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1 Introduction
Throughout my time at the University of Redlands, I have been drawn towards 
areas of math that are abstract. I enjoy knowing that an equation made up 
of completely abstract ideas can can be used to solve real world problems in a 
variety of subjects other than math.

This paper covers Burnside’s Lemma including a proof and a variety of 
examples. It culminates with counting the number of unique Escher paintings 
that can be made. Also within this paper are discussion and proofs about both 
P61ia Enumeration and Sylow p-subgroups.

2 Example
Imagine that you wanted to paint the sides of a cube and you had three options 
of colors to use for each side. Initially one would think that, because there 
are six sides with three different options for colors there are 36 = 729 ways 
to accomplish this task. This, however, is not the number of unique ways to 
accomplish this task. After noticing that a cube can be rotated and leave you 
with the same coloring of sides, you can see that the number of unique ways 
to color the cube is less than 729. This is where Burnside’s Lemma comes in 
handy, because like George Polya (1887-1985) said, “Mathematics consists of 
proving the most obvious thing in the least obvious wayH(N. Rose).m
3 History
In order to solve problems like the previous one and more complicated prob­
lems, a sophisticated approach is needed. In 1887, Georg Frobenius was able 
to provide the mathemalical community with such an approach. His lemma, 
however, was not widely known until William Burnside proved it in 1911 in a 
book on group theory. Later on, in 1937, another mathematician, Polya, used 
this lemma to solve combinatorial problems, which is now the main use of the 
lemma.
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4 Permutations
In order to work towards the statement and proof of Burnside’s Lemma, def­
initions for various concepts must first be discussed. These definitions will be 
used in the proofs that axe to come. There is also a lemma and a theorem about 
permutations that will be utilized later in the paper.

Definition
A bijection is a function from a set >1 to a set B that is one-to-one and onto B. 
Another definition would be that the the function from A to B has an inverse.

Definition
A permutation of a set i4 is a function from A io A that is bijective. A 
permutation group of a set >4 is a set of permutations of A that forms a 
group under function composition.

Definition
The family of all permutations of a set X, denoted by 5^, is called the sym­
metric group on X. When X = {1,2, Sx is usually denoted by Sn、and 
it is called the symmetric group on n letters.

The following Lemma, Theorem and proofs are adapted from Advanced Modem 
Algebra by Joseph J. Rotman.

Lemma 1.
//7, a € Sn, then orfoT1 has the same cycle structure as 7. More specifically if 
the disjoint cycle decomposition of y is

7 = P1P2"私2：.)…Pt、

then o-7Qr-1 is the permutation that is obtained from 7 by applying a to the 
symbols in the cycles of 7.

Proof. Let ft be a cycle and 汉 be the cycle when a is applied to each element 
in Pi，Let a =々W.(a(ii)a(i2)…)…所.If <r{i) = i, then it can be seen that a 
fixes cv(i). We also know that cryoT1 fixes or(i), because

Q7a-1(a(i)) = 07(1) = a(t)

The last step is true, because we assumed that 7 = (i)=> 
means that a fixes a(i).

Now assume that 7 does not fix i and instead moves i\ to 12. Thus 7(*1) = *2- 
Thus in the complete factorization of 7, there must be a cycle of the form 

By the definition of <7, we know that one of the cycles is of the form 
(W…)，where a(ii) = k and 0(12) = L Thus since 7(11) = a : k l.

(a(i)), whicha =

3



On the other hand, rrya—1 : fe ii -> t2 -> i. Thus we now know that 
crya_1(A;) = <r(k). Therefore, in general everything of the form k = a(ii) 
agreed upon by both a and aya"~l. We know that a is surjective and thus every 
k is of the form cv(ii). Thus a = cryoT1.

are

□
Theorem 1.
Permutations 7 and a in Sn have the same cycle structure if and only if there 
exists an a e Sn such that a aya~l.

Proof. 4= Proved in the previous lemma.
=» Let the complete factorizations of 7 and a be as they are written below:

Thus we will create a downward function a : 7 <7 (i.e. a(ii) = k and
0(1.2) = 0 and naming the function cv. It can be seen that o is a permutation, 
because there was no repetition of elements when 7 was factorized. Therefore 
by the previous lemma, a = cryo：-1. □

5 Group Actions
Groups actions are a fundamental part of the study of algebra and will be used 
throughout this paper to help aid in definitions and proofs. The contents of this 
section can be attributed to Abstract Algebra by Dummit and Foote.

Definition
A group action of a group G on a set /l is a map defined by (gt a) g a € A 
for all (g, a) G G x A tliat satisfies the following properties:

1. Q\ - (92 • a)=(扪P2). a, for all gj,(/2 € G and a€ A, and

a, for all a € where e is the identity element of G.

Now a few examples will be presented in order to insure that the idea of a 
group action is understood and to work with using them inside a proof. Prom 
now on we will be using S instead of A to denote the set that is getting acted

2. e ■ a =

on.

Example 1.

Let G be the symmetric group SA acting on the set S = {1,2,3,4} by permuting 
its elements. In general, if <r G G = S4, then a • i = a(i) Vi e S = {1,2,3,4}. 
This defines a map from G x 5 to S. The the following example will illustrate 
the action of G on 5:

• (132)(12) -2 = 3

• (1234)-2 = 3

4
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• (12)(34) 1 = 2

• (12)(3)(4) .3 = 3

•⑴⑺⑶⑷3 = 3
To prove this is a group action, properties 1 and 2 from the definition of a group 
action must be satisfied.

• Let <t, r e G and i 6 S. Then
cr • (r • i) •r(i)=a

a(r(i))
(<TOT")(i)

(a o r) -i

• Let i € 5 and notice that (1) is the identity in the symmetric group. Then

Example 2.
Every group G acts on itself, 5 = G, by conjugation, which for each p € C, is 
defined \fs E S by g • s = gsg-1. This defines a map from G x G to G. Again, 
the two properties of a group action must be satisfied.

• Let gt /, .s € G. Then
9 (f s)=g- (/5/-I)

= 9{fsrl)g~l 
=i9f)s{rl9~l) 
=(5/)W)_1 
=(p/) - s

• Since G is a group, it has an identity element e such that 
Vx € G. Thus using the group action, for any element s € G,

ex = x — xe
fi • .s =

ese =s.

The definition of a group action leads to a few observations about the in­
teractions between the group G acting on a set >4 that will be helpful in the 
following proofs and observations. In fact these observations can even be used 
as the definition of a group action.
Lemma
For each fixed ^ € G we get a map ag defined by

:A A.
= ga.

Two important results that will be proven:
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1. for each fixed g e G, ag is sl permutation of A, and

2. the map from G to SA defined by 5 •-> is a homomorphism.

Proof, (of 1) In order to see that <rg is a permutation of A, it suffices to show 
that the map from A to A has a two-sided inverse. In fact, it will be shown that 
the map g9-\ is the two sided inverse of og. For all a € i4

(a分-! O <7,)(0) = <7g-i(<rg(a))

= ' {9'0.)
={9^9)- 
=1 • a

a

=a

This shows that (ag-\ o ag)(a) = a, Va 6 i4 and thus is the identity map from 
A to A. Similarly (ag oas-i)(a) = a, Va 6 A. Therefore crg-i is the two-sided 
inverse of ag and thus ag is a permutation of A. □

Proof, (of 2) Let ^ : G -> be the map defined by 6(g) = ag. In order for 0 to 
be a homomorphism, it needs to satisfy 9(g\g2) — 0(gi)o9(g2) for all 91,92 € G. 
This is true if and only if 设(51 仍)(a) and (设(pi) o沒(仍))(a) are equal for every 
element a ^ A. For all a 6 ^4

=(9i92)-a 
= 9i - (^2 • a)
= %i(ff仍⑷）
=(%i)o%2))(a)

This shows that 0(gig2)(a) = 0(g\) o0(g2)(a) for every element a e A and thus 
d is a homomorphism. □

6 Orbit, Stabilizer, and Fixed Set
We will now look at a few other definitions that will be useful along with the 
properties of group actions. These definitions and properties were found in 
Contemporary Abstract Algebra by Gallian.

Definition
Let G be a group of permutations of a set 5. For each i e S, let the orbit of i 
under G be

orbG(i) = {9 - i\9 € G)

6



Definition
Let G be a group of permutations of a set S. For each i in 5, let the stabilizer 
of z in C7 be

stabc(i) = {ff € G\g -i = i}

Definition
Let G be a group of permutations of a set S. For each g € G the fixed set of
9 is

Kg) = {i e % ■ i = i}

Each of these three definitions will be illustrated in the following example.

Example 3.

These concepts are easy to see in the following example. Let S = {1,2,3,4} and 
C = {(1), (12)，(34)，(12)(34)} with G acting as a permutation group on S. Then

stabc(l) = {(1)，(34)} 
—g(2) = {(1)，(34)} 
stabc{S) = {(1), (12)} 
5ia6G(4) = {(l),(12)}

/ix-((l)) = {l,2,3,4} 
何(12)) ={3,4} 
何(34)) = {1，2} 
/tx((12)(34)) = d>

仿如⑴={1,2} 
or6c(2) = {l，2} 
orbG(3) = {3,4} 
or6c^4) = {3,4}

Now that these terms have been defined, we will move on to prove a few 
theorems that will be useful when proving Burnside’s Lemma. The first one 
will show that the 5尤ci6g(5) is a subgroup of G.

Lemma 2.
If G acts on S, and s € Sf then stabc(s) is a subgroup of G.

Proof. In order to show that slabc(s) is a subgroup of G, it must be shown that 
it is a nonempty set that is itself a group.

Lei s € 5. By tlie definition of a group and group action, there exists an 
identity element e e G such that e- a — s. Therefore c € stabc(ff) and thus 
stabc{s) is nonempty.

Now we will check that stabc{s) is closed under inverses. Let s G 5 and 
a € /itabc(»)-

a • 5 = 3 
■ (a • s) = a~ 

s = a-1 
=> e • s = a"1 • s 

=> s = a_1 - s

=> a 
=> (o'*1 a).

.8
Using property 1 from group action definition

Thus a-1 G slabc(s) and sLabc(s) is closed under inverses.
We must now check that stabc{s) is closed under the group operation



(product). Let a, 6 € stabc^) and .s 6 S. Then using the definition of the 
group action:

(06) • s = a • (6 • 5)

Thus ab e stabc(s) and stabc(fi) is closed under the group operation (product) 
and ^ a subgroup of G.

=a • 5 = 5

□
The following is a well known theorem about the order of a group and will 

be useful while proving Burnside’s Lemma.

Orbit Stabilizer Theorem
Let G be a finite group of permutations of a set S. Then for any i from 5, 
|G| = |or6G(i)||sta6c(i)|.

Proof. By Lagrange’s Theorem, we know that for any i 6 5

|6T| = (number of left cosets of sLabo(i)) - |s^a6c(i)l

Thus it is sufficient to show a bijection between the set of left cosets of stabc{i) 
and orbc{i). In order to simplify the notation, we let II = stabc(i)> Therefore 
define a function

矽：{left cosets of //} -> or6c(i)

by = a • i, for an element a € G. Therefore r/j maps into orbc(i)，because
a • i 6 orbc(i). Thus we need to show that \p is well defined, surjective, and 
injective.

In order to show that rj) is well defined, it must be shown that if 
aH = bH, then rp(aH) = a • i = b • i = tp(bH). Since aH = 6//，it is also true 
that a € bH. This means that for some ke a = bh. Therefore

• i = (bh) • i = b • (h • i) = b . ia

which is what we wanked to show. Notice that the middle two expressions are 
equivalent by tlie definition of group action. Thus (J) is well defined.

Next we want to prove that rj> is surjective. Let y 6 orbc{i). Then by 
definition of orbit, 3g € G such that g-i = y. Then yp(gH) = g -i = y. Thus rf) 
is surjective.

Lastly, we want to prove that V’ is injective. Suppose that = i/j(bH).
Then we know that a • i = 6 ■ i. Thus

(by group action definition) 
(by identity definition) 

(by group action definition) 
(by assumption) 

(by group action definition)

=(a_1a) - i 
=a-1 . (a. i)
=a

8



Therefore a_16 € // = stabc(i)> Thus a~lbH = H and bH = aH which 
shows that 矽 is injective.

We have shown that is well defined and bijective as needed. Therefore, 
the number of left cosets of // = stabc(i) equals \orbc{i)\- □

Definition
A family of subsets {/!‘} of a set X is called pairwise disjoint if C\ Aj = </> 
for all i ^ j. A partition of a set X is a family of pairwise disjoint nonempty 
subsets whose union is all of X.

Theorem 2.
Let G be a group of permutations acting on a set S. The orbits of the elements 
in S constitute a partition of S.

Proof. Let itjtk € S. Then because the identity element sends i to i, i € 
ot6g(0* Thus each element i e 5 is in at least one orbit. Let j € orbc(i) D 
orbc(k). Thus j € orbcii) and j E orbc(k). Then for some a, € (7, j = a(i) 
and j = P(k). Therefore o{i) = P(k). Applying f)~x to each side will lead 
to ^^(01(1)) = 0^l(0(k). Using the first properly of group actions and the 
definition of an inverse, (/3"1a)(t) = k. Let x € orbc(k)\ then for some 7 e G, 

= 7(fc) = (7/?_1or)(i). Thus x € orbc(i)- Therefore arbc(k) C orbc(i)- 
Similarly, orbc(i) Q orbG(k). Therefore, orbci^) = orbc{i)- This means that if 
k 6 or6c?(i), then orbc(i) = orbc(k). Thus all orbits must be disjoint or equal 
and all the elements in S must be in some orbit. Therefore the orbits of the 
elements in S constitute a partition of 5.

x

□

7 Burnside’s Lemma
Burnside’s Lemma
If C is a finite group of permutations acting on a set 5, then the number of 
orbits of G on 5 is 結剛•

This paper will include a variety of proofs of Burnside's Lemma. The first 
proof will be one fashioned after Gallian’s proof in his book Contemporary Ab­
stract Algebra.

Proof. In order lo prove Burnside’s Lemma, we shall count in two different ways 
the number of pairs, n, of the form where g 砭 G、i € S and g i = i. The 
first way would be to look at fix(g). For every g in G, the number of pairs

9



(gti) where g，i = i、would be \fix(g)\. Then in order to get the total number 
of pairs, one would need to sum \fix(g)\ for each g e G and thus

E丨⑽)丨n =
geG

The next way to count the number of pairs would be to look at 对a6c(i). For 
each i in 5, the number of pairs (p, i) where g i = it would be |sia6c(i)|. Then 
in order to get the total number of pairs, one would need to sum |s£a6o(i)l for 
each i e S and thus

^|sia6c(i)|n =
ies

Thus we have two different expressions that allow us to count the number of 
pairs, n, of the form (5,1) where g • i = i. Therefore, we are able to set them 
equal to each other:

\fix(9)\ = ^2 \stabG(i)\ ⑴n =
geG i€S

Now we will focus on a single orbit of G. If s, t are in the same orbit of G, then 
because the orbits of the elements of S form a partition of S from the proof of 
Theorem 2,

orbc(fi) = arbc(t)

Since the Orbit-Stabilizer Theorem says that \G\ = \orbG(i)\\stabG(i)\- Then it 
is also true that

\slabc(i)\
\orbG(i)\

Since both 5 and i have the same size for their orbit and the order of G is the 
same for both, then it follows that

|.sfca6c(.s)| = \stabc[t)\

For each orbit, we will sum the order of the stabilizer over the elements in the 
orbit

|5ia6c(0l = |o^g(«)||5^g(s)I by summing over the orbits
tEorbo(a)

by the Orbit Stabilizer Theorem

Now we will combine (1) about a single orbit.

1/以⑷丨=D 丨n =
geG ies

EE \stabc{t)\ = \G\' (number of orbits)
orbits tEorbc(»)

FVom the second and the last part of this equation we have

10



★?严丨(number of orbits)

□
Now that the elements of Burnside’s Lemma are understood and one proof 

for Burnside’s Lemma is complete, we will move on to show some examples of 
its use.

Example 4.
A jeweler would like to make necklaces containing six beads, each of which could 
be black or yellow. How many unique necklaces can they make?

In order to solve this problem using Burnside’s Lemma, we will view each 
of the beads on the necklace as a vertex on a hexagon. Thus the symmetry 
group that we will be looking at is the dihedral group D6. Note that S = the 
set of 26 colorings of the beads, when the beads are numbered 1-6. There 
is this number, because each of the six beads has two options for the colors. 
Numbering the beads 1-6 will allow us to keep track of which placement of 
a bead we are looking at on the necklace since there really is no clasp or start 
point on Ihe type of necklace that we are discussing. Therefore the number of 
unique necklaces and the number of distinct colorings is equal to the number of 
orbits ot G = D6 on S. This is because for example the necklace with beads in 
the odd positions colored yellow and beads in the even positions colored black 
is the same as the one with beads in the odd positions colored black and beads 
in the even positions colored yellow. This can be seen in Figure 1.

2 M 
) «3

〉•一o:

o-_

5 0—• 4

Figure 1: Equivalent Necklace Colorings

However when counting the number of elements in 5, the two necklaces are 
different colorings, because wc arc looking at wliicli color is assigned to each of 
the specific numbers.

In Figure 2 are the various rotations within D6. Each of these can be attained 
by rotating the vertices by a multiple of 60。，thus giving six options for rotations. 
In Figure 3 are the various reflections within D6. Each of the reflections is across 
the green line.

Thus the order of the group D6 would be 12. Now we will look at each 
element g of D6 and find the order of fix(g).

11



Figure 2: Rotations in D6

Figure 3: Reflections in D6

• If g is the identity element, then each one of the vertices is fixed under this 
action. Thus no matter what each vertex is colored, the entire coloring 
will be fixed. Therefore, |/ia:(^)| = 26.

• If g is the 60° rotation, then none of the vertices are fixed and there are 
no subsets of vertices that get sent to one another. Thus for an entire 
coloring to be fixed, all of the vertices must be the same color and since 
there are 2 colors, \fix(g)\ = 21.

一 The same argument can be given if g is the 300° rotation.

12



• If g is the 120° rotation, then the vertices 1,3, and 5 rotate to one another 
and the vertices 2,4, and 6 rotate to one another. Thus as long as the 
vertices in the first set are colored the same and the vertices in the second 
set are colored the same, the coloring will be fixed. Therefore having two 
color choices for each set, |/ta:(^)| = 22.

一 The same argument can be given if g is the 240° rotation.

• If 5 is the 180° rotation, then the vertices 1 and 4 will be switched with 
one another, as will 2 and 5 with one another and 3 and 6 with one 
another. Thus as long as a vertex is the same color as the one that it is 
being switched with, the coloring will be fixed. Therefore having two color 
choices for each pairing, \fix{g)\ = 23.

• If g is any one of the three reflections oil the top of Figure 2, then it is a 
reflection across a line that is not through vertices. Thus no vertices get 
fixed and each vertex is switched with one other. Thus as long as a vertex 
is the same color as the one that it is being switched with, the coloring 
will be fixed. Therefore having two colors choices for each pairing will give 
each of these reflections, \fix(g)\ = 23.

• If g is any one of the three reflections on the bottom of Figure 2, then it 
is a reflection across a line that is through two vertices. Thus two vertices 
get fixed, while the other four have a partner that they are switched witli. 
Thus Ihe color of Ihe fixed vertices do not matter, bul the other vertices 
must be the same color as the one it is being switched with. Therefore, 
having two color choices, for eacli of these reflections, \fix(g)\ = 24.

A table of the previous calculations can be seen below.

\fix(g)\Description of g \fix(g)\Description of g
2^Identity TReflection Through 1 and 4
V60° Rotation Reflection Through 2 and 5
21120° Rotation Reflection Through 3 and 61?180° Rotation rReflection Between 1 and 2

240° Rotation Reflection Between 2 and 3
V300° Rotation ■ Reflection Between 3 and 4

Therefore, using Burnside’s Lemma, the number of unique colorings of the 
vertices and hence the number of unique necklaces that can be made is

▲s丨賴 ^[26+(2^2)+(2^2)+23+(2^3)+(2^3)) = —(156)
L £ 13

12

These 13 options for unique necklaces can be seen in Figure 4.

13
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Figure 4: Unique necklaces with six beads

8 Another Way to Organize Calculations
The way that Burnside’s Lemma is proved in Contemporary Abstract Algebra 
is straightforward; however it is not easy to visualize why it works. Thus the 
matrix organization in Modem Algebra and Discrete Structures may help clarify 
the proof and suggests another way to solve problems. Burnside’s Lemma is 
restated below as a reminder.

Burnside’s Lemma
If (7 is a finite group of permutations acting on a finite set 5, then the number 
of orbits of G on S is

齒 Ei/_i.
Suppose G = {pi,^2» —»5r} and S = Then the first step

would be to create a matrix A = [a*；j] of the size r x ft where

1，if 9k - ij = ij 
0，if 9k • ij ^ ij 

The setup for such a matrix can be seen below.

0>kj

，:l 7:2 is
<n
92

9r
The next step is to count the number of l’s in the kth row, which is equal 

to the number of elements i € S that are fixed when acted on by gk and thus is
\fix[9k)l

14



It is also helpful to note that the number of Vs in the jth column will equal 
the number of elements g eG that fix tj and thus is |sia6c(t.；)|.

r 3

Note that ^\fix(9k)\ = \stabc(ij)l
k=l j=l

expressions are equal to the total number of Vs in the matrix, which equals n 
in our previous proof of Burnside’s Lemma. We then have reached the point of 
equation (1) in that proof and can continue on from there exactly like we did 
before.

This is because both of these

Example 5.

A student at a university has four keys on her key ring; two of which are for her 
apartment and two are for her office. The keys to the apartment are identical 
and the keys to the office arc identical. How many unique orderings of the keys 
on the ring can there be?

To start off. notice that instead of looking at what color a vertex can be like 
in the previous examples, we will be looking at if a vertex is an apartment key 
or an office key. Thus we will be looking at a square with each vertex as a key 
as in Figure 5.

Figure 5: Picture of Key Arrangement

Now observe that that the group of symmetries for the arrangement of keys 
is made up of four rotations and four reflections. Thus the order of G is 8.

Below is a table like that introduced above and shows the calculations of 
Burnside’s Lemma. Notice that the rows correspond to the elements of the 
symmetry group and thus the elements of G. The columns correspond to the 
arrangement of keys, where A stands for a key to their apartment and O stands 
for a key lo their office.
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OA OOOA AOAA AO
AO AAOA AOOO OA

0°
0 00 00 090。

00 0180° 0
0 00 0 0270° 0
0 0Horizontal Reflection 0 0

0 0 0Vertical Reflection 0
00 0Diagonal Reflection 1 0

0 0Diagonal Reflection 2 0 0

By summing the elements in row g, we obtain \fix(g)\. Thus below is a table 
with \fix(g)\ for each of the g、s.

\fix{9)\9
0° 6

90° 0
180° 2
270° 0

Horizontal Reflection 2
2Vertical Reflection
2Diagonal Reflection 1
2Diagonal Reflection 2

Thus the number of unique ways for the keys to be arranged on the ring is

忐g㈣)丨 -[6 + 0 + 2 + 0 + 2 + 24-2 + 2] = -[16] = 288

This can easily be visualized, because either the two apartment keys are next 
lo one another or they are separated by an office key.

9 Another Way to Count the Number of 

Distinct Colorings
Having done the last two examples, some patterns can be noticed in the calcu­
lation of |/ix(穸)|; thus a new formula for this value will now be introduced. The 
content in this section follows from Modem Algebra and Discrete Structures by 
R.F. Lax and from Beyond Burnside’s Lemma by Lucas O. Wagner. To start a 
few variables must first be defined.

Notation

Let c be the number of color choices.
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Notation

Let x(g) be the number of cycles within the permutation g E G when it is 
written in disjoint cycle form.

Examples of x(g)

• 9 = (1234) =» x(g) = 1

• g — (12)(34) => a;(p) = 2

• 5 = (l)(2)(3)(4)=>a;(p) = 4

Examples of x(g) in Example 4 about the necklace

• 120。rotation: g = (135)(246) => x(g) = 2

• Reflection through 1 and 4: p = (1)(26)(35)(4) => x(p) = 4

• Reflection between 2 and 3: g = (23)(14)(56) =» x(g) = 3

Lemma 3.
If G is a finite group of permutations of n objects acting on a set S of colorings 
oj the n objects in which the object can be any of c color choices and g € Gt 
then

\fix(g)\ = c1 ⑷
Proof. The original definition for \fix(g)\ was the number of colorings which 
are unchanged when acted on by g. As can be noticed in Example 4, a coloring 
remains the same when g acts on it, if all vertices within a vertex cycle have 
the same color. Thus there are c color choices for each of the vertex cycles. 
Therefore Vp G G, \fix(g)\ = c3^.9).

Now that there is a new way to calculate \Jix(g)\y we will use it and Burn­
side^ Lemma for another example.

□

Example 6.
Consider a checkerboard with four squares such that each square could be 
painted one of three colors (white, black, and gray). A picture of such a checker­
board is shown below in Figure 6. How many unique colorings of the board are 
there?

Figure 6: checkerboard with four squares

Just like in the previous example, we will treat each one of the corners as a 
vertex and thus the symmetry group that we will be looking at is the dihedral
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group D4 of the checkerboard. Note that S = the set of 43 colorings of the 
squares, when the corners are numbered 1 — 4. Figure 7 shows the various 
elements of D4. There are four rotations, each of a degree that is a multiple of 
00 and four reflections.

2

3
270 Degree 
Rotation

90 Degree 180 Degree 
Rotation Rotation

Identity

32
223

SiagonaT^
Reflection
One

Vertical Horizontal 
Reflection Reflection Reflection

Two

Figure 7: Rotations and Reflections of the Square

Now we must write each of the elements of D4 in cycle form in order to 
calculate Below is a table with each of these calculations.

c*⑷Cycle formDescription of g
3^⑴⑺⑶⑷Identity
31(1234)90。Rotation
3^(13)(24)180° Rotation
F(1432)270° Rotation

(12)(34) 3^Vertical Reflection
(14)(23) 3^Horizontal Reflection

(1)(24)(3)Diagonal Reflection One
(13)(2)⑷ 3^Diagonal Reflection Two

Thus the number of unique colorings of a checkerboard with four squares 
and three options for colors is

碎广 t(34 + 31 + 32 + 31 + 32 + 32 + 33 + 33) = -(168) = 21
8 8

These 21 unique colorings can be seen below in Figure 8.
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Figure 8: Unique Colorings of a Checkerboard

10 Polya Enumeration
This section is written based on a chapter in Modem Algebra and Discrete 
Structures. The idea of Burnside’s Lemma, especially the way of counting that 
was presented in Section 9, is very closely related to that of Polya enumcralion 
theory. Georg Polya, who has been mentioned previously in this paper, 
a Hungarian mathematician who developed this theory in order to count the 
number of different isomers of chemical compounds.

Definition
If p G 5„ has di(p) cycles of length i, for i G {14 2,n}, in its represcnlation 
as a product of disjoint cycles, then we let the polynomial associated lo p be 
called the cycle index of p and bo clofinccl by

Pp(XuX2，…，Xn) =

The cycle index of a permutalion group G is the polynomial

was

Pg(XuX2，…,Xn) =

In order to visualize this definitiou, wc will apply il to which again is 
the dihedral group.
Example 7.
Remember that DA = {(1)(2)(3)⑷，(1234), (13)(24), (1432), (12)(34), (13)(2)(4), 
(14)(23), (1)(24)(3)} and acts on 么={1,2,3,4}. Therefore we can compute

PDa = (Xf + 2X^X2 + 3X| + 2 A、)/8

Notice that this is true, because (1)(2)(3)(4) has four cycles of length one 
(hence X》)、both (13)(2)⑷ and (1)(24)(3) have two cycles of length one and 
one of length two (hence 2义?知)，all three of (13)(24)，（12)(34)，and (14)(23) 
have two cycles of length two (hence 3^|), and finally both (1234) and (1432) 
have one cycle of length four (hence 2X4).
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Notation
Let R be the set of elements that are being assigned to the elements in S.

In our examples so far, R would consist of the colors. In Example 6, R would 
have the elements white, black and grey.

Corollary 1.
The number of distinct orbits can be obtained by substituting the num6er,m, of 
elements in R into P for each in the cycle index of G. Thus we have that

(number of orbits) = Po(c, c, ...,c)
Proof. Notice that in Section 9, we denoted the number of elements in R by c. 
Note also that x(g) — d\ (p) + + …• + dn(g). Thus we have =

We have proved in Lemma 3 that c3^) is equivalent to \fix(g)\. Therefore 
substituting into we have

Pg(c, c，.",c)

Based on Burnside’s Lemma, one can see that Pc(c, c, ...,c) = (the number of 
orbits). □

Definition
Suppose that i € S. The weight of t, denoted by VK(i), is defined by

W(i) = K1(0rf ⑴…

where ra e R for all s € {1,2, and ea(i) is the number of times the color 
rs appears in the coloring of /I = {1,2,…，n}, where A is the set on which the 
original permutation group G acts. In our previous examples, this would be the 
squares or the vertices.

We will now look at Example 6 and continue to number the squares of the 
checkerboard like in Figure 6. Denote a coloring by (VtXtY, Z), where V is the 
color of square 1, X is the color of square 2, Y is the color of square 3, and 
Z is the color of square 4. The colors white, black, and gray will be denoted 
by the letters Wy and G respectively. Therefore the weight of the coloring 
(G, BtGtW) is WBG2 and the weight of the coloring {B}G, BtG) is B2G2.

Lemma 4.
Two elements in the same orbit of G on S have the same weight.

Proof. Suppose that s and t are in tlie same orbit. This is true iff 3^ 6 G such 
that 3 = g-t. In this case, g permutes the elements of A so that s = g-t without 
changing any of the colors of the elements of A. Therefore efc(s) = ek(t) for 
k = 1,2, Therefore IV(5) = W(i). □
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Definition
Suppose that V^i, W2v..yWb are all of the possible weights of the elements of S 
and let pz denote the number of orbits such that each element of that orbit has 
weight WZi z = 1,2，".，6. Then

P\W\ 4-+ …+ Pb^b

is called the pattern inventory of G on 5.

Theorem 3. (Pdlya-Redfield)
Let Yi = + r| + …+ 4 /or r = 1，2, •••，m. Then

1. The weights of elements of S that are fixed by g E G are the terms of

2. The pattern inventory of G on S is given by

Pc(YuY2，…，Ym)

The previous theorem can be found in Modem Algebra and Discrete Struc­
tures, which states that the proof is tiresome and not very enlightening. Thus 
in this paper, we will see why it holds true in an example.

Example 8.

We will be using the same problem and notation from Example 4 to demonstrate 
these new concepts.

Cyclic Decomposition of g cycle indexDescription of g
⑴(2)(3)⑷(5)(6)Identity

(123456)60° Rotation A'6
(135)(246)120° Rotation

(14)(25)(36)180° Rotation
(153)(246) XI240° Rotation
(165432)300° Rotation X6
⑴(26)(35)⑷ miReflection Through 1 and 4
(13)(2)(46)⑻Reflection Through 2 and 5
(15)(24)(3)(6) XjXjReflection Through 3 and G
(12)(36)(45) 久2Reflection Between 1 and 2
(14)(23)(56)Reflection Between 2 and 3
(16)(25)(34)Reflection Between 3 and 4

Thus the cycle index of Dq is

(Xf + + + 2X| + 2X6)/12

Therefore the number of unique necklaces that can be made is 

(26 + 3 • 22 + 4.23 + 2 • 22 + 2 • 2)/12 = 13
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If we let V denote a yellow bead and D denote a black bead, then the pattern 
inventory would be

T^[(K+^)6 + 3(y + B)\Y2 + B2)2 + 4( V2 + B2)3 + 2(y3 + 月3)2 + 2{Y6 + B6)] 
1 £$

=y6 + YbB + 3Y4B2 + 3Y3B3 + 3Y2Ba + YBh + B6

Looking back at Figure 4, it is easy to see that these in fact are the various 
patterns that are possible for unique necklaces.

11 Escher’s Patterns
Now tlml we have looked at a proof and some examples of the application of 
Burnside's Lemma, we will apply the lemma to a more complicated example, 
patterns in Escher’s paintings. We will compute the number of unique patterns 
that Escher could make subject to certain restrictions. The work in this section 
is based ofT of work in Escher's Combinational Patterns by Dorris Schattschnei- 
der.

Escher’s paintings, like the one in Figure 9, are made by repeating a certain 
image many times within the same painting, thus creating a pattern. Due to 
the repetition within the pattern, Burnside’s Lemma can be used to count the 
number of unique patterns.

Figure 9: http://library.thinkquest.org/16661/index2.html

To start ofT with, rules of how the paintings can be created must be estab­
lished. Escher would begin by taking a square and place some design inside of 
it. This square would be called a motif and would be created on a stamp. This 
motif would be repeated in order to create a 2x2 array that will be called the 
translation block. Each of the four placements of the motif on the array 
rotated or reflected version of the original motif, those being a differe 
Notice that if the motif is reflected, then another stamp must be created. The

f can be a 
nt aspect.

22

http://library.thinkquest.org/16661/index2.html


final step would be to take the translation block and place an exact version of 
it over and over again perpendicular to the edges of the plane that it is being 
placed on. This would then make a repeated pattern. This of course leads to 
the question; how many patterns can be made with the use of only one motif?

Like all other problems that require the use of Burnside’s Lemma, the chal­
lenge is to make sure that patterns are not counted twice. We will consider the 
following cases, because they are the ones that Escher himself created.

1. If only one stamp is created and thus the translation block is only made 
up of rotations of the original motif.

2. Two of the images on the translation block are from one stamp and two are 
from the reflected stamp. This case itself also has a few different options 
within it.

(a) The two that use the original stamp have the same aspect and the 
two from the reflected stamp have the same aspect.

(b) The two that use the original stamp have different aspects and the 
two from the reflected stamp have different aspects.

In order to differentiate the various patterns that are produced, we must 
first establish a way of representing them. Thus we will represent the original 
motif by the letter /l, the 90° rotation by the letter B, the 180。rotation by the 
letter C, and the 270° rotation by the letter D. Thus an example of a motif and 
its rotations would be Figure 10. These are then used to create the example 
translation block in Figure 11.

Q Q □ Q
A B C O

Figure 10: Schattschneider, Dorris, Escher’s Combinational Patterns

B

IISC D

Figure 11: Example Translation block

Each translation block will receive a signature in order for us to refer to them 
more easily. This signature will be created by listing the letters starting in the
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top left corner and going clockwise. Therefore the signature for the translation 
block in Figure 11 would be ABDC.

For this example, *5 would be the set of patterns created by the motif. It 
is important to notice there are four distinct translation blocks and thus four 
signatures that represent the same pattern. Figure 12 is created by using the 
translation block from Figure 11. Notice that this pattern can be created using 
the signatures, ABDC, BACD, CDBA, and DCAB.

B AA B A

C D C D C

A BA B

C D CC D

■ 雙**^ 漏

Figure 12: Pattern Created from Figure 11

11.1 Escher’s Single-Stamp Pattern
Now we will look at Escher’s single-stamp pattern and denote these repetitions 
of signatures within patterns as K毳.This would be the group of products of 
disjoint transpositions of the set {1,2,3,4}. The elements of K4 are listed in 
the table below along with the signature and color of box that corresponds to 
it from Figure 12. With these elements of 7<4, we will let i4 = 1, jB = 2, C = 4, 
and D = 3, therefore giving us a correspondence to the aspects in our example.

Element of Signature Color of Box
kp — c ABDC Red

fei = (12)(34) BACD Purple
= (14)(23) CDAB Green

k3 = (13)(24) DCAB Orange
Now we will define C4 to be the group generated by r, where r rotates the 

entire translation block by 90° clockwise. Thus the rotations for r2 and r3 would 
be 180° and 270° respectively. In order to simplify notation later on, if X is 
aspect of a motif, then X\ Xn and Xu, will represent the aspect that results 
from rotating the motif clockwise 90。，180。，and 270。respectively. Thus again

an
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using the translation block from Figure 11, the effects of r1, r2, and r3 can be 
seen in Figures 13-15 respectively, using both notation options. Notice that A' 
and B both represent a 90° rotation of the A motif. Both notations are used 
though, because D deals with the initial motif being rotated, whereas A' has to 
do with when the element of K\ acts on the translation block. This is also true 
for the elements A" and C and the elements Am and D.

C. A_

D. B'

O

o o

Figure 13: r1 acting on the translation block from Figure 11

DM C._

B" A"

a o
9 V

Figure 14: r2 acting on the translation block from Figure 11

B_" D- 

A_" C_"

m o =
o

Figure 15: r3 acting on the translation block from Figure 11

Now that we have defined both K4 and C4, we define H to be the group of 
elements generated by the products of elements in K4 and C4. This group H 
would act on the signatures and would produce equivalent signatures. This is 
because C4 normalizes K4 which will be shown later.

Before moving on a few terms must first be defined.
Definition
Let C be a group and TV be a subgroup of G. Let g be an element in G with
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its inverse denoted by g_l. Then an element g is said to normalize N if 
gNg~"1 = N. N is & normal subgroup if every element of G normalizes N. If 
A and B are subgroups of a group Gt then B normalizes A if for every b E Bt 
{b^1^ : a 6 A} = A.

Now it will be shown that C\ normalizes K4.

Proof. Since C4 < S4 and K4 < S4 t we want to show that every element 
g e C4 normalizes /in S4. We know that C\ = {(1)，（1234)，（13)(24)，（4321)} 
and I<4 = {(1)，(12)(34)，（14)(23)，（13)(24)}. Let g e C4 and (a/3), (7(5) 6 I<4. 
Then g(oc0)(^8)g~ \ by Theorem 1 equals € K4. Since this
is true for every element of C4, then we know that C4 normalizes K毳. □

Also, by looking at the groups, we can see that /C* n C4 = {c}. Thus H is 
the semidirect product K4C4 and the order of H is 16. An element of H would 
be kjrlt where kj € I<a and r* € C4.

We will now go through all of the elements in H and determine which sig­
natures are fixed by them. While doing these calculations, let P, Q, R, and S 
denote the four difTcrent aspects /l, Dy C and D. This will allow us at the end 
to multiply the number of fixed signatures by four since there are four different 
options for each aspect.

• ki(PQRS) = QPSR
Thus in order for the signature to be fixed we must have P = Q = P、 
R = S and 5 = /?. Thus signatures that are fixed are of the form PPQQ.

• k2{PQRS) = SRQP
Thus in order for the signature to be fixed we must have P = Sj Q = R} 
R = Q and S = P. Thus signatures that are fixed are of the form PQQP.

• k2(PQRS) = HSPQ
Thus in order for the signature to be fixed we must have P = /?, Q = 5, 
R = P and S = Q. Thus signatures that are fixed are of the form PQPQ.

• r(PQRS) = ^P'Q'R'
Thus in order for the signature to be fixed we must have P = Srt Q = 
Pf = S,\ R = Q* =z S'" and S = R! = S_ = S. Thus signatures that 
fixed arc of tho form PP,PnPu,.

• r2(PQRS) = R"S"P"Q"
Thus in order for the signature to be fixed we must have P = R"，Q = S"t 
R = pn = = R and S = Q,f = Snn = S. Thus signatures that are
fixed are of the form PQP"Q".

• r3{PQRS) = Q，"R!TP".
Thus in order for the signature to be fixed we must have S = P/;,, R = 
S"1 = Pn,n, = P\ Q = R,u = Pmn = P\ and P = Qn, = Pnn = P. Thus 
signatures that are fixed are of the form PP,PnP,n.

are
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• kir{PQRS) = h(S，P，Q，n，）= P,5,/?,Q/
Thus in order for the signature to be fixed we must have P = P\ Q = 5'， 
R — Rf and S = Q’ = S’’ • This however is not possible, because S / S". 
Thus there aie no signatures that arc fixed by k\r.

• kir2(PQRS) = k1(R,,S,,P,fQ，/) = S”RNQ"P"
Thus in order for the signature to be fixed we must have P = S"、(? = /?〃， 
R = Qn = R and S = P" = S. Thus signatures that are fixed are of the 
form PQQnPu.

• k^(PQRS) = kl(QmRn,S,,,P,n) = R!"Q"，p"，S”，
Thus in order for the signature to be fixed we must have P = Rn\ Q —
R = Pn, and S = Sm. This however is not possible, because S ^ S…. 
Thus there are no signatures that are fixed by A^r3.

• k2r{PQRS) = k2(S,P,Q,R,) = R,Q，P,Sf
Thus in order for the signature to be fixed we must have P = R\ Q = Q\ 
R = P' and S = S’• This however is not possible, because S ^ S'. Thus 
there are no signatures that are fixed by k2r.

• k2r2(PQRS) = kl(RnSnPnQn) = Q"P"S"R"
Thus in order for the signature to be fixed 
P" = Q} R — Su and S = R" = S. Thus signatures that arc fixed are of 
the form PPnQnQ.

• k2r3{PQRS) = kx(Qn,Rn,Sn,P,n) = PmSn, Rn,Q,n
Thus in order for tlic signature to be fixed we must have P = P…、Q = S…、 
R = H!" and S = Q….This however is not possible, because P ^ P,N. 
Thus there are no signatures that are fixed by

• k3r(PQRS) = A：i(5/P/Q,7l,) = Q,R,S,Pf
Thus in order for the signature to be fixed we musl haveS = P’，R = S’ = 
P"、Q = R’ = P1"、and P — Qf = P,m — P. Thus signatures that are 
fixed are of tlie form PPn,PuP\

• k3r2(PQRS) = kl{R,,SnPnQn) = P"Cj"R"S"
Thus in order for the signature to be fixed we must have P = P'\ Q = Qr\ 
R — R" and S = Sn. This however is not possible, because S ^ Sn. Thus 
there are no signatures that arc fixed by k^r2.

• k3r3(PQRS) = kl(Qn,Rn,S,nPm) = Su,PmQmRu,
Thus in order for the signature to be fixed we must have P = S…、Q = 
Pu, = 5", R = Qn, = Sf and S = Rn, — S. Thus signatures that are fixed 
are of the form P,,,PUP,P.

must have P = Q"、Qwe

Now that we have gone through all of the elements of //, below is a table 
that lists each element and the number of signatures lhat it fixes. Notice that 
there are four choices for every unique letter in the signature.
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Element of H # of Fixed Signatures
256e
4

r2 16
r3 4
ki 16
k2 16
知3 16
k^r 4
k\r2 
kir7, 
k^r3

Now we are able to use Burnside’s Lemma. Thus the number of unique 
patterns that can be created using a single motif and the rules of Escher’s first 
case is

16
16
4

— (256 + 6x 16 + 4x 4) = —(368) = 23 lb 16
Figures 16 and 17 show an example of the 23 different patterns that can be 

produced using the motif in Figure 111.

11.2 Escher’s Case Two (A)
Remember that the second case that Escher created is when two of the images 
on the translation block are from one stamp with the same aspect and two are 
from the reflected stamp with the same aspect.

Thus we must now change the groups that we are working with in order to 
account for Ihe fact that two of the images are reflected. Thus, instead of C4, 
we will be using D4, which includes all four rotations and four reflections. We 
will, however, still be using the same K4 from Esclier’s first case. Now define M 
to be the group of elements generated by the products of elements in K\ and 
■D4. We must now show that D4 normalizes /<4.

Proof. Since D4 < S4 and I<4 < 54 , we want to show that every element g € D冬 
normalizes A4 in 54. We know that D4 = {(1), (1234), (13)(24), (4321), (12)(34),
(14)(23), (1)(24)(3), (2)(13)(4)}and/<4 = {⑴，(12)(34)，(14)(23)，(13)(24)}. Let 
g e D4 and (^)(7,6') G /<4- Then g{oiP){n6)g~l by Theorem 1 equals (9(oi)g(P))(g{y)g(S)) G 
K4. Since this is true for every element of then we know that D4 normalizes
I<4. □

The next step would be to go through each of the elements of this semidirect 
product to see which of the signatures are fixed. This however would entail 
looking at 32 different elements. The best way to approach this problem would 
be to create a computer program that would run through each of the signatures. 
This paper does not include the program or the way to solve it, because of the 
time limits.
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2
AAACAAA*AAAA

5 6
AACCAAAO AA8B

MOO AACB M08

9>«V

«\1 \r\ 11
AAOC ACACABAB

Figure 16: Schattschneider，Dorris, Escher’s Combinational Patterns

11.3 Escher’s Case Two (B)
This case that Escher created is when two of the images on the translation block 
are from one stamp with different aspects and two are from the reflected stamp 
with different aspects. With these restrictions, there are 6 x (4 x 4) x (4 x 4) 
1536 different signatures that are possible. This is because there are G different 
ways to have two motifs from one stamp and two from the reflected stamp placed 
on a translation block. Then there are four choices for the aspect of the original 
motif and four choices for the aspect of the reflected motif.

Due to the number of signatures that are possible and the sizes of the groups 
that we would be working with, the author of Eschers Combinational Patterns 
states that the best way to approach this case would be to create a computer
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Figure 17: Schattschneider, Dorris, Escher’s Combinational Patterns

program that “performs permutations on the signatures and sorts them into 
equivalence classes”. Therefore this paper will not include the calculations for 
this case. However, it is interesting to note the number of patterns which is 49.

12 The Colorings of a Cube
Before concluding this paper, we will go back to the very first example that 
was given and solve it using Burnside’s Lemma. This problem stated that you 
want to paint the sides of a cube and you had three options of colors to use 
for each side. With this example, we will be using the group Sq acting on the 
set containing each of the faces of the cube numbered 1-6. The tables below
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list each of the elements of 56 written out in disjoint cycle form, along with the 
calculation of its fix using the method presented in section 9. The elements in 
the first table are rotations about an axis through the center of two opposite 
faces. The elements in the second table are rotations about an axis through 
two diagonally opposite vertices. The elements in the third table are rotations 
about an axis through the midpoints of two diagonally opposite edges.

1/汝(g)lElement of
⑴(2)⑶⑷(5)(6) 

(1)(3)(2546) 
(1)(3)(24)(56)
(1) (3)(2645)
(2) (4)(1536)

(2)⑷(13)(56) 
(2)(4)(1635) 
(5)(6)(1234)

(5)⑹(13)(24) 
⑻⑹(1432)

33
34
33
33
34
33
33
34
33

I 何 ff)lElement of 灸
(152)(364)
(125) (346)
(145) (263) 
(154)(236) 
(164)(235)
(146) (253)
(126) (345) 
(162)(354)

32
32
32
32
32
32
32

\fix(g)\Element of Se
(15) (24)(36)
(14)(23)(56)
(16) (24)(35)
(12) (34)(56)
(13) (26)(45) 
(13)(25)(46)

33
33
33
33
33

Now we are able to use Burnside’s Lemma. Thus the number of unique 
colorings of a cube with three color options is

—{(36) + (34 x 3) + (33 x 12) + (32 x 8)} = —(1368) = 57

Due to the fact that 57 pictures of a cube would take up a lot of room in 
this paper, the various unique colorings of a cube will not be depicted.

31



13 Conclusion and Future Research
This paper has included definitions and necessary proofs of lemmas and theo­
rems that built up to Burnside’s Lemma. These parts helped combine into the 
proof of Burnside’s Lemma. After having proven it, a number of examples were 
solved using a few different ways to compute the numbers needed to plug into 
Burnside’s Lemma.

This Lemma is used for counting the number of orbits of one group acting 
on another and thus has a lot of different applications in a variety of subjects. 
The one that interested me the most was the patterns in Escher’s paintings, 
because it is the type of problem that most people do not believe can be solved 
using a mathematical equation.

I have always been very interested in Abstract Algebra and its usefulness in 
other subjects. I am fascinated by how such abstract thinking can be used to 
prove such complex and concrete problems. In writing this paper, I have been 
able to further my knowledge in this field of math that I love. Having to learn 
new ways to prove theorems and lemmas and improving my math writing skills 
has challenged me and I am really happy for that.

If I were to continue on with this project, I would spend the time creating 
the computer program to solve Escher’s part B of the second case. This would 
challenge not only my understanding of the math behind Burnside’s Lemma, but 
also the programming skills that I have learned through my computer science 
minor.

Throughout this journey of working on my project, I believe that there are 
two very important lessons that I will take away. The first one is to be careful 
about your citations, because you might end up getting credit for something 
someone else discovered. The other lesson is to brag about everything that you 
accomplish, because if Georg FVobenius had done so, my project may have been 
tilled FVobenius’ Lemma. Therefore I am not afraid to say that I am proud of 
this completed project!
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