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Chapter 1 

Goal of my Project 

The goal of my project was to gain a better understanding of the CFRAC 
algorithm and to be able to share my knowledge of factorization of large num­
bers as it relates to the national security of our country. In order to complete 
my goal I conducted research of the field of mathematics with a specific ex­
ploration of the CFRAC algorithm. With RSA being publicly described in 
1977, major breakthroughs were established in message encryption. My goal 
was to find out if it was possible to crack the RSA code through utilization 
of CFRAC. In order to do this, I needed to explore the special properties 
of finite and infinite continued fractions. I also needed to further my knowl­
edge of the program Maple which enabled me to work through the CFRAC 
algorithm much more quickly. 
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Chapter 2 

Introduction 

The media has introduced cryptography through popular movies such as 
Wind talkers, A Beautiful Mind and National Treasure. Even though these 
movies provide us with a layman's understanding of the conceptualization 
and definition of public key encryption, it is through more specific analysis 
that we can gain a clearer understanding of the continued fraction factor­
ization method (CFRAC). The CFRAC algorithm is an integer factorization 
method that has the ability to factor integers that are fifty digits or less. Fac­
torization and public key cryptography have developed into one of the major 
mathematical achievements in the twentieth century. One noted encryption 
method was developed by Ron Rivest, Adi Shamir and Leonard Adleman 
whose initials of their last names (RSA) were used to name the algorithm. 
The RSA algorithm is used for public-key cryptography which utilizes two 
keys, one for encryption and the other for decryption. The RSA algorithm 
retains its popularity due to its simplicity and security. It is implemented 
through the following steps: 

1. Choose two distinct prime numbers p and q which are to be 
kept secret. 

2. Let N = pq. N is public information and will be used as the 
modulus. 

3. Compute ¢(N) = (p- 1)(q- 1). ¢(N) will be kept secret. 
4. Choose an integer e such that 1 < e < ¢( N) and 

gcd( e, ¢( N)) = 1. e is then released to the public. 
5. Find d by solving ed = 1 (mod ¢(N)). In other words, find 

the inverse of e (mod ¢(N)). dis to be kept secret. 

Public: e and N Private: p, q, ¢(N) and d 

As we apply the RSA algorithm it is important to remember that public 
key cryptography must utilize keys that are long enough and random enough 
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so that the possibility of guessing the keys is nearly impossible. Addition­
ally the encryption process must be sophisticated enough to ensure that the 
original message cannot be recovered without utilization of the key. 

An example of this algorithm is displayed through two people, Amy and 
Bill. Amy chooses relatively large primes p and q, computes N which is 
typically 300 or so digits long, computes ¢( N), and chooses an integer e 
such that 1 < e < ¢(N) . She then sends Bill her public key (e , ¢(N)) 
while not worrying if anyone intercepts ( e; ¢( N)). At this point Bill encrypts 
his message1 M by Me (mod N) which we will call L. Bill then sends his 
encrypted message L to Amy who can use d to decrypt the message. Amy 
would do this by raising L to d. That is , Amy would compute Ld (mod N) 
which is congruent to M. 

The decryption algorithm works because Ld = (Me)d - Med (mod N). 
We know that ed = 1 (mod ¢(N)) because e and d are inverses of each 
other. That is , we know that ed = 1 + k¢( N) where k is an integer. So, 
}/Jed = Ml+k¢>(N) = M(NJk) ¢>(N) _ M (mod N) by Euler 's theorem. 

The strength of RSA's security is dependent on the fact that the only way 
to decrypt a message is to find d. To do so, one would either have to guess 
values which could take years, or factor N. By factoring N we acquire p and 
q. We can then use p and q to find ¢(N). Since e is public information and 
we know ¢( N) we can acquire d. The first step in this process is having the 
ability to factor large numbers which we can do by using CFRAC. Once the 
CFRAC technique is mastered, we can utilize factorization of large numbers 
which will allow us to decrypt coded messages. We must begin this process 
by looking at finite continued fractions as they relate to CFRAC. 

1 We are assuming Bill 's message consists of numbers only. If Bill 's message consisted 
of letters , he would be required to first change his letters to numbers. 
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Chapter 3 

Finite Continued Fractions 

The goal of this chapter is to begin our understanding of what a continued 
fraction is. To start, we will look at a definition. 

Definition 3.0.1. A fin ite continued fraction is of the form: 

1 

where a0 , a 1 , ... , anER and all except for possibly ao are positive. The values 
a0 , a 1 , .. . , an are the partial denominators of the fraction. f2} 

An example of a finite continued fraction is 

51 2 1 
19= +~ 

2+! 

Theorem 3.0.1. Any finite rational number can be written as a fin ite con­
tinued fra ction. 

Proof. Let %, where b > 0, be an arbitrary rational number. Then , by 
Euclid 's algorithm we have: 

a baa+ r1 0 < r1 < b 

b r 1a1 + r 2 0 < r2 < r1 

r l r 2a2 + r3 0 < r3 < r2 

rn-2 rn-1an-1 +rn 0 < rn < rn-l 

rn-l rnan + 0 
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The key point here is that since each remainder rk is positive then a1 , a2 , ... , an 

must be positive. We can then manipulate the above equations to look like: 

a r1 1 
(3.0.1) - ao+- ao+T b b 

Tl 

b T? 1 
(3.0.2) a1 +....:::.. a1 +-

r1 rl Tl 

T2 

rl r3 1 
a2+- a2 + 7"2 

r2 r2 
T3 

When looking at the above you may have noticed that we can substitute 
equation 3.0.2 into 3.0.1. This is seen here: 

(3.0.3) 

We can keep this process going by substituting in for r 1 and so on until we 
7"2 

arrive at the following: 

(3.0.4) 

Thus , every rational number, %, can be written as a finite continued fraction. 
D 

The construction of a finite continued fraction is simply an application 
of Euclid 's algorithm seen above. We will illustrate the steps in this process 
with the example 2

5
2
1
3

. The first step is to find a0 . This is found by divid­
ing 223 by 51 and taking the floor of the result , which is 4. Now, we have 
4 + ~i = 4 + k . In the next step we need to find the continued fraction 

19 

expansion for ~~. We continue using the Euclidean algorithm and find that 
a 1 = 2 because 51 = 2 * 19 + 13. Next, we have 19 = 1 * 13 + 6. Therefore, 
a2 = 1. We will continue in this manner until the remainder is equal to 0. 
13 = 2 * 6 + 1 so a3 = 2. 6 = 6 * 1 + 0 which means two things a4 = 6 and 
we are finished with the algorithm due to the remainder equaling 0. Since 
we have found all a i in the continued fraction expansion of 2

5
2
1
3 we can write 
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the following: 

223 1 
- - 4 + ------:;---
51- 2+~ 

+2+T 
0 

(3.0.5) 

The above was a very nice example in that it only took five partial denomi­
nators to write out the continued fraction expansion. This will not always be 
the case which is why one might write the continued fraction in the following 
manner. 

223 51 = [4; 2, 1, 2, 6] (3.0 .6) 

This form of notation is obviously much easier to read and write and will 
as a result , be used quite a bit throughout this paper. 

At this point it might seem that we could start looking at the continued 
fraction factoring algorithm, but we need a bit more information on continued 
fractions before we can do so. Therefore, we will take a look at the definition 
for a convergent. 

Definition 3.0.2. The continued fraction made from [a0 ; a 1 , a 2 , ... , an] by 
cutting off the expansion after the kth partial denominator ak is called the kth 

convergent of the given continued fraction and denoted by Ck; in symbols, 

W e let the zeroth convergent C0 be equal to the number a0 .(2} 

If we go ahead and look at equation 3.0.5 from above, we have 

223 1 
- = 4 + ---=--
51 2+~ 

+ 2+t 

and the 2nd convergent in this case is [4; 2, 1] = 4 + 2~'- = 1r Basically, 
1 

we can think about the convergent of a continued fraction as adding up the 
partial denominators to a certain point. Remember that the kth convergent 
will contain the first k + 1 partial denominators since the continued fraction 
starts with a0 . A convergent can be useful because we can look at how fast a 
certain fraction is zooming in on its actual value. Burton defines the equation 
for finding a certain convergent in the following manner , 

6 



Definition 3.0.3. The kth partial denominator can be defined in terms of Pk 
and qk. 

and in general 

fork= 2, 3, ... , n.{2j 

Po 

P1 

Pk akPk-1 + Pk- 2 

qk akqk-1 + qk-2 

If we go ahead and compute the first few convergence of [a0 ; a1 , ... , an] 
we get 

Co 
ao Po ao =- =-
1 qo 

(3.0.7) 

c1 
1 a1ao + 1 P1 

ao+- = 
al al q1 

(3 .0.8) 

c2 
1 a2(a1ao + 1) + ao P2 

ao + 1 
a2a1 + 1 a1 +- q2 

a2 

(3.0.9) 

Theorem 3.0.2. Ck = ~ for 0 :::; k :::; n. 

Proof. We have already seen that ck = Pk for k = 0, 1 and 2 in equations 
qk 

3.0.7, 3.0.8 , and 3.0.9. Now, let us assume that the above is true fork= m 
where 2 < m < n. That is , we are assuming that 

Cm = Pm = amPm-1 + Pm-2 

qm amqm- 1 + qm-2 
(3 .0.10) 

and would like to prove that Cm+l = Pm+ l. We know that Cm+l is equal to 
qm+ I 

(3.0.11) 

which if written in the shorter notation is equal to [a0 ; a1 , ... , am, am+ 1]. The 
key thing to notice is that Cm+l is also equal to [a0 ; a1, ... , am+ - 1

-]. We 
am+ I 

can write Cm+1 in this way because we are just turning two t erms into one. 
'vVe have not changed the equation at all. All we have done is changed the 
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number of terms from m + 2 to m + 1. At this point we will go ahead and 
rewrite a few things we know. 

and 

1 
Cm+1 = [a0; a1 , ... , am+ --] 

am+1 

Now, it is important to understand that Pm-1, Pm-2 , qm-1 and qm-2 are inde­
pendent of the last term in the continued fraction. If you do not see why look 
back at how Pk and qk are defined in Definition 3.0.3. Since Cm and Cm+1 are 
exactly the same up until the final term, then the equation amPm- 1 !Pm-2 will 

arnqm-1 qm-2 

be exactly the same except for the term am 1 . The last term in the continued 
fraction for Cm+1 is (am+ - 1-). Therefore 

am+1 

Thus, by induction 

(am+ -a 
1 

)Pm-1 + Pm-2 
m+ 1 

(am+ - 1-)qm-1 + qm-2 
arn+l 

+ Pm-1 + amPm-1 -- Pm-2 
a1n+l 

+ qm-1 + amqm-1 -a- qm-2 
m+ 1 

+ + P m-1 
amPm-1 Pm-2 ~ 

+ + qrn-1 
amqm-1 qm-2 am+1 

am+1Pm + Pm-1 

am+1qm + qm-1 

V k s.t . 0 :::; k :::; n 

1am is the final term in the continued fraction . 

8 

(3.0.12) 
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Now that we have explored some of the basics of finite continued frac­
tions it is time to go ahead and take a look at infinite continued fractions. 
The reason we need to be extremely interested in infinite continued frac­
tions is because we will be dealing with irrational numbers in the CFRAC2 

algorithm. This means that we will not be using finite continued fractions 
directly since they represent rational numbers, but we will make use of them 
in understanding infinite continued fractions. 

2The proof of this will be seen in the infinite continued fractions chapter. 
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Chapter 4 

Infinite Continued Fractions 

Infinite continued fractions are very similar to finite continued fractions in 
that they are written and can be represented almost the same. We will this 
through the following definitions from Burton. 

Definition 4.0.4. An infinite simple continued fraction is an expression of 
the form 

where a0 , a1 , a2 , ... is an infinite sequence of integers, all positive except for 
possibly a0 . {2) 

Definition 4.0.5. An infinite simple continued fraction can be written as 

k 2 2 [2] 

As can be seen, infinite continued fractions contain a difference from finite 
continued fractions , and that is they go on forever. With a little bit more 
effort it is also possible to show that the kth convergent of an infinite continued 
fraction is found in the same manner as in finite continued fractions. This 
is because we are only looking at the infinite continued fraction up to the 
kth convergent , that is, we are now looking at a finite number of values. 
Therefore we can apply the same equations found for the kth convergent of 
a finite continued fraction , so we have: 

Pk akPk-l + Pk-2 

qk akqk-l + qk-2 
(4.0.1) 

We will now look at a few theorems which will help us prove a very important 
concept later. 
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Theorem 4.0.3. For Pk, qk defined as follows 

Pk = akPk-1 + Pk-2 

qk = akqk-1 + qk-2 

we have the following 

Proof. For k = 1 

fork?:: 1 

(a1ao + 1)(1) - (a1ao) 

1 

( -1)0 

Now assume that pjqj_1 - pj_1qj = ( -1)J- 1 holds. Then 

by substituting in for Pj+l and qJ+1 from equation 4.0.1. Thus, 

(aJ+1Pjqj + Pj-1qj) - (aJ+1Pjqj + pjqj-1) 

(aJ+1Pjqj- aJ+1Pjqj) + (Pj-1qj- pjqj-1) 

(Pj-1qj)- (pjqj-1) 

-( -1)j-1 by our inductive hypothesis 

( -1)j 

(4.0.2) 

D 

Theorem 4.0.4. Pj and qj do not have any facto rs in common. That is, 
aiPi- 1 +PJ- 2 is in reduced form. 
ajqj-1 +qj-2 

Proof. Assume that Pj and qj do have factors in common, that is , gcd(pj , qj) = 
k , where k > 1. If this were true, then (pj_ 1qj) - (pjqj_l) is divisible by 
k. This of course cannot be true because we have already proved that 
(Pj-1qj)- (pjqj_l) = (-1)J. Since (-1)J is only divisible by 1 or -1 and 
not k > 1 then gcd(pj , qj) must equal 1. Thus, by contradiction, Pj and qj 
do not have any factors in common. D 

Notice that in equation 4.0.1 if we let k = j and divide both sides by 
qjqj-1 we have 

Pj-1 _ Pj ( -1)J 

qj-1 qj qjqj-1 
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which is equal to 

P] P]-1 
----

(-1)j-1 

qjqj-1 
(4.0.3) 

It is apparent that the convergent of a particular continued fraction will 
alternate between being an over-approximation and an under approximation 
and will converge to some value. The alternating portion is due to ( -1 )J - 1 . 

As far as converging to some value , we need to recall that the convergents 
are an approximation to the actual value of whatever we are approximating, 
say x. Since each convergent is an approximation of x and each convergent 
alternates between being an over-approximation and an under approximation 
then x will lie between successive convergents. As far as converging to some 
value, we know that qjqj_ 1 will increase as j increases due to qj = ajqj-l +qj_2 

where aj , qj > 0 V j > 0. So, (-I)j-
1 

will converge to 0 as qjqj_ 1 becomes 
Q; Q] -1 

large enough meaning that the difference between two successive convergents 
is essentially 0. If the difference between successive convergents is essentially 
0 then we know the results of these specific convergents will be equal to x. 

At this point we are only missing one theorem to be able to prove the 
most important concept in this paper. That theorem was briefly mentioned 
at the end of chapter 3. 

Theorem 4.0.5. Infinite continued fractions represent irrational numbers . 

Proof. Suppose that 

and 

vVe have already seen that the value of x lies between two successive conver­
gents, Cn and C11+1 , and that the absolute value of the difference between 
two successive convergents is equal to - 1

- so we have 
QnQn-1 

1 
0 < lx- Cnl < ICn+1 - Cnl = --

qnqn+1 

The reason we know jx-Cnl < ICn+1 -Cnl is because x lies between Cn+l and 
Cn, therefore the distance between x and Cn will be less than the distance 
between Cn+1 and C11 • 
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If we assume that x is a rational number, then it can be written as ~, meaning 
that we have 

I

a Pnl 1 0< --- <---
b Qn qnqn+1 

Now we will multiply by the common denominator between fl:.b and Pn, bqn. 
qn 

b 
o < 1 aqn - bpn I < -

Qn+1 

At this point we have our contradiction because if you recall Qn+1 mcreases 
without an upper bound so if n is chosen to be large enough then 

which implies that 

b < Qn+1 

b 
-<1 
qn+1 

meaning that , given our bounds, we have 

( 4.0.4) 

(4.0.5) 

But this cannot be true because this says there exists a positive integer 
greater than 0 and less than 1. Thus, x must be an irrational number. 0 

Theorem 4.0.6. If we are trying to approximate a real number, x , where 
x > 1 and the convergents are of the form PJ then lp

1
2

- x 2q
1
2 l < 2x. 

qJ 

Proof. We have already seen that the convergents alternate above and below 
the actual value in equation 4.0.3, meaning that our number x will be between 
!!1. and Pi+ l. We also know that the absolute value of the difference between 
q j qi+ l 

these two convergents is - 1
- for any value of j. So, 

qjqj+l 

p2 
21 J 21 q --x 
J q} 

p2 
q2lx2 - _]_ 

J qj 
p p 

q]lx- _]_llx +_]_I 
qj Qj 

The next step requires us to remember that the absolute value of the differ­
ence between two successive convergents is - 1

-. The number we are trying 
qjqj+ l 
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to approximate, x, is somewhere between these convergents. Therefore, the 
absolute value of the difference between x and one of these convergents is go­
ing to be less than - 1

-. Furthermore, PJ is going to be less than x + - 1
-. 

qjqj+l qj qjqj+l 

The reason is because PJ = x ± lx- PJ since lx- PJ is the difference between 
qj qj qj 

x and PJ . The ± sign is included because we are unsure as to whether or not 
qj 

~; is an under or over approximation. In this case we will assume that we 

are dealing with an over approximation. We can now substitute - 1
- in for 

qjqj+l 

ix - ~; I which results in the following , 

At this point we can see that if ~; was instead an under-approximation , 

then the result would be qJ2 
-

1
- (x + (x - - 1

-)) which is still less than 
qjqJ+l qjqJ+l 

q2 
-

1
- ( x + ( x + - 1

-)) We can now combine our x terms together to j qjqJ+l qjqJ+l . 

obtain , 

Next we will subtract 2x from both sides of the equation and factor out 2x 
from the right side of the equation, 

Since x > 1 we can remove 2x from the denominator of the last term resulting 
111 

( 
q 1 ) 2x -1 + _ J_ + 

2 qj+l 2x qj+l 

In this next step we will be making the assertion that qj + 1 ~ qj+1 . This 
is true because qj+ 1 = aj+lQj + Qj- 1 where Qj-l is a positive integer. So, we 
have 
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( 
q + 1) 2x -1 + _J __ 

Qj+l 

If we add 2x to both sides we have, 

< 2x (-1 + qj+l) 
qj+l 

2x (0) 
0 

(4.0.6) 

0 

In the CFRAC algorithm we will be looking at factoring a number n by 
finding the continued fraction expansion of fo. Therefore, we will continue 
by showing that theorem 4.0.6 holds true when x = fo. 

Theorem 4.0. 7. Suppose n is a positive integer which is not a perfect square 
with convergent~~. Then PJ > 2fo (mod n). 

Proof. First, we apply theorem 4.0.6 and replace x by fo. 

by removing the absolute value sign we have 

Since we are reducing (mod n) we have 

-2vn < P] < 2vn (mod n) (4.0.7) 

D 

This theorem is one of the reasons why the CFRAC algorithm works. 
We will see why later, but for now we will begin looking at some factoring 
algorithms. 
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Chapter 5 

Factoring Algorithms 

Before we start looking at the CFRAC algorithm, it is definitely worth men­
tioning a couple of algorithms that was a major contribution to its creation. 
The first algorithm is credited to Pierre de Fermat. 

5.1 Fermat's Algorithm 

The basic idea of Fermat 's Algorithm is to factor n by trying to find an x 
and y such that 

n = x 2 
- y 2 = ( x - y) ( x + y) (5 .1.1 ) 

To do this, we let x be the ceiling of fo. Then, compute x2 
- n. If the 

result is a perfect square then we are done. If not , then we increment x by 1 
until x2 

- n is a perfect square. The reason we start at the ceiling of fo is 
because if we did not then x2

- n would be a negative number. An example 
illustrating Fermat 's Algorithm is provided. In this example, n = 319, so we 
will start by letting x = 18 since 18 is the next integer greater than v'319. If 
18 does not provide a solution t hen we increase 18 by 1 and continue doing 
so until we obtain a perfect square. Thus, 

182
- 319 

192
- 319 

202
- 319 

5 

41 

81 

(5 .1.2) 

(5.1.3) 

(5.1.4) 

At this point we are done because 81 is a perfect square, the square root 
being equal to 9. Now we will substitute these values into (x - y) (x + y) to 
find the factors of 319. We have x = 20 and y = 9 so (20- 9)(20 + 9) = 
(11)(29) = 319. This algorithm works part icularly well when t he factors 
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of n are close to fo. This is a problem because of how the word "close" 
might mean within ±100 of fo. If we were dealing with a 50 digit number 
this algorithm would then not be very helpful. So, a mathematician named 
Maurice Kraitchik decided to improve Fermat's Algorithm. 

5.2 Kraitchik's Improvement 

Maurice Kraitchik felt that a lot of time could be saved if instead of looking 
for an x and y that solves x2 

- y2 = n, we look for a "random" x and y that 
solves x2

- y 2 (mod n).[1] So, we have 

(5.2.5) 

This implies that n will divide x2 - y 2 which is equal to (x-y)(x+y) meaning 
that n and x 2 

- y 2 share a common factor. To find an x and y that satisfy 
equation 5.2 .5, we will try and solve the equation x2 (mod n) = y2

. That is, 
we will be plugging in values for x, reducing (mod n), and hope that the 
result is a perfect square. As in Fermat's Algorithm, we will be letting x 
start at the ceiling of fo. So, we will now take a look at an example. 

If we are trying to factor the number 2911 we start at the ceiling of v'29IT 
which is 54. If 542 (mod 2911) does not result in a perfect square then we 
proceed by increasing x by 1 until we arrive at a perfect square. 

X x2 (mod 2911) Perfect Square? 
54 5 No 
55 114 No 
56 225 Yes 

Since 562 (mod 2911) is a perfect square we are finished. We have x =56 
and y = 15 thus 2911 divides (56 - 15)(56 + 15). We then compute the 
gcd(56 -15, 2911) = 41. Now that we have seen an improvement on Fermat's 
factorization technique, we will proceed by looking at an improvement on 
Kraitchik's technique. This improvement is of course the continued fraction 
factoring algorithm, or CFRAC. 

5.3 CFRAC Algorithm 

The CFRAC algorithm was developed in 1975 by Michael Morrison and John 
Brillhart. CFRAC was the first known algorithm to successfully factor the 
seventh Fermat number which is 227 + 1. The algorithm uses infinite continued 
fractions along with some other techniques to factor integers up to fifty digits 
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long. We start by finding the continued fraction expansion of vfii where n is 
the number we are trying to factor. 

Notice that we could have expanded vfii using shorthand notation instead, 
that is 

If you recall from definition 3.0.1, the ai terms are called partial denomina­
tors. We will also need to remember that definition 3.0.3 defines Pk as the 
numerator of the k-th convergent and that Pk is dependent upon ak, Pk-l 
and Pk-2. These Pk terms represent possible values for x. Therefore, we can 
square these terms, p~ while reducing (mod n) to represent possible values 
for x 2

. 

So, once we have computed the continued fraction expansion of vfii we 
will be able to create a table of ak, Pk and p~ (mod n) terms. Next, we 
will turn our attention to the p~ terms and for each k we will determine the 
prime factorization of p~. Once each p~ term is factored we want to look 
for common prime factors. That is not to say that the prime factors have 
to be exactly the same, but that we want to find integers that appear more 
than once throughout our list of prime factors. If an integer appears only 
once throughout the list of prime factors, but it is raised to an even power 
then this number will be included. Once we have identified the numbers 
that appear more than once, or are raised to an even power, then we will 
create a set which includes these integers. We will call this set B. Before 
we go further in the algorithm, an example of how to find B is shown. For 
this example, assume the four b~ terms and their prime factorizations are as 
follows: 

bi 10 = 2. 5 

b~ 6 = 2. 3 

b~ 20 = 22
. 5 

b~ 35 = 5. 7 

By observation it can be seen that 2 and 5 appear more than once in the 
above prime factorizations. Since 3 and 7 only appear once and are not raised 
to an even power they will not be included in B. Therefore, in this example, 

B = {2, 5} (5.3.6) 
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The set B tells us what prime factorizations we will be paying attention to. 
If a prime factorization contains at least one number that does not appear 
in B then that p~ term will be ignored. In the above example p~ and p~ will 
be ignored since these prime factors contain 3 and 7 respectively which are 
not in the set B. 

Now that we have an understanding of what the set B consists of, we 
can continue on in the algorithm. The next step is to convert each prime 
factorization that we are not ignoring into a vector form which we will call 
vk. If we look back to our example and ignore k = 2 and k = 4, the vector 
form is as follows: 

Pi 10 = 21 ·51 = (1 , 1) 

p~ 20 = 22 
0 51 = (2, 1) 

Again , by observation we can see that the vector form is recording the expo­
nents of each prime in the corresponding prime factorization. When writing 
out the set B, we write the integers in ascending order. These vectors will 
be needed in the next part of the algorithm. 

The next part requires the addition of two or more vectors, vk, to equal the 
zero vector modulus two. That is, we want to add two or more vectors so that 
each term in the resulting vector is an even number. If this can be achieved 
then we will move on to the next step. If not, then more ak, Pk, and p~ 
terms will need to be calculated. One thing to note is that if we do calculate 
more ak , Pk and p~ terms then we will want to reevaluate B because with 
the addition of more prime factorizations comes the possibility of increasing 
the size of B. So, say vh + Vm (mod 2) = 0 vector for some h, m 2: 0, then 
we will proceed by multiplying Ph and Pm which again represents x. Next 
we will multiply the prime factorizations corresponding to h and m. Since 
vh + Vm (mod 2) results in the zero vector, we know that the product of 
the prime factorizations of h and m will only contain even exponents. The 
multiplication of the prime factorizations represent possible values for y 2

. 

The next step is to factor out a square term, which we will be able to do 
since we only have even exponents. Thus, we can write y 2 as an integer 
squared meaning that y is represented as the integer. 

If x =f. ±y (mod n) then gcd(x + y, n) is a nontrivial factor of n and if 
x = ±y (mod n) then a new set of vectors will need to be used. The above 
is quite a bit to take in, so we will now take a look at an example. In this 
example we will be trying to factoring n = 8131. Remember that we would 
normally be trying to factor a fifty or so digit integer with this algorithm so 
a four digit integer is relatively small. 

We begin by finding the continued fraction expansion of yl8i31 up to five 
terms. 
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(5.3.7) 

Next , we will create a table with five iterations of k. 

k 0 1 2 3 4 
ak 90 5 1 4 3 

Pk (mod 8131) 90 451 541 2615 255 
2 

Pk (mod 8131) -31 126 -35 54 -23 

Now we want to look at the last row in the table and find the prime factor­
ization for each value of k . 

k 2 
Pk (mod 8131) Prime Factorization 

0 -31 (-1)(31) 
1 126 (2)(3) 2 (7) 
2 -35 ( -1 )(5)(7) 
3 54 (2)(3) 3 

4 -23 ( -1)(23) 

At first glance we see that -1 , 2, 3 and 7 appear more t han once. There­
fore we will set B = -1 , 2, 3, 7. This means we will be ignoring k = 0, 2, and 
4 because there exist primes in these prime factorizations that do not appear 
in B. So, we will go ahead and look at the vector form for k = 1 and 3. The 
vector forms for k = 1 and 3 are 

(0, 1, 2, 1) and (0, 1, 3, 0) respectively (5.3.8) 

If we add the two vectors in equation 5.3.8 and reduce the resulting vector 
modulus two the resulting vector is 

(0, 1, 2, 1) + (0, 1, 3, 0) _ (0 , 0, 1, 1) (mod 2) 

Since this is not the zero vector , we must go through more iterations of k. 
That is, we will cont inue by finding more partial denominators of J8l31 
and then create a larger table . In this case we will find two more partial 
denominators, meaning our table will contain two more iterations of k. 

v8l31 ~ 90 + ---1~-
5 + 1+ 1 

Therefore, our table now consists of 

20 

4+~ 
3+ :;-;-r 

7+ r 

(5.3.9) 



k 0 1 2 3 4 5 6 
ak 90 5 1 4 3 7 1 

Pk (mod 8131) 90 451 541 2615 255 4400 4655 
2 

Pk (mod 8131) -31 126 -35 54 -23 89 -90 

and the corresponding prime factorization are as follows 

k 2 
Pk (mod 8131) Prime Factorization 

0 -31 (-1)(31) 
1 126 (2)(3) 2 (7) 
2 -35 (-1)(5)(7) 
3 54 (2)(3) 3 

4 -23 (-1)(23) 
5 89 89 
6 -90 ( -1)(2)(3) 2 (5) 

At this point we want to reevaluate our set B. It is apparent that 
B = { -1 , 2, 3, 5, 7} because of the addition of the prime 5 in k = 6 prime 
factorization. Thus, we will be ignoring k = 0, 4, 5, again because these prime 
factorizations contain primes that are not in the set B. The vector form for 
k = 1, 2, 3, 6 is as follows 

(0, 1,2,0, 1) , (1 , 0, 0, 1, 1) , (0, 1, 3, 0,0) and (1 , 1, 2, 1, 0) (5.3.10) 

Our goal now is to see if we can add any number of these vectors, while only 
using each vector once, together to obtain the zero vector. It may be helpful 
to reduce the vectors modulus 2 now. If we do so we obtain 

(0 , 1, 0, 0, 1), (1, 0, 0, 1, 1), (0, 1, 1, 0, 0) and (1, 1, 0, 1, 0) (mod 2) 

Notice that the addition of v1 , v2 , and v6 reduced modulus 2 provides 

(0 , 1, 0, 0, 1) + (1, 0, 0, 1, 1) + (1, 1, 0, 1, 0) = (0, 0, 0, 0, 0) (mod 2) 

Now that we have found a combination of vectors that added together equal 
the zero vector when reduced modulus 2 we can calculate x andy s.t. x 2 = 
y2 (mod n). Remember , x is equal to the product of the Pk (mod n) that 
correspond to the vectors used in obtaining the zero vector. Since we used 
the vectors corresponding to k = 1, 2, and 6 we will be multiplying p1 , p2 , 

and P6. The result is: 

x = (451)(541)(4655) = 7501 (mod 8131) 
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Next we want to compute y2
. We do this by multiplying the prime fac­

torizations corresponding to k = 1, 2, and 6. 

y 2 [(2)(3) 2 (7)] . [( -1)(5)(7)]. [( -1)(2)(3) 2 (5)] 

[( -1) 2 (2) 2 (3) 4 (5?(7) 2
] 

[ (2) 2 (3 )4 ( 5 )2 (7) 2] 

[(2)(3?(5)(7)] 2 

This then implies that y = [(2)(3) 2 (5)(7)] = 630. We now want to check 
to see if x _ y (mod 8131). If this condition is true, then we need to ei­
ther add different vectors together to acquire the zero vector or run through 
more iterations of k. If the condition is false, then we are finished and have 
successfully factored 8131. In this case, 

7501 = ±630 (mod 8131) (5.3.11) 

as seen here 

7501- 8131 = -630 (mod 8131) (5.3.12) 

So, we must decide whether or not to look for more combinations of vectors 
or to run through more iterations of k. It is evident that we must run through 
more iterations of k because we cannot create another combination of vectors 
to obtain the zero vector. The proof of this is based on logic. We are looking 
at the vectors 

(0, 1, 2, 0, 1), (1,0,0, 1, 1) , (0, 1,3, 0, 0) , (1,1,2, 1,0) (5.3.13) 

Notice that if we reduce these vectors modulus two then we have 

(0 , 1, 0, 0, 1) , (1, 0, 0, 1, 1), (0, 1, 1, 0, 0) , (1, 1, 0, 1, 0) (5.3.14) 

Because there exists a 1 in the third position of the third vector while non 
of the other vectors contain a 1 in the third position it is clear that the third 
vector will not be used. We already know that the first , second, and fourth 
vectors achieve our goal, but we want to show that there are no others. Thus 
we need to explain why the addition of the first and second , first and fourth, 
and second and fourth vectors do not equal the zero vector. We can actually 
do better than this and explain why two vectors when reduced modulus 
two must be the exact same vector in order to obtain the zero vector. The 
reasoning is simply because all of the possible outcomes when adding the 
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same position of two vectors together are 

0 + 0 (mod 2) = 0 

1 + 1 (mod 2) = 0 

1+0 (mod 2) = 1 

0+1 (mod 2) = 1 

So , the only time a zero is the result is when you are adding 0 + 0 or 
1 + 1 which implies the two vectors are exactly the same after reducing them 
modulus 2. Therefore, since none of the above vectors are exactly the same 
reduced modulus 2, there will not be any other combinations of vectors which 
lead to the desired result. 

The next two partial denominators of V8f3I are shown below. 

V8I3I ~ 90 + ---1
--:---

5 + -1+----=-,----
4+ 

3+ 
7+~ 

1 + -;--;-T 
l+g 

(5.3.15) 

Based on the expansion above, we have the next two iterations of k as seen 
here, 

k 0 1 2 3 4 5 6 7 8 
ak 90 5 1 4 3 7 1 1 8 

Pk (mod 8131) 90 451 541 2615 255 4400 4655 924 3916 

p~ (mod 8131) -31 126 -35 54 -23 89 -90 21 -10 

As we calculate more values of k we are increasing our chances of obtaining 
a combination of vectors that result in the zero vector. At the same time, 
we are also making the process more difficult in the sense that the set B 
could become much larger, therefore causing the vectors to become longer. 
Regardless, we must find the prime factorizations for k = 7 and 8 and check 
to see if our set B has changed. 

k 2 
Pk (mod 8131) Prime Factorization 

0 -31 (-1)(31) 
1 126 (2)(3)2(7) 
2 -35 ( -1)(5)(7) 
3 54 (2)(3) 3 

4 -23 ( -1)(23) 
5 89 89 
6 -90 ( -1)(2)(3)2(5) 
7 21 (3)(7) 
8 -10 ( -1)(2)(5) 
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You will notice that B has not changed since the prime factorization for 
k = 7 and 8 have not introduced any primes that are not already included 
in B . So, we still have B = { -1 , 2, 3, 5, 7}. The vector form of t he first nine 
iterations of k not including k = 0, 4, and 5 are as follows 1 . 

k 2 
Pk (mod 8131) Vector Form 

1 126 (0, 1, 2, 0, 1) 
2 -35 (1 , 0, 0, 1, 1) 
3 54 (0, 1,3, 0,0) 
6 -90 (1 , 1,2, 1, 0) 
7 21 (0 , 0, 1, 0, 1) 
8 -10 (1, 1, 0, 1, 0) 

It is evident that v6 + v8 (mod 2) = zero vector since v6 and v8 are exactly 
the same vector when reduced modulus two. As before, we will proceed by 
calculat ing x 

x- (4655)(3916) (mod 8131) = 7409 (mod 8131) 

and now y2 

y2 [( -1) (2)(3?(5)]. [( -1)(2)(5)] 

[ ( -1 )2(2)2(3)2(5)2] 

[(2)2(3)2(5)2] 

[(2)(3)(5)] 2 

In this case, we have y = 30. Since 7409 =/= ±30 (mod 8131) we are finished. 
The factors of 8131 are found by evaluating one last step 

gcd(7409 ± 30, 8131) = 47 or 173 (5 .3.16) 

We have successfully factored 8131 into ( 47) (173). 

1The prime factorizations of k = 0, 4, and 5 contain primes that do not appear in B. 
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Chapter 6 

CFRAC - A Deeper Look 

Now that we are able to implement the algorithm it is important to under­
stand why it works. Recall that we are trying to solve x2 - y2 (mod n) where 
x =1- y (mod n). In the CFRAC algorithm we are letting the numerator of the 
convergents represent values for x. The reason we are using the numerator 
of the convergents is because of theorem 4.0. 7. This theorem says that the 
numerator of the convergents squared is bounded. That is, the numerator of 
the convergents squared (mod n) is going to be greater than - 2fo and less 
than 2fo. This is important because this will in turn create smaller prime 
factorizations. If we did not have this bound then we might be having to 
try to find the prime factorization of a number that is 49 digits long. This, 
of course, is a problem because it is very difficult to factor numbers of this 
length. 

So, we know that the numerators of the convergents squared are bounded 
which helps when finding the prime factorizations. We also know that these 
values are represented by x2

. What we will want to see next is that x 2 = y 2 

all the time in this algorithm. This is actually pretty obvious when we look at 
how x 2 and y 2 are determined. x2 is determined by multiplying the numerator 
of the convergents squared that correspond to the vectors, vk, that were used 
in obtaining the zero vector. y 2 is determined by multiplying the prime 
factorizations of the Pk terms. Thus, the CFRAC algorithm is generating 
numbers such that x2 = y2 (mod n) . This is extremely helpful in that the 
algorithm is generating values of x where x2 

- y 2
. The difficult part in the 

algorithm is finding a combination of vectors which results in the zero vector 
mod 2. Although difficult , this part of the algorithm is very important as we 
have seen. The reason is because we want to be able to factor a square term 
out of the product of the prime factorizations so that we have something of 
the form t 2 , where t is the product of the prime factorizations after factoring 
a square term out. vVe can then let y = t. The last step is to make sure that 
x =1- y (mod n) . If so then we are finished and have successfully factored n. 
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Chapter 7 

Conclusion 

The continued fraction factoring algorithm is a very powerful tool in factoring 
large numbers. Since this algorithm can be used to decrypt messages that 
were encoded using RSA 1 it may seem peculiar as to why it would be legal 
to implement these kinds of algorithms. One possible reason is because the 
developers of RSA and other security algorithms want to be confident that 
the information they are protecting is not at risk. If it so happens that 
someone is able to break a code, they are helping the security companies 
by letting them know that they need to upgrade their algorithms. We can 
hope that the person that breaks the code will inform the security companies 
rather than try to prosper from say, someone's bank account. This is due 
to the fact that informing the companies is legal and is usually rewarded 
with some kind of prize. This is the reason why RSA is constantly increasing 
the length of their numbers as new factoring algorithms are developed. So, 
it may seem that the continued fraction factoring algorithm is somewhat 
useless these days because RSA is now implementing numbers around 300 or 
even 600 digits. This is not entirely true because faster and better algorithms 
have been developed based on the idea of the CFRAC algorithm. It is also 
a very fun algorithm to use when you have some free time and would like to 
factor an integer that is less than fifty digits long. 

1 We are assuming that the RSA number is around fifty digits which is not the case 
these days. 
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