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Chapter 1 

Introduction 

Twentieth century mathematics can be characterized by the study of func­
tions. The most interesting functions are those that preserve the structure 
at hand. In many branches of mathematics transformations are looked at 
and classified. In geometry, transformations of a plane are very important. 
A transformation that distance is called an isometry. The classification of 
isometries is known in Euclidean geometry, and one will learn about each 
of them in any geometry course. Classification of isometries for the hyper­
bolic plane are not as well known, but they have been classified. In this 
paper we will discover hyperbolic geometry, investigate some of the models 
used to view hyperbolic geometry and discuss some of the isometries of the 
hyperbolic plane. 

1.1 History of Geometry 

In order to discuss a branch of branch of mathematics called "Hyperbolic 
Geometry," one must understand how the subject came about. The word 
"geometry" comes from the Greek word geometrein, where the first part geo­
means "earth" and the second part metrein means "to measure." Geometry 
can be dated back to before 3000 B.C.E, and in ancient times was typically 
used for surveying land, construction, and astronomy; the geometry of this 
time was limited to properties that were physically observed. 

Around 600 B.C.E the Greeks insisted that geometry be derived from 
studying rather than experimenting; this was the birth of axiomatic ge­
ometry. One of the most famous geometers, and considered the father of 
geometry, was Euclid. Euclid wrote a book entitled The Elements, which 
consisted of thirteen volumes that encompassed all of the known geometry. 
Euclid's Elements was not the first geometry text, but because it was so 
comprehensive it made all previous texts unnecessary. In the thirteen vol­
umes of geometry that Euclid wrote, he included five postulates which could 
not be proven from the axioms. One of these postulates, the famous Fifth 
Postulate of Parallels (see appendix), had many mathematicians working 
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on a proof using other postulates and axioms. Geometry with this famous 
postulate is called "Euclidean Geometry." 

1.1.1 Euclidean Geometry 

It is important to note the significance of finding a proof to the fifth pos­
tulate. Finding a proof would mean that one would not have to assume 
Euclid's fifth postulate to be true because it could be proved from the other 
axioms. This would make the list of postulates and axioms more concise. 
Many mathematicians tried to prove Euclid's famous "fifth postulate," but 
they were unsuccessful; some of these mathematicians were Girolamo Sac­
cheri (1667-1733), Adrien-Marie Legendre (1752-1833), and Johann Hein­
rich Lambert ( 1728-1777), who made significant findings in many different 
branches of mathematics. Euclid tried to not include his fifth postulate, 
and proved the first twenty eight propositions without using it. It has been 
suggested that Euclid himself tried to find a proof to the fifth postulate 
before finally giving up and including it as one of his postulates. The geom­
etry without the parallel postulate and any propositions proven using the 
parallel postulate is called "Absolute Geometry." This geometry provides a 
basis for "Non-Euclidean Geometry." If one removes the parallel postulate 
and replaces it with a different parallel postulate, non-Euclidean geometry 
is formed . 

1.1.2 Hyperbolic Geometry 

J anos Bolyai (1802-1860) published his discovery of non-Euclidean geometry 
in an appendix of a mathematical treatise by his father, Farkas Bolyai, 
entitled Tentamen in 1831. Farkas had a long-time friendship with Carl 
Fredrich Gauss from when they were both students. Farkas sent Gauss a 
copy of the Tentamen and Gauss sent a response to the Bolyai pair. Gauss 
claimed that he could not praise the work of Janos because "to praise it 
would amount to praising myself." [2] Gauss had come up with the same 
findings some thirty years earlier. He claimed that he did not feel that it was 
worthy enough to publish, and Gauss was afraid of what the public might 
think of his discoveries. 

What neither Janos or Gauss knew was that Nikolai Ivanovich Lobachevsky 
(1792-1856) was the first to actually publish an account of non-Euclidean 
geometry, which he did in 1829. Lobachevsky wrote his paper in Russian 
which is most likely why Gauss and Bolyai did not know about it, since 
German and French were the predominant languages for mathematics pa­
pers during that time. Lobachevsky received many negative reviews, as 
Gauss feared with his work, but he was not discouraged and kept publish­
ing his works. He published a treatise in German which he sent to Gauss, 
and later, with Gauss' influence, was elected an honorary member of the 
Gottingen Scientific Society. Finding hyperbolic geometry was not enough; 
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someone needed to prove that hyperbolic geometry was consistent. This 
ended up being shown with the help of models. 

Many people set out to find models of this so called "non-Euclidean 
geometry." Eugenio Beltrami (1835- 1899) wrote a paper in 1868, Saggio di 
Interpretazione della Geometria Non-Euclidea ("Essay on an Interpretation 
of Non-Euclidean Geometry"), that included his findings for a model for the 
entire real hyperbolic plane as a disk in JR2 [2]. Beltrami was the first to 
show that hyperbolic geometry was consistent, using different models that 
he worked with. Felix Klein (1849- 1925) presented Beltrami's disk model 
using projective geometry. His model, sometimes known as the Beltrami­
Klein model, is much simpler than Beltrami's original model and has come to 
be known the Klein Disk Model. Klein proved that Euclidean geometry was 
consistent if and only if hyperbolic geometry was. This ended most debate 
about hyperbolic geometry being "fake." Two other models of hyperbolic 
geometry are attributed to Henri Poincare (1854- 1912); he created another 
disk model as well as the upper half-plane model. His two models will be 
discussed after hyperbolic geometry is understood. 

1.2 Absolute Geometry 

Absolute geometry is based on the first four postulates (listed in Appendix). 
When Euclid wrote The Elements he proved twenty-eight propositions with­
out using his fifth postulate, and those propositions can be considered the 
basis for absolute geometry. All of the theorems proved using absolute ge­
ometry are true in both Euclidean geometry and hyperbolic geometry. 

Since hyperbolic geometry came out of a controversy over the fifth pos­
tulate, it is no surprise that there is a concept of parallelism in absolute 
geometry. It should be noted that the word "parallel" in the following 
theorem simply means non-intersecting. The way that parallelism is mostly 
thought about is that the lines are everywhere equidistant (like train tracks), 
but the reader should note that this is not the case. 1 

Theorem 1.2.1. If two lines are cut by a transversal such that a pair of 
alternate interior angles are congruent, then the lines are parallel. 

Proof. Suppose lines l and m are cut by transversal t with a pair of alternate 
interior angles congruent. See figure 1.1. Let t cut l and m at points A and 
B , respectively. Assume that lines l and m intersect at point C . Let C' be 
the point on m such that B is between C and C' and AC ~ BC'. Consider 
.6ABC and .6BAC'. We know AC ~ BC' (by construction), AB ~ AB 
(reflexive property), and .LABC' ~ .LBAC (by hypothesis), so by SAS 
6ABC ~ 6BAC'. By CPCTC, .LBAC' ~ .LABC. Well, .LABC' and 
.LABC are supplementary angles and since .LABC' ~ .LBAC then .LBAC' 

1 Unless otherwise noted, all theorems and defintions are from [2] 
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and LBAC are supplementary angles. This means that A lies between C 
and C', C * A * C', so C' lies on l. This means that l and m intersect at 
two distinct points, which contradicts Postulate I. Therefore, l and m do 
not intersect, and are parallel. 0 

Figure 1.1: Parallelism in absolute geometry. 

The type of parallel just discussed , where the lines are not necessarily 
everywhere equidistant, is quite different than the way most people think 
about it. As mentioned earlier, parallel here does not mean that the two 
lines are equidistant everywhere. When we get to the hyperbolic parallel 
postulate, one can see how assuming that the lines are equidistant is a 
problem. There are many things in absolute geometry that may seem strange 
to someone who has only seen Euclidean geometry. In Euclidean geometry 
the angle sum of a triangle is strictly 180, and it will later be shown that 
in hyperbolic geometry the angle sum of a triangle is strictly less than 180. 
We mentioned earlier that everything proven in absolute geometry is true 
in both Euclidean and hyperbolic geometry, so how does this work with the 
angle sum of the triangle? It turns out that in absolute geometry, the angle 
sum of a triangle is less than or equal to 180, which is true in both Euclidean 
and hyperbolic geometries. 

1.3 Hyperbolic Geometry 

Hyperbolic geometry is built from absolute geometry, which consists of Eu­
clid's first four postulates, and includes the non-Euclidean parallel postulate. 

Theorem 1.3.1 (Axiom P-2). If l is any line and P any point not on l, 
there exists more than one line passing through P parallel to l. 

This statement will be better realized with the introduction to models. This 
is because figure 1.2 does not seem to make sense in the way we are used to 
looking at lines. It seems that the two lines that go through P will in fact 
intersect line l at some far away point. 
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l 

Figure 1.2: An example of multiple lines through P parallel to l. 

Another interesting fact about parallelism in hyperbolic geometry is that 
there are many different types of parallel lines, one being asymptotically 
parallel. 

Definition 1.3.1. Given a line l and a point P not on l, let Q be the foot of 
the perpe!!!!Jcular from P to l. A limiting parallel ray to l emanati"!2.)rom P 
is a ray P X that does not intersect l and such that for every ray PY which 

---t ----; ----+ 
is between PQ and P X, PY intersects l. 

Lines l and m are said to be asymptotically parallel if m contains a limiting 
parallel ray to l. 

Figure 1.3: Limiting parallel ray PX; m and l are asymptotically parallel. 

Seeing the difference in parallelism, one can understand that there must 
be other differences in the geometries as well . An important characteristic 
of hyperbolic geometry is that the sum of the measures of the angles of any 
triangle is less than 180. In order to show this, we will prove that all right 
triangles have an angle sum of less than 180, and a corollary to this theorem 
is the result that shows this to be true for every triangle. 2 

Theorem 1.3.2. The sum of the measures of the angles of any right triangle 
is less than 180. 

Following the proof in [4], 

2This next theorem comes from [4] 
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Proof. Let LABC be a right triangle with right angle at B . T hrough A, 
;--> +-------* 

draw the line AP, which we will call m, perpendicular to AB, which P on 
+-------* +-------* 

the C-side of line AB. By theorem 1.2.1, m II BC. By the parallel postulate 
+-------* 

1.3.1, there is another linen through A parallel to BC, we may assume that 
---> 

one of its rays from A, AQ, lies interior to L.BAP. Now to finish the proof, 
we will break it up into sections. 

---> +-------* ---> 
1. From above, there exists a ray AQ parallel to line BC such that AB * 

---> ---> 
AQ * AP. Set t = mL.PAQ. 

------; 

2. Next, we want to locate a point in W so far out on ray BC that 
mL.AW B is arbitrarily small, and in this case, smaller than t. This is 
an argument Lengendre made that turns out to be true. Thus, there 

------; 

exists some Won BC such that B -C-Wand mL.AW B = mL.W < t. 
---> ------; -------+ 

3. Now if the order of the rays through A were AB- AQ- AW, by 
---> --

the Crossbar Theorem ray AQ would meet segment BW, which is a 
------; -------+ ---> 

contradiction. Therefore, AB-AW -AQ. By the first part, we know 
-----t ~ ----+ --t _____,. --7 ----1' 

AB- AQ- AP; putting them together we get, AB- AW- AQ- AP. 

4. Now to estimate the angle sum of 6.ABW: 

mLABW = 90 + mL.W + mL.BAW 

< 90 + t+mL.BAQ 

= 90 + mL.BAP 

= 180 

5. By theorem A.9.2 on page 27, Angle Sum 6.ABC < 180. 

An obvious consequence to this theorem is that: 

D 

Theorem 1.3.3. The sum of the measures of the angles of any triangle is 
less than 180. 

Out of any triangle, one can make two right triangles. By use of supple­
mentary angles and the fact that the sum of the angles of a right triangle is 
less than 180, it can be shown that the original triangle has angle sum less 
than 180. This result can be extended further by saying that the sum of the 
angles of a quadrilateral is strictly less than 360. 

Since the angle sum of a triangle in hyperbolic geometry is less than 180, 
we will introduce a new term to help describe a characteristic of the triangle. 
The defect of a triangle is the difference between 180 and the sum of the 
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angles of the triangle. In Euclidean geometry the angle defect is zero for all 
triangles, which is most likely why the term is never used. For a triangle 
the defect of 6ABC is: 

D(6ABC) = 180- mLA- mLB - mLC 

It can be generalized for convex polygons as well. 

Definition 1.3.2. The defect of the convex polygon P1P2P3 ... Pn is the 
number D(P1P2P3 ... Pn) = 180(n-2)-mLP1-mLP2-mLP3-· · ·-mLPn. 

The defect of any triangle in hyperbolic geometry will be a positive value. 
This can be seen easily for triangles since the angle sum of any triangle is 
strictly less than 180, then the defect (180 - the angle sum of the triangle) 
will be between 0 and 180, which is a positive value. Another interesting 
fact is that the defect of a polygon turns out to be additive. If a convex 
polygon and its interior is divided in any manner into convex subpolygons, 
then the sum of the defects of the subpolygons will equal the defect of the 
original polygon. We will look at an example to understand this idea. 

\ e: 
\ ~~··-~-~ --·------

Figure 1.4: An example of the additivity of the defects. 

Example 1.3.1. 81 = 360- {Angle sum of oABCF) = 360 - 340 = 20 

82 = 180-(Angle sum of 6AEF) = 180 - 170 = 10 

83 = 180- (Angle sum of 6CDF) = 180 - 170 = 10 

84 = 180- (Angle sum of 6DEF) = 180 - 165 = 15 

81 + 02 + 83 + 84 = 55 
The angle sum of polygon ABCDE = 60 + 155 + 70 + 100 + 100 = 485. 
Using the formula for the defect, 8 = 3 · 180 - 485 = 540 - 485 = 55. As 
seen by this example, o = 81 + 82 + 03 + 84. 
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In Euclidean geometry there are different criteria for showing that two 
triangles are congruent, such as SAS (Side-Angle-Side), ASA (Angle-Side­
Angle), and SSS (Side-Side-Side), but AAA (Angle-Angle-Angle) was a sim­
ilarity criteria, not a congruence criteria. In hyperbolic geometry all of the 
criteria hold true, and AAA is a congruence criterion! 

Theorem 1.3.4. Triangles that are similar are congruent 

Following a proof in [4], 

Proof. Given two similar triangles ABC and A'B'C', assume that they are 
not congruent; that is that corresponding angles are congruent, but corre­
sponding sides are not. In fact, no corresponding pair of sides may be con­
gruent, or by ASA, the triangles would be congruent. This means that one 
triangle must have two sides that are greater in length than their counter­
parts in the other triangle. Suppose that AB > A' B' and AC > A' C'. This 
means that we can find points D and E on sides AB and AC respectively 
such that AD~ A'B'andAE ~ A'C'. By SAS, L:.ADE ~ L:.A'B'C' and cor­
responding angles are congruent. Therefore L.ADE ~ L.A' B'C' ~ L.ABC 
and L.AED ~ L.A'C'B' ~ L.ACB. This tells us that quadrilateral ()DECB 
has angle sum 360. This is a contradiction to the angle sum of a quadrilateral 
being less than 360, therefore L'-,AB C ~ L:.A' B' C'. D 

Now that we have looked at some interesting characteristics of hyperbolic 
geometry, we will look at how to view hyperbolic geometry using models. A 
model in geometry is an interpretation of the "undefined" terms. All of the 
terms that can be defined will be interpreted in the model as well, since they 
are defined in terms of the "undefined." For a model to be valid, all of the 
axioms must be true under the model, and in turn, all of the theorems, which 
are proved from the axioms, must hold true as well. There are many models 
in hyperbolic geometry, some of which will be discussed. There are three 
models that are most common, the Klein Disk Model, the Poincare Disk 
Model, and the Poincare Upper Half-Plane Model, which were mentioned 
earlier. Using the Beltrami-Klein Disk Model one can show that all models of 
hyperbolic geometry are isomorphic to that model; since Beltrami showed 
that this model was consistent in hyperbolic geometry, then each model 
that we are discussing is consistent in hyperbolic geometry. Since the Klein 
Disk Model will not be discussed in the paper, this isomorphism will not 
be shown. Each model of hyperbolic geometry has its own advantages and 
disadvantages . The Poincare models will each be discussed more in depth in 
the following sections and both models are realized in the Euclidean plane, 
which is what most people can understand. 

1.3.1 Poincare Upper Half Plane 

The Poincare upper half plane is a model of hyperbolic geometry. This 
model resides in ~2 and the points of this model are { (x, y)ix, y E ~. y > 0}. 
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The lines in this model are vertical rays emanating from the x-axis (set 
of points satisfying x = b, where b constant, and y > 0) and Euclidean 
semi-circles whose diameter lies on the x-axis (the set of points satisfying 
(x- c) 2 + y2 = r 2 and y > 0, where b, c, r E ~' r > 0). Both lines are 
orthogonal to the x-axis, see figure 1.5. The set of ideal points are all points 
on the x-axis and the point at infinity. This means that each type of line 
contains two ideal points; these would be the points at the "end" of the 
semi-circle and for the vertical ray, the point on the x-axis and the point at 
infinity. 

111/ 

Figure 1.5: UHP examples of lines. 

The measurement of the angles in UHP is fairly straightforward.The 
measure of angle L.ABC is defined as the measure of the angle formed by 
the Euclidean rays tangent to BA and BC at B in the same direction as 
hyperbolic-rays BA and BC; see figure 1.6. 

Before we discuss the metric on the UHP, we need to define a cross ratio. 

Definition 1.3.3. Given four points in the plane, A, B, P , and Q, we 
define the cross ratio by: 

AP · BQ 
(AB, PQ) = AQ. BP 

The metric on the Upper Half-Plane is defined as follows (see figure 1.7): 
To find the hyperbolic distance between points A and B, let P and Q be 

f----' 

ideal points on the line AB. For the Euclidean semi-circle, we get: 

AP·BQ 
h(AB) = jln AQ. BPI = jln(AB,PQ) I 
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A' 

C ' 

~ 
1_--~~~--~--

Figure 1.6: UHP examples of measurement of angles. mLABC 
mLA'BC'. 

For the Euclidean vertical ray, we get: 

Q p 

Figure 1.7: UHP example of hyperbolic length using cross ratio. 

AP 
h(AB) = lln BPI 

Another way to think about the vertical ray is that both of the ideal 
points do not lie on the x-axis; one ideal point lies on the x-axis and the 
other is the point at oo. This can be derived from the Euclidean Semi-Circle 
formula by: h(AB) = lln ~~:~~I = lln ~~ + ln~ and as Q ---> oo, !~ ---> 1 
and lnl --> 0, so we are left with the formula for the Euclidean Vertical Ray. 

For the UHP model, there is another way to represent the hyperbolic 
distance using angle measures [5]. Let A, B , P and Q be defined as above, 
let C be the center of the semi-circle and let a denote the angle between 
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AC and CQ and let (3 denote the angle between BC and BQ; see figure 1.8. 
Using the law of cosines, we get the following result: 

BQ·AP 
(AB, PQ) = BP. AQ 

_ Jr:::2r'2'-----=-2'r2'c-o-s(.,--:f3""') · yl2r2 - 2r2 cos(n- a) 

- yl2r2 - 2r2 cos( n - (3) · yl2r2 - 2r2 cos( a) 

(1- cos(/3)) · (1 +cos( a)) 
(1 + cos(/3)) · (1- cos( a)) 

Multiplying by a form of 1, we get: 

(1- cos(/3)) · (1 +cos( a)) 
(1 + cos(/3)) · (1- cos( a)) 

(1- cos(/3)) · (1- cos(a)) 
(1- cos(/3)) · (1- cos(a)) 

(1- cos(/3))2 · sin2 (a) 
sin2 ((3) · (1- cos(a))2 

(1- cos(/3)) ·sin( a) 
sin(/3) · (1- cos(a)) 
csc(/3) - cot(/3) 
csc(a)- cot( a) 

B --------

p c Q 

Figure 1.8: UHP example of hyperbolic length using angles. 

Therefore, another way to define hyperbolic distance in UHP is: 

Theorem 1.3.5. Let"( be a circle with center C(c, 0) and radius r. If A 
and B are points of"( such that the radii CB and CA make angles a and (3 
(a < (3) respectively, with the positive x-axis, then the hyperbolic length of 
arc AB is equal to: 

lln csc(/3) - cot(/3) I 
csc(a)- cot( a) 
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By a simple substitution from the earlier definition we can get a similar 
definition for a vertical ray. 

Theorem 1.3.6. The hyperbolic length of the Euclidean line segment joining 
the points B(a,y1) and A(a,yz), 0 < Yl:::; Y2 is: 

lnY2 
Yl 

When we started looking at hyperbolic geometry, we discussed the paral­
lel postulate and how the models will make the statement more clear. Using 
the UHP model, we can see how the parallel postulate looks; see figure 1.9. 

1 1 

Figure 1.9: Lines m and n are parallel to l and go through P. 

We can see that the lines that go through P do not intersect l, which 
seems more accurate than the original diagram that was shown. Now that 
we have seen what the Upper Half Plane is and how it works, we will move 
into the Disk model and do the same. 

1.3.2 Poincare Disk Model 

The Poincare Disk Model resides in the interior of the unit circle, 1, in the 
Euclidean Plane. The points of this model are the points lying interior to '"Y· 
The lines of this model are Euclidean circles orthogonal to '"Y or diameters 
of '"Yi see figure 1.10. 

The PDM and the UHP model are very similar in how their metrics are 
defined; both use cross ratios in their definition. 

The metric of the Poincare Disk Model is defined as follows; where P , 
+----> 

Q are the ideal points on the line AB: 

1 AP·BQ 1 
h(AB) = 2fln( AQ. BP)[ = 2fln((AB, PQ)) f 

The angle measure of the angle formed at point A by lines l and m is 
defined as the angle formed by lines l' and m' at A where l' and m' are the 
Euclidean lines tangent to l and m, respectively, at A; see figure 1.11. 

We have already seen how the parallel postulate is viewed in UHP, and 
for the PDM it can be seen in figure 1.12. It can be seen in the figure 
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0 

Figure 1.10: What lines look line in the PDM. 

that the two lines that go through P do not intersect l. The reader should 
note that the lines look like they intersect at the "ends" of line l (the ideal 
points), but one must remember that those points are not in the model. 
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Figure 1.11: How to measure angles in PDM. 
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Figure 1.12: Two lines are parallel to l and go through P . 
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Chapter 2 

Rigid Motions 

We will begin our discussion on motions by first defining what a motion 
actually is. 

Definition 2.0.1. A transformation T of the entire plane onto itself is called 
a motion (also called rigid motion) or an isometry if length is invariant 
under T, i.e. if for every segment AB, AB = A' B', or equivalently AB ~ 
A'B'. 

There is a well known result in Absolute geometry that will be very 
useful when describing isometries. 

Theorem 2.0.2. An isometry is angle-measure preserving (A}, betweenness 
preserving (B), collinearity preserving (C), and distance preserving (D). 

By the above theorem, we know that isometries are distance preserv­
ing which is very important in theorems to come. It is well known that 
the isometries of the Euclidean plane are reflections, rotations, translations, 
and glide reflections, and these are discussed in every Euclidean geometry 
course. We will briefly discuss each of them in order to extend the results 
to hyperbolic geometry. 

The reflection in a given line l is defined as follows: 

Pt(P) = P' 

The points of l are fixed under Pl and l is the perpendicular bisector of P P'. 
It is obvious that a reflection is its own inverse, meaning Pl(Pl(P)) = P. 

A translation through a given vector AB is defined as follows: 

TAs(P) = P' 

Vector P P' is of the same length as vector AB and P P' is either collinear 
with or parallel to AB. The inverse of the translation in vector AB is the 
translation in vector BA, meaning TAB(TBA(P)) = P. There are no fixed 
points for a translation in a non-zero vector. 
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A rotation about a point C through angle a is defined as follows: 

Rc,a(P) = P' 

The segments CP and CP' are congruent and LPCP' =a. The only fixed 
point is C, the center of rotation. The inverse of the rotation is the rotation 
about C by an angle -a, meaning Rc,-a(Rc,a(P)) = P. 

A glide reflection is a composition of a translation by a vector AB with 
a reflection in line AB, defined as: 

GAs(P) = PAB o TAs(P) = P' 

Note that the order of the composition does not matter. There are no fixed 
points in a glide reflection with a non-zero vector AB. 

Reflections are the most fundamental type of motions. Using reflections, 
we will generate all other motions. It turns out that every motion can be 
written as a product of at most three reflections; a motion written as a 
product of three reflections can be categorized as either a reflection or a 
glide. We will denote a reflection by Pm across line m, its axis, and we will 
denote the image of a point A under Pm by Am. A transformation that is 
not the identity and is equal to its own inverse is called an involution. It so 
happens that reflecting across m twice sends every point back where it came 
from, PmPm =I or Pm = (Pm)- 1 . Another important characteristic that is 
used to classify motions is fixed points. A fixed point of a transformation T 
is a point A such that A' =A. It is clear that the fixed points of a reflection 
Pm are the points lying on m. The following theorems are about fixed points 
and motions [2]. 

Theorem 2.0.3. If a motion T fixes two points A, B, then it fixes every 
f..--+ 

point on line AB. 

Proof. LetT be a motion and let A and B be fixed under T. Then A= A' 
and B = B' which means AB = A' B', since isometries preserve distance. 

<----7 

Let C be a third point on AB. Consider the case A*B*C (All other cases 
are similar). Since motions preserve betweenness, by 2.0.2, A*B*C' and 
since motions preserve distance, AC = AC' and therefore, C = C'. 0 

Theorem 2.0.4. If a motion fixes three noncollinear points, then it is the 
identity. 

Proof. If A, B, C are fixed noncollinear points, then by theorem 2.0.3 so is 
every point on the lines joining these three points, namely AB, AC, and 
{-------7 

BC. If D is not on those three lines, choose any E between A and B. By .......... 
Pasch's theorem (A.9.3 on page 27), line DE meets another side of !:::.ABC 
in a point F. Since E and F are fixed, theorem 2.0.3 tells us that D is 
fixed. 0 
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Theorem 2.0.5. If a motion fixes two points A, B, and is not the identity, 
f-----c> 

then it is the reflection across line AB. 

Proof. Let T be a motion that fixes two points A and B, and let T =I- I. 
f-----c> 

2.0.3 ensures that every point on AB is fixed. Let C be any point not 
f-----c> f-----c> 

on AB and let F be the foot of the perpendicular from C to AB. Since 
motions preserve angle measure , they preserve perpendicularity, so C' must 

f-----c> 

lie on CF. Theorem 2.0.4 ensures that C' =I- C (since T =I- I), and since 
- -- f-----c> 

C F = C' F, C' is the reflection of C across AB. 0 

When one thinks of motions they might think about a continuous move­
ment of an object to its image. This next theorem seems to have that idea 
of motion. 

Theorem 2.0.6. /::..ABC~ f::..A' B'C' if and only if there is a motion send­
ing A , B, C , respectively, onto A', B' , C' and that motion is unique. 

Following the proof in [2], 

Proof. Using theorem 2.0.4 we can show uniqueness. If T and T' had the 
same effect on A, B, C then r-1T' would fix these points; hence r- 1T' =I 
and T = T'. Since motions preserve distance, then the motion maps /::..ABC 
onto a congruent triangle, by SSS. We will start with /::..ABC ~ f::..A' B'C' 
and create the motion T. Assume A =I- A' and let t be the perpendicular 
bisector of AA'. Then reflection across t sends A to A' and B, C to points 
Bt and ct . If Bt = B' and ct = C', we are done. Assume B t =I- B'. 
Then A' B' ~ AB ~ A' Bt. Let u be the perpendicular bisector of B' Bt, so 
that Pu sends Bt to B'. This reflection fixes A', because if A', Bt, B' are 
collinear, A' is the midpoint of B' Bt and lies on u, otherwise if they are 
not collinear, u is the perpendicular bisector of the base of isosceles triangle 
D.B' ABt and u passes through the vertex A'. Thus, PuPl sends the pair 
(A, B) to the pair (A' , B'). If it also sends C to C', we are done. Let C" 
be its effect on C. Then A'C' ~ AC ~ A"C" and B'C' ~ BC ~ B'C" so 
that f::..A'B'C' ~ D.A'B'C". See figure 2.1. Since A'C' ~ A'C", f::..C'AC" 
is an isosceles triangle. Thus, by theorem A.9.4 (on page 27), A' lies on 
the perpendicular bisector of C' C" (this same argument can be made for 

+------+ 
B' lying on the perpendicular bisector of C'C" as well). Thus v = A' B' 
will send C" to C' and it will fix A' and B'. Thus PvPuPt is the motion we 
seek. D 

Since an isometry preserves angle measure and distance, the isometry 
is completely determined by a triangle and its image under the isometry. 
What turns out to be a consequence to the above theorems is that, 

Theorem 2.0. 7. Every motion is the product of at most three reflections. 
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C' 

C" 

Figure 2.1: l is the perpendicular bisector or BB'. 

As seen in the above proof, sending one triangle to its image takes up to 
three reflections, and thus , every motion is the composition of at most three 
reflections. 

The identity motion is the product of zero reflections, a reflection is the 
product of one reflection and later we will see it is also the product of three 
reflections under certain circumstances. We will now move onto products 
of two reflections. Rotations are the product of two reflections, T = PlPm, 
where l and m meet at some point A. 

Theorem 2.0.8. A motion T =/=I is a rotation if and only if T has exactly 
one fixed point. 

Proof. =? Suppose T has only one fixed point, A, and choose a point B , 
where B =I= A. See figure 2.2. Let l be the perpendicular bisector of BB'. 
Since AB ~ AB', A lies on l by theorem A.9.4 (page 27). The motion 
PtT fixes both A and B. If PlT = I, then T = pz, which contradicts the 

~ 

hypothesis that T has only one fixed point. Hence if m = AB, theorem 
2.0.5 implies pzT = Pm , so that T = PlPm and T is a rotation about A. 
See figure 2.2. .;:= Given rotation T = PlPm about A, assume that a point 
B, where B =I= A, is fixed. Then the reflection of B about l, B 1, is equal 
to the reflection of B about m, Bm. Joining B 1 = Bm to B gives a line 
perpendicular to both l and m, which is a contradiction. Therefore, T has 
only one fixed point. 0 

This next theorem will help us prove the theorem on three reflections. 

Theorem 2.0.9. If Tis a rotation about A and m is any line through A, 
then there is a unique line l through A such that T = PlPm. If l is not 
perpendicular tom, then for any point B =I= A, 
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~----~------~6 
B' 

{ m 

Figure 2.2: Showing that m is the line through A and B. 

where d is the number of degrees in the acute angle made by intersecting 
lines l and m . 

Proof. Let T be a rotation about A. By theorem 2.0.8, A is the only fixed 
point of T. Let B be a point such that B =/:- A. Let l be the perpendicular 
bisector of BE'. Since AB ~ AB' , A lies on l by theorem A.9.4 (page 27). 
The motion PtT fixes both A and B. If PtT = I then T = Pl which is a ,____. 
contradiction toT being a rotation since Pl fixes a line. If m = AB, theorem 
2.0.5 implies that PtT = Pm :::::} T = PtPm· To show the second part, we know 
6.ACB ~ 6.ACB' (where Cis the intersection of l and BB'). This implies 
that LCAB ~ LCAB'. This means, LBAB' = 2 · LCAB = 2d. 0 

Now we are able to prove the theorem on three reflections. The following 
are three types of pencils of lines which we will need to classify motions. 

1. The pencil of all lines through a given point P. 

2. The pencil of all lines perpendicular to a given line t. 

3. The pencil of all lines through a given ideal point 2:: (hyperbolic plane 
only). 

This theorem leads to the complete classification of motions. 

Theorem 2.0.10. LetT = PtPmPn· 

1. If l, m, and n belong to a pencil, then T is a reflection in a unique 
line of that pencil. 

2. If l, m, and n do no belong to a pencil, then T is a glide. 

Following a similar proof in [2], we are able to prove this theorem. 
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Proof. 1. Let l, m, and n belong to the pencil ofalllines through a point 
A. Since A lies on all three lines, A is a fixed point ofT, so T has at 
least one fixed point. Assume A is the only fixed point ofT. Then Tis 
a rotation, by theorem ?? about A. Since Tis a rotation about A and n 
is any line through A, then there exists a unique line p through A such 
that T = PlPmPn = PpPn· This means that PtPmPnPn = PlPm = Pp· 
But the product of two reflections cannot equal a reflection because 
the number of fixed points are different. Thus, A is not the only fixed 
point ofT. If T fixes three noncollinear points, then Tis the identity, 
but T cannot be the identity since T is the product of an odd number 
of reflections. SoT must fix another point, B. Thus by 2.0.5, Tis a 

~ 

reflection across AB. 

Let l, m, and n belong to the pencil of all lines perpendicular to a line 
t. Let K be a translation such that K = PlPm· Since n .l t, then by 
theorem A.10.1, there exists a unique p such that p l_ t and K = PpPn· 
Then PlPm = PpPn and by simple arrangement, PtPmPn = Pt· Since 
T = PtPmPn, then T = pp; therefore T is a reflection in a unique line 
of the pencil of all lines perpendicular to a line t. 

Let l, m, and n belong to the pencil of all lines through ideal point 2:. 
Let K be the parallel displacement, K = PlPm· By theorem A.l0.2, 
since n is a line through E, PlPm = PhPn, then T = PtPmPn =Ph, soT 
is a reflection across a line in the pencil. 

2. Assume the lines do not belong to a pencil. See figure 2.3. Choose any 
point A on l . Let m' be the line through A belonging to the pencil 
determined by m and n, since two lines determine a pencil. Then line 
n' exists such that 

Pm' PmPn = Pn1 

by part (1). Let B be the foot of the perpendicular k from A ton'. 
Since l, m', and k pass through A, line h exists such that 

PlPm'Pk =Ph 

by part (1). Then B does not lie on h (since l, m, and n do not belong 
to the same pencil), so by theorem A.10.3 on page 28, PhHB is a glide 
along the perpendicular to h through B. But 

PhHB = Ph(PkPn') = PlPm'PkPkPm' PmPn = PtPmPn = T . 

Therefore, T is a glide. 
D 

With this theorem one can classify any T that can be written as the 
product of three reflections. This is a very interesting result because it is 
true in both hyperbolic geometry and Euclidean geometry, although the 
definition of pencils would be different in both. 
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Figure 2.3: The proof of the theorem of three reflections. 

2.1 Conclusion 

The theorem on three reflections is a major result for isometries of the plane, 
but there are many more results that this paper does not cover. One can 
go deeper and discuss the isometries of the Poincare models. This becomes 
more advanced and uses complex coordinates in order to fully understand. 
Reflections in the Upper Half Plane are easily seen and are included in the 
appendix, see page 28. By delving deeper into the models, one will be able 
to prove many theorems dealing with different types of parallel lines, one 
of which was mentioned (asymptotically parallel), as well as looking at the 
ideal points in each model. A major theme in geometry is looking at trian­
gles and how motions affect the triangle (such as reversing the orientation), 
and one can look at the orientation-preserving isometries as well as asymp­
totic triangles (having one, two or three vertices at an ideal point) and how 
motions affect those triangles. Sadly, these topics mentioned were not in 
the scope of this paper, but it is strongly encouraged to keep learning about 
this "strange new world" . 
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Appendix A 

Axioms 

A.l Postulates 

I For every point P and for every point Q, with P =/= Q, there exists a 
unique line that passes through P and Q. 

II For every segment AB and for every segment CD there exists a unique 
f--t 

point E on line AB such that B is between A and E and segment CD 
is congruent to segment BE. 

A 

c D .----------------. 

B 

Figure A.l : CD ~BE. 

III For every point 0 and every point A, with A=/= 0, there exists a circle 
with center 0 and radius OA. 

IV All right angles are congruent to one another. 

V If two lines in the same place are cut by a transversal so that the sum 
of the measures of a pair of interior angles on the same side of the 
transversal is less than 180, the lines will meet on that side of the 
transversal. This can be restated, see Parallel Postulate section of the 
appendix. 
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Figure A.2: ircle wi th center 0 and radjus OA. 

A.2 Incidence Axioms 

Axiom 1-1 Each two distinct points determine a line. 

Axiom 1-2 Three noncollinear points determine a plane. 

Axiom 1-3 If two points lie in a plane, then any line containing those two 
points lies in that plane. 

Axiom 1-4 If two distinct planes meet, their intersection is a line. 

Axiom 1-5 Space consists of at least four noncoplanar points, and contains 
three noncollinear points. Each plane is a set of point of which at least 
three are noncollinear, and each line is the set of at least two distinct 
points. 

A.3 Metric Axioms 

Axiom D-1 Each pair of points A and B is associated with a unique real 
number, called the distance from A to B , denoted AB. 

Axiom D-2 For all points A and B, AB 2: 0, with equality only when 
A =B. 

Axiom D-3 For all points A and B, AB = BA. 

Axiom D-4 (Ruler Postulate) The points of each line l may be assigned 
to the entire set of real numbers x, -oo < x < oo, called coordinates, 
in such a manner that 

1. each point on l is assigned to a unique coordinate 

2. no two points are assigned to the same coordinate 

24 



3. any two points on l may be assigned the coordinates zero and a 
positive real number, respectively. 

4. if points A and Bon l have coordinates a and b, then AB = Ja-bJ. 

A.4 Angle Axioms 

Axiom A-1 Each angle LABC is associated with a unique real number 
between 0 and 180, called its measure and denoted mLABC. No 
angle can have measure 0 or 180. 

Axiom A-2 If D lies in the interior of LABC, then mLABD+mLDBC = 
-----7 

mLABC. Conversly, if mLABD+mLDBC = mLABC, then ray ED 
passes through an interior point of LABC. 

-----7 

Axiom A-3 (Protractor Postulate) The set of rays AX lying on one 
<'----> --> 

side of a given line AB, including ray AB, may be assigned to the 
entire set of real numbers x, 0 ~ x < 180, called coordinates, in such 
a manner that 

1. each ray is assigned a unique coordinate 

2. not two rays are assigned to the same coordinate 
--> 

3. the coordinate of AB is 0 
---+ ----7 

4. if rays AC and AD have coordinates c and d, then mLCAD = 

Jc-dJ. 

Axiom A-4 A linear pair of angles is a supplementary pair. 

A.5 Plane Separation Postulate 

Definition A.5.1. A set K inS is called convex provided it has the property 
that for all points A E K and B E K, the segment joining A and B lies in 
K (A-B s:;; K). 

Axiom H-1 Let l be any line lying in any plane P. The set of all points in 
P not on l consists of the union of two subsets H1 and Hz or P such 
that 

1. H1 and Hz are convex sets 

2. H1 and Hz have no points in common 

3. If A lies in H1 and B lies in Hz, the line l intersects the segment 
AB. 
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A.6 Congruence Axioms 

Axiom C-1 (SAS) Under the correspondence ABC <---+ XY Z, let two 
sides and the included angle of !:::.ABC be congruent, respectively, to 
the corresponding two sides and the included angle of !:::.XY Z. Then 
!:::.ABC~ !:::.XYZ. 

A. 7 Parallel Postulates 

Hilbert's Euclidean Parallel Postulate For every line land every point 
P not lying on l there is at most one line m through P such that m is 
parallel to l. 

Euclid's Fifth Postulate If two lines are intersected by a transversal in 
such a way that the sum of the degree measures of the two interior 
angles on one side of the transversal is less than 180°, then the two 
lines meet on that side of the transversal. 

Negation of Hilbert's Euclidean Parallel Postulate There exist a line 
l and a point P not on l such that at least two distinct lines parallel 
to l pass through P. 

A.8 Equivalent Forms of Euclid's Fifth Postulate 

- The area of a right triangle can be made arbitrarily large. 

- The angle sum of all triangles is constant. 

- The angle sum of a single triangle equals 180. 

- Rectangle exist. 

- A circle can be passed through any three noncollinear points. 

- Given an interior point of an angle, a line (transversal) can be drawn 
through that point intersecting both sides of the angle. 

- Two parallel lines are everywhere equidistant. 

- The perpendicular distance from one of two parallel lines to the other is 
always bounded. 

A.9 Theorems 
-----> ------> ------> 

Theorem A.9.1 (Crossbar Theorem). If AD is between AC and AB, then 
-----> 
AD intersects segment BC. 
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Theorem A.9.2. If D.ABC has angle sum less than 180 and D is any point 
on side B-C, then both D.ABD and D.ADC have angle sum less than 180. 

Theorem A.9.3 (Pasch's Theorem) . If A, B , C are distinct noncollinear 
points and l is any line intersecting AB in a point between A and B , then 
l also intersects either AC or BC. If C does not lie on l, then l does not 
intersect both AC and BC. 

Theorem A.9.4. If D.BAB' is an isosceles triangle, A lies on the perpen­
dicular bisector of BE' 

Proof. Let D.BAB' be an isosceles triangle with A-B 3:! AB'. Let D be the 
midpoint of BE'. Construct the line segment AD. By definition of median, 
AD is a median of D.BAB'. We want to show that AD is also an altitude 
of 6BAB'. Since AD is a median, B-D ~DB'. Also, AB 3:! AB' by given. 
By the reflexive property, AD 3:! AD. By SSS, D.ABD ~ D.AB'D . By 
CPCTC, L.ADB 3:! L.ADB' . Thus, L.ADB and L.ADB' are supplementary, 
congruent angles. Hence AD and BE' are perpendicular, and AD is an 
altitude of 6BAB'. Since AD is a median and an altitude of t::.BAB', it 
lies on the perpendicular bisector of BE' . D 

Theorem A.9.5. a The summit angles of a Saccheri quadrilateral are con-
gruent to each other. 

b The line joining the midpoints of the summit and the base is perpendicular 
to both the summit and the base. 

Theorem A.9.6. Consider t::.ABC and its perpendicular bisectors. If per­
pendicular bisectors l and m are asymptotically parallel in the direction of 
ideal point n, then the third perpendicular bisector n is asymptotically par­
allel to l and m in the same direction n. 

Theorem A.9. 7. If a rotation has an ideal fixed point, then it is the identity. 

Theorem A.9.8. The ends of m are the only ideal fixed points of the re­
flection Pm. 

A.lO Theorem on Three Reflections 

In order to prove the theorem on three reflections, the following definitions 
and theorems are needed. 

Theorem A .lO.l. IfT is a translation along t and m is any line perpen­
dicular tot, then there is a unique line l ..L t such that T = PlPm· 

Proof. Let T be a translation along t and let m be a line perpendicular to 
t. Let m cut t at Q, and let l be the perpendicular bisector of QQ' . Then 
PIT fixes Q. Let P be any point on m, so that oPQQ' P' is a Saccheri 
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quadrilateral. Since l is perpendicular to the base QQ' at its midpoint, l 
is also perpendicular to the summit P P' at its midpoint, by theorem A.9.5 
(b). SoP is the reflection of P' across l. Thus pzT fixes every point on m, 
and therefore pzT = Pm, and T = (pz)(pz)T = PlPm· D 

In order to discuss the next theorem needed, one must know what a 
parallel displacement is. 

Definition A.lO.l. LetT= PlPm· If l and m are asymptotically parallel 
in the direction of an ideal point n, T is called a parallel displacement about 
n. 

Theorem A.10.2. Given a parallel displacement T = PlPm, where l and m 
are asymptotically parallel in the direction of ideal point :E. Then let k be 
any line through I; and A any point on k; then I; lies on the perpendicular 
bisector h of AA' and T = PhPk. 

Proof. Let k be any line through I; and A be any point on k. I; lies on 
two perpendicular bisectors l and m of 6AAmA', so by theorem A.9.6, I; 

also lies on the third perpendicular bisector h. Then PhT fixes A and :E. 
By theorem A.9. 7, PhT cannot be a rotation about A. By theorem 2.0.5 
(page 17), PhT must be a reflection, and by theorem A.9.8, it has to be the 
reflection across the line k joining A to :E. D 

In the next theorem the term HA is used. HA is a half turn about A, 
which means it is a rotation about A by 180 degrees. 

Theorem A.10.3. Given point B and line l, lett be the perpendicular to l 
through B. Then PtHB is a glide along t if B does not lie on l and is Pt if 
B does lie on l. 

Proof. Let B lie on l. Then HB = PlPt, and therefore pzHB = (Pt)(pl)(Pt) = 
Pt· Let B not lie on l, let m =I l be the perpendicular to t through B. 
Then T = PlPm =I I, since l -/= m. Also, HB = PmPt, and therefore PtHB = 
PtPmPt = Tpt. D 

A.ll Reflections In UHP 

Refections in the Upper-Half-Plane model turn out to be Euclidean reflec­
tions in the vertical lines or inversions in circles 'Y whose center is on the 
x-axis. It should be obvious to the reader that the reflection across a vertical 
line in the UHP model is an isometry, but a figure might help; see figure 
A.4. We shall now discuss inversion. 

Definition A.ll.l. Let C be a circle of radius r, center 0. For any point 
P =I 0, the inverse P' of P with respect to C is the unique point P' on ray 
oP such that (0-P)(OP') = r 2 . 
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Some useful information about inversion is as follows: 

Theorem A.ll.l. Properties of Circular Inversion (C is the circle of in­
version and 0 is the center). 

1. Points inside C map to points outside of C. 

2. Points outside C map to points inside of C. 

3. Each point on C is self-inverse (maps to itself). 

4. Lines or circles map to lines or circles. 

5. A line through 0 is invariant, but the individual points of that line are 
changed. 

6. A circle through 0 maps to a line not through 0, and the image line 
is perpendicular to the line that passes through 0 and the center of the 
given circle. 

'l. Cross Ratio is invariant under circular inversion. 

8. A circular inversion is conformal, that is, it preserves curvilinear 
angle measure. 

We will start by looking at an example of circular inversion in the Eu­
clidean plane. 

-4P' 

Figure A.3: An example of circular inversion. 
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p • 

C2J 
Figure A.4: An example of reflections in the upper half plane. Left is circular 
inversion and to the right is reflection across a vertical line. 

In figure A.3, we can see how circular inversion works in ~2 . In the 
example, 0 is the center of the circle C with r = 2.08. Our point, P, lies 
inside of C. As seem in A.ll.l, P' lies outside of C, with OP = 0.98 and 
OP' = 4.41. From definition A.ll.l, we see that (0.98) · (4.41) = (2.08) 2 = 

4.3264. 
Circular inversion does not map the center of inversion to a point, and 

therefore is not a transformation of the Euclidean plane ~2 , unless the point 
at infinity was included, ~2 U { oo }. Then the point at infinity would map to 
the center and vice versa. Thankfully, in the UHP the center of inversion is 
an ideal point, and thus is not in the model. Inversion of the UHP can also 
be seen in a figure; see figure A.4. 
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