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Abstract

Mountain meadows play a critical role in the hydrology of California’s watersheds
by preventing flooding, improving water quality, and delivering moisture downstream. In
this study, the depth of the water table defines hydrologic health, where a shallow water
table is considered a healthy hydrologic system. Meadows are highly sensitive to changes in
water availability, making drought a particularly potent threat. This study investigated the
health, vegetation distribution, and water balance of a montane meadow (Bluff Meadow)
located in the San Bernardino National Forest. By integrating field observations of climate
and water table depths in ArcGIS with hydrological modeling, this study assessed the
health of the system, evaluated its sensitivity to regional precipitation, and modeled how
this critical ecosystem may be irreversibly altered in an ever-warming world. The
hydrologic model integrated the major variables of precipitation, surface temperature and
humidity (model inputs) to predict the depth of the water table (model output) in both
time and space. By calibrating the model against physical measurements of water
table depth, predictions were made about the future hydrologic health (water table depth)
of Bluff Meadow. Results showed that the drought had a dire effect on the future climate of
California, which may be a permanent change. The hydrologic model gives best and worse
case scenarios for Bluff Meadow as a result of the drought. If drought-like conditions
continue, even with the El Nino this winter, the model predicts that the hydrologic health of
the meadow will worsen over time. A recovery from this drought will take more
precipitation than just one El Nino winter. Therefore, this study concluded that the 2012 -
2015 California drought was not just an instantaneous event, but a glimpse into California's

future climate.

Introduction

An extraordinary drought spanned Southern California from 2012 - 2015, with
2014 being the driest year in the past century (Griffin and Anchukaitis, 2014; Swain et al,,
2014). An extraordinary drought is one that lasts multiple years, with extremely high

temperatures and extremely low precipitation (Woodhouse et al, 2010). In fact,



California’s total precipitation in 2014 fell within the bottom 6% of all of California’s
paleoclimatic records (Griffin and Anchukaitis, 2014). Not only was precipitation at an all
time low during this drought, temperatures were also at a record high, which exacerbated
the severity of the drought by about 36% (Griffin and Anchukaitis, 2014). This drought in
particular was so extreme that it is labeled the most severe drought in California in the last
1200 years (Cook et al., 2004; Griffin and Anchukaitis, 2014; Woodhouse et al., 2010).
While high temperatures are likely an anthropogenic effect of global warming, the cause for
decreasing precipitation is undetermined (Mann et al., 1998; Swain et al., 2014). If global
warming is the cause of this increased dryness, then many parts of the United States can
expect a dry future (Cook et al., 2004; Seager et al., 2007). California’s drought began in
2012 and continues through 2016, with below average precipitation relative to the 1895-
2015 mean (Figure 1).

California Statewide Precipitation
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Figure 1. Annual precipitation for California over the 1895 - 2015 time period. A 5-year
running mean is plotted in red (NOAA).

The extremity of the recent drought was not unprecedented, meaning it is not the
first time such a severe drought has occurred in climatic history (Cook et al., 2004; Cook et
al, 2007; Griffin and Anchukaitis, 2014; Woodhouse et al, 2010). Paleoclimatic data
suggests that even longer and more severe periods of elevated temperature and aridity

have occurred in North America in the past, especially during the mid-12th century when



repetitions of decadal droughts persisted (Cook et al., 2014; Woodhouse et al., 2010).
During this Medieval Warm Period, average temperatures in the Southwestern United
States rose by 1°C and aridity increased due to high irradiance levels of 0.45 W/m?2
(Woodhouse et al, 2010). Some studies propose that the combination of long-term
warming and aridity during the 2012 - 2015 drought compares it to the mid-12t century
drought, which may serve as an analog for what the climate could look like in the future
(Woodhouse et al., 2010). This probability is likely, given that 44% of three-year droughts
last for at least four years, which suggests that California may have to adjust to this warm,
dry climate (Ault et al,, 2013; Griffin and Anchukaitis, 2014). A “megadrought” has not
occurred since the foundation of modern society, but is still a possibility given their
occurrence in the climatic past (Ault et al.,, 2013). With such severity and duration, these
multi-decadal droughts brutally impact the agricultural and hydrologic systems of their
affected areas (Cook et al, 2007). Because California is a water dependent state, a
“megadrought” would be catastrophic for the state’s environment and society. Given the
significant impact that a drought could have both agriculturally and economically, a state
implemented risk management plan suggests the development of mitigation plans in
preparation for the future climate (Christian-Smith et al., 2014). These mitigation plans
need to consider all indicators that the climate of California is changing, not just the historic
patterns of drought, but also climatic forces.

The El Nino Southern Oscillation (ENSO) is often invoked as a strong climatic force
that controls wet and dry conditions in California. Described as a weakening of trade winds
across the equatorial Pacific, El Nino is associated with above average sea surface
temperatures. While El Nino’s are generally correlated to a wet season for California, La
Nina’s suggest a dry season and are associated with below average sea surface
temperatures in the eastern equatorial Pacificc The ENSO phenomenon operates on
interannual timescales, with an El Nino occurring every 2-7 years (Schonher and Nicholson,
1989). However, climatic forces that operate on decadal time scales also contribute to
California’s climate. The Pacific Decadal Oscillation (PDO) was discovered in 1996 and has
been described as a long-lived version of the ENSO pattern, oscillating between warm and
cool phases every 20-30 years. During the warm phase of the PDO, the equatorial Pacific is

warm, while the Northern Pacific is anomalously cool, favoring El Nino-like conditions. The



reverse is true during the cool phase, where a cool equatorial Pacific and warm Northern
Pacific favor La Nina-like conditions. The PDO oscillated between the warm and cool
phases several times over the past century (Figure 2). Although the warm phase persisted
from 1980-2010, this tendency is declining and the climatic pattern suggests that the trend
is heading into a cool phase for the next 20-30 years. This cool phase is associated with La
Nina-like conditions in the equatorial Pacific. While El Nino produces more precipitation
and lower temperatures in California, La Nina generates a dry and hot climate. The flip-flop
from the warm to cool phase of the PDO predicts that California is going to become much
drier as the climate enters the La Nina period (Mantua and Hare, 2002). The patterns of
severe droughts and historical trends in ENSO and the PDO indicate that California should
be prepared for more than just an anomalous dry spell. Climatic variability shows that the
future climate of California is going to mimic the symptoms of an ongoing drought. Because
of the dire effects that a drier climate would have on California’s hydrologic system, its
society needs to prepare for the possibility of an ever-warming world (Seager et al., 2007;

Woodhouse et al., 2010).

Pacific Decadal Oscillation Index
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Figure 2. The Pacific Decadal Oscillation (PDO) from 1900 - 2015. Warm phases (red) of the
PDO are associated with El Nino-like conditions while cool phases (blue) are associated with
La Nina-like conditions.



A drier climate depletes groundwater, increasing the depth to the water table,
changing soil thickness and making it more difficult for plants to hydrate from their roots.
These consequences can lead to the loss of groundwater dependent vegetation in the
ecosystem (Debinski et al., 2010; Kotanen, 1997; Loheide and Gorelick, 2007; Lowry and
Loheide, 2010; Orellana et al., 2012). This loss of vegetation typically occurs when the
groundwater reaches depths of 2-5 meters below the surface, which is lower than the
average plant root depth in montane meadow ecosystems (Elmore et al., 2006). Many cases
of vegetation loss have been reported in the Sierra Nevada mountain region of California
due to changes in climate (Allen, 1987; Guarin and Taylor, 2005; Null et al., 2010). Because
droughts and possible future dry climates could majorly impact the state’s water resources
and agriculture, being able to measure and quantify the intensity of the recent California
drought would be beneficial in predicting the expected changes in California’s ecosystems.
A great place to measure these hydrologic changes is in montane meadows.

Meadows are very important, yet fragile features of mountain ecosystems (Allen,
1987; Benedict, 1982; Ratliff, 1985). When it rains on the mountain, the water travels
downstream to the flat meadow, which soaks up this moisture into its permeable soil and
slows runoff speeds. This sponge-like quality is the cause for meadows’ shallow water
tables, which is what makes them so vital to mountain ecosystems (Ratliff, 1985). The
water is then naturally filtered through the ground, which prevents floods, and delivers
moisture downstream by way of groundwater. All in all, montane meadows have a major
impact on California’s hydrologic system by preventing flooding, improving water quality,
and delivering moisture downstream (Null et al., 2010). Each of these qualities is extremely
sensitive to small changes in climatic variables, especially decreases in water levels, as
would be expected in a drought (Essaid et al., 2014; Lowry et al. 2011). The depth from the
surface to the water table underground determines these changes in water levels. A
shallower water table indicates healthier vegetation, and the stability of a meadow
ecosystem is dependent on the health of its vegetation (Benedict, 1982). If California is to
lose meadow ecosystems to a dry climate, mountains would no longer benefit from the
qualities that meadows offer. Therefore, a drier climate would predict a loss of vegetation,
increased flooding and decreased groundwater recharge downstream, creating a negative

feedback loop for many ecosystems outside of the meadow. The sensitivity of meadow



ecosystems to changes in water availability and the short time scales over which they
operate make them ideal for measuring the effects of drought.

This study investigated the effects of precipitation, water flow, temperature,
humidity, irradiance, and incision on a mountain meadow ecosystem by measuring the
changes in depth from the surface to the water table. The water table is the depth
underground at which unsaturated soil ends and saturated soil, or groundwater, begins. A
summer water table is lower than a winter water table due to decreases in precipitation
and increases in temperature (Figure 3). In this study, changes in these climatic variables
were measured and related to changes in water table depth, which fluctuates in the zone of

intermittent saturation (Figure 3).

river
(dry in summer) _

-

Figure 3. The water table is the surface of the groundwater beneath the land. The depth to the
water table changes based on season due to changes in precipitation and temperature levels.
Adapted from http://www.birdsoutsidemvwindow.org/2011/08/22 /the-water-table/

Because California has many montane meadows, the relationship between
vegetation type and depth to the water table has previously been compared and modeled in
healthy, incised, and restored conditions in Sierra Nevada mountain meadows (Essaid et
al,, 2014; Loheide and Gorelick, 2007; Lowry et al., 2011; Wood, 1975). Findings show that

groundwater dependent ecosystems are most vulnerable to stream incision and climate



change, which both result in the lowering of the water table. Having the ability to predict
future changes in climate would help determine expected vegetative responses (Loheide
and Gorelick, 2007; Lowry et al., 2011). While many studies have been done in the Sierra
Nevada’s, very little research has been done in the San Bernardino’s. To examine the effects
of drought-like conditions on the ecosystem and model possible cases for the future, this
study analyzed an incised meadow (Bluff Meadow) in the San Bernardino Mountains,
where the water table was deeper than average.

During the summer of 2015, well instruments were installed in Bluff Meadow to
measure changes in water table depth (American Rivers, 2012). Twelve wells were
distributed throughout the meadow to track groundwater availability spatially, calculate
changes in groundwater levels temporally, and ultimately create a hydrologic model of this
data. Once the data was modeled, the climatic factors that had the most impact on the
health of the meadow were confirmed. The model predicts groundwater levels over time
based on changes in the region’s temperature and precipitation, the two most influential
climatic factors on water table depth. With the model’s computations, changes in
hydrologic parameters such as precipitation, temperature, humidity, and irradiance create
an accurate prediction of hydrological results for the ecosystem. The purpose of this
research was to generate an overall forecast for the future hydrologic health of California.
The results compare outcomes to historical data patterns, make predictions for the future,

and observe how different future cases could affect the ecosystem.

Field Methodology

Field Site

The original field site for this project was Big Meadows, a montane meadow in the
San Bernardino National Forest, located ten miles southwest of Big Bear Lake in Big Bear,
California. Unfortunately, the Lake Fire in the San Bernardino Mountains began on June 18,
2015, the day before the first intended fieldwork day, and took the meadow with it. This led
to a two-week search for a new field site and delay in data collection. The new field site was

Bluff Meadow, also a montane meadow in the San Bernardino’s, located two miles south of



Big Bear Lake in Big Bear, California (Figure 4). Bluff Meadow is 300 meters in length, 7.5

acres in area, and 2300 meters in elevation. The meadow is much browner and drier on the

eastern half and much greener and wetter on the western half (Figure 4).

43" -;‘ : o 4 ‘_"’1:;;. § o p
Figure 4. The research team during a data collection day in Bluff Meadow, Big Bear, CA (location in
California shown by map in bottom right corner). This photo is taken from the western side of the
meadow, facing east. The change from healthy to dry vegetation is apparent, as one looks eastward.

The extreme difference in vegetative health from one end of the meadow to the other could
be explained by the incision in the main stream that runs through the meadow on its
northern border. When a stream becomes incised, or V-shaped, narrow, and deep, it forces
the water table to drop in the land surrounding the stream. This is one of the most
prominent reasons for the loss of montane meadow ecosystems, and is a common feature
observed during a time of water deprivation, such as a drought (Loheide and Gorelick,
2007; Lowry et al., 2011). The eastern half of the stream in Bluff Meadow is extremely

incised, which explains the dry vegetation corresponding to that side of the meadow. With
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these vegetative observations, the water table is expected to be much deeper on the
eastern, incised, dry side of the meadow than the western, non-incised, wet side of the

meadow.

Well Installations

To measure changes in depth to the water table, it was important to reach the
meadow’s groundwater noninvasively. The method used in this study involved installing
small wells made out of PVC pipe (Figure 5). Water entered each well through holes drilled
into the bottom of the pipe, and soil was kept out by wire mesh glued to the inside of the

pipe (American Rivers, 2012).

"

Figure 5. An example of a completed well made of PVC pipe, ready for installment in the meadow.
Adapted  from  http://www.solinst.com/products/direct-push-equipment/615-drive-point-
piezometers/datasheet/standpipe-piezometers.php

In Bluff Meadow, twelve installment sites were selected for these wells at varying location,
topography, and vegetation (Figure 6). At each chosen installment site, narrow, deep holes
were dug until the water table was reached. The average depth of each hole was about two
meters. The wells made of PVC pipe (Figure 5) were then inserted into the holes, their tops

were capped to avoid contamination, and the remaining space was filled with soil.
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Figure 6. Blue asterisks depict locations of the 12 wells in Bluff Meadow, whose area is bounded by
the red border. The blue line displays the stream that flows through the north side of the meadow.

The depth to the water table was measured at each well with a water level meter
(Figure 7). A water level meter is essentially a long cord with a sensor on the end that
beeps when it touches water. The cord was dropped into the well and lowered until a beep
sounded. The cord was marked at the height of the PVC pipe and then pulled out of the well
to measure the length of cord from mark to sensor (Figure 8). The height of the PVC pipe
sticking out of the ground was then subtracted from the total length of the cord it took to

reach the water, purely giving the depth to the water table.

Water Level Meter

Protective Cover

PVC PIPE

Figure 7. The water level Figure 8. The depth to the water table is measured
meter, used to measure the with the water level meter by measuring the length of
deoth to the water table. cord that it took to reach the water table.



Observational Results

Water Table Depths

Water table depths at each of the twelve wells in Bluff Meadow were measured
weekly from July to October in 2015. These measurements were averaged over three week
periods and are displayed in Table 1. The red values indicate wells that dried out during the
months of data collection and were labeled as “dry wells”. Since the water table at these
“dry wells” had lowered beneath the depth of the well, the water table depth at these “dry
wells” were recorded as the depth of their well. Note that wells 4, 6, 7,9, 10, 11, and 12

were all considered dry wells at some point over these four months.

Table 1. Weekly water table depths (mm) were averaged over sets of three weeks during
observational data collection (July - Oct 2015). A red value indicates a dry well, where the water table
depth was recorded as the depth of the well.

Water Table Depths (mm)

Well | Jul2-]Jul 22 Jul 23 - Aug 12 Aug 13 - Sep 9 Sep10-0ct1l | Oct2-0ct23
1 148.17 177.80 402.17 287.87 389.47
2 251.88 234.95 650.66 353.48 328.08
3 194.73 76.20 859.37 325.97 224.37
4 374.65 1384.30 1384.30 1384.30 1384.30
5 711.20 558.80 935.57 673.10 728.13
6 660.40 1028.70 1295.40 1295.40 1295.40
7 740.83 901.70 1341.97 1765.30 1765.30
8 351.37 406.40 660.40 457.20 427.57
9 1765.30 1765.30 1765.30 1765.30 1765.30
10 1765.30 1765.30 1765.30 1765.30 1765.30
11 222.25 444.50 982.13 1295.40 1295.40
12 831.85 1104.90 1295.40 1295.40 1295.40
Climatic Data

During the observational period, temperature, humidity, precipitation, and

irradiance (radiation from the sun) were measured. Temperature and humidity were

measured weekly at the surface of each well, using an Xplorer GLX device. Annual average
monthly temperature and precipitation data for the Big Bear region was taken from the U.S.
climate data website and averaged over the last four years (Figure 9). Notice that during

these four years, there was a correlation between increases in temperature and decreases
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in precipitation, which shows the expected seasonality in a year. Average monthly humidity
data was taken from NOAA and irradiance data was taken from Sengupta et al. (2014).
Using temperature and humidity data, Bluff Meadow’s evapotranspiration rates were
calculated. Evapotranspiration is the combination of evaporation off of the land and

transpiration off of plants, both of which are a loss of water from the system.

Average Temperature and Precipitation in Big Bear
2011-2015
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Figure 9. Monthly temperature and precipitation in the Big Bear region, averaged monthly from
2011 to 2015.

Spatial Data

Water table depth, temperature, and humidity data were entered into an ArcGIS
mapping system to observe the spatial changes over the twelve wells in Bluff Meadow
through time. The point data collected from each well was interpolated, or connected over
space, in ArcGIS to determine the data values between the twelve individual data points.
Contour maps of each climatic variable over the span of the entire meadow were created

with the interpolation tool in ArcMap.
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Water Table Depths

With interpolation, water table depths between the twelve discrete measured data
points were observed. Figures 10 and 11 are examples of interpolations of the water table
displayed in contour maps from the weeks of July 6t and July 28t Red represents a deep
water table (> 2.2 meters) while green represents a shallow water table (< 0.3 meters). The
water table deepens over the month of July. This deepening occurs on the northern border
of the meadow, where the stream is located (as seen in Figure 6). The concentration of
deepening on the northern border is most likely due to the deepening of the incision in the
stream, which in turn deepens the water table. The water table on the eastern side of the
meadow was much deeper than the western side, which is due to the deeper incision on the

eastern side, and would be expected from the initial vegetative observations (Figure 4).

Meters

mo0-03

M 04-06
= 07-09
O1-12

13-15
M 16-18
M 19-21
W 22-24

Flgure 10 Water table depth (m) Flgure 11 Water table depth (m)
interpolation from July 6t interpolation from July 28th

Temperature

With interpolation, temperature between the twelve discrete measured data points
were observed. Figures 12 and 13 are examples of interpolating temperature, displayed in
contour maps from the weeks of July 6t and July 28th. Red represents a warm temperature
(> 42°C), while blue represents a cool temperature (< 23°C). Temperatures were somewhat
consistent during the month of July. If anything, the warm spots and cool spots shift
westward, possibly from differing angles of the sun during these two data collection days.
Shifts in temperature over the wells were bound to change the interpolation layout of

humidity over the meadow.



Figure 12. Temperature (°Q) Flgure 13. Temperature (°C)
interpolation from July 6th interpolation from July 28th
Humidity

With interpolation, humidity between the twelve discrete measured data points
were observed. Figures 14 and 15 are examples of interpolating humidity in contour maps
from the weeks of July 6t and July 28t. Dark blue represents high humidity (> 41%), while
light blue represents low humidity (< 15%). Humidity decreased during the month of July.
July 6t was much more humid, with the edges of the meadow being the most humid. The
spots of dark blue were locations where it tended to be shadier. On July 28, it was the
most humid on the northern border, where the stream was located (as seen in Figure 6).
The center of the meadow, where the sun hit, was quite dry. There was somewhat of a
correlation between temperature and humidity. Warmer locations (Figure 12 and 13) were

associated with less humid locations (Figure 14 and 15) and vice versa.
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Hydrologic Model

To predict the future hydrologic health of Bluff Meadow, it was essential to predict
the future climatic variables that the hydrologic health depended on first. The predictions
of climatic variables were calculated with real climatic data inputs from previous years in
order to output accurate, realistic results. The model input was a predicted climatic case
based on patterns from previous years and the model output was predicted water table

depths.

Temperature Prediction

Future monthly temperatures over each well were predicted by

, T: ]
Tlmeasured _ " lpredicted (1)
- ]

Tl_lmeasured Tl_lpredicted

where T represents temperature and i represents a chosen month. This calculation equated
the ratio of measured temperatures to predicted temperatures. Measured temperatures
came from observational monthly temperature data, taken from U.S. Climate Data. The
measured temperature that was input mimicked the climatic patterns of that month. For
example, if 2017 was modeled as a dry year, 2013’s measured temperature data was used
as the input because it was a very dry year. Equation 1’s relationship suggests that the ratio
between measured temperatures of month i and month i-1 remains constant for future
consecutive months. This equation assumes that the pattern of temperature change from
one month to the next increases or decreases by the same proportion every year. This
relationship solved for predicted temperatures in month i, used that value to predict month
i+1, and repeated to predict temperatures into future years. To start this cycle of monthly
relationships, the first input for predicted temperature was the observed temperature from
July 2015. With July 2015 as a starting point, temperatures were projected into future

months and years based on the type of climatic patterns intended to imitate.
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Evapotranspiration Prediction
Evapotranspiration was calculated with the arid version of the Turc equation

(1961), given by

ET = 0.013 x [ | x(R + 50)x [1 + 1]

— (2)
where T stands for temperature, R stands for irradiance, and H stands for relative humidity
(Dyer, 2015; Trajkovi¢ et al., 2007). The arid version of this equation was used because
average relative humidity is less than 50% in Southern California, making humidity an
independent variable and factoring it into the hydrologic model (Dyer, 2015).
Evapotranspiration plays a key role in water table depth because it is the main source of
water loss during a dry season in an incised ecosystem (Essaid et al., 2014). Equation 2 was
also used to calculate predicted evapotranspiration, which was the same calculation used
to find real time evapotranspiration. However, instead of entering real time temperature
into the equation for T, the predicted temperature (Tpres calculated in Equation 1) was
entered for the month that evapotranspiration was being predicted. Neither irradiance nor
humidity were predicted because the data used for those inputs were annual monthly

averages, and were therefore expected to stay constant over time.

Water Table Prediction

A Water Balance Equation gives the total water storage in a system by subtracting
the variables leaving the system by the variables entering the system. In this study, the
storage was groundwater, the inputs were precipitation (P) and stream water inflow, and
the outputs were evapotranspiration (ET) and stream water outflow. However, the drought
caused the stream to dry up, so there was no stream water inflow or stream water outflow

in this study’s Water Balance Equation. Therefore, the change in water table depth was

AWT = P — ET, (3)
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where real time precipitation and evapotranspiration data were input and real time
changes in water table depth were output. To predict a future change in water table depth,

the Difference Equation was used, which was

AWT = WT,_, — WT, (4)

where the change in water table was defined as it’s initial value minus it’s final value, to
indicate a drop in water table as a negative change. To predict into the future, the Water
Balance Equation (Equation 3) was set equal to the Difference Equation (Equation 4), and

WT;, was solved for which gave

WT; = WT;_; — (P — ETpred)i- (5)

This was the equation that the model used to predict water table depths into the future,
with measured water table depths from the previous month, measured precipitation data

from a chosen year, and predicted evapotranspiration data derived in Equation 2.

Verification of Model

To prove that the hydrologic model was valid and could be used to make accurate
predictions for the future of California, the predicted climatic variables and a future

prediction trial case were tested and verified.

Predicted Temperature

Data collection took place for four months, from July to October 2015. The predicted
temperatures that the model calculated based on July 2015’s measured temperature
patterns were compared to the measured temperatures from August through October to
verify that the model predicted temperature patterns accurately. First, the measured and

predicted temperature data were normalized. The difference (predicted - measured)



19

between each well’s average measured and average predicted temperatures from the
months of August-October were calculated at each of the twelve wells (Figure 16). The
model over-predicted temperature in wells 1-5 and 7-8 and under-predicted temperature
in wells 6 and 9-12. This made sense because when referring to Table 1, wells 4, 6 and 9-12
were the driest wells throughout data collection. Since their temperatures were under-
predicted, the actual temperatures present at each well were higher than expected;
therefore, the wells were drier than predicted. Well 4 was slightly over-predicted by the
model, so its inclusion in the “dry” wells was valid. During data collection, wells 1-3, 5 and 8
were consistently wet, corresponding to their over-predictions in temperature. Since they

were expected to be hotter than they actually were, they were wetter than predicted.
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Figure 16. The difference between normalized average predicted and measured temperatures from
August to October 2015 determined accuracy of temperature predictions. A positive bar represents
an over-prediction while a negative bar represents an under-prediction.

The relationship between measured and predicted temperature was linear, as evidenced by
the regression correlation coefficient and the linear fit of the data (Figure 17). The linear fit
gave a correlation of r = 0.681, further verifying that the temperature predictions

calculated by the model were accurate.
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Temperature Regression Line

45
y = 0.813x + 5.8432 < >
40 R=0.682 ° <&

&

Measured Temperature (°C)

30 &
25 ®
20 S
& OO ®
15
15 20 25 30 35 40 45

Predicted Temperature (°C)

Figure 17. Regression line of measured temperature versus predicted temperature gave an r-value
of 0.682, indicating a strong relationship between measurements and predictions.

Predicted Water Table

The measured and predicted water table data from August to October was also
normalized. The difference (predicted - measured) between each well’s average measured
and average predicted water table depths were calculated at each of the twelve wells
(Figure 18). The model over-predicted the water table depths in wells 9 and 10, and under-
predicted water table depths in wells 1-8 and 11-12. An over-prediction meant that the
model hypothesized that the well would be drier than the resulting measurement
concluded. A small over-prediction of wells 9 and 10 made sense because they were the
absolute driest wells throughout data collection, never having any water in them at all. The
hypothesized prediction was that their wells would be very dry and their water tables
would be very deep. Since their water table depths were over-predicted, the measured
water table depth present at each well was shallower than expected; therefore, the wells
were wetter than predicted. The rest of the wells were under-predicted, meaning their
measured water table depths were deeper than their predicted depths. An under-
prediction meant that the model hypothesized that the well would be wetter than the

resulting measurement concluded. Wells 6, 7, 11, and 12 were very under-predicted, so, the
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measured water table depth present at each well was deeper than expected; therefore, the
wells were drier than expected. This extreme under-prediction made sense because these
four wells were in close proximity to the incised stream in the meadow, and would

therefore be the first to dry up when the stream became waterless.

Average Water Table Depth Difference
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Figure 18. The difference between normalized average predicted and measured water table depths
from August to October 2015 determined the accuracy of water table depth predictions. A positive
bar represents an over-prediction while a negative bar represents an under-prediction.

The relationship between measured and predicted water table depths were linear, as
evidenced by the regression correlation coefficient and the linear fit of the data (Figure 19).
The linear fit resulted in a correlation of r = 0.642, further verifying that the water table

depth predictions calculated by the model were accurate.
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Water Table Depth Regression Line
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Figure 19. Regression line of measured water table depths versus predicted water table depths
gave an r-value of 0.642, indicating a strong relationship between measurements and predictions.

The hydrologic model accurately predicted data spatially by plotting measured and
predicted water table depths over the twelve wells in Bluff Meadow (Figure 20). The model
accurately predicted the pattern of the water table over the meadow in comparison to the
actual pattern of the measured water table. For the most part, the model predicted that the
water table was shallower than the measured data results. This means that the model gave
the drought in Bluff Meadow the benefit of the doubt by predicting a slightly shallower
water table than the deep water tables observed in the meadow. This positive outlook
played a key role in predicting the drought’s impact in future years to come because it
suggests that the model’s predictions are less extreme than the real consequences of this

drought.
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Spatial Proof
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Figure 20. Measured and predicted water table depths over the 12 wells during the months of
August to October were plotted against each other to verify that the model predicted the spatial
patterns of the water table in Bluff Meadow accurately.

The hydrologic model accurately predicted data temporally by plotting average
monthly measured and predicted water table depths (Figure 21). This temporal proof
shows that over time, the model followed the correct pattern of changes in water table
depth, but that it actually under-predicted the severity of the deepening water table.
Because it followed the correct pattern, but the values were slightly inaccurate over a
month-to-month time scale, it was assumed that the model would make predictions more
accurately over a year-to-year time scale. The temporal proof results also inferred that the
predictions the model made were less severe than what is expected in the future, just as the

spatial proof showed.
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Temporal Proof

August September October

pth (mm)

i Measured

(o)) s N
o (=] o
o (=] o

1 1 1

il Predicted

800

Water Table De

1000

1200

Figure 21. Measured and predicted water table depths were averaged from the months of August
to October and plotted against each other to verify that the model predicted the temporal patterns
of the water table in Bluff Meadow accurately.

The model predicted future water table depths in Bluff Meadow with the water table
depth prediction (Equation 5). Another experiment was designed to verify the validity of
the model by predicting an El Nino for the winter of 2015 before it happened, then seeing
how well the model predicted the El Nino once it occurred. In October 2015, the measured
data from July to October 2015 was entered into the model to make a prediction for future
water table depths following a predicted El Nino in the winter of 2015. The model used
1997 - 1998’s climatic data to predict an El Nino in 2015 - 2016 because it was a big El
Nino winter. Climatic data from 2014 was used as the input for 2017 and onward,
assuming that future years would be like 2014, which had a significantly wet winter in the
Big Bear region. The prediction showed that the El Nino would help raise the water table in
the spring of 2016, after the precipitation from the wet winter (Figure 22). Once the El Nino
ended, and the 2014 climatic patterns began, the water table deepened. The model
predicted that by 2019, the water table would be twice as deep as that of 2015. These
results show that one El Nino winter will not save California. It may help replenish water
resources in 2016, but if another El Nino does not occur in the next couple of years, water

deprivation may get worse.
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Figure 22. The hydrologic model predicts future water table depths of Bluff Meadow assuming an
El Nino winter in 2015. Real climatic data was used for 2013 - 2014, 1997 data was used for 2015,
1998 data was used for 2016, and 2014 data was used for 2017 - 2019.

This El Nino prediction, produced in October 2015, was then compared to the actual
El Nino winter results, produced in February 2016 (Figure 23). It was the same prediction
as Figure 22, but real climatic data was used for 2015, instead of assuming that the data
would be similar to that of 1997. The prediction results from these two cases were very
similar, meanjng that the model did a good job of predicting water table depths into the
future. These predictions were also credible in that they portrayed the seasonality of each
year. The winters of each year had shallower water tables, as expected with it being a rainy
season, while the summers had much deeper water tables, as expected with very little
precipitation during those months. The accurate comparison between the prediction of
2015’s El Nino winter and its actual results conclusively verified that the model could be

used to predict into future years.
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Figure 23. The hydrologic model predicts future water table depths of Bluff Meadow with the real
data from an El Nino winter in 2015. Real climatic data was used for 2013 - 2015, 1998 data was
used for 2016, and 2014 data was used for 2017 - 2019.

Model Results

The verification of the model showed that it predicted water table depths into the future

accurately, and therefore could be used to predict into future years.

Three cases are presented for the future of the meadow:
1) Worst Case Scenario
2) Best Case Scenario

3) Changing Climate Scenario

Worst Case Scenario

In the worst-case scenario, temperatures were predicted to be higher than average
and precipitation to be lower than average (Figure 24). The combination of these extremes
was expected to create a drought-like scenario, which would result in a deepening of the

water table. Climatic data during 2016 - 2019 was assumed to be similar to climatic
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patterns in 2012, the driest year in Big Bear during the drought. A consecutive hot and dry
climate over the next four years showed a decline in the water table (Figure 24). This
prediction showed that the water table would deepen dramatically each year, with 2019’s
water table depths (2200 mm) tripling the water table depths measured in 2015 (700 mm)
(Figure 24).
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Figure 24. The hydrologic model predicted future water table depths of Bluff Meadow in a worst-
case scenario. Real climatic data was used for 2013 - 2015 and 2012’s climatic data was used for
2016 - 2019 because 2012 was the driest year of the drought in the Big Bear area.

Best Case Scenario

In the best-case scenario, temperatures were expected to be below average and
precipitation to be above average (Figure 25). These trends are usually seen during El Nino
winters. Therefore, 1998’s climatic data was used as the input for years 2016 - 2019, since
the winter of 1997 - 1998 was the one of the largest El Nino’s seen in recent history. In this
scenario, mild temperatures and abundant precipitation cause evapotranspiration rates to
decrease and water table depths to rise closer to the surface (Figure 25). In 2019, water
table depths (900 mm) were less than half the depth observed in the worst-case scenario

(2200 mm). While the water table depths appeared to stay almost constant over the next
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four years, water table depths would be expected to rise to the surface of the meadow once

the ecosystem recovered from the 2012 - 2015 drought.
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Figure 25. The hydrologic model predicted future water table depths of Bluff Meadow in a best-
case scenario. Real climatic data was used for 2013 - 2015 and 1998’s climatic data was used for
2016 - 2019 to predict an El Nino winter amount of precipitation for the next 4 years.

Changing Climate Scenario

A changing climate scenario would not be as extreme as the best or worst case
scenarios, but somewhere in between (Figure 26). This case assumes that California’s
climate patterns will become hotter and drier, and that droughts are expected to become
more common. The climatic data from the 2011 - 2015 recent drought was averaged and
used as the climatic data for future years. This assumed that the next four years will have
less dramatic climatic patterns than those seen in the worst-case scenario (Figure 24) but
less positive than those seen in the best-case scenario (Figure 25). Rather, a constant mild
drought for the near future was predicted, showing a deepening water table with time, but
not quite as dramatically as in the worst-case scenario (Figure 26). By 2019, the model
predicted that water table depths would drop down to 1800 mm, double the depths in the
best-case scenario (900 mm). This changing climate case portrays a future that many

expect to see in California. As the climate heads into more favorable La Nina-like conditions
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in the Pacific, the norm is anticipated to become warmer temperatures and scarcer

precipitation, resulting in something similar to this prediction.

Changing Climate Scenario
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Figure 26. The hydrologic model predicted that the climate was changing and that mild droughts
were going to become the norm in California. The climatic data used for the predicted years was
taken from the averages of real data from 2011 - 2015, the years of the most recent drought.

Conclusion

While anthropogenic effects aggravate climate change on a global scale, local
conditions in California appear particularly susceptible. Paleoclimatic drought patterns and
climate forces, such as the El Nino Southern Oscillations and the Pacific Decadal Oscillation,
predict that the climate of California is entering a dry and warm trend (La Nina). It is
theorized that the 2012 - 2015 drought was not an instantaneous event, but the new
climatic norm for the state of California. This change in climate would have dire effects on
the state’s vegetative and hydrologic health. Because meadow ecosystems are very
sensitive to small changes in climate, Bluff Meadow in the San Bernardino Mountains was
chosen as a field site to measure the effects of the 2012 - 2015 California drought on the

ecosystem. Montane meadows are very important to a mountain’s ecosystem because they
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act as a sponge for the precipitation that falls onto the mountain, absorbing runoff and
distributing it through groundwater downstream. The drought’s impact on the ecosystem
was quantified by the change in groundwater levels, or the depth to the water table over
time. The depth to the water table was measured from July - October 2015 with twelve
well instruments, installed throughout the meadow. The depth to the water table was
found to be dependent on temperature, precipitation, humidity, and irradiance. Based on
observational data from Bluff Meadow, a hydrologic model was built to predict water table
depths into the future, given different climatic scenarios. The computation, accuracy, and
seasonality of the model was tested and verified both spatially and temporally to prove that
it could make realistic predictions for the future. The model predicted three different
scenarios for California over the next four years - a best-case scenario with wet winters (El
Nino), a worst-case scenario with a continuous drought, and a changing climate scenario
with warming and drying conditions (La Nina). The worst-case scenario predicted that the
depth to the water table in 2019 would be triple that of 2015. The best-case scenario
predicted that the depth to the water table would stay about constant until 2019. The
changing climate scenario predicted that the depth to the water table would increase, but
not to the extremity of the worst-case scenario. Because the climate is expected to enter a
La Nina trend, the case that the future of California is most likely to mimic is the changing
climate scenario. The prediction for Bluff Meadow made by the model serves as a
predictive analog for the entire hydrologic system of California. Groundwater levels are
expected to deepen as the climate becomes warmer and drier, forecasting the losses of
riparian vegetation, groundwater recharge, and meadows. The loss of these groundwater
dependent systems could fundamentally alter California’s climate and ecosystem. Possible
consequences of this climate change may be the economic collapse of agriculture, the
ultimate depletion of groundwater, and the widespread occurrence of mudslides and
flooding at mountain bases. These past climatic patterns and future hydrologic predictions
demonstrate that California may be stepping out of an unusually wet period of atmospheric

history and into an unknown, dry, and ever-warming world.
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