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1 ANOVA

Analysis of variance, referred to as ANOVA, is a test for the equality of 
means of several different treatment groups. It is based on the partitioning 
of sums of squares of errors [13]. In an experiment that requires the use of 
ANOVA, subjects are randomly assigned to one of several treatment groups. 
These treatment groups can be random、where there are more treatment 
possibilities than just the ones being tested, or they can be ftxedt where all 
the possible treatments are being tested. In order to test whether or not the 
means of the multiple treatment groups are statistically different from one 
another the following hypotheses are developed:

(1.1)Ho Ml M2=

H\： fij for at least one i 爹 j

where a is the number of treatment groups and 叫 is the ith treatment 
(i = 1,2, Instead of performing multiple t-tests to test whether reject­
ing the null hypothesis, Ho, is warranted, ANOVA allows us to perform a 
single F-test to compare two or more means.

ANOVA can be adjusted to take repeated measures and unbalanced data 
into account. However, before we address these special cases an understand­
ing of the basic form of ANOVA must be developed.

mean

1.1 One-way Classification ANOVA

We will begin with the one-way classification ANOVA with a fixed effects 
model. What it means for the effects to be fixed is that all possible treatment 
levels are being tested, as opposed to random] in which only a subset of all 
the possible treatments has been selected to be tested. In the fixed effects 
case we will have a different treatment groups with n observations under 
each treatment level and we begin by estimating the model

(1-2)Yij = + €ij

for i = 1,2,…a and j = 1,2, ...,n and where 

• Y{j is the ijth observation
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• " is the overall mean

• n is the ith treatment effect

• tij is random error.

Prom this we can see that \i is constant for all observations while changes 
for every observation and changes for each treatment group. Also, under a 
balanced fixed effects model there are N ^ an total observations. When using 
this ANOVA model the are assumed to be independently and identically 
distributed as A^(0, a2) [14].

In order to test the hypotheses given in equation 1.1 we need to develop 
a test statistic. We now explore the total corrected sum of squares defined
as

a n

ssT=-汉.)2 
i=l j=l

(1.3)

where the dot notation indicates summation over the variable that has been
replaced with a dot that is, Yli Vij = V.y Thus, combining the dot notation 
and bar notation, which indicates an average, we have 钇.=(E!=i Ej=i Vij)/N_

Variance is a measure of how far observations are spread out from the 
mean. Mathematically it is the expected squared differences of each obser­
vation from the population mean. Notice then, that if SSt is divided by 
its degrees of freedom, N — 1, the result is the sample variance of the Y's 
[12]. Therefore, the total corrected sum of squares is a valid measure of the 
variability within the data. Additionally, we can rewrite it as

a n
SSt = {{yij - Vi.) + (y<. - y..))2-

Then, if . we expand the squared term and simplify (see section A.l of the 
Appendix for the steps), we obtain

a na

SSt=(yi. - v..)2+(斯-访.)2 •
i=l t=l j=l

(1_4)

We can see that the first half of equation 1.4 is the sum of the treatment 
means minus the overall mean, which is the sum of squares due to treatments.
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This difference is a measure of the difference between treatment means and, 
thus often thought of as the sum of squares between treatments. The second 
half of this equation is the sum of the individual observations minus their 
corresponding treatment means, which is the sum of squares due to error 
which can be thought of as the error within treatments (see figure 1 for a 
graphical representation). This demonstrates that the total sum of squares

Y.J

SSe

M

h
SStrt

Figure 1: Graphical representation of the decomposition of the sums of 
squares.

is additive and we now have that

(1-5)SSt == SStrt + SSe

where a
SStrt = ti y^(yj. - y.)2

i=l

SSE = y^XVij - Vi.)2•
i=l i=l

(1*6)

and
(1.7)

Now, since there are N total observations, the degrees of freedom for SSt 
is N-l. One degree of freedom is lost because we use ym. to estimate the 
population mean, \i [13]. For the same reason, SStrt has a - 1 degrees of 
freedom and SSe has N-a degrees of freedom. The reasoning for the latter 
is not as intuitive: we have n observations under each treatment lending
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n — 1 degrees of freedom to estimate the error within each treatment, but 
we have a treatments, thus we have a(n — 1) 
freedom in total. Notice that we have a similar situation here as we did with 
the sums of squares: the degrees of freedom are also additive (d/(55r)= 
df(SSTKr) + df{SSE)).

Consider dividing SSe by its degrees of freedom as we did with SSt) 
when this is done we find that SSe/(N — a) is an estimate of the common 
variance, cr2, within each of the a treatments [12]. Similarly, if there was no 
difference between the treatment means, then SStbt/(a — 1) could also be 
used to estimate a2. These terms are referred to as mean squared errors and 
we define them as

N — a degrees of—an — a

SSe (1.8)MSe N-a 

SStrt (1.9)MStrt

Now consider the expected value of MSe'-

a nSSE EZ)(斯-负-)2 (1.10)E(MSe) EE N-a N-a

a n

H ivli - H + 沿l)E
N-a

aa na n

,i=l j=l i=l j=l i=l /
E

N-a

Looking at the middle term in equation 1.11, we can use the dot notation to 
indicate the summation over j and get Vi-Vi.- Multiplying by n/n to
get a n(yijn) = nyi, we have

a aa n

-2n +n 
i=l j=l »=1 t=l

E(MSe) E
N-a

aa n

,*=i i=i t=i
(1-12)E

N-a
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The last term of equation 1.12, is yf = (yi./n)(yi,/n). Since we can factor the 
n’s out of the summation, one cancels with the n that is already there and 

have (1/n) Y2i=i vb By converting the dot notation back to summationswe
we get

\i=l j=l »=1 \j=l /

2

E(MSe) E
N — a

Substituting in the model from equation 1.2 on page 2 for we then have

、i=l j=l i=l \j=l / J
E(MSe) E

N-a

Additionally, since E(eij) = 0, E(efj) can be replaced with a2 and 
replaced with no2 [12]. Finally, after simplifying (see section A.2 of the 
Appendix for the steps) we have that

E{MSe)

Through similar methods it can also be found that

2 (113)= o

2
E(MStkt) = a2 -{-n V] ― (1_14)

Prom these two equations it is evident that if there is no difference in the 
treatment means then = 0 and E(MStpt) = E(MSe) = o2- And if 
there is a difference in the treatment means 
This is one reason MStrt and MSe can be used to perform our hypothesis 
test. The major condition that allows the use of these values for hypothesis 
testing comes from Cochran's Theorem.

Cochran’s Theorem. Let Zi be independently and identically distributed as 
N(0，1) fori = 1，2,…,v and

then E{MStpt) > E(MSe)-

zf = Qi + Q2 + ••• + Qa
t=l

where s < v, and Qi has Vi degrees of freedom (i = 1，2厂"《/ Then the 
QiiQ2y ane independent chi-square random variables with
degrees of freedom, respectively, if and only if v = V\ + + v9.
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Cochran’s Theorem says that since the ey are independently distributed 
as N(0} 1), SSt = SStrt^~SSe^ ^/(SSt) = df{SSTiu,)~\~df{SSB)i then 
SStrtI{cl — and SSe/{N — a) are independently distributed Chi-square 
random variables [12]. This means that if H0 is true then

MStpt (1.15)
MSe

is distributed as F with a— 1 and N — a degrees of freedom. We can use Fo 
as a test statistic for performing the hypothesis test given in equation 1.1. 
Prom equations 1.8 and 1.9 
treatment means, then the numerator of equation 1.15 will be larger than 
the denominator. Thus, the larger Fo is, the more likely it is that there is 
a difference in the treatment means. More formally for a given significance 
level a, if

that if there is a difference in thewe can see

(1.16)•R) > ^at o-l, N-a

we can reject Ho and conclude that at least two of the treatment means are 
statistically different.
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2 Repeated Measures ANOVA

Repeated Measures ANOVA extends the basic concepts of one-way classi­
fication ANOVA but differs from it in a couple of ways. First, subjects 
must be measured at every level of a treatment — this is what makes the 
use of repeated measures techniques necessary. As a result of this property, 
the assumption of independence of the individual observations is no longer 
valid. By knowing which subject is being considered we are given information 
about that observation from the subject’s other observations; thus making 
each subject’s observations dependent upon one another. How we deal with 
the loss of independence will be discussed later. An advantage of using a 
repeated measures design is that we can now see how a single person reacts 
to each of the different treatment levels, instead of just one level. This allows 
for a better comparison of the different treatment levels.

2.1 Design

design subjects must be crossed with at least oneIn a repeated
treatment and can also be nested within treatments. Treatments that sub­

measures

jects are considered to be crossed with are those that they are repeatedly 
measured across; each subject receives every level of that factor. Those fac­
tors in which subjects are nested are factors subjects receive only one level of 
(the non-repeated treatments). For example, say we split the subjects into 2 
groups and put one group in classroom A and the other in classroom B, and 
then, within both of the classrooms, students take each of 3 different tests. 
In this design the subjects are nested in the classrooms and crossed with 
the tests. In the one-way classification ANOVA subjects were only nested 
in treatments. In the repeated measures case they must be crossed with at 
least one treatment.

A basic repeated measures design has J subjects crossed with one treat­
ment, with I levels of that treatment. The model takes on the form

Yij = fi + A{ Sj + Asij 4- €ij (2.1)

for i = 1,2,j = 1,2, ...,J where 

• Yij is the observed value,
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• /x is the grand mean,

• A{ is the treatment (fixed) effect for the ith treatment level,

• Sj is the jth subject effect,

• Asij is the interaction effect of the jth subject with the ith treatment 
level, and

• Cij is random error.

This is referred to as a Treatment by Subjects design. Table 1 shows the 
respective degrees of freedom (df), expected 
the appropriate Fo ratio for testing the significance of each of the terms in 
equation 2.1.

Since there are I treatment levels and J subjects, we have IJ total degrees 
of freedom. As in the simple ANOVA, we lose one degree of freedom for 
estimating the mean treatment effect and the mean subject effect. Hence, 
we have J 一 1 and J — 1 in the df column of table 1 for A and S, respectively. 
We use these degrees of freedom to estimate mean squares. After estimating 
the mean squares for the treatments, subjects, and treatment by subject 
interaction we have used IJ — 1 of the initial IJ total degrees of freedom 
since (/ — 1) + (J — 1) + (/ —1)(*7 — 1) = / J-l. We then lose one more degree 
of freedom for estimating the mean error and because there are 0 degrees of 
freedom left to use we cannot estimate the mean square error. This results 
in there being no F-test for the subject effect [2].

squares (E(MS))i andmean

E(MS)Source Fodf
+ J(t\ + (t2as MSA/MSAsA

S
(J 一 1)(J-1)A*S

Error 0

Table 1: Summary table for a TVeatments x Subjects Design.

Subjects can be exposed to any combination of crossed and nested treat­
ments but, of course, as we add more treatments the models and calculations
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get more complex very quickly. For instance, by adding one more crossed 
treatment, B, with K levels the model becomes

Yijk = Sj+ Asij + Bfc + Bskj + ABik + ABsijk + Ujk (2.2)
for i and j as before and k = 1,2,...,/f. And adding a nested treatment, 
D, with M levels, to the design in equation 2.2 gives us

yijkm = M + Sj(m) + 4 + ADim + ASij^m) + Bk + BDkm
-\-BSkj(m) + ABik + ABDikm + ABSikj(m) + Ujkm (2-3)

for m = 1,2,..., Af. The parentheses in the subscripts of terms involving s 
indicate that s is nested in D because m is the corresponding subscript for 
D. This is important because we now have J subjects under each of the M 
treatment levels of D, giving us MJ total subjects. Thus, Sj(m) indicates the 
jth subject under the

When models have both crossed and nested treatments they are called 
mixed designs. We can split the treatments up into ones that create between- 
subject variation and ones that create within-subject variation. Between- 
subject variation occurs between the different subjects (e.g. the variation 
from subject 1 to subject 2) and it comes from the subjects themselves and 
the treatments the subjects are nested in. Within-subject variation is due 
to the inherent variation of a given subject’s scores; subjects don’t always 
have the same exact reaction to the same treatment so of course there will 
be differences from treatment to treatment. The sources of within-subject 
variation consist of the treatments the subjects are crossed with, the inter­
actions of those crossed treatments with the subjects, and the interactions 
of the crossed treatments with the nested treatments.

These two categorizations are useful for organizing the different treat­
ments and to see which interactions we should be considering. Table 2 shows 
how a summary table is set up for the model in equation 2.3. You can see 
that the between-subject sources of error are listed on the top and all of the 
within-subject sources of error are below. Within these sections we group 
the interactions of treatments. Notice that each term in the table coincides 
with a term in Equation 2.3 and, as before, because of the lack of degrees of 
freedom there are still no F-tests for the terms involving the subjects.

In the case of two nested treatments, the interaction of those two treat­
ments would be listed under the between-subjects sources. Consider treat­
ments Ay Dy and C which have /, J, and K levels, respectively. Then the

th treatment level of D.m

10



Source E(MS)df Fo
Between JM-1 

M-l 
M{J - 1) 

IJKM- JM

a? + IJKa2D + IKg\ 
a? + IKg%

(tc2 + JKMg\ + Ka\s
°t + + ^aAS

4 + K(rAS 
cT^IJMa2B + Ja2BS
of + + ^aBS

+ ^aBS

MSd/MSsD
S

Within
MSA/MSAs

MSad/^Sas
A

(I- 1)(M-1)
(J 一 1)M( J - 1) 

K-l
(K- 1)(M-1) 
(i^-l)M(J-l)
(J 一 1)(K - 1)

{I - 1){K - l)(M - l)

AD
AS

MSb/MSbs
MSbd/^Sbs

B
BD
BS

+ J Mg\b + o\BDS 
ae +^aABD +aABDS

MSab/MSabds
MSabd/MSabds

AB
ABD

ABDS °\ + aABDS

Table 2: Summary table for a design with Subjects nested in D and crossed 
with A and B.

model for a design with subjects nested in treatments C and D and crossed 
with treatment A where there are M subjects under each nested. treatment 
level would be

fl-\- Dj + Ck + DCjk + 5m(i,fc) + 乂i + 

-\-ACik + 乂 + ADCijk + Ujkm- (2.4)

Combining the structures of equations 2.2, 2.3, and 2.4 one can see how 
to create a model for any combination of crossed and nested treatments. Or, 
an easier method may be to first create the summary table and then use it 
to write the corresponding model.

2.2 Independence
As mentioned earlier, because we have multiple observations for each sub­
ject, the assumption of independence of the observations is no longer valid. 
It was this assumption that allowed the use of F-tests to test the hypotheses. 
Sphericity、which is the requirement that the variability of the differences of 
a single subject’s scores for every pair of treatment levels have equal vari­
ability, is often upset by the observations not being independent. These
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problems ultimately result in the mean square ratios not having an exact 
F-distribution with the previously defined degrees of freedom. In an effort 
to clarify sphericity, we will first discuss what can be done with the degrees 
of freedom.

Consider the Treatment by Subject design in equation 2.1 on page 8. Box 
has shown that because of the lack of independence of the observations [3], 
■F-tests performed using the original degrees of freedom are no longer valid. 
However, by using a multiplicative factor that measures the departure from 
sphericity, e, on our degrees of freedom, a corrected F ratio may be found. 
The new degrees of freedom are e(I — l) and e(/ — 1) (J — 1) [10] _ This £ is 
a function of the population variances and covariances and can be estimated 
using the sample variances and covariances but it is not always necessary to 
calculate an estimate. With that said, there are a few ways to deal with how 
€ might change the decision of whether or not Hq should be rejected but 
before we go into any more detail we must introduce variance of difference 
scores.

Given treatment levels i and i1 of treatment A, the difference score for 
the jth subject is defined as dju* 
difference
of the difference scores of treatment levels i and i1 for every subject. If 
a^i{t = a\v for every pair of levels i and i and l and V of treatment A, then 
the variances of the difference scores are said to be homogeneous.

The level of homogeneity that is present within the variances of the dif­
ference scores affects the value of e. If the variances are completely homoge­
neous then e = 1, thus giving us the original degrees of freedom (J — 1) and 
(/—1)(J-1) [9]. Under the most extreme case of heterogeneity e = l/(/-l), 
resulting in 1 and (J — 1) degrees of freedom [2]. Prom this we can see that 
no matter the amount of homogeneity that is present within the variances 
of the difference scores e ranges from 1 to 1/(/ — 1) which tell us that the 
adjusted degrees of freedom range from / — 1 and (I 一 1)(*7 — 1) to 1 and

of theThen theUij 一 Vvj-
for treatment levels i and i’，denoted。3说，运 the variance

variance
scores

If we perform an F-test with the original degrees of freedom without 
adjusting by £, the test statistic obtained from an F table may be biased 
upward and thus increase the probability of type I error [2]. Meaning we 
would reject Hq when Hq is indeed true more often than our chosen level of 
significance indicates. That is why adjusting the degrees of freedom by e is
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necessary. However, because we know the maximum and minimum values for 
e, we do not have to actually estimate e every time. Greenhouse and Geisser 
suggest performing two F-tests: one with / — 1 and (/ — 1) (J — 1) degrees 
of freedom and the other with 1 and J — 1 degrees of freedom. There 
three possible outcomes for the two tests:

Case 1: Hq is not rejected with J 一 1 and (J — 1) (J — 1) degrees of 
freedom.
If F0 < Fa% /-i, (/_i)(j_i) then FQ < 仏,i, (j-i). Since the degrees of 
freedom used for the first test are larger than those used for the second 
test, the critical F value used in the second test will be larger than 
the one used in the first test (see section A.3 of the Appendix). Thus, 
if Fo is smaller than the first value, it will definitely be smaller than 
the second (larger) value. Showing that no matter what e is, Fo <

Case 2: Ho is rejected with 1 and J — 1 degrees of freedom.
If Fq > Fat i, (j-i) then F0 > Fa% /_!, Since 1 and J - 1 axe
less than / — 1 and (/ — 1)(J — 1), the critical value obtained from 
the F-table in the second test will be smaller than the one obtained in 
the first test (see section A.3 of the Appendix). And, similarly to the 
first case, since F0 is greater than the first value it will be greater than 
the second (smaller) value also. So, since the actual degrees of freedom 
range from 1 and J — 1 to / — 1 and (I -1)(J-1) and Ho is rejected at 
both of these extreme points. No matter what the degrees of freedom 
are supposed to be Hq will be rejected in this case.

Case 3: Hq is rejected under the first test (df = I — 1, (I — 1)(*7 - 1)) 
but not rejected under the second test.
In this case, since the actual degrees of freedom are somewhere in the 
range of the two sets used, we cannot make an accurate decision. The 
critical value in the first test may be biased upward and the critical 
value in the second test may be biased downward, but we have no way 
of knowing how much. The only way to get rid of the ambiguity is to 
actually compute e.

xNote that since Fo = MS a/MS as = 6 cancel out and thus does not
have an effect on Fq.

are

when we have this initial result. 1
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We can see that when the two F-tests are consistent, we can use the 
decisions that the tests give us. But if the two tests yield different results, 
we must estimate e in order to get a valid result.

2.3 Estimating e
In order to estimate epsilon we will need to use variances and covariances so 
we must first discuss them.

2.3.1 Variance and Covariance

of a given variable is the expected value of the squared differ-The
ences of each of the observed values for that variable from the expected value 
of that variable. It is denoted by a2 and can be expressed as E[(X — E(X))2]. 
For our purposes we use the following definition of population variance.

variance

N
where fix is the population mean of the variable X and Xj is the jth obser­
vation out of N total observations of X. This formula can easily be rewritten

(Xj - fix) (Xj - fJg)
as

A (2.5)N
Variances can be computed for each variable that is present in a design. 

We can also change equation 2.5 ever so slightly to get the covariance between 
variable X and variable Y:

SjLi ⑷- ^x) (Yj - ^y)
(2.6)CovXy N

Prom equations 2.5 and 2.6 we can see that what distinguishes a variance 
from a is the use of two different variables instead of just one.covariance

When variances and covariances are estimated for sample populations 
the equation must be altered slightly. Sw is used to indicate an estimated 
variance or covariance and, since we don’t know the actual population mean, 
we must use our present data to estimate the means. We define the sample 
covariance to be

- " W) (2.7)Sw N — 1
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where i and i1 are two variables, j/y and y^j are the jih observations for their 
respective variables, and yi. and are the iih and {i!)th variable 
Also, we now have N — 1 in the denominator instead of N because we lost 
one degree of freedom for estimating the mean of the ith variable. It can be 
seen that if i = then is a variance estimate, and if i 一 i’，Su> is an 
estimate of the covariance between variables i and i.

When we apply these computations to the situation of a Treatment by 
Subjects repeated measures design with I treatments and J subjects, i and 
i’ are two levels of a specific factor. We let yij be the observation of the jtfl 
subject under the ith treatment level and, similarly, yT. is the ith treatment 
mean. Furthermore, because we are summing over the subjects we can re­
place N with J. A given treatment level will have one variance and 7 — 1 
covariances - one with each of the other J 一 1 treatment levels.

If we expand the product in equation 2.7 we can simplify the computation 
to one that is much easier to deal with. We have (using J instead of N)

E/=i(賊'j - yijW•- yvjW. + VIW)

means.

(2-8)Sa.

Since summations are distributive over addition and terms that are constant 
can be factored out we have

Sa>

yijVVj 一 W. Vij - W ^2j=l Vi'3 + JW W.

Vxjyvj ~ W.Vi. - yr.yi1. + JWW. (2.9)

In the last equality the dot notation has been used to indicate a summation 
over j:
j (a fancy 1) we have jW.Vi. = JyF.^j — JW.W. for the second term and, 
similarly, the third term becomes JyZ 筑T. Substituting these into equation

Now, if we multiply the second and third terms byVi.-
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i 2 ... /
Sn S\2 •.. Su 
S21 S22 S2I2

5/i 5/2 Su

Table 3: Variance-Covariance Matrix for I treatment levels

2.9 we have

U=1(yijyi，j) - JW.W — JyT. W. + JW. W.
Sat

(yijy^j) ~ JW. W.

ZU (y伽)-巧兮
(VijUi，/) 一 [Vi.讲，•)"

(2.10)

After computing the variances and covariances it is helpful to arrange 
them into what is called a variance-covariance matrix. Table 3 demonstrates 
this and we can see that the variances are down the diagonal and the off diag­
onal values are the covariances between the corresponding pairs of treatment 
levels.

Before the estimation of e is introduced, it is useful to go over some 
notation. Once again the dot notation will be used to indicate summation 
over the variable that has been replaced by a dot. We define S{, to be the 
average of the ith factor levers variance and the / — 1 covariances. Relating 
this to the variance-covariance matrix, Si. would be the average of the values 
in the ith row (or column since the ilh row equals the ith column). Similarly, 
5. is the average of all of the variances and covariances; which is equivalent 
to the average of the Si：

Geisser and Greenhouse [5] have shown that an estimator for the value
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of e can be computed by

I2 (S^-5..)2
(2.H)

The estimate for £ can be broken down into:

• Ei=l SU is the

• Ei Sl，is the
variances:苑 + S?2 + …+ 5^7_^ + S/7,

•以5乏 is the 

and lastly we have that

• Sj is the square of the average of all of the variances and

sum of the variances: Sn + 522 + …+ •?"，

sum of the squares of each of the variances and co­

sum of the squares of the Si.、

covariances.

Collier, Baker, Mandeville, and Hayes (1967) and StolofF (1970) investi­
gated the effects of using £ on significance levels. Using simulations they 
found that by using this adjustment on the degrees of freedom, the actual 
level of significance that results from use of the new critical F value comes 
very close to the chosen level of significance [10]. It is much closer than when 
no adjustment is made and heterogeneity of the variances of the differences 
scores exists. However, they also found that when £ is near, or above .75, £ 
is badly biased.

When i is around .75 it ends up under estimating the degrees of freedom. 
This results in a significance level smaller than the one chosen. The reason 
for this bias stems from the fact that even though the population may have 
homogenous variances of difference scores, a sample of that population “can 
always be expected to evidence some heterogeneity” of variances of difference 
scores [10]. This case results in an unnecessary reduction of the degrees of 
freedom. In order to correct for this bias, Huynh and Feldt derived the 
following correction factor.

J(J 一 l)g — 2
(2.12)e

This estimator of compared to the one presented in equation 2.11, is 
less biased and less dependent on a large sample size when there is only
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slight heterogeneity of variances of difference 
does not make sense to estimate £ by a value larger than 1, we make £ equal 
to 1 whenever it is greater than this upper bound. Furthermore, £> £ for 
every number of treatment levels and subjects and, the equality holds when
e = 1/(/ -1).

present [10]. Since itscores

For a design that also has nested factors we can compute these estimators 
in a similar way. First, it is assumed that the K independent groups, one 
for each of the K levels of the nested treatment, have the same variance- 
covariance matrix [10]. The formula for 8 is the same as before except that 
now corresponding values from all of the groups are being used to compute 
the estimates. With N being the total number of subjects, the computation 
for 6 becomes

N(I - l)f - 2 (2.13)£ (/- l)(N -K-{I- 1)£)

Huynh and Feldt found, through Monte Carlo methods, that when the 
parameter £ is around .5, £ is a better estimate. In addition, their work 
upheld their intentions of e being the better estimate when € > .75 [10] _ 
Not surprisingly, they also found that an increase in sample size results in 
less bias for both estimators.

2.4 Sphericity
Sphericity is the necessary and sufficient condition for the mean square ratios 
to have an exact F-distribution [9] and it can be discussed in several different 
contexts. The definition of sphericity that fits best with the other topics of 
this paper is as follows. If the variances of the difference scores are homoge­
neous then the variance-covariance matrix is said to be spherical. Recalling 

previous discussion of the relationship between variances of difference 
scores and £ we can see this is equivalent to £ being equal to 1.

Equivalent definitions are in the context of matrices. If we let E be the 
variance-covariance matrix and M be an / — 1 by / matrix of orthonormal 
vectors, then the property of sphericity is met if MEM7 = XI where X is 

constant and / is the / — 1 by / — 1 identity matrix [2]. This says that, 
after this transformation, the variances of each factor level must all be equal 
and the covariances between the different factor levels must all equal 0 in 
order for sphericity met. Huynh and Feldt defined a type H matrix to be a

our

a
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variance-covariance matrix that demonstrates equal variances of differences 
between pairs of scores. Another explanation using matrices is that a type 
H matrix has the sphericity property that E = A + i4r + XIj where Ij is 
the I by I identity matrix and, once again, A is some constant and E is the 
variance-covariance matrix [8].

We can now use e as a measure of the extent to which the vaxiance- 
covariance matrix departs from sphericity. Values of E near 1 indicate the 
variance-covariance matrix is spherical. Similarly, the closer £ is to 1/(/ —1) 
the more severe the departure from sphericity. Note that when there are only 
2 levels of the crossed treatment sphericity is not an issue. This is because 
there will only be one set of difference scores and thus only one variance of 
difference scores. If nested treatments are present then sphericity must be 
present in the variance-covariance matrices for each group of subjects.

Adjusting the degrees of freedom by £ acts as a correction for a lack of 
sphericity. However, as previously mentioned, this correction can only help 
to approximate an F-distribution 一 it is not as good as if the assumption 
of sphericity were upheld. The obtained results are still valid, but once 
sphericity is violated, in order to get the most accurate results, it is best to 
move on to methods that are more flexible in dealing with a lack of sphericity.
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3 Application of ANOVA Techniques to Real 

World Data
In order to test ANOVA techniques I will be using data on mice activity 
levels. This data comes from a study investigating autism in mice conducted 
at the University of Redlands and led by Professor Ryan. However, for the 
purposes of this paper, only a statistical analysis will be performed. I do 
not have a background in mice or autism and thus cannot interpret what the 
following results indicate about the autism in mice.

The autism data set consists of one crossed treatment 一 post-natal days 
(age), and two nested treatments — cage type and strains of mice; all of 
which are considered to be fixed. There are 3 different strains of mice in this 
study: C57, C58, and FVB; and 3 different cage types used in the study: 
new, old, and enriched. Each litter of mice is placed in a cage with a unique 
cage number and the type of cage is either new, old, or enriched. Also each 
litter comes from one of the three strains mentioned. Starting when the mice 
are 2 days old, data is collected every other day up until the mice are 12 
days old. The collected variables include measures such as weight, distance 
traveled when allowed to move around, time it takes to turn over when placed 
on their back, and other measures of each mouse’s activity levels.

The age of each mouse, denoted PND, acts as a time variable and each 
response is repeatedly measured over each PND “level” - making PND the 
crossed, or within-subject, treatment. However, because we have no way of 
distinguishing the mice from one another when they are in the cage together, 
we have no way of matching up individual mouse records from day to day. 
To deal with this response outcomes within each cage for each PND level 
were averaged (see Appendix A.4 for the SAS code used to perform this 
transformation). For example, cage 1 had 3 mice in it so at each PND level 
we have 3 measurements for each response variable. But we cannot match 
the observations under PND 2 to those under PND 4 so we take the 3 values 
under PND 2 and average them for each of the separate response variables; 
this is done for each PND level and for each cage of mice. Now, instead of 
each mouse being a subject, the unique cages are the subjects. Table 4 shows 
the design of the data.

By taking the averages we drop from 2,831 observations to only 429 obser­
vations. This alters the degrees of freedom available to use when performing
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F-tests; for the analysis of the original data we have enough degrees of free­
dom to estimate the mean squared error but this is not the case for the 
averaged data. Because of this, the design for the analysis of the original 
data includes F ratios for the subject (cage) effect and for the subject by 
PND interaction term while the design for the analysis for the averaged data 
does not.

Strain: C57 FVBC5S

PNDEE: E:

Cagell
Cage39

Cagel
CagelOl

Cagel9
Cage29

Subject Subject Subject

PND PND PNDO: O: o：
Cage77

Cagel02
Cage45

Cagel03
Cage57
Cage91

Subject Subject Subject

N: N:N:PND PND

Cagel3
CagelS

Cagel4
Cage36

Cagel5
Cage21

Subject Subject Subject

Table 4: Visual display of the design set up.

In this data set there are two types of unbalance present; one due to 
missing values
the variables in the original data set have missing values, however because 
there are some observations for the specific cage under the given PND it 
does not result in a missing value in the averaged data set. Also, some cages 
had PND’s that were skipped, but in these instances the skipped PND was 
completely left out instead of entering missing values; this does not create 
missing values in either version of the data. It instead contributes to the 
lack of balance in the data. These skipped PND’s for some cages result in

time and another due to different group sizes. Most ofover
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a lack of balance due to unequal group sizes; in the averaged data there is 
an unequal number of observations for each PND. Furthermore, because the 
mice are placed in the cages by litter, there is an unequal number of mice 
in each cage. Thus there are unequal group sizes and an unequal number of 
observations under each PND from cage to cage. Taking the average of the 
response variables by cage and PND helps correct for a lack of balance due 
to unequal litter sizes.

Additionally, because tests are being performed for each response variable 
there are issues with the experiment wide significance level, o；. The chosen 

level, generally .05, may be appropriate for each individual significance 
test however, when it is used for every test, the experiment wide significance 
level is actually much higher than our chosen a [15]. This is because the 
more tests that are performed on a set of data, the more likely we are to 
reject Ho when it is true, referred to as a Type I error [1]. When tests 
being performed in this manner it is referred to as a problem with Multiple 
Comparisons. A common correction for the higher probability of Type I 
error and the inflation of a is to divide ot by the number of tests being 
performed, called the Bonferroni Correction, While other corrections exist, 
the Bonferroni is the simplest and most conservative correction for multiple 
comparisons.

The analysis of this data set will involve 7 individual significance tests 
because there are 7 response variables. Therefore, an experimental wide 
significance level of a = .05 translates into significance levels of .00714 for the 
individual tests. If an experimental wide significance level of .01 is desired, 
then the tests for the individual variables would need to use .00143 as the 
significance level.

The Repeated Measures Analysis of Variance option in NCSS is used to 
perform the needed analysis. The output of this method presents an ANOVA 
summary table with a breakdown of all of the necessary values discussed in 
the previous parts of this paper (degrees of freedom, mean squares, sums of 
squares,尸-ratios, and probability levels). Additionally, £ and £ are computed 
and F-tests using the corrected degrees of freedom are performed. Running 
this analysis for each response variable we get information on the effect that 
each treatment has on the response variables. In addition to using SAS 
to create an averaged data set, SAS was also used to compute descriptive 
statistics, see Appendix A.4. The package R was also used to create relevant

a
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plots of means by the different treatments.
In order to see how transforming the data affects the results, analyses 

both the original data and the data that has been averaged over the PND 
levels within each cage were performed. ANOVA tables for each variable can 
be seen in Section A.5 of the Appendix.

on

3.1 Corrected Negative Geotaxis
Corrected Negative Geotaxis, denoted CORNEGGEO, measures the amount 
of time, in seconds, it takes a mouse to turn around when they are placed 
on an inclined plane with a maximum cutoff time of 30 seconds. The overall 
mean for this variable is 12.71 and the means by strain are approximately 
11.4, 11.1, and 14.3 for C57, C58, and FVB respectively. The means by cage 
type are approximately 12.33 for enriched cages and 12.9 for both new and 
old cages. Note that there is not much difference in the means between the 
two data sets. There were 701 observations in which the maximum value of
30 was recorded; this drags the means up quite a bit, note that the overall 
median is only 7.03. From the means by PND, we can see that as the mice get 
older they seem to be quicker to turn around. With means of approximately 
26 under PND 2 and means of approximately 6 under PND 12 in both sets

bese maximum values are coming from the youngerof data it appears that th 
mice.

Going from the original data to the data that has been averaged did not 
cause any changes in significance. Using a significance level of 0.00714 we find 
that strain and PND have a significant effect on the times it takes a given 
mouse to turn around when placed on an incline, with p-values < 0.0001 
and < 0.0001 respectively. In the results for the analysis of the original data 
the subject (cage) effect does have a significant impact 
as does the interaction of subject with PND. Referring to the means stated 
above, the FVB strain takes longer to turn around than the two other strains. 
These relationships can be seen in Plot 2(a) of section A.6 of the Appendix.

The values for e, referred to as Geisser-Greenhouse Epsilon, and e} re­
ferred to as Huynh-Feldt Epsilon, also do not change from the original data 
to the averaged data, i » 0.666 and e « 0.792 for both data sets. These 
high values (close to 1) indicate that there is slight heterogeneity of variances 
of difference scores and thus the assumption of sphericity is violated. When

CORNEGGEOon
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■F-tests are performed using the degrees of freedom that have been adjusted 
by epsilon the significance of the effects did not change.

3.2 Rearing
The variable REAR measures the number of times the mouse rears up on its 
hind legs when allowed to move around. There are 2 observations that are 
missing a value for this variable. Although the range of this variable is 0 to 
64, the overall mean is only 0.53 and the median 0 - this is a result of 2520 
out of the 2829 total observations being 0.

Examining the F-ratios for this variable we see that, at the .00714 sig­
nificance level, strain, PND, and the strain by PND interaction all have a 
significant effect on how much a mouse rears. The p-values from the aver­
aged data are 0.0037, < 0.0001, and 0.0035 for strain, PND, and the strain 
by PND interaction respectively, and from the original data the p-values are 
(in the same order) 0.0019, < 0.0001, and 0.0005. Although there is more 
of difference between the p-values of the two different versions of the data 
than there is with most of the other variables, there still is not a big enough 
difference to change the outcomes. Prom the results on the original data we 
also find there is a significant subject (cage) effect and a significant subject 
by PND interaction effect (with both these p-values being < 0.0001).

Now, examining the epsilon values, we have that i « 0.368 and f « 0.426 
for both versions of the data. These are pretty small values for e and thus 
indicate there is quite extreme heterogeneity of the variances of difference 
scores present causing the requirement of sphericity to be violated. When 
supplementary F-tests are performed to help correct for this issue the critical 
F-values increase which raises the p-values. However after this adjustment, 
the effect of PND is still significant and the strain by PND interaction effect 
is not. This indicates that the strain by PND interaction effect may be easily 
influenced by changes in the data. However, despite the lack of sphericity, 
we can be confident that strain and PND are associated with how much a 
mouse rears.

The means broken up by strain indicate that the FVB strain rears the 
most; followed by the C58 strain and then C57. Also, we find that the mice 
rear more as they get older. There is quite a large jump in how much a 
mouse rears going from PND 8 to PND 10, especially with the FVB strain.
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Refer to Plots 2(b) and 2(c) in section A.6 the Appendix for plots of these 
interactions. Since the strain by cage-type interaction effect was significant 
in the averaged data model, it is worth noting that, overall, the mice in 
enriched cages rear more than mice in the other two cage types, and mice in 
new cages rear more than those in old cages.

3.3 Number of Squares Crossed
The variable NUMCROSS records the number of 2 centimeter squares a 
given mouse crosses when allowed to move around. With 3 missing values, 
this variable has a mean of roughly 14.58 and a median of 8.

When looking at the F-tests for NUMCROSS we find that strain, PND, 
and the strain, PND interaction all have significant effects on how much 
a mouse moves. In addition, the strain by cage type by PND also has a 
significant impact on NUMCROSS in the averaged data, but one of 0.018167 
in the original data set. All four of these terms have extremely low p-values: 
the 3-way interaction term has a p-value < .0001 for the averaged data while 
the other three terms all have p-values < 0.0001 for both versions of the 
data. Aside from the p-value of 0.018167, these p-values would be significant 
at even the most strict significance levels. In the results for the original data 
we also have that subject and subject, PND interaction effects are significant 
with p-values < 0.0001. The p-values for the terms that were not significant 
were quite far from the 0.00714 cut off, ranging from 0.2 to 0.6.

For this variable we have epsilon values of f = 0.494 and e = 0.578 for 
both versions of the data. The value of e indicates strong heterogeneity of 
the variances of difference scores and thus a violation of sphericity. Using i 
to adjust the degrees of freedom does not effect the significance of the effects 
on NUMCROSS. Although the strain by cage type by PND interaction term 
is not significant in the original data, its p-value in the averaged data is very 
low so it appears that this term does have a significant effect on NUMCROSS.

Examining the means for the number of squares crossed broken up by 
strain, it is evident that the C58 strain is the most active in terms of this 
variable, with a mean of approximately 23.5 squares crossed. The FVB strain 
has the second highest activity level, with a mean of approximately 17, and 
the C57 strain has a mean of approximately 7 squares crossed. Additionally, 
the older the mice axe, the more they move around (Figure 2(d) in section
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A.6 of the Appendix).

3.4 Righting
The variable RIGHT measures the amount of time it takes a mouse to turn 
over when placed on its back, referred to as righting itself. It is measured 
in seconds and has a maximum cutoff value of 30 seconds. There are 2 
observations that do not have a value for this variable. Righting has 
overall mean of approximately 3.67 and a median of 1.41 indicating that the 
117 high values of 30 are pulling the mean up.

Once again the analysis shows that the strain, the PND, and the strain 
by PND interaction have significant effects on the response variable. With p- 
values < 0.0001 these effects are significant even at the strongest significance 
levels. Similarly, the subject effect and the subject by PND interaction effect 
are also significant with p-values < 0.0001.

Examining the values of i and e we see that, since they are less than .75, 
e is the less biased estimate, and it indicates a lack of homogeneity of the 
variances of difference scores. Once again these issues result in the sphericity 
requirement being violated. With the original p-values being so small, there 
is no evident change in the p-values when efforts are made to correct for 
this lack of sphericity by adjusting the degrees of freedom for the F-tests. 
Since the relevant p-values are so small it can be concluded that the strain 
effect, PND effect, and the strain PND interaction effect are all significantly 
different from zero, even with the lack of sphericity.

The means for righting split up by strain are approximately 4.8, 6.3, and 
1.8 for C57, C58, and FVB respectively. These values indicate that the 
mice from the C58 strain take the longest to right themselves and the mice 
from the FVB strain are the fastest. As the mice get older they get better 
at righting themselves. When looking at the means grouped by strain and 
PND we find that as the mice get older the differences between the strains 
decrease. At PND 2 there are very large differences between the means for 
each of the strains, however by PND 8 these differences are drastically smaller 
and continue to decrease (see Figure 2(e) in section A.6 of the Appendix).

an
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3.5 Pivots
The PIVOT variable measures the number of sideways movements a given 
mouse makes when it is allowed to move around. There are 2 observations 
that do not have a value recorded for this variable. Although the range of 
pivots is 0 to 17, there were 1036 observations in which the mouse pivoted 
0 times and only 172 observations in which the mouse pivoted more than 5 
times. This high concentration of small values shifts the data downward to 
have a mean of 1.75 and a median of 1.

Examining the 尸-ratios and p-values for the pivots variable we find that 
strain and PND have significant effects on this variable. Also, the strain by 
PND interaction shows a significant effect in the original data. The p-value 
for the strain by PND interaction effect in the original data is 0.0024 and 
in the averaged data the p-value is 0.0132. The p-value for the strain effect 
is < 0.0001 in both versions of the data and the PND effect has a p-value 
< 0.0001 for the averaged data and one of < 0.0001 for the original data. 
These values make it evident that strain and PND would have significant 
impacts on how much a mouse pivots at all reasonable significance levels.

Now moving to the estimates of epsilon we find that e « .864 and e =1. 
With what is known about how e is computed, it is likely that the computed 
estimate was greater than 1, yielding this exact value of 1. These values are 
higher than the others we have seen and they indicate only a slight deviation 
from homogeneity of the variances of difference scores. Despite the e value 
of 1，the results do indeed indicate that sphericity has been violated. Even 
though e indicates the sphericity assumption is upheld, the fact that e is only 
.864 creates a chance that the actual value of e is somewhere between the 
two estimate values and any deviation from 1 would cause homogeneity of 
variances of the difference scores (and thus sphericity) to be violated.

Since e = 1 adjusting by it would not actually be an adjustment at all and 
thus the p-values would not change. Additionally, since e is large, adjusting 
by e will not alter the degrees of freedom drastically and thus the p-values 
for the F-test done with the adjustment will not differ a lot from the initial 
p-values. As expected, the p-values change ever so slightly and all of the 
above statements about significance levels are still valid.

Breaking down the mean number of pivots by strain shows that mice 
from the C58 strain pivot the most followed by the FVB strain and then
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the C57 strain. The means for C58, C57, and FVB are 2.9，1.6, and 1.2 
respectively. Although the results show a significant PND effect, there is not 
a strong pattern within the PND’s. The means for PND’s 2 and 12 are both 
approximately 1.3 while the means for the middle PND’s bounce around in 
the 1-3 range. For a plot of these relationships see Figure 2(f) in section A.6 
of the Appendix.

3.6 Forward
The FORWARD variable measures of the amount of time a mouse spends 
traveling forward when it is allowed to move around. It is measured in 
seconds. With a range of 0 to 151.6 and 1,417 observed values of 0 (out of 
2,828), this variable is quite skewed; having a mean of 6.04 and a median of 
0. There are 3 missing values.

Interpreting the results of the F-tests, we find that the usual suspects, 
strain, PND, and the strain by PND interaction, once again have significant 
effects on the variable. Strain and PND have p-values < 0.0001 while their 
interaction effect has a p-value of 0.0017 in the original data and a p-value 
of 0.0044 in the averaged version of the data. All of these effects are found 
to be significant at the 0.00714 significance level.

Moving to the sphericity section of the results we find that e « 0.644 and 
e « 0.765. As is expected based on these values, sphericity has been violated; 
we must correct for this issue by adjusting the degrees of freedom by the 
estimate of e. Under the adjusted F-tests the strain by PND interaction 
effect is significant only in the original data and only under the Huynh-Feldt 
Epsilon adjustment (with a p-value of 0.0046). Because of this it appears 
that, in general, the strain by PND interaction does not have a significant 
effect on the forward variable. The strain effect and the PND effect are still 
significant under the adjusted F-tests.

The means for the forward variable broken up by the strains C57, C58, 
and FVB are 2.5, 8.2, and 8 respectively. These values show that mice from 
the C57 strain move forward much less than the other two strains. Looking 
at the means by PND it is evident that, for the most part, as the mice get 
older they spend more time moving forward. The means actually increase 
from PND 2 to PND 4 and then drop back down to levels lower than those of 
PND 2. Prom PND 6 they begin to increase again with large jumps occurring
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between PND’s 8 and 10 and between PND’s 10 and 12. Refer to Figures 2(g) 
and 2(h) in section A.6 of the Appendix for plots of the different relationships 
for this variable.

3.7 Weight
At every PND each mouse’s weight is measured in grams. With 35 missing 
values this variable by far has the most missing values. The range of the 
weights of the mice is 0.54 grams to 11.91 grams. The mean weight of all 
the mice is 3.88 grams and the median is 3.62, indicating the the weights are 
pretty evenly spread out.

Looking at the results of the F-tests we see that the PND, the strain 
by PND interaction, and the the cage type by PND interaction all have 
significant effects on the weight of the mice in both versions of the data. 
Additionally, in the original version of the data the subject effect and the 
subject by PND interaction effect are significant. Aside from the cage type 
by PND interaction effect, which is only significant at the 0.00714 level, the 
other two effects are significant at the 
level.

stringent 0.00143 significancemore

Turning to the estimates of epsilon we see that i = 0.287 and e = 0.328. 
These are very low values and they suggest severe heterogeneity of the vari­
ances of the difference scores. However, the results state that the sphericity 
requirement is met. Note, the lower bound on epsilon, 1/(/ — 1) = 1/(6 — 1), 
is 0.2 so e is quite close to being as small as possible. Since the estimates 
for epsilon axe so small, adjusting the degrees of freedom by i will decrease 
the degrees of freedom quite a bit, thus resulting in a larger increase in the 
p-values. With this increase, the cage type by PND interaction effect is no 
longer significant and the other effects are now only significant at the 0.00714 
level.

The mean weights broken down by strain indicate mice from the FVB 
strain weigh more than the two other strains, and mice from the C57 strain 
weigh slightly more than mice from the C58 strain. A break down of the 
means by PND reveals that, as expected, the mice weigh more the older they 
are: the mean weight under PND 2 is 1.6 grams while the mean weight under 
PND 12 is 6.5 grams. Additionally, mice that are caged in enriched cages con­
sistently weigh the most followed by those in old cages. These relationships
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can be seen in Figures 2(i) and 2⑴ in section A.6 of the Appendix.

3.8 Conclusions
It is evident that in most cases the strain that a mouse comes from, the 
PND under which the observation was taken, and the interaction of these 
two treatments all significantly effect the outcome of the response variable. 
These results are reasonable since it is likely that mice from the same strain 
share common behaviors and characteristics. Additionally, as the mice get 
older their behaviors and abilities are likely to change.

Furthermore, although sphericity was violated in all but one of the mod­
els, these results are valid. Most of the p-values for effects that were sig­
nificant were quite low _ showing that the results for those effects are fairly 
stable. Also, most of the p-values for the effects that were not significant were 
not very close to the cut off value of 0.00714. This indicates that those results 
also would not be greatly effected by slight changes in the data or methods. 
The outcomes that are most susceptible to changes in the data and the meth­
ods used are those terms which had p-values very close to 0.00714 (above and 
below 0.00714). Although these results are valid, if the most accurate results 
possible are warranted, especially for the terms with p-values close to 0.00714 
more advanced methods, such as mixed models, that are more forgiving of a 
violation of sphericity should be used.
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A Appendix

A.l Simplification of SSt to Show Additivity of the 

Sums of Squares
The corrected total sums of squares can be decomposed as

sst =
i=l j=l

= ((yij - + (vi- - y))2
i=l j=l 
a n

= E ((斯一访.)2 + 2 (斯-访.)(访.-获•) + (访•-汉)2)
a na n a n

=(卯-负)2+2 Z) Z (卯-负池-幻+(n)2
<=i i=i

aa n a n

=(vtj - Vi.)2 + (yd、m.) + in.、2
t=l j=l t=l i=l 1=1

(A.1)

Examination of the middle term in equation A.l suggests that since there 
are no j's in (负•一 y..) it can be factored out of the summation over j and 
we have

^ ((负_ -获.)(S (2/0…负•)))a n

m) (A_2)= 2
i=l J=1

Looking at the inner summation term in equation A.2 we see that:
nn n

(2/<j - §<•) = D?/ii - E负.
i=ii=i

= Vi. - nyi.

=Vi.- n
=Vi. - Vi.
= 0
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Substituting this result into equation A.2 we have

))a n a
2^

<=1 \ \i=l
2E_-S")(0))

i=l

(A_3)0

Finally, from the result in equation A.3 we have that the middle term in 
equation A.l is zero and therefore equation A.l reduces to

a na

SSt = (yi. - y.)2 + ^^2(2/*i _ Vi)2
»=i »=i j=i
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A.2 Simplification of E(MSe)
Proof that the expected mean squared error is a2 can be seen as follows.

2

亡亡(M + Ti +…)2-^亡(亡(/Z + T< + €<，)
t=l j—1 1=1 \J=1

a n

(m2 + 2r»/i + 2/i€ij + r? H- 2riC<j- 4- e?)
i=l j=l

—[(n2/i2 + n2rt? + (a)2 + 2n2/xTi + 2n/zq. + 2nTiCi4) 
n i=i

E(MSe) E
N-a

E
N-a

a

Na a
Nfi2 + 2n/zr + 2//c.. +n^r? + 2rc.. + [ [ 4

» <=i i=i
E

N-a
a a

-时^(ei.)2 - 2nfir - 2\it

\<=1 j=l i=l /

一 2re..

EN-a

N-a

Y^,YlE(cl) - 士亡五(⑷2)a
(A_4)

N-a

Equation A.4 is true because expected values are distributive over sums — 
the expected value of a sum is equal to the sum of the expected values.

Examining the first expected value in Equation A.4 we see that, since 
Var(eij) = a2 = E(efj) - (jB(ey))2, ) = a2 + (£?(c<j))2. But we know
that E(tij) = 0. Thus

Now looking at the second expected value in Equation A.4 we have that 
■®((ei_)2) = ^((Ej=i ^ijf) = n£?k) + n(n - 1)五(€<卿).Since 句 and 吩 

are independent we can say n(n — l)jB(eyey') = n(n — l)E(tij)E(tijf) and

(A.5)
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using E(cij) = 0, we have that n(n - 1)五(句)五(吩）= 0_ Thus

S((c,)2) = nE(el)
Substituting Equations A.5 and A.6 into Equation A.4 we have

(A_6)

(錄2-洁柳)E{MSe) N-a

[Na2 — aa2)
N-a

(N — a) a2N-a

a2
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A.3 F-distribution Table
F-Distribution Table for a = .05. Notice that the critical values are decreas­
ing for increasing denominator (df2) degrees of freedom.

dfl: 2 3 6 84 5 7
d/2 : 1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88

18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37
10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85
7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04
6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82
5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15
5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73
5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44
5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23
4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07
3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94

2
3
4
5
6
7
8
9

10
1,000,000

Latex table generated in R 2.14.1 by xtable 1.7-0 package. R code for 
generating the 尸-table:

dfl = 1:8
df2 = c(1:10,1000000) 
library(xtable)
xtable (outer (df 2, dfl, f unct ion (x,y){qf (0.95, y, x)»)

35



A.4 SAS Code
proc import out = data.micedata

datafile= "C:\SeniorProject\NeonatalData_Deleted0utliersandCage3.xls 
dbms=excel replace; 

range="Sheetl$"; 
getnames=yes; 
mixed=yes; 
scantext=yes; 
usedata=yes; 
scantime=yes;

RUN;

data a;
set data.micedata;

run;

proc sort data 
by cage pud strain cage_eon; 
run;

a;

proc means data 
var right weight corneggeo pivots forwar numcross rear; 
by cage pnd strain cage^eon;
output out = "C:\SeniorProject\SAS\averagedData" mean(RIGHT weight 

corneggeo pivots forwar numcross rear) = rightavg weightavg 
corneggeoavg pivotsavg forwaravg numcrossavg rearavg;

a MEAN;

run;

proc univariate data = a;
var right weight corneggeo pivots forwar numcross rear; 
run;

proc freq data = a;
table right weight corneggeo pivots forwar numcross rear; 
run;
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A.5 ANOVA Reports for the Averaged Mice Data 

Expected Mean Squares:

Source
Term

Term Denominator 
Term

Expected 
Mean SquareDF Fixed?

A: STRAIN 
B: CAGE.EON

C(AB)
C(AB)
C(AB)

S(ABCD)
CD(AB)
CD(AB)
CD(AB)
CD(AB)

S(ABCD)

Yes S+dsC+bcdsA
S+dsC+acdsB
S+dsC+cdsAB

S+dsC
S+sCD+abcsD
S+sCD+bcsAD
S+sCD+acsBD
S+sCD+csABD

S+sCD

2
Yes2

AB Yes4
C(AB): CAGE 

D: PND
No65

Yes5
AD Yes10
BD Yes10

ABD 20 Yes
CD(AB)

S(ABCD)
No310

SNo0

Prob Power 
Level of=0.05

Source
Term

Sura of Mean
Squares Square F-RatioDF

RIGHT 
A: STRAIN 

B: CAGE.EON
0.000000
0.951799
0.795134

1.000000
0.057156
0.141133

1184.635 592.3173
1.916075 0.9580374 
32.3933 8.098325

1259.575 19.37808
4787.406 957.4811
2095.269 209.5269
44.35108 4.435108
78.76699 3.938349
2560.344 8.259176

30.572
0.052
0.42AB 4

C(AB): CAGE 
D: PND

65
0.000000
0.000000
0.863479
0.973870

1.000000
1.000000
0.279542
0.361546

115.93
25.37

5
AD 10
BD 0.5410

ABD 0.4820
CD(AB) 310

S 0
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Source
Term

Sum of Mean
DF Squares Square F-Ratio

Prob Power 
Level q=0.05

WEIGHT
A: STRAIN 

B: CAGE.EON
2 26.50912 13.25456
2 20.87215 10.43607
4 33.79847 8.449617

65 201.8995 3.106147
5 948.9018 189.7803 1225.75 0.000000 1.000000

10 8.84283 0.8842829
10 4.34323 0.434323
20 5.478618 0.2739309

310 47.99664 0.1548279

4.27 0.018144 0.725956 
3.36 0.040874 0.614837 
2.72 0.036998 0.721832AB

C(AB): CAGE 
D: PND

AD 5.71 0.000000 0.999963 
2.81 0.002423 0.971182 
1.77 0.023141 0.969059

BD
ABD

CD(AB)
S 0

CORNEGGEO 
A: STRAIN 

B: CAGE.EON
2 788.8692 394.4346
2 110.2957 55.14784
4 21.81124 5.452809

65 1911.123
16441

10 358.1508 35.81509
10 268.0713 26.80713
20 394.5971 19.72986

310 5935.498 19.14677

13.42 0.000013 0.997046 
1.88 0.161455 0.376715 
0.19 0.945167 0.087025AB

C(AB): CAGE 
D: PND

29.4019
3288.2 171.74 0.000000 1.000000

1.87 0.048649 0.851806 
1.40 0.179033 0.707733 
1.03 0.425501 0.764450

5
AD
BD

ABD
CD(AB)

S 0

PIVOTS 
A: STRAIN 

B: CAGE.EON
2 161.8623 80.93117
2 1.041986 0.5209929
4 3.629704 0.9074259

65 217.4413 3.345251
5 49.8658 9.973159

10 40.93186 4.093186
10 7.452648 0.7452648 
20 43.85695 2.192847

310 553.3202 1.784904

24.19 0.000000 0.999996 
0.16 0.856099 0.073069 
0.27 0.895463 0.106111AB

C(AB): CAGE 
D: PND 5.59 0.000060 0.991616 

2.29 0.013162 0.926284 
0.42 0.937834 0.217749 
1.23 0.228524 0.853643

AD
BD

ABD
CD(AB)

S 0
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Source
Term

Sum of Mean
DF Squares Square F-Ratio

Prob Power 
Level a=0.05

FORWARD
A: STRAIN 

B: CAGE.EON
2 2224.838 1112.419 
2 80.72826 40.36413
4 106.7194 26.67985 

65 3830.341 58.92833
5 5305.279 1061.056 

10 1341.114 134.1114 
10 322.1174 32.21174 
20 1233.177 61.65884

310 15836.29 51.08482

18.88 0.000000 0.999884 
0.68 0.507707 0.160626 
0.45 0.770022 0.149841AB

C(AB): CAGE 
D: PND 20.77 0.000000 1.000000 

2.63 0.004439 0.959484 
0.63 0.787487 0.329846 
1.21 0.246222 0.845449

AD
BD

ABD
CD(AB)

S 0

NUMCROSS 
A: STRAIN 

B: CAGE.EON
2 16961.78 8480.888 
2 664.0782 332.0391
4 1119.887 279.9718 

65 20348.76 313.0578
5 25551.62 5110.323

10 10126.53 1012.653 
10 2162.967 216.2967 
20 9541.68 477.084

310 51869.55 167.3211

27.09 0.0000⑻0.999999 
1.06 0.352152 0.228019 
0.89 0.472544 0.268961AB

C(AB): CAGE 
D: PND 30.54 0.000000 1.000000 

6.05 0.000000 0.999985 
1.29 0.233499 0.664338 
2.85 0.000061 0.999406

AD
BD

ABD
CD(AB)

S 0

REAR 
A: STRAIN 

B: CAGE.EON
6.21 0.003401 0.879158 
0.78 0.463782 0.176960 
2.54 0.047864 0.688463

2 20.08432 10.04216 
2 2.514194 1.257097
4 16.44737 4.111843 

65 105.0956 1.616856
5 94.20391 18.84078 

10 37.74133 3.774132 
10 14.61899 1.461899 
20 36.07182 1.803591

310 435.2346 1.403983

AB
C(AB): CAGE 

D: PND 13.42 0.000000 1.000000 
2.69 0.003597 0.963988 
1.04 0.408415 0.548215 
1.28 0.186882 0.873344

AD
BD

ABD
CD(AB)

S 0
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(b) Means of Rearing by PND grouped according 
to Strain

(a) Mean Corrected Negative Geotaxis by 
PND grouped according to Strain
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A.6 Plots for the Mice Data
The following plots were produced in R using the interaction, plot function. 
Each plot was produced in the same 
being used. The code for Figure 2(a) is shown below.

interaction.plot(data$PND，data$STRAIN, dataScorneggeoavg, 
xlab
type = "b", lty=l, trace.label="Strain")

By changing relevant vaxible names the reader can reproduce any of the plots 
below.

changing only the variablesmanner

"PND", ylab = "Means of Corrected Neg-Geotaxis",

Strain

-9- FVB
-2- C58

CS7

3 _
■^-i 2

1210

0.0
s.l  

0
T-
s
o

6u1Jeŝ

 jo

1210

{spu§s}

 Spceloao-B
azpapailoouesM



2 - 2 Strain
R - -fr- C58

3工 FVB
C57

^ s-
s ^ ■i 2-

o - § ?-
§ -

2 6 8 10 12

PND

(c) Means of Rearing by Strain grouped 
according to Cage Type

(d) Means of NUMCROSS by PND grouped 
according to Strain

5-
s-

茇8 • Strain Strain

C57 -2- C58
C58 -0- FVBS - FVB C57I

"5 «>s：f e -
•s io -

2 ■
p _

2 6 8 10 12 2 6 8 10 12

PND PND

(e) Means of Righting by PND grouped 
according to Strain

(f) Means of Pivots by PND grouped according 
to Strain
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Strain
-0- FVBr C58

C57

82 6 10 12

PND

(h) Means of Forward by PND grouped 
according to Cage Type

(g) Means of Forward by PND grouped 
according to Strain

3 Strain s-
i i

C58

FVB
(D - C57

«o -

S -N -

2 6 8 10 12

PND

(i) Means of Weight by PND grouped 
according to Strain

(j) Means of Weight by Strain grouped 
according to Cage Type

Figure 2: Plots of Interactions
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