note that any DTM can also be 

simulated by an NDTM since it can be thought of as a single branch within the tree. 

Furthermore, it is important to point out that an NDTM, as a theoretical machine, 

is not limited by a finite number of processors, processor speed, memoey, or anything 

else that a physical computer is limited by in its computations. Thus, something that is 

quickly solved by an NDTM may take years to solve on today's fastest computer. 

2. The Classes P and NP 

With these definitions, we can now define the classes P and NP. 

Defmition 4.6: P is the class of all decision problems that can be solved in 

polynomial time by a DTM [5, p. 8]. 

For example, the problem of determining whether or not an integer is prime is in 

P because an algorithm using Fermat's Little Theorem, cf =a (modp) for an integer a and 

a prime p, allows for this problem to be solved on a DTM in polynomial time [1]. 

Definition 4. 7: NP is the class of all decision problems that can be solved by a 

nondeterministic Turing machine in polynomial time. 
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It is important to note that a decision problem that can be solved by an NDTM in 

polynomial time does not necessarily mean that the problem has a polynomial time 

algorithm to solve it; in fact, many problems in NP do not yet have any such algorithm to 

solve them. For example, the problem of whether or not a certain graph contains a 

Hamiltonian cycle is a problem in NP without an efficient algorithm yet to solve it. Since 

an NDTM allows for an "exhaustive search" method, we can essentially have the NDTM 

travel down each path containing distinct vertices in the graph until it finds a Hamiltonian 

cycle or reaches the conclusion that no such path is a Hamiltonian cycle. 

As stated earlier, since any DTM can be simulated by an NDTM, then obviously 

any decision problem that can be solved in polynomial time on a DTM can also be solved 

in polynomial time on an NDTM, and thus PQVP. However, it has been a much debated 

question whether or not NPSP, which would imply that P = NP. The consequences of 

P = NP are important, for if it turns out that this is true, then every decision problem in 

NP can be solved in polynomial time by a DTM, and thus there exist efficient algorithms 

for solving these problems that we have not yet discovered. However, if Pi= NP, then the 

problems in NP - P may not ever have an efficient algorithm to solve them. 

Definition 4.8: A decision problem A is said to be reducible to another decision 

problem B if an algorithm that solves A also solves B; that is, the answer to B is "yes" iff 

the answer to A is "yes." 

In other words, if we say that we are reducing a problem to another problem, we 

mean that we can use the solution of one problem to solve the other problem. Therefore, 

if we do not have a method to solve problem A, but we do have a method for solving 
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problem B, if there exists a way to reduce A to B then we can use the solution that we 

compute forB as a solution for problemA. Thus we develop a method for solving 

problemA. 

Take, for example, the simple problem of multiplying. Suppose that we only 

know how to add, subtract, divide by two, and take squares, but we do not know how to 

multiply. Therefore we reduce the problem of multiplying to one that we already know: 

(a+b)2
- a2 -b2 

Equation 4.1: ab • 
2 

In this case, our reductions are algebraic, but we can see that our solution to the problem 

(a+ b i - a2 
- b2 

2 
is the same as the solution to ab. Even though the reductions of 

decision problems to other decision problems used on Turing machines are much more 

complex and thus beyond the scope of this paper, the idea remains the same. 

3. NP-Hard and NP-Complete Problems 

Definition 4.9: A decision problem is said to be NP·hard if it is reducible to any 

other problem in NP [17]. 

As of today, this is the set of problems that do not yet have an efficient algorithm 

to solve them with today's computers. Note that it is possible for a problem that is not in 

NP to be NP-hard. For example, the decision problem known as the halting problem 

which states, "given a program and its input, will it ever halt?" has been shown to be 

reducible to any problem in NP, but it is not itself in NP because it is not generally 

solvable in a finite number of steps. 
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Finally, we can define what it means for a problem to be NP-complete. 

Definition 4.10: A decision problem X is said to be NP-complete if X E NP and X 

isNP-hard. 

In other words, if X is NP-complete it is at least as difficult to solve as any other 

problem in NP and there is a way to solve it in polynomial time on an NDTM. This gives 

us a set of the "hardest" problems to solve in NP. 

Figure 4.2 contains a pictorial representation of the classes we have discussed so 

far. One should observe that are currently problems in NP that are neither in P nor NP-

complete, known as the NP-intermediate problems. An example of an NP-intermediate 

problem is the integer factorization problem, which involves finding the prime factors of 

a large composite integer n. This problem is the basis of many cryptographic systems 

today. 

I 
NP 

NP-hard 

Figure 4.2 
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The primary impact of the theory of NP-completeness on computer scientists is to assist 

algorithm designers by having them focus on approaches that have the highest probability 

of producing an efficient algorithm. However, the application of NP-complete problems 

that is of the most interest in this paper, as well as in the field of cryptography, is that 

because these problems cannot be efficiently solved by any oftoday's computers, they are 

valuable in ensuring the security of most cryptosystems. 

V. A ZKP for Every NP-Complete Problem 

Now that we have discussed what NP-complete problems are and their role in 

modem day cryptosystems, we will lead up to and present an outline of the proof that 

every NP-complete problem has a ZK.P associated with it. First, however, we must 

briefly introduce bit commitment schemes, which are used in many ZKPs, including the 

ZKP given in the upcoming proof. 

1. Bit Commitment Schemes 

Most modem cryptographic ZKPs implement the notion of commitment, which 

essentially means that once a party in a protocol chooses some value from a finite set, 

they cannot change their mind from there on out. This is done to enforce honest behavior 

from each party. A general protocol using a bit (or value) commitment scheme between 

two parties, say Alice and Bob, occurs as follows: i) Alice commits to a single secret bit 

and then sends the encrypted or hidden commitment (for example, you could think of it 

as being locked inside an opaque box) to Bob, ii) Bob commits to a bit and sends it 

unencrypted to Alice, and then iii) Alice sends a key to Bob that allows him to decrypt or 

reveal Alice's commitment. There arc two essential properties of this scheme as well as 

any other commitment scheme: that the original value or bit that Alice commits to cannot 
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change after she sends it to Bob, which is referred to as the binding property, and that 

Bob cannot know Alice's bit until after he commits to his own bit by sending it to Alice, 

known as the hiding property. These schemes are mainly used for hiding or encoding 

secret information within protocols. 

For a simple example, suppose that Alice would like to purchase an item from 

Bob. They agree that the price that Alice will pay for the item will be a; b where a is 
the price Alice is willing to pay for the item and b is the price that Bob is willing to sell it 

for. In order to prevent one party from changing their price after hearing the other's 

offer, they engage in the following protocol: 

Protocol5.1: 

i) Alice commits to her price a, writes it on a piece of paper, and sends it in a 

locked box to Bob. 

ii) Bob sends Alice his price, b. 

iii) Alice reveals her commitment by giving Bob the key to open the box and 

view the price. 

Note that after Alice sends her price to Bob it cannot change, and Bob will not know 

Alice's price until after he has sent her his price and she has given him the key; therefore 

this protocol holds both the binding and hiding property [3, p. 7]. 

l. A Protocol for the Graph 3-Colorability Problem 

In order to show that all NP-complete problems are associated with a ZKP, we 

observe a zero knowledge protocol utilizing a bit commitment scheme for the graph 3-
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colorability problem (G3C). This problem can be stated as follows: Given a graph, is 

there a way to map each vertex to one of three colors in such a way that no two adjacent 

vertices share the same color? If the answer to this question is 'yes' for a graph G, we say 

that G E G3C, because decision problems that can be solved by Turing machines are 

thought of in terms of sets, where the inputs (or problem instances) that lead to an answer 

of 'yes' when executed on the 1M are in the set, and the problem instances where the 

answer is 'no' are not. 

Since this problem is known to be NP-complete [6, p. 99], showing that there 

exists a ZKP for this problem implies that a ZK.P can be constructed for every NP­

complete problem. This is because each problem that is NP-complete is reducible to 

every other, thus you can reduce any problem that is NP-complete to G3C and then 

execute the ZKP that will be shown to be associated with G3C. Therefore, if you cannot 

produce a ZKP for any particular problem, this method is always available, albeit 

impractical. 

The following protocol is a proof of knowledge of a 3-coloring in a given graph 

between a prover P and verifier V: 

Protocol5.2: 

Input: A graph G with no loops containing n vertices and m edges, known to both 

prover and verifier. 

The following is executed m2 times, each time requiring distinct decisions: 
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1) P randomly permutes the set of colors of the 3-coloring, and sends V n opaque 

locked boxes, where the ith box contains the color of the ith vertex 

2) V chooses a random edge and sends it to P 

3) P returns keys to the two boxes corresponding to the two vertices incident 

with this edge 

4) Vopens these boxes, and if the colors are distinct he accepts and continues; if 

they are the same color, he rejects the proof 

If all m2 iterations are completed successfully, V accepts P' s proof. 

To illustrate this protocol, take the following 3-colored graph G: 

82 

Figure 4.1: A 3-colored graph 

Suppose Peggy would like to prove with zero-knowledge to Victor that she knows 

ofthis 3-coloring. Therefore the two execute Protocol4.2 in the following 

manner: 

In the first round, suppose that the random permutation Peggy generates is 

{R, G, B}- {G, R, B} (that is, red is replaced by green, green by red, and blue remains 

the same). After applying this permutation, the vertex coloring becomes: 
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82 

Figure 5.2: G after color permutation is applied 

Peggy now places each vertex along with its color in its own box, which she locks and 

sends to Victor. Next, Victor returns the edge (1, 3) to Peggy, and so she sends him the 

keys to open the boxes containing vertices 1 and 3. Victor opens each box, and seeing 

that vertex 1 is colored green and vertex 3 is colored red, accepts Peggy's proof this round 

and continues on to the next round. 

In the next round, assume that the pennutation generated for the application to the 

original coloring is {R, G, B}- {B, R, G} and the edge selected is (2, 3). After 

opening, Victor sees that the vertex 2 is colored green and vertex 3 is colored red, so he 

again accepts and continues. 

Suppose now that after this second round Victor wants to try to see if he can put 

together any information about the original 3-coloring based on the colors he has seen for 

each vertex. Piecing together the colors he has received for vertices 1, 2, and 3 so far, he 

arrives at the following coloring: 
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G2 

Figure 5.3: Victor's coloring based on the fint two rounda 

We can see that this is obviously not a valid 3-coloring, since adjacent vertices 1 

and 2 are both colored green. This stems from the fact that separate randomly selected 

permutations are used in between rounds, which is key in describing why this protocol 

holds the zero-knowledge property. 

Peggy and Victor perform 23 more rounds until Victor accepts Peggy's proof and 

the protocol is complete. 

In order to prove that this is a ZKP, we must show that it holds the soundness, 

completeness, and zero-knowledge properties. 

Proof: 

Let G be a graph with no loops containing n vertices and m edges. 

Completeness: Assume our prover knows of a 3-coloring within a graph. Then 

any pair of boxes u and v corresponding to some edge of G that the verifier selects will be 

colored differently even after permuting the colors, according to the definition of a 3-

coloring. Therefore, an honest verifier will be able to complete all m2 iterations and 

accept with probability 1. 
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Soundness: Assume our prover does not know of a 3-coloring in a graph. Then at 

least one of them edges of G is not properly colored, and thus two adjacent vertices share 

a color. Therefore, each round has probability at least _!_ that the verifier will reject and 
m 

for m2 rounds, the total probability of the verifier rejecting is at least 

1-( 1- ~ r 0 Recall that from our definition of soundness, we need this probability to 

be greater than or equal to 1 - ;t for some positive integer k chosen as a security 

parameter. If we let k = m, we must show that: 

(1) 1-( 1-~r .. 1- 2~. which i• satisfied if 

If we look at the sequence (r- !)"'for m~l we observe that it is strictly 

Using the product rule and chain rule and then simplifying, we arrive at, 

where, for x> 1, 
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Next we must check that this sequence converges, and if so, see that it is bounded above 

1 
by "2. Indeed, we find that: 

(6) By definition of e, e •lim( I +.!.)z, so if we let x- m, 
z-~ x r 

Ill 

(7) lim~l+ _!_)-;- - lim (1 + !..)~ => lim (1 + !..)111 

- [. lim (1 + !..)~ ] ,. -e". 
1ft- m lfi-CII m lft-CII m 111-CII m 

r 

Finally, if we let r = -1, we have 

(8) lim(l- .!..)"' - e·1 
• .3679, where .3679 <.5, and thus we have reached what ,._.., m 

we were trying to show, and our protocol is sound. 

Zero-knowledge: Recall that an interactive proof holds the zero-knowledge 

property iff there exists a simulator for the protocol. In other words, there exists a way to 

simulate this protocol in such a way that a fake transcript (for example, the output of a 

Turing machine) is indistinguishable from a real one. 

A machine that represents an honest prover successfully executing· this protocol 

will output only two randomly permuted, distinct colors at the end of each round, for that 

is all that the verifier is able to see each round. Therefore, if we construct a machine that 
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merely outputs two random, distinct colors to act as om simulator, we will be left with a 

transcript that is indistinguishable from a real one, which was our goal. Since each color 

is equally likely to be an output each round due to the application of random 

permutations, then probabilistically these two transcripts will be identical. Therefore by 

definition, our protocol holds the zero-knowledge property, and thus constitutes a zero 

knowledge protocol for the graph 3-colorability problem (G3C) [12, p. 6-7]. D 

We can think of the proof of zero-knowledge more intuitively by thinking about 

why the verifier does not learn anything about the original 3-coloring of G during 

execution of Protocol 5 .2. One should note that the most important part of this protocol 

is that the permutation of the colors is applied randomly and independently each round, 

so that the verifier cannot gather any information about the original 3-coloring. In other 

words, if the permutation did not change between rounds (and the verifier knew of this), 

they could decipher the coloring of possibly two pairs of adjacent vertices after only two 

rounds, depending on the edges chosen. This would be a leak of information and thus 

violate the zero knowledge property. However, knowing only the coloring of two 

adjacent vertices each round would not allow the verifier to put together any significant 

information about the original coloring, since it is obvious that the two vertices must be 

colored distinct colors already. 

Finally, we can formaHze our main result: 

Theorem 5.1: Every NP-complete problem has a zero knowledge proof. 

Proof (Sketch): LetL be an NP-complete decision problem, and lett be an 

invertible polynomial-time reduction of L to G3C. Since by our definition of reducibility, 
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the answer to Lis yes iff the answer to G3C is yes, we can say that x EL iff t(x) EG3C, 

where x is an input specified by the problem instance of L. (In the case of G3C, it is a 

graph without loops; this is our t(x).) 

Protocol 5.3: 

1) Given input x, both prover and verifier compute t(x) = G. 

2) The prover then uses Protocol 5.2 to show that G is 3-colorable. The 

verifier accepts proof of knowledge of x based on the acceptance of lmowledge of a 3-

coloring in G. In other words, the verifier accepts that x EL based on the fact that 

t(x)EG3C. 

Since Protocol 4.2 has been shown to constitute a ZKP for G3C, Protocol 5.3 is 

therefore a ZKP for L. To see that it is indeed zero-knowledge, one should note that 

since nothing is learned about the 3-coloring of G through Protocol4.2, nothing is 

learned about the lmowledge ofx when G is reduced back to x via f 1(t{x)) =x, where we 

know f 1 exists because tis invertible [12, p. 8]. D 

Furthermore, it has been shown that a ZKP can be constructed for any problem in 

NP (that is, any decision problem that can be verified in polynomial time on a non­

deterministic Turing Machine) [6, p. 184]. These results provide us with a set of 

problems, many of them inefficient to solve with any current technology, that can be used 

with ZKPs in cryptographic identification schemes. 
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VI. Cryptographic Application: Identification 

One of the more practical aims of zero knowledge protocols in cryptography is 

identification, or the act of proving that an individual or party is who they claim to be. 

For example, take the situation of a user logging into a server. In a typical Unix setup, 

the user has a password x, and the server holds a hash of the user's passwordj{x), where/ 

is a one-way function. That is, it is easy to findj{x) given x but infeasible to find x given 

j{x). To log in, the user will send the server x, for which the server computes .I{ x) and 

then compares with its storedj{x) in order to grant or deny access to the user. However, 

this procedure is considered insecure because x can be stolen through various means by a 

hacker or "eavesdropper'' and then used to impersonate the user. To create a more secure 

identification scheme, suppose that a user P picks a random secret key x and then 

generates a public key j{x), where[is a one-way function. In order for P to prove their 

identity, they will enter into a ZKP with the server where Pacts as the prover and the 

server acts as the verifier. In this case, P will prove that they know an inverse ofj{x), in 

this case x. This is only possible if P knows x sincefis one-way and therefore P cannot 

derive x fromj{x), and since no information about x itself is leaked during the protocol, 

no eavesdropper can steal x and impersonate P. 

In order for any identification scheme to be successful, it must rely on information 

that is unique to the individual identifying himself. In the above example, this 

information is a password, which can be created by the user or assigned by the server. In 

general this information is a secret key that only the user and perhaps a trusted, 

independent entity (such as a server) knows. In many modern identification schemes, 

these secret keys are solutions to difficult problems such as NP-complete problems. In 
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fact, many popular cryptosystems, such as RSA, rely on the inefficiency of solving a 

difficult problem for security purposes. For example, since finding the prime 

factorization of a large number n is considered to be infeasible with today's technology, 

using such an n as a modulus ensures that figuring out a secret key that is computed using 

the prime factors of n is also infeasible. 

One such example that relies on the solution to a hard problem is the Feige-Fiat­

Shamir proof of identity, introduced in [ 4]. This scheme is one of the most popular zero 

knowledge identification schemes today. As in the example of logging into a server 

given above, the goal of this scheme is to prove the prover's identity to the verifier by 

showing that they know a secrets that only the prover would know. In this case, the 

prover has a set of public keys and private keys, as we will see below. 

Protocol6.l: (l'he Feige-Fiat-Shamir Proof of Identity) 

Setup: An arbitrator (that is, a trusted independent entity) generates a random 

number n, the product of two large primesp and q, as a common modulus. Peggy has /c 

secret integer valued keys, s11 ••• , St such that gcd(s1, n) = I for 1 :S i :S /c, and creates 

v1 • s,-2(mod n) (where we know s;2 is an integer since Si is relatively prime to nand thus 

an integer inverse si1 exists modulo n). Each v1 is sent to Victor, or in other words, the v,'s 

are Peggy's public keys. They then execute the following steps t times, where t is a 

parameter chosen by Victor, with each round consisting of different random choices. 

1) Peggy chooses a random integer r, computes x • r2(mod n), and sends x to 

Victor. 
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2) Victor chooses bits bt. ... , b~c where each b1 E{O,l}. He sends these to Peggy. 

3) Peggy computes y • r~ b1 s2 b~ • • • sk b• (mod n) and sends y to Victor. 

4) Victor then checks thatx • y'lv1b1v2~ ••• v/•(modn) and iftrue, accepts and 

continues. After t successful iterations, Victor accepts Peggy's proof of identity. 

To illustrate why this will work if Peggy truly knows the secret keys, take the case 

when /c = 1. Then Peggy is asked for either r or rs1 depending on whether or not Victor 

chooses b1 to be 0 or 1. Ifhe chooses b1=0, then obviously this will work 

becausey • r(modn)~ y 2 
• r2 

• x(modn). lfbt=1, theny • rs1{modn). IfPeggytruly 

knows s1, then Victor will be able to successfully compute x because 

y2v1 • (r~)
2v1 • r2~2v1 • r2~2s1-2 • r2 

• x(modn), sincev1 • s1-
2(modn). 

Obviously in this case Victor should never choose b1. to be 0, since Peggy can get away 

without knowing st, so for a more interesting case we will look at when k > 1. 

To illustrate this case, suppose that Victor sends bt = b2 = b4 = 1 and lets all other 

b, = 0. Peggy must then producey • rs1s2s4{modn), which is a square root ofxv1-
1v2-

1v4 -l 

modulo n. In fact, for each round Victor will ask for a square root of the form rs,_ s.,_ • • • s1J, 

which Peggy will only be able to supply if she knows r, s~, ... , s1J since computing such a 

square root modulo n is just as hard as factoring n itself [ 15, pp. 81-82]. 

If Peggy does not know any of the s1, ... , st, she could guess the string of bits that 

Victor will send. If she guesses correctly before she sends x, she could let y be a random 

number and then sendx • y'lv1btv2b1
"' v/1*(modn). However, if she guesses incorrectly, 

she will have to modify her choice ofy, which means she will need to compute some of 
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the square roots of the v/s, which as we stated before is a difficult task. Of course, her 

chances of guessing the correct bit string in one round is only ;k, and for an entire 

execution oft iterations, her chance of guessing the correct bit string every time is 2~ 

and thus the probability that the verifier will reject if she is cheating is 1- 2~ ~ 1- ;J: 

which satisfies soundness [15, pp. 231-232]. 

Note that intuitively this protocol is zero-knowledge because the only values 

learned by Victor each round are x andy, where x is the square of a random integer 

unrelated to any Stand where factoringy into the correcty • r~61 s262 ••• s/11 (modn) is 

highly infeasible, especially because r is different each round. A video recording in 

which Peggy and Victor have worked out the bit strings beforehand could also easily 

simulate this protocol. 

The Feige-Fiat-Shamir identification scheme can be implemented in several 

situations requiring identification, including logging into a server, withdrawing money 

from an A TM, and proving that you are the party you claim to be in a secure 

communication. In fact, it is the basis of many cryptographic identification schemes 

today. 

VII. Conclusion 

Even though zero knowledge protocols are still a relatively new structure, they 

already have important applications in the fields of mathematics and computer science. 

Their use in cryptographic identification schemes such as the Feige-Fiat-Shamir 
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Identification Scheme not only allows for a person to identify himself, but also 

guarantees that an eavesdropper cannot steal and use their secret information. 

Furthermore, the result that every NP-complete problem has a ZKP associated with it 

means that there will always be a set of difficult problems that can be implemented in 

cryptographic schemes implementing a ZKP. 

Finally, one of the more fascinating aspects of zero lmowledge protocols is that 

they are not limited to one particular area of mathematics. Protocols can be designed for 

problems in graph theory, such as knowing of a Hamiltonian cycle or a graph 3-coloring; 

they can be designed to test the knowledge of a large square root modulo n; they can even 

be constructed to prove that you know how to prove a mathematical theorem. The fact 

that their applicability extends to such diverse fields shows that we may still have many 

uses for them in times to come. 
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