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Automating and Calibrating a Scanning

Tunneling Microscope for Use in an Advanced

Laboratory Course

Spencer Fuller

April 16, 2015

Abstract

University of Redlands student Jonathan Paez and I worked on au-
tomating and calibrating a student constructed scanning tunneling mi-
croscope (STM) with the intention of using it for pedagogical purposes in
an advanced laboratory course. We automated the STM by incorporat-
ing a linear actuator and labVIEW. We were successful in creating three
dimensional plots of graphite and gold surfaces and deriving calibrations
to convert our data from voltages to distances. We discovered that our
STM has nanometer-scale resolution.

1 Introduction

In 1981, Gerd Binnig and Heinrich Rohrer developed the scanning tunneling
microscope (STM).1 Five years later they were awarded the Nobel Prize in
Physics. The scanning tunneling microscope has since become widely used by
surface scientists in areas such as materials science, biology, organic chemistry,
and catalysis.2,3

Scanning tunneling microscopes are part of a family of scanning probe mi-
croscopes, which allow the user to construct a topographical map of a surface
on the nanometer or atomic scale. STMs are frequently used over other prob-
ing microscopy methods because of their superior resolution. Most STMs are
able to achieve atomic resolution while other types of microscopes such as the
field ion microscope or reflection electron microscope are only able to achieve
nanometer scale resolution.4 STMs are frequently used in the development of
nanotechnology and in the study of surface chemistry and surface morphology.
For example, scientists have been able to detect which atoms have reacted to
a substrate using the STM.5 The STM also has applications in biology such
as determining structures of nucleic acids and proteins.6 Unfortunatley, the
STM can only scan conductive surfaces. Other microscopes must be used when
scanning nonconductive surfaces.

Researchers are able to use STMs to view surface features such as atomic
structures and defects. For example, scientists have used STMs to characterize
defects and roughness on superconductors.7 Scientists have even used STMs
to move individual atoms to build atomic structures. They explain that the
process of transporting atoms or molecules across a surface is analogous to the
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operation of a crane at a construction site.8 The STM is very versatile. In
the past 34 years since its creation, surface scientists have been using STMs in
many different fields and in a variety of environments ranging from ultra high
vacuum to sub-Kelvin temperatures.

I will describe how we automated and calibrated an STM to make it more
user-friendly. The STM was buiilt by Chris Adams, a previous University of
Redlands research student. First, I will discuss the theory behind quantum tun-
neling and how the STM exploits this phenomenon to obtain images of surfaces
at the atomic scale. Then I will discuss the mechanics of the STM, some of its
limitations, and the necessary precautions when designing STMs. Next I will
describe how we automated our STM using a linear actuator and LabVIEW.
Finally, I will present a derivation of the calibration process to convert the volt-
age measurements into distances and the results from scans using graphite and
gold surfaces.

2 Theory

2.1 Quantum Tunneling

I will present three different approximations to model the tunneling of elec-
trons between the sample and the tip. The approximations from simplest to
most complex are: the finite square well, the WKB approximation, and the
Bardeen approach.

2.1.1 Finite Square Well

We begin with the one-dimensional time-independent Schrödinger equation,
which describes the wavefunction of a particle of mass m,

− h̄2

2m

d2ψ(z)

dz2
+ U(z)ψ(z) = Eψ(z). (1)

Although our STM is an open-air STM, we can approximate the gap between
the tip and the sample as a vacuum. We can simplify the tunneling process by
approximating the potential across the gap as a finite square barrier potential
instead of the sloped potential shown in Figure 1.
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Figure 1: A sloped finite square barrier potential representation of the tip-
sample separation.10

We will consider the scattering states, that is, those states with E > U . In
the region where z < 0, U = 0, so

d2ψ

dz2
= −k2ψ, (2)

where k ≡
√

2mE
h̄ . This has the general solution ψ(z) = Ae−ikz + Beikz.

The solution will oscillate for E > U because of the imaginary exponentials.
Similarly, in the region where z > s the solution is ψ(z) = Ee−ikz + Feikz. We
are going to assume that waves are coming in from a single direction. This turns
out to be a good assumption because the bias voltage on the STM allows us
to increase the number of electrons tunneling through the barrier in a certain
direction. In the region where 0 < z < s, E < U . Solving the Schrödinger

equation in this region gives ψ(z) = Ce−lz + Delz, where l ≡
√

2m(U−E)

h̄ . The
solution will decay exponentially.

We have found the general solutions to the Schrödinger equation for each of
the regions. To find particular solutions we must use the boundary conditions.

At each boundary (z = 0 or z = s), ψ(z) and dψ(z)
dz must be continuous. Thus,

we get the following four equations after evaluating the solutions and their
derivatives at z = 0 and z = s:

A+B = C +D, (3)

ik(A+B) = l(−C +D), (4)

Ce−ls +Dels = Fe−iks +Geiks, (5)
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l(−Ce−ls +Dels) = ik(−Fe−iks +Geiks). (6)

We will assume that F = 0 so that there is no incoming wave from the right.

The transmission coefficient is given by T = |G|2
|A|2 . Solving for G and A using

Equations 3-6 and substituting gives11

T =
1

1 + U2

4E(E+U) sin2
(

2s
h̄

√
2m(E + U)

) . (7)

Using the identity sinh(x) = 1
2 (ex − e−x), Equation 7 simplifies to

T =
1

1 + U2

4E(U−E)
1
4 (eγ − e−γ)2

, (8)

where γ ≡ 2s
h̄

√
2m(U − E). We can simplify further if we assume T << 1

(the fraction of particles that make it through is very small). The negative
exponential in the denominator goes to 0 and T simplifies to

T ≈ 1

1 + e2γU2

16E(U−E)

≈ 16E(U − E)

U2
e−2γ . (9)

The transmission coefficient T is exponentially related to the tip-sample
separation s because γ is linearly related to s. Given a typical value for U−E of 4
to 5 eV , a change in separation of about half an angstrom yields a 10% change in
the transmission coefficient. This is a significant fraction of the tunneling signal
from a very small change in separation (smaller than our STM can control).

2.1.2 WKB Approximation

Using the WKB approximation, a technique for obtaining solutions to the
time-independent Schrödinger equation by approximating the potential as a
function of position instead of constant where 0 < z < s,12

T ≈ e−2γ′ , with γ′ ≡ 1

h̄

∫ s

0

|p(z)|dz and p(x) ≡
√

2m[E − U(z)]. (10)

Approximating the potential as having a constant slope between the gap, we
can write down an expression for U(z) and integrate to find γ′. From Figure 1
we find U(z)− E = φ− zeV

s . Substituting into Equation 10 yields

γ′ =
2s
√

2m

3eV h̄

(
(eV − φ)3/2 − φ3/2

)
. (11)

Equation 11 shows that γ′ is linearly dependent on the tip-sample separa-
tion and thus the transmission coefficient is nearly exponentially related to the
separation.
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2.1.3 Bardeen Approach

The previous two methods described how the transmission coefficient is
related to the separation. The Bardeen approach will be able to quantify a
current and give a more accurate description of tunneling because it will allow
the electrons in the tip and sample to be in different states. For a tunneling
current to flow, an electron must flow from a state in the sample with energy
Eµ to a state in the tip with energy Ev. The tunneling current will depend on
how occupied the state is in the sample, f(Eµ), and how unoccupied the state
is in the tip, 1− f(Ev + eV ). It will also depend on the separation between the
tip and sample. The tunneling current given by first-order perturbation theory
is

I =
2πe

h̄
Σµvf(Eµ)[1− f(Ev + eV )]× |Mµv|2δ(Eµ − Ev), (12)

where f(E) is the Fermi function, V is the applied voltage, and Mµv is the
tunneling matrix element between states.13 δ is the Kronecker delta function,
which equals 1 when Eµ = Ev and equals 0 when Eµ 6= Ev. The Fermi function
is the probability a given available state will be occupied at temperature T . The
tunneling matrix is a measure of how much the wavefunctions of the electrons
on the tip and wavefunctions of the electrons on the sample overlap, thus the
tip-sample separation. It describes the transition of an electron in state a ψµ to
a state ψv. It has units of energy and physically represents the energy lowering
due to the overlap of the two states.14 Bardeen15 has shown that the tunneling
matrix element is given by

Mµ,v =
h̄2

2m

∫
d~S · (ψ∗µ~∇ψv − ψv ~∇ψ∗µ), (13)

where d~S is a differential piece of surface, and ψµ and ψv are the wavefunc-
tions of the sample and tip respectively. Equations (12) and (13) are some-
times referred to as the transfer Hamiltonian theory. The tunneling matrix is
reminiscent of the probability current, which in one dimension is defined as

J(x, t) ≡ ih̄
2m

(
Ψ δΨ∗

δx −Ψ∗ δΨδx

)
. The probability current tells you the rate at

which probability is flowing past a point x.
Tersoff and Hamann have also shown that16

|ψv(~r0)|2 ∝ e−2κ(R+d). (14)

Equation 14 shows an exponential dependence on the tip-sample separation.
Modeling the tip state as a modified hydrogen 1s state and assuming the sample
has a periodic lattice, J. Tersoff and D. R. Hamann have evaluated Mµ,v and
shown that

I = 32π3h̄−1e2V φ2Dt(EF )R2κ−4e2κR ×
∑
v

|ψv(~r0)|2δ(Ev − EF ), (15)

where κ ≡
√

2mφ
h̄2 , φ is the work function, R is the radius of curvature of the

tip, Dt is the density of states per unit volume of the probe tip, and ~r0 is the
position of the center of curvature of the tip. The work function is the barrier
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height, or the amount of work needed to remove an electron from the tip. The
density of states is a measure of the number of available states at an energy
an electron can occupy. From Equations 14 and 15, we see that the tunneling
current is exponentially related to the separation,

I ∝ e−2κd. (16)

Equation 16 is similar in form to Equation 9 and Equation 10. Figure 2
shows a comparison of the WKB approximation and the Bardeen approach for
different barrier heights. Tunneling is different for low barriers and high barri-
ers. Transmission through low barriers is ballistic transport, while transmission
through high barriers is tunneling. For thin barriers, these two mechanisms of
transmission are qualitatively the same.

Figure 2: A comparison of two of the types of tunneling theories described
above.18

2.2 Scanning Tunneling Microscopy

The scanning tunneling microscope works by scanning a very sharp tip
across a surface while measuring changes in the current that tunnels between
the sample and tip. We saw above that the current is extremely sensitive to the
tip-sample separation.

There are two methods for scanning. The first is the constant height method.
In this method the tip is scanned across the surface at a constant height and
changes in the tunneling current are measured. Figure 3(a) shows how the
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current responds to changes in the surface height. The current will increase
when the tip passes over a higher surface feature and will decrease when it passes
over a lower surface feature. Unfortunately, this method could lead to the tip
crashing into surface features. Though this method allows for quicker scans,
it is not as reliable. The method that Chris Adams used for our STM is the
constant current method. In this method the tip is scanned across the surface
so that the separation between the tip and sample remains constant throughout
the scan, as illustrated in Figure 3(b). In order for the tip to maintain this
distance, the STM needs a feedback loop to tell the tip to move backward if it’s
too close, or forward if it’s too far. Because the movements of the tip take finite
amounts of time, the STM must scan at a slower rate in order to allow the tip
to move and maintain its resolution.

Figure 3: The two types of scanning. (a) Constant height mode. (b) Constant
current mode.20

The STM uses a piezo to control the tip. A piezo is an electric device that
deforms when a voltage is applied to it. This allows control of the tip in the x,
y, and z directions. The piezo we are using in our STM is able to move the tip
on the order of microns. Research grade STMs usually have piezos with much
finer control to obtain an image with atomic resolution. A variety of shapes can
be used for the piezo such as a tube, tripod, or disk. Chris Adams incorporated
a disk piezo into our STM.

In order to create three dimensional surface plots, we need to scan in two
directions. A sawtooth voltage controls scanning in the x direction while a
slower ramp voltage controls scanning in the y direction. These are shown in
Figures 4(a) and 4(b). Together, they result in the tip tracing a zig-zag pattrn
across the surface. In practice, the ramp voltage is very slow and the pattern is
much tighter than in Figure 4(c).
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Figure 4: (a) A sawtooth voltage controls the motion in the x direction. (b) A
ramp voltage controls the motion in the y direction. (c) The resulting motion
is a zig-zag across the surface.

In order to achieve the best possible resolution, the STM must be isolated
from all vibrations. This is especially important when achieving atomic resolu-
tion. Given that the typical corrugation amplitude is 0.1 Å for atomic resolution,
vibrations must be reduced to less than 0.01 Å.21 Typical STMs use springs as
a source of vibration isolation. Our STM is situated on an optics table which
floats when its legs are filled with air.

3 Mechanical Design

Our STM consists of two plates separated by three screws as shown in Figure
5. This setup is called a kinematic mount. The coarse approach screws lower
the right side of the plate and lower the tip on the order of microns. The fine
approach screw lowers the left side of the plate and lowers the tip on the order
of angstroms.

Figure 5: Diagram of STM.

To begin a scan, we lower the top plate using the coarse approach screws
until we can barely discern the separation between the tip and the sample using
a magnifying glass. Next, we use a fine approach screw to lower the tip even
further to a few angstroms above the surface. Chris Adams designed the STM
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with a manual fine approach screw. This led to many tip crashes and the
automation of the approach process.

4 Automation

We automated the STM in two ways. First, we incorporated a linear actu-
ator. Second, we wrote a program in LabVIEW to control the linear actuator
and automate the approach process.

4.1 Linear Actuator

We replaced the fine approach screw with a linear actuator to move the tip
down into the scanning position. A linear actuator is a device that moves a
metal tip up or down on the order of tenths of microns. The linear actuator
raises and lowers the top plate as seen in Figure 8. It is capable of moving 0.1µm
per step, which translates to a much smaller movement of the tip. This will be
discussed more in the Calibration section. To control the linear actuator, we
used LabVIEW.

4.2 LabVIEW

LabVIEW is a graphical programming language that creates virtual instru-
ments to control real lab instruments. Code is written in a web that resembles
a circuit diagram. The programmer is able to follow the logic of the program by
seeing how each of the commands are strung together. The program we wrote in
LabVIEW, shown in Figure 6, allowed us to automate the approach and scan-
ning mechanism. First, the program will check whether the tip is close enough
to scan (there is a measurable tunneling current). If the tip is too far away,
the computer will lower the actuator down by 0.1µm and then check again.
When the tip is close enough, we click a virtual button in the program to begin
the scan. Using a virtual button rather than a mechanical one on the STM’s
circuit board (as Chris had designed) removed the possibility of tip crashes.
When the scan begins, LabVIEW will begin collecting the x, y, and z voltage
measurements from a data acquisition device.
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Figure 6: Screenshot of the approach and scanning code in LabVIEW.

In Figure 6, the large boxes are commands that check if a statement is true.
The largest box will continue running the code within it until a stop button is
pressed by the user (bottom right-hand corner). The next two loops will check
whether the voltage is within the tunneling range of about −8V to 8V . If the
tip is the correct distance away, the next loop will check whether the ”Start
Taking Data” button has been pressed. If it has, the x and y voltages will begin
changing and the STM will begin scanning and collecting data. Figure 7 shows
the interface used for controlling the tip approach and scanning.
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Figure 7: Screenshot of the front panel in LabVIEW. On the left are the digital
buttons to begin and end scanning. The chart plots the x, y, and z voltages as
the tip scans across the surface.

5 Calibration

The STM measures the voltages that are applied to the piezo, not the dis-
tances that the tip moves. There are two steps for converting the data from
voltages into distances. The first step is geometrical. By looking at the geometry
of the STM, we can determine how far the tip moves when the linear actuator
moves a known distance. The second step is experimental. This involves de-
termining the change in voltage as the actuator moves a known distance. If we
know the change in voltage resulting from a change in actuator height, and we
know the relationship between the change in actuator height and the change in
tip height, we can come up with a conversion factor that relates the z voltage
applied to the piezo and the change in tip height.
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5.1 Z Calibration

5.1.1 Determining the Actuator Distance to Tip Distance Relation-
ship

Figure 8: Geometrical view of tip approach. t is the length of the tip, Ls is the
length of the coarse approach screw, and Lt is the distance between the tip and
the coarse approach screw. θ is the angle that the top plate makes relative to
the bottom plate.

The geometry of the STM is presented in Figure 8. We will assume the tip
is perpendicular to the surface when the top plate is parallel with the bottom
plate. When we move the actuator down a distance ∆ha to horizontal, the tip
will move in two ways. First, the base of the tip will descend as the top plate
is lowered. Second, the tip will swing down as the angle between the top plate
and horizontal decreases. The swinging movement of the tip is shown in Figure
9.
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Figure 9: The tip swings through an angle θ, the same angle the top plate makes
with the bottom plate.

When the top plate is raised an angle θ, the end of the tip of length t swings
up a distance

∆z1 = t(1− cos(θ)). (17)

The change in height of the base is more involved and is derived in the
appendix. The problem involves solving a system of equations for the two
unknowns, ∆zT and θ. The orientation (shown in Figure 15 in the appendix) of
the tip must also be taken into account. Solving the quadratic equation yields
the change in tip height resulting from a change in actuator height between an
arbitrary height h and horizontal. Finding the change in tip height between two
arbitrary actuator height involves subtracting the change in tip height when
the actuator moves between a height h2 and horizontal from the change in
tip height when the actuator moves between a height h1 and horizontal. The
resulting equation is

∆T =
∆h(LtL+ Ls(Ls − t))

L2 − L2
s

∓

(Ls(Lt + L)− tL)(
√
L2 − L2

s + h2
2 −

√
L2 − L2

s + h2
1)

L2 − L2
s

.

(18)

Equation 18 allows us to determine the change in tip height using the initial
and final actuator heights. We measured the constants to be: L = 11.054cm,
Lt = 0.35cm, Ls = 1.4cm, h2 = 1.661cm, and ∆h = 0.001875cm.

5.1.2 Determining the Voltage to Actuator Distance Relationship

To determine the voltage-distance conversion factor, we moved the actuator
by a known amount and measured the change in voltage. We measured the
initial actuator height (h1) and the final actuator height (h2) and substituted
these values into Equation 18 to find the corresponding change in tip height.
Because it is difficult to measure a change in voltage from a small movement
of the linear actuator, we moved the linear actuator down by a larger distance
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with step sizes of 0.1µm every 2.27s. We then measured the total change in
voltage and divided by the distance the actuator moved.

We took two sets of data, one with the actuator moving down and another
with the actuator moving up. Figure 10 shows the steps of the linear actuator
as it moves down and the corresponding change in voltage ∆Vz for each step.

Figure 10: Individual steps of the linear actuator. The uncertainty in ∆Vz is
about 0.2V .

The linearity of the data looks promising, but upon looking at our entire
data set, we found that on the mid-scale, the data was nonlinear. Figure 11
shows the complete sets of data for the forwards and backwards runs.
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Figure 11: Data for calibration runs.

On the large scale, the data is linear and the slopes of the forwards and
backwards runs agree with each other. The mid-range oscillations of the voltage
may result from residue on the linear actuator or the linear actuator rotating as
it moves. Because the oscillations were periodic, they did not affect the linearity
of our data. Using the results from section 5.1 and 5.2, we can come up with a
conversion for the z direction,

∆Vz
∆T

≈ 12.93V/µm. (19)

5.2 X and Y Calibration

To determine the conversion for the x and y voltages, we need to look at
the geometry of the piezo, shown in Figure 12.
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Figure 12: Geometric view of the piezo.

To find a numerical answer, we incorporated an order of magnitude approxi-
mation. When a voltage is applied to the piezo, we can approximate the surface
of the deformed piezo as a sine wave. The height at any point is given by

z = A sin

(
2πx

R

)
, (20)

where A is the maximum amplitude of the sine wave (or maximum displace-
ment of the piezo from equilibrium) and R is the distance across the piezo. The
actual deformation would probably depend on the z voltage. It could be found
by scanning a sample with surface features of a known size.

Taking a derivative of Equation 20 with respect to x gives

dz

dx
=

2πA

R
cos

(
2πx

R

)
, (21)

which is the slope of the piezo. Evaluating this at x = R/2 yields − 2πA
R . The

angle between the deformed piezo and the x axis is equal to the angle between
the tip and a vertical axis. Thus, the slope at x = R/2 is equal to tan(θ).
Equating these two slopes gives

tan(θ) =
2πA

R
. (22)

From Figure 12 we also have

tan(θ) =
∆x

t cos(θ)
. (23)

After setting these two equations equal and using the small angle approxi-
mation (cos(θ) ≈ 1), we find

∆x ≈ 2πAt

R
, (24)

where A ≈ 1
2∆t. A is the amplitude of the piezo when it is deformed by an x

or y voltage, which is approximately half the amplitude when the same voltage
is applied in the z direction such as in Figure 15 in the appendix. We can now
find a conversion factor for the x and y directions,
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( x

V olts

)
=
( y

V olts

)
=
πt

R

( z

V olts

)
. (25)

Using the result from Equation 19 and the slopes in Figure 11, we found the
following conversion,

∆Vx
∆T

=
∆Vy
∆T

≈ 9.78V/µm (26)

6 Analysis

After receiving the data from LabVIEW and converting the voltages into
distances, we wrote a Python program to create a three dimensional map of the
surface. The program uses a Radial Basis Function (RBF) interpolation and is
presented in the appendix. We began with a wire frame plot of the data and
then used the built-in RBF method to interpolate between data points. Below
are examples of a graphite surface and a gold surface using the Python program.

Figure 13: Plot of a graphite surface.

We were able to reproduce the graphite surface multiple times. Because of
the large changes in height, we suspect that we scanned over a region where we
crashed the tip.
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Figure 14: Plot of a gold surface.

The gold surface is more uniform than the graphite surface and consists of
equally spaced ridges along the surface. We believe the tip was scraping the
surface while it was scanning because the ridges are aligned with the x axis.
From Figure 13 and Figure 14, we can determine a rough resolution of tens of
nanometers.

7 Conclusion

We have successfully automated and calibrated the STM. We hope to use
this STM in an advanced laboratory course to introduce students to quantum
tunneling. The STM provides a visual demonstration of quantum tunneling
and will give students experience in LabVIEW. We have begun construction
on a scanning capacitance microscope (SCM), which measures the capacitance
between a tip and a surface as the tip is scanned across it. We designed the
two microscopes so that a student could toggle between STM mode and SCM
mode. Future work involves designing a lab activity for students. In addition,
we could get a calibrated sample to work out a voltage-distance relation and
compare that with the one we found geometrically.
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A Z Calibration

From Figure 8,

∆z2 = Lt sin(θ)− Ls(1− cos(θ)). (27)

The total change in height of the tip is the sum of the movement of the base
and the swinging movement of the tip,

∆zT = ∆z1 + ∆z2 = (t− Ls)(1− cos(θ)) + Lt sin(θ). (28)

To solve for the two unknowns (∆zT and θ) we can obtain another equation
from Figure 8,

tan(θ) =
∆ha + Ls(1− cos(θ))

L+ Ls sin(θ)
. (29)

Simplifying gives

∆ha + Ls = Ls sec(θ) + L tan(θ). (30)

∆zT in Equation 28 is the distance the tip moves relative to horizontal. To
find a conversion, we need the distance ∆t the tip moves relative to the piezo.
Instead of the base of the tip moving because of the lowering of the plate, it
is easier to imagine the piezo extending, shown in Figure 15. The distance the
tip moves perpendicular to the piezo is the distance related to the applied z
voltage.
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Figure 15: If the tip moves an amount ∆zT relative to horizontal, it will move
an amount ∆t relative to the piezo.

From Figure 15,

∆t =
∆zT

cos(θ)
. (31)

Substituting Equation 28 into Equation 31 yields

∆t = (t− Ls)(sec(θ)− 1) + Lt tan(θ). (32)

We now have two equations (30 and 32) and two unknowns (θ and ∆t).
Solving Equation 30 for tan(θ) and squaring both sides yields

sec2(θ)− 1 =
∆h2

a + 2∆haLs(1− sec(θ)) + L2
s(1− sec2(θ))2

L2
, (33)

where I have used tan2(θ) = sec2(θ)− 1. We can re-write the left side using
sec2(θ) − 1 = (sec(θ) − 1)2 + 2(sec(θ) − 1). The goal is to obtain a quadratic
equation for the quantity sec(θ)− 1. Multiplying by L2 on both sides yields

L2(sec(θ)− 1)2 + 2L2(sec(θ)− 1) = ∆h2
a − 2∆haLs(sec(θ)− 1)+

L2
s(sec2(θ)− 1)2,

(34)

where I have used sec(θ)−1 = −(1−sec(θ)), and (sec(θ)−1)2 = (1−sec(θ))2.
We can put this in quadratic form by collecting powers of sec(θ)− 1,

(L2 − L2
s)(sec(θ)− 1)2 + 2(L2 + ∆haLs)(sec(θ)− 1)−∆h2

a = 0. (35)

Using the quadratic formula and simplifying gives
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sec(θ)− 1 =
−(L2 + ∆haLs)± L

√
(L2 − L2

s) + (∆ha + Ls)2

L2 − L2
s

. (36)

We can substitute Equation 36 into Equation 32 and simplify. After defining
the new variable h ≡ ∆ha + Ls we get

∆t =
∓(Ls(Lt + L)− tL)

√
L2 − L2

s + h2 + h(LtL+ Ls(Ls − t))
L2 − L2

s

+

−L3
s + L2

s + L2(Ls − t)
L2 − L2

s

.

(37)

We defined ∆ha as the actuator height above horizontal. Thus ∆t is a
measure of the tip displacement (relative to the piezo) between the top plate
at an arbitrary height and horizontal. What we want is the tip displacement
between two arbitrary heights of the linear actuator. If h1 is the initial height
of the actuator and it moves an amount ∆h, then h2 = h1 + ∆h is the final
height of the actuator. ∆T = ∆t2 − ∆t1 is the corresponding change in tip
displacement. Substituting h1 and h2 into Equation 37 and subtracting the two
equations gives ∆T , the change in tip height perpendicular to the piezo between
to arbitrary actuator heights,

∆T =
∆h(LtL+ Ls(Ls − t))

L2 − L2
s

∓

(Ls(Lt + L)− tL)(
√
L2 − L2

s + h2
2 −

√
L2 − L2

s + h2
1)

L2 − L2
s

.

(38)

B Tip Preparation

To create tips, tungsten (W) wire is electrochemically etched in a solution
of NaOH. When a voltage is applied across the tungsten wire and an electrode,
tungsten begins flaking off. Within a few minutes, the tip is etched to a sharp
point. Once the tip is etched, we rinse it off with distilled water to remove any
contamination. We can be sure that there is a single atom at the end of the
tip, but the resolution of each tip is unpredictable. A review of tip treatment
in STM literature revealed a few facts:22

1. Atomic resolution could happen unexpectedly after a certain amount of
time.

2. Crashed tips can recover to maintain atomic resolution.

3. The tip can undergo changes during scanning which affect the resolution.

4. A mechanically cut tip can often work just as well as a chemically etched
one.
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In general, there is no way to guarantee the tip will give the best possible
resolution. For our purposes, it is not as crucial that the tip be ideal because
we are not able to obtain atomic resolution.

C Surface Plotting Program

#Import modules

import scipy as sp

import scipy.interpolate

import numpy as np

#from scipy.interpolate import griddata

from matplotlib.mlab import griddata

from mpl_toolkits.mplot3d.axes3d import *

from numpy import *

from pylab import *

#Read Data from file

x, y, z = loadtxt(’Graphite5.7XY.txt’, unpack=True, usecols=[0,1,2])

znew = z-min(z)

Zdist = znew*0.0773

xdist = x*0.1022

ydist = y*0.1022

#Gridding and Interpolating Data

sp.interpolate.Rbf(xdist,ydist,Zdist)

xi = np.linspace(min(xdist), max(xdist))

yi = np.linspace(min(ydist), max(ydist))

X, Y = np.meshgrid(xi, yi)

Z = griddata(xdist, ydist, Zdist, xi, yi)

#Graphing Data

fig = plt.figure()

ax = Axes3D(fig)

surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, linewidth=1,

antialiased=True, color = ’0.75’)

ax.set_xlabel(’$X$ $(\mu m)$’, fontsize = 24)

ax.set_ylabel(’$Y$ $(\mu m)$’, fontsize = 24)

ax.set_zlabel(’$Z$ \n \n $(\mu m)$’, fontsize = 24)

plt.tick_params(labelsize=24)

ax.zaxis.set_rotate_label(False)

title(’$Graphite \ Sample$’, fontsize = 30)
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