
University of Redlands University of Redlands

InSPIRe @ Redlands InSPIRe @ Redlands

MS GIS Program Major Individual Projects Theses, Dissertations, and Honors Projects

2015

Managing Utility Properties: Fire Risk Awareness and Mitigation Managing Utility Properties: Fire Risk Awareness and Mitigation

Andrew Michael Sanchez
University of Redlands

Follow this and additional works at: https://inspire.redlands.edu/gis_gradproj

 Part of the Emergency and Disaster Management Commons, Geographic Information Sciences

Commons, and the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Sanchez, A. M. (2015). Managing Utility Properties: Fire Risk Awareness and Mitigation (Master's thesis,
University of Redlands). Retrieved from https://inspire.redlands.edu/gis_gradproj/248

This work is licensed under a Creative Commons Attribution 4.0 License.
This material may be protected by copyright law (Title 17 U.S. Code).
This Thesis is brought to you for free and open access by the Theses, Dissertations, and Honors Projects at
InSPIRe @ Redlands. It has been accepted for inclusion in MS GIS Program Major Individual Projects by an
authorized administrator of InSPIRe @ Redlands. For more information, please contact inspire@redlands.edu.

https://inspire.redlands.edu/
https://inspire.redlands.edu/gis_gradproj
https://inspire.redlands.edu/etd
https://inspire.redlands.edu/gis_gradproj?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1321?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:inspire@redlands.edu

 University of Redlands

Managing Utility Properties: Fire Risk Awareness and Mitigation

A Major Individual Project submitted in partial satisfaction of the requirements

for the degree of Master of Science in Geographic Information Systems

by

Andrew Sanchez

Fang Ren, Ph.D., Committee Chair

Mark Kumler, Ph.D.

August 2015

Managing Utility Properties: Fire Risk Awareness and Mitigation

Copyright © 2015

by

Andrew Michael Sanchez

 v

Acknowledgements

There are a number of people I would like to thank for helping me get through this

project and complete the program successfully. First, I would like to thank my advisor,

Fang Ren for making sure we examined each little detail to ensure everything worked

exactly how it should; despite how dire some of the project stages felt, she was always

making sure I knew there was hope for finishing the project. I would also like to thank

Giovan Alcala for not only helping me get to the University during MIP season, but also

for being there to bounce ideas off of and going through the gauntlet with me, and Neel

Chowdhury for helping me break through the worst of my road blocks. When JavaScript

seemed hopeless and my models were breaking, he helped me leverage Python to get

around these issues and come out with working geoprocessing tools. I also want to give

thanks to Nathan Strout, the go-to guy for all things programming in the Center for

Spatial Studies. He helped me troubleshoot my Python code, understand WebApp

Builder for Developers and the JavaScript behind it, and construct a custom widget to

bring my application all together.

 vii

Abstract

Managing the Occurrence and Spread of Fire to Transmission Work Sites

by

Andrew Michael Sanchez

Southern California Edison is concerned with fire and the danger it poses to its equipment

and employees, and their current strategies are becoming outdated. To help solve this

problem, this project developed a web application that allows the user to identify the

areas that might be influenced by a fire instance, retrieve information about assets in the

danger zone, and display the assets and their risk levels. With this tool, the emergency

response teams can more accurately decide what areas are most in need of assistance in a

timely fashion. By increasing their efficiency of disaster management, lives and money

can be saved.

 ix

Table of Contents

Chapter 1 – Introduction ... 1

1.1 Client ... 1

1.2 Problem Statement .. 1

1.3 Proposed Solution ... 1

1.3.1 Goals and Objectives .. 1

1.3.2 Scope ... 2

1.3.3 Methods... 2

1.4 Audience ... 3

1.5 Overview of the Rest of this Report ... 3

Chapter 2 – Background and Literature Review .. 5

2.1 Fire Analysis ... 5

2.2 Fire Models ... 5

2.3 Web GIS Development ... 7

2.4 Python ... 7

2.5 Summary ... 8

Chapter 3 – Systems Analysis and Design .. 9

3.1 Problem Statement .. 9

3.2 Requirements Analysis ... 9

3.2.1 Functional Requirements .. 9

3.2.2 Non-Functional Requirements .. 9

3.3 System Design .. 10

3.4 Project Plan ... 10

3.4.1 Requirements Analysis ... 10

3.4.2 Data Acquisition ... 11

3.4.3 Application Development and Testing ... 11

3.4.4 Deployment ... 11

3.5 Summary ... 11

Chapter 4 – Database Design ... 15

4.1 Conceptual Data Model .. 15

4.2 Logical Data Model .. 16

4.3 Data Sources ... 17

4.4 Data Management ... 18

4.5 Data Scrubbing and Loading .. 20

4.6 Summary ... 21

Chapter 5 – Implementation .. 23

5.1 Script Toolset Development ... 23

5.1.1 Asset Selection GP tool .. 23

5.1.2 Asset Selection with Risk GP Tool ... 24

5.1.3 Asset Selection via Upload With and Without Risk GP Tools 25

5.2 Web Map ... 26

5.2.1 Publishing Map Service .. 26

5.2.2 Publishing Geoprocessing Services .. 27

 x

5.2.3 Developing Web Application ... 29

5.3 Summary ... 32

Chapter 6 – Use Cases .. 33

6.1 Asset Selection with Hand Drawn Polygons .. 33

6.2 Asset Selection with Shapefile Uploaded ... 37

6.3 Summary ... 39

Chapter 7 – Conclusions and Future Work ... 41

Works Cited… ... 43

Appendix A. Feature Set Schema ... 45

Appendix B. Asset Selection Script .. 47

Appendix C. Asset Selection with Risk Script ... 51

 xi

Table of Figures

Figure 1.1: Santa Barbara County Study Area... 2

Figure 3.1: System Architecture .. 10

Figure 4.1: Asset Analysis Conceptual Model .. 15

Figure 4.2: Logical Data Model ... 16

Figure 4.3: Detailed View of Database .. 19

Figure 5.1: Asset Selection Workflow ... 23

Figure 5.2: Asset Selection Interface in ArcMap ... 24

Figure 5.3: Asset Selection with Risk Workflow .. 25

Figure 5.4: Choose to Publish a Service .. 27

Figure 5.5: Service Definition and Analysis Page ... 27

Figure 5.6: Results Tab .. 28

Figure 5.7: Geoprocessing Tool Definitions Page ... 28

Figure 5.8: Web Design Sketch ... 29

Figure 5.9: Web Design ... 31

Figure 6.1: Map View .. 34

Figure 6.2: Select Area of Interest ... 34

Figure 6.3: Assets selected within the area of interest ... 35

Figure 6.4: Asset Selection Output Table .. 36

Figure 6.5: Operational Layer Menu ... 36

Figure 6.6: Asset Selection for Risk Evaluation .. 37

Figure 6.7: Asset Selection with Risk Output Table .. 37

Figure 6.8: Add Shapefile to Application .. 38

Figure 6.9: Shapefile Upload ... 38

 xiii

List of Acronyms and Definitions

API – Application Programming Interface

Cal FRAP – California Fire and Resource Assessment Program

CDF – California Department of Fire and Forestry

FIM – Facility Inventory Mapping

GIS – Geographic Information Sciences

GP – Geoprocessing

OMS – Outage Management System

SCE – Southern California Edison

URL – Uniform Resource Locator

1

 Introduction Chapter 1 –
Fires are severe potential dangers when working with power grids and electricity. The

most effective method of dealing with them can often be simply catching them early and

preventing them from spreading. GIS is a useful approach for solving this problem as it

provides tools to identify where danger areas are and what level of risk they pose. In this

case, identifying important assets and their potential fire risk can make a vital difference

in prevention and preparedness.

Southern California Edison (SCE) currently uses the Flex Adobe software kit in

conjunction with ArcGIS to evaluate its assets in relation to fire outbreaks. Flex

programming is losing support, and with the trend of moving away from Adobe and

toward HTML5, SCE needs to update its available applications. This project does just

that by creating an application through JavaScript and ArcGIS that identifies assets in a

chosen area and returns their type and information as well as their risk for fire.

1.1 Client

The Southern California Edison (SCE) Company is the client for this project, with Ms.

Erin Garcia as the point of contact. SCE wants GIS used to provide information on its

assets in relation to current and future fires. Ms. Garcia provided a cross section of data

from their database of assets in order to facilitate the creation of this application and

intends to implement it as a replacement for its older system.

1.2 Problem Statement

SCE has a fire analysis tool that is outdated and losing support. Adobe FLEX is a

programming language designed to allow for consistency across multiple browsers. Esri,

however, is reducing support for FLEX based applications in favor of JavaScript. As

such, a replacement application is required for SCE in order to properly protect and

monitor its assets, particularly where fire is concerned.

1.3 Proposed Solution

To address this issue, a GIS application was implemented. This system would examine an

area of interest, analyze the asset data and fire risk data provided for given area, and

output both a list of contained assets and a map showing the fire risk levels of these

assets.

1.3.1 Goals and Objectives

The primary goal of this project was to build an application for SCE that helped in

disaster management, before and after the fire. This project was aimed specifically at

replacing the current methods through which SCE examines and addresses its disaster

management, specifically where fire is concerned. With a more modern application, SCE

can run through its management tools and have room to adapt them should the need arise.

2

1.3.2 Scope

This project was focused on the Santa Barbara area. The data supplied by SCE to create

this application are of the city of Santa Barbara, so the data collected for fire risk also fall

within the confines of the city. However, the application should be able to handle other

areas.

The major deliverable of this project was a web GIS application equipped with five

geoprocessing tools all within a JavaScript web application setting. These tools would

allow the user to draw a polygon or input the existing shapefile for an area of interest, and

then extract assets information within the area and export the information into a table

format for further analysis. In addition, the potential fire risks associated with these assets

would also be available for user consideration.

Other deliverables included an instructional document containing the processes of

the application, as well as training on the implementation of the application.

1.3.3 Study Area

In order to test viability and functionality, a study area was chosen for this project.

Normally SCE has the entire Southern California Region to monitor, but for the scope of

this project, the Counties of Santa Barbara and Goleta were examined (figure 1.1).

Figure 1.1: Santa Barbara & Goleta Counties Study Area

1.3.4 Methods

The waterfall approach was used for the creation of this project. There were various

techniques used throughout the five phases of this project, including requirements

analysis, application development and testing, and post development reevaluation.

Deciding on the requirements of the project included emails and conference calls with the

client, as well as discussions with the advisor on what were acceptable criteria for the

application. This ended in requirements including ModelBuilder models that not only

selected the attributes, but also evaluated their risk levels. Development and testing of the

3

applications included use of the JavaScript API for ArcGIS and ModelBuilder from

ArcGIS for Desktop. After completion, the application was used to evaluate successful

tool completion and reliability of results.

1.4 Audience

This report is geared toward GIS professionals with basic understanding of GIS and

ArcGIS and their operations, as well as those from emergency response agencies

concerned with spatial risk levels. Contained within will be common GIS terms used to

explain the processes behind the application. Therefore, the audience is expected to have

the baseline understanding that GIS applications can be created using JavaScript, and

how GIS can be used to evaluate and analyze geographic information. This project aims

to provide the audience with a way to quickly determine risk for properties of import and

thus open up avenues with that knowledge toward preventing disasters.

1.5 Overview of the Rest of this Report

This report contains six other chapters. Chapter 2 gives background information on fire

models, JavaScript applications, and a literature review of work on these two subjects.

Chapter 3 gives the system design, including the architecture of the application as well as

the functions necessary for the application to both work and be acceptable. Chapter 4

houses the database design, giving information on organization, feature classes,

relationships and sources for the data. Chapter 5 goes over implementation, how the asset

selection tool and fire risk models were added to the application and each step along the

process. Chapter 6 is a discussion on the final outputs, what worked, what didn’t, and
why. Chapter 7 summarizes the results and their implications, as well as introduces

potential future work possibilities to further the reach and usefulness of this application.

5

 Background and Literature Review Chapter 2 –
In order to understand the right approach to this issue, fire management and Web-based

applications needed to be explored. Fire analysis uses many different kinds of models.

Depending on the area in question, variables that can contribute to fires may increase or

decrease in relative value. Understanding which variables are of greatest importance is

paramount for creating a tool capable of warning about potential future fires. Python is a

powerful object-oriented language that is versatile, including the ability to interact with

ArcGIS and its typical suite of tools. This makes it a powerful language for developing

geoprocessing tools. Understanding web applications and the languages that go into

creating them was important to the functionality of the project.

Section 2.1 includes information on fire analysis and what is necessary for

understanding fires. Section 2.2 contains information on fire models and the various

forms they can take. Section 2.3 discusses web GIS development and why it is a useful

tool to have. Section 2.4 covers the Python programming language and what makes it a

good choice for developing geoprocessing tools.

2.1 Fire Analysis

Fire spread is a topic that has been increasingly important over the past 40 years. Popular

approaches concerning fire management have changed with the last century. Fire fighters

and policy writers have had to consider how to take advantage of smaller fires to prevent

larger fires (Gollberg, Neuenschwander, & Ryan, 2001). Fire has always been a way

nature controls forested areas, manages insects, tree fall-off, diseases, and excess number

of trees. The typical approach had been to extinguish fires completely, wherever they

occurred, but this caused unintended consequences. Flammable materials built up over

long periods. Fire spread then increased, and the resulting damages along with it. Fire

spread is a series of individual ignitions dependent on the same conditions: how recent

the latest fire was, buildup of fuels, fuel types in the vicinity, ground versus canopy fuel,

dry versus moist vegetation, wind, slope, air temperature, release of flammable gases, and

aspect. These all have an effect on how fire spreads (Rothermel, 1972). Fuel models vary

drastically based on location, but are arguably the most important part of understanding

fire before it happens. Fuel models determine the make-up, the potential spread, and the

resilience of the fire.

2.2 Fire Models

One cannot simply pick any fire model when trying to analyze a place. Different climates

drastically affect susceptibility to and likely occurrence of fire. For example, a tropical

area contains a significant amount of moisture in the air, which lowers the chance of fire.

The bark on the trees is also thick, which further insulates the trees from danger. The

plants in the area, however, are not evolved to recover from fire events, so resprouting is

difficult, if not impossible. The same goes for an environment like a savanna, where the

air is very dry, and the plants are adapted to arid conditions. This makes them fire prone,

6

but also highly efficient at resprouting, causing damage from a fire to be less extreme

(Gomez et al., 2015).

Finding the correct fuel model for an area can be extremely difficult. Fuel density

can often change over time in an area, which can make it difficult to predict its potential

flammability. Using remote sensing to determine vegetation make-up can also be

problematic, as it can be hard to tell the difference between canopy vegetation and

ground vegetation (Keane, Burgan, & van Wagtendonk, 2001). All of this comes even

before the fire begins. Without this information, all that can be done is suppression

around the outside of the fire’s reach to try to prevent further spread. Given fuel types
and adequate allowance of controlled burning, spread can be better understood and

allocation of resources can be better managed. An area that has been burned recently has

a shortage of fuel; should a fire reach that area, it will be more easily suppressed, often

dying of its own accord, which frees up personnel and equipment to be moved to higher

risk locations (Stephens, 1998).

Despite these potential differences between locations and viable fire models, some

qualities are shared. Wind direction and speed, slope of location, and azimuthal

relationship to north (Finney, 2006); any fire analysis establishes its foundation with

these variables. These qualities are important enough that they can be used to create an

analysis when some of the more specific and detailed information is not available or too

costly to obtain. They are some of the easiest variables to apply constant values to in

order to determine an area’s general relationship with fire potential. Wind speed and

direction tell where a fire will head after it has started. For example, while a field full of

dry grass is a fire hazard area, if a fire starts north of it and the area is known for its winds

blowing northward, then this area is in less danger than originally expected. This is also

why slope and azimuth are important. In the same example, the dry grass field has a slope

and azimuth that causes the ground to incline higher, into a large hill further north. This

makes it a very high fire risk should the initial fire occur south of the field, but extremely

low risk if the fire begins to the north of it. This is because the north facing winds will

cause the fire to move north, and if the ground is sloped upwards, it is easier to ignite, as

the fire does not have as far to travel. If the fire begins to the north, however, it would

need to fight the wind and crest the hill to reach the other side to ignite the fuel. By

understanding these variables, important conclusions can be drawn about an area, even

without the variables that tend to change frequently, such as weather.

When the goal is management of a current fire, however, the focus changes. While

knowing all the aspects of fire behavior is useful in preventing them, these aspects are

also just as useful in reacting to them. When a civilian group is endangered by an

approaching fire, having a model that demonstrates fire spread can help save lives.

(Goldberg, Neuenschwander and Ryan, 2001). Using technology, responders can better

analyze fires in real time to determine what neighborhoods, buildings, companies, people,

and infrastructure elements are most in danger. This leads to taking appropriate action to

protect them. The thirteen fuel models currently available fit various vegetation types and

can be adapted for moment-to-moment analysis to further refine fire behavior using real-

time data. Building on top of the predictive data already present, first responders have

more specific data to direct their options.

7

2.3 Web GIS Development

A useful way to interact with data is through an Application Programming Interface

(API). An API gives the ability to program a map for the web. Using a suite of tools

designed specifically for each API, a specialized product can be generated for wide

consumption. APIs are becoming increasingly important as maps and geographic data are

more commonly on the web than on paper. Because of this, it is more important than ever

to explore the capabilities of these APIs and understand what they are capable of doing in

effectively showing geographic information on the web (Chow, 2008).

JavaScript and HyperText Markup Language (HTML) are the primary languages

APIs use to communicate and interact. HTML is used to tell the browser how to display

the information. For example, if words or titles should be bold or italic, where they

should appear on the page, and font size are all aspects controlled by HTML (Robson,

Freeman, 2012). JavaScript is a fully functioning programing language, but despite its

name has a very different purpose than the Java programming language. JavaScript is

used to manage the Web Browser and the objects and items within it, while Java is used

to manage the graphics and networking requirements (Flanagan, 2002). While they are

different languages, the fact that they can work together in conjunction with HTML is

what gives APIs power to display sometimes complicated geographic information.

APIs, almost regardless of the end-use goal, have a particular neogeographic aim to

them: to make whatever process or application being created as simple and easy to use as

possible. “Essentially, Neogeography is about people using and creating their own maps,

on their own terms and by combining elements of an existing toolset” (Haklay, Singleton,
& Parker, 2008, pg 2020). This view on the use of JavaScript is driven toward public use,

and is a testament to its versatility as a programming language. JavaScript is like the old

adage: easy to use, difficult to master. While there is a wide range of ways to implement

JavaScript, it is required only for specified and particular tool creation. The general use

tools have been created in such a way to be more user friendly (Flanagan 2002). This

provides an open and accessible medium through which to develop maps of varying

styles and uses.

2.4 Python

When creating scripts to execute automated tool workflows in ArcGIS, the Python

programming language is often the method of choice. While Python support seems to

come out of the box with ArcGIS, there are important reasons behind this inclusion.

Python is an interpreted and modular language. Its interpreted nature means that the code

can be run directly from an interpreter such as PyScripter. When declaring variables, the

data type does not need to be expressly stated beforehand, and behind the scenes the code

does not have to be converted to binary machine language in order to execute (Sanner,

1999).

Python’s modular nature means that at its core, Python is a very small package of
information, called a kernel. Modules are then attached to the kernel. These modules

contain different functions and tools, allowing any instance of Python application to be

highly customizable (Sanner, 1999). The import module in particular allows this

connectivity. This built-in functionality to the base kernel allows the original Python to

search through its library of available modules to connect with based on what is defined

8

by the user (VanRossum and Drake, 2010). With these considerations, it makes sense that

it is the language of choice for ArcGIS. There are modules designed specifically for GIS,

most notably ArcPy, which contains all the tools that are found within ArcMap. As a

bonus, ArcMap has ArcPy imported into the program structure, so whenever definitions

for tools need to be assigned, they can be given through Python instead of visual basic,

allowing for greater customization without having to leave the Arc software to create an

external application.

2.5 Summary

Understanding what goes into analyzing areas for fire risk helps make the impact of an

extreme or moderate threat level meaningful. Being able to allocate resources to a region

with a correctly established threat level gives a powerful amount of information to the

user. Fires can be anticipated when first responders already know the areas with the

highest risks. JavaScript can help deliver that message in a customized medium geared

specifically toward geographic education. With dropdowns, displays, and tools all

working toward cohesive delivery, the information relayed by these tools can be worked

with quickly and efficiently. The next section outlines the requirements the application

had to meet, how the system was designed, and what goes on in the background of the

application.

9

 Systems Analysis and Design Chapter 3 –
This chapter discusses the functional and non-functional requirements for the asset

detection and analysis application for Southern California Edison. Also covered is the

design of the system and why this is the method needed to meet the defined requirements.

This chapter also describes the project plan and the expected time of completion in

comparison to the actual time of completion for each task within the project.

3.1 Problem Statement

SCE has a restrictive and outdated tool for selecting and managing assets. Adobe FLEX

is a licensed software as opposed to open source, limiting its capabilities and cooperation

with other software. SCE therefore needs a web application that uses JavaScript and

HTML 5 in order to increase information extraction and selection functionalities. This

project solves these issues through a web GIS developed in WebApp Builder for ArcGIS

Online.

3.2 Requirements Analysis

 The main requirement for the project was a web application capable of examining and

evaluating SCE assets, allowing Edison to migrate from Adobe FLEX. A requirements

analysis was conducted in order to solidify what this entailed. The requirements are

broken down into functional and non-functional requirements.

3.2.1 Functional Requirements

Being able to accurately view data all in one location with degrees of detail varying from

use to use was central to the project. Migrating from FLEX to ArcGIS Online means

using a different set of tools, and those tools need to be able to deliver useful information

to the end user, which means only as much detail as is needed. This project also needed

to be a web application. By designing the project with a framework that uses JavaScript

and HTML5, it increases the customization options in the future and is an important

factor when switching from a licensed software package.

3.2.2 Non-Functional Requirements

The project began development in a file geodatabase. This means the data could be

viewed easily but only edited by one person at a time, should edits be necessary. The

purpose of the application is for single instance spatial search and analysis, so the editing

restriction was a nonissue. The geodatabase and scripts developed in ArcMap and

PyScripter were then published to an online server in order to allow the Web application

the ability to refer to and use the published items.

In order to use the application, the user was only required to have access to the

internet. The application will not have any security measures to gate access and use; it is

for SCE to determine the need for security. Microsoft Excel is also recommended, as the

final output tables can be exported to CSV format files for external use.

10

The transitional requirements for this project included the file geodatabase

containing all the data and tables used, the scripts that make up the tools of the

application, and implementation documentation. Metadata was added to all data that

doesn’t already belong to SCE in order to describe need and use.

3.3 System Design

The system design is shown in Figure 3.1, which consists of several components.

Figure 3.1: System Architecture

The asset and fire risk data is initially managed in ArcMap. Desired data are chosen

and imported into an organized geodatabase for storage. The geoprocessing tools are

designed in Pyscripter and then linked to a script tool within ArcMap. Once all of these

items have been compiled and prepared, they are uploaded to the server as a map service

and multiple feature services for web use. With the information now on the web, the data

and tools are linked to the ArcGIS Online web application, where the geoprocessing tools

are formatted to interact with the data and show the user the assets chosen and the tables

containing the attributes for those assets.

3.4 Project Plan

This project was developed using the waterfall methodology. The client provided the

specifications and desires for the application, but was satisfied with brief conference calls

to follow project progression. No prototypes needed to be presented throughout the

project lifespan in order to continue progress into later steps.

3.4.1 Requirements Analysis

This task necessitated meetings with the client and with the advisor in order to decide

upon the direction and functional requirements of the application. These meetings

allowed for mutual understanding of what tools were vital to the customer.

11

3.4.2 Data Acquisition

This task involved acquiring data on SCE assets from Edison as well as seeking out

information on fire risk. Edison provided data on six different asset types (facility

inventory mapping (FIM) poles, Substations, outage management system (OMS)

Circuits, Sub transmission Lines, Major transmission lines, and work locations). The data

on fire risk levels was obtained from the California Department of Forestry and Fire

Protection website, frap.fire.ca.gov.

3.4.3 Application Development and Testing

The development of the application took on two phases. The first was the creation of

models that explained and executed the workflow of tools necessary to analyze the data.

The assets and their various versions (created throughout the execution of the tools) were

grouped into datasets based on what stage in the models they were used/created, and the

data acquired from Cal Fire were converted from raster form to polygon form for data

analysis. The second phase centered on the development of the WebApp Builder

application. This medium allows the user to interact with the tools and data. The

application was developed in such a way as to allow easy access to the geoprocessing

tools and visual representation of the outcome of those tools.

3.4.4 Deployment

The last phase involved handing over the data and scripts developed to SCE. This process

included transfer of data, finalizing of documentation, and presenting the application

results to an audience.

The major underestimations for this project came in the time required to design and

develop the application. Initial versions of the project included JavaScript programming

and the Model Builder application of ArcGIS as the core of the application. This was met

with numerous road blocks in efficiency and workability, and as such the project had to

be reevaluated at an execution level. This forced other objectives, such as project report

writing, to be postponed unexpectedly in order for make time to do further development.

3.5 Summary

The main objective of this project was to create an application capable of evaluating data

and returning useable and convenient data to the end user. The application had four tools

with small but important differences that allowed for specified data retrieval, all within a

framework that has more future development than the FLEX suite

13

 Database Design Chapter 4 –
This chapter examines the foundations of the project: the conceptual and logical models.

The generalized conceptual model explains the high level interactions between the

various entities involved in this project. The logical data model details the object types,

attributes, and their relationships to each other. This chapter also covers data sources,

how they were managed to work for this project, and the data scrubbing and loading

procedure.

4.1 Conceptual Data Model

The conceptual model is used as an efficient way of expressing the relationships and

characteristics of the objects involved in a project. This project concerned the asset

information of Southern California Edison in relation to the fire risk levels. As such, three

objects were involved in the conceptual data model design. Figure 4.1 shows the

overarching relationship between the SCE assets and the fire risk.

Figure 4.1: Asset Analysis Conceptual Model

SCE has tens of thousands of assets in the county of Santa Barbara alone, and being

able to associate a base level risk factor for those assets makes planning fire management

much easier. These assets take on the fire risk of their surrounding environments. Linking

the two together will make it easier to understand which assets might be in danger in a

fire emergency. By evaluating fire risk per asset and compiling that information in a

report, SCE can make a more informative plan of managing and protecting its facilities.

14

4.2 Logical Data Model

The logical data model helps identify the important attributes for the objects in the

conceptual model and how they relate within the database (Figure 4.2).

Figure 4.2: Logical Data Model

The assets are divided into two kinds by their spatial dimensions, line assets and

point assets, and each is further divided into three subtypes of assets. These assets were

organized into feature classes in the geodatabase. The line features include sub

transmission lines, major transmission lines, and OMS circuits. For the point features,

there are facility inventory mapping (FIM) poles, work locations, and substations. Each

asset has an Asset_ID and an Asset_Type, as well as other associated attributes, to be

included in the final report. The report was exported as a tabular dataset. The fire risk

level was initially represented by a raster dataset that contains the fire risk information for

the state of California. To facilitate the analysis, this raster dataset was converted to a fire

risk polygon feature class. It is then associated with the assets based on where they

intersect. This allows each asset to receive the fire risk value that is relevant to its

surroundings.

15

4.3 Data Sources

The asset data were provided by SCE. The fire risk data were downloaded from the Cal

FRAP official website. All data were projected in Web Mercator Auxiliary Sphere in

order to adhere to common practices and ensure the widest range of working atmospheres

on the web.

Edison provided data on six different asset types (facility inventory mapping (FIM)

poles, Substations, outage management system (OMS) Circuits, Sub transmission Lines,

Major transmission lines, and work locations). These assets can be seen in Figure 4.3.

Figure 4.3: SCE Assets

FIM Poles account for small electrical poles and deployed equipment throughout the

county. Substations control electricity power levels, ensuring each building gets the

appropriate level of electricity. OMS Circuits help bring the grid back online if there is

ever a power outage. Sub transmission lines and major transmission lines are the conduits

for transporting electricity from the source throughout the county. Work locations are

where SCE personal are physically at, working on fixes or installments in person.

The data for the fire risk levels came in raster format with each cell accounted for in

one of ninety-seven attribute rows. Each of these rows accounted for a certain

combination of the descriptive fields and represented multiple cells. These rows contain 7

fields (count, fuel rank, frot class, urban, threat, threat 2 people, threat level), and

whenever cells match in every category (except count) they are both filed under the same

ID and the count goes up (Figure 4.4).

16

Figure 4.4: Attributes for the Fire Risk Raster

Threat, threat 2 people, and threat level are all determined by the values present in

the fuel rank, frot class and urban fields. Fuel rank is determined by area slope,

vegetation and common weather conditions. Frot class is the fire rotation class which

looks at fire patterns for each area over the past 300 years and evaluates regularity. Urban

is a binary caller which tells whether the cell falls within an urban or rural area. The

Department of Forestry and Fire Protection then evaluates these values together to get

they threat if fire to general areas and to human populations (Figure 4.5).

Figure 4.5: Raster Threat Levels

For this project, assets are the primary focus. As such, the general areas threat level

was chosen over the threat 2 people as the most important threat level for evaluation.

There are five threat levels: Extreme, very high, high, moderate, and little or no threat.

4.4 Data Management

In order to reduce clutter and organize the project datasets, an Esri file geodatabase was

created to house all data. Four feature datasets were created to house the various types of

17

data: original data, selected data, point representation of assets data, and templates.

Figure 4.6 illustrates the database composition.

Figure 4.6: Detailed View of Database

The original data consist of seven feature classes. Six of these feature classes are

assets from SCE: work locations, substations, FIM poles, sub transmission lines, major

transmission lines, and OMS circuits. The seventh feature class is the fire risk polygons

needed to find the fire risk levels throughout the search area. In order to get the

relationship between assets and the fire risk to work, the fire risk raster was converted

into fire risk polygons. In doing so, assets can be linked with the fire polygons of various

fire treat levels in a very efficient way.

18

During the analysis, the assets that fall in the area of interest need to be extracted into

a single table with their corresponding fire risk levels. To automate this procedure in

Python, six empty feature classes will be created for each type of assets to house the

selected assets every time the user runs the analysis. Since extracted features of different

spatial dimensions cannot be merged into one feature class, a point feature class Final

Assets was designed to accommodate the attributes of all selected assets. Put differently,

every line asset will be represented by a single point with full attributes in the Final

Assets feature class during the analysis. In addition, a point feature class called All

Features, which keeps the point representations of all assets, was created to serve two

purposes. First, it accommodates the schemas of the six asset feature classes and its

schema will be used to prepare Final Assets when the analysis is run in Python. Second,

this feature class would allow the client to view and export the information of all assets

from a single attribute table.

The last dataset houses the templates. This data set contains the feature set template

used to define the area of interest as a polygon as well as the test polygon used to test

upload functionalities.

4.5 Data Scrubbing and Loading

In order to make the data workable for the Python processes, a few alterations had to be

made. The first change was to add two fields to the assets feature classes, Asset_ID and

Asset_Type, which would allow the assets to be searched through and actually useable

within geoprocessing tools. The Asset_ID was created beginning with a three letter tag

representing the asset type and a number to differentiate the assets, such as FIM3565. For

Asset_Type, each field was populated with the type of asset it was. Although the attribute

value is repeated for all features in the same asset feature class, this information will be

conveniently exported to the report.

The second step was conversion. The raster data gathered from Cal FRAP had to be

converted into polygons using the Raster to Polygon tool in ArcMap for use in the

geoprocessing tools. This change can be seen in figures 4.7 and 4.8.

Figure 4.7: Raster Form

19

Figure 4.8: Polygon Form

This change was necessary in order to make the fire risk levels capable of running

through the same analytical processes as the asset data.

4.6 Summary

Database design included conceptual models, logical models, data, and data

modifications. The conceptual models mapped out the general flow of the application’s

intent, while the logical model provided information on the actual process the application

took to achieve that flow. The data were modified to allow them to interact with the other

data.

21

 Implementation Chapter 5 –
This chapter describes how the web application was implemented. Python scripting,

server uploading, tool set up, and web application design are discussed. Script

development is found in Section 5.1 and web development is found in Section 5.2.

5.1 Script Toolset Development

Southern California Edison (SCE) needed an application that was easy to access in order

to manage their assets and protect them from fire. This project created an application

through ArcGIS Online. This application contains four geoprocessing (GP) tools, each of

which examine SCE’s assets and returns information differently. These GP tools were
developed using the Python programming language, and will be covered in Sections

5.1.1, 5.1.2, and 5.1.3.

5.1.1 Asset Selection GP tool

The Asset Selection Geoprocessing Tool was developed in PyScripter. It allows a user to

draw an area of interest and retrieve the records of all the assets within that area. Figure

5.1 illustrates the workflow of this process.

Figure 5.1: Asset Selection Workflow

This Python script begins by allowing the user to freehand draw an area of interest.

This shape is then applied to the SCE point and line assets. The point assets within the

area of interest and the line assets intersecting the area are selected. The script also

creates six empty feature classes that maintain the schema of their parent feature classes,

the asset feature classes. These feature classes are containers for the selected assets and

are stored in the geodatabase. The selected assets are then copied over to the empty

feature classes.

For ease of viewing and convenience, the information contained within these feature

classes needed to be compiled into one table. To realize this, a new Final Assets feature

class was created out of the schema of All Features (Section 4.3). The selected assets

were then appended to the Final Assets feature class. The point features were appended

directly, while the line features underwent a Feature to Point conversion before being

22

added to Final Assets. Although the Final Assets feature class does not contain the

correct shape of line assets, it was only used to export the attribute information.

Once completed, the script could be run in ArcMap. Figure 5.2 shows the interface

for the ArcMap interpretation of the script.

Figure 5.2: Asset Selection Interface in ArcMap

While the interface looks complicated, the pathways within the red indicator box are

not important for the user. These features are required and created within the processes of

the script. The user does not have to define them because the script does that on its own.

After the script is published as a geoprocessing service on the web, these fields are not

shown, leaving a cleaner, simpler interface for the user to interact with. Despite these

extra fields, however, the script executes as expected in ArcMap.

5.1.2 Asset Selection with Risk GP Tool

Compared to the Asset Selection Geoprocessing Tool, the Asset Selection with Risk

Geoprocessing Tool allows the user to select the assets of interest with their

corresponding risk levels. The workflow for this tool is shown in Figure 5.3.

23

Figure 5.3: Asset Selection with Risk Workflow

This script begins by allowing the user to freehand draw an area of interest selecting

the assets within that area and creating empty feature classes within the geodatabase.

After the features are selected, the records are copied over to their empty feature classes

for storage. To extract the risk levels of the selected assets, the fire risk polygons are

intersected with the selected assets. The field Threat_Level in the fire risk polygon

feature class is then added to the newly created feature classes. For point feature classes,

this field is added by conducting a Spatial Join between the assets and the fire risk

polygons. For the line features, however, several geoprocessing procedures are involved.

Because a line asset may intersect with multiple fire risk polygons of different fire risk

levels, the risk level for the line asset is determined by the dominate risk level associated

with the asset. After the intersection, the line asset is broken into segments, each segment

receiving the risk level from the corresponding fire risk polygon. Using Summary

Statistics function on the field of Shape_Length with the case field of Threat_Level, the

total length of line segments falling into each fire threat level is summarized. The threat

level associated with the longest length is then taken as dominate threat for this line asset.

Before the information can be combined, the Final Assets feature class is given a new

Threat_Level field to house the fire risk data. Finally, the selected assets are appended to

the Final Assets feature class, now containing their risk levels, in the same export and

conversion process as the Asset Selection Geoprocessing Tool.

Like the Asset Selection script, the Asset Selection with Risk script can be run in

ArcMap. It has the same interface as its predecessor that becomes more user friendly

upon being published as a geoprocessing service for the web. The user only needs to

designate the input area of interest and the output location to allow the script to run

properly.

5.1.3 Asset Selection via Upload With and Without Risk GP Tools

The last two geoprocessing tools are adaptations of the first two. By changing the input

from a freehand-drawn polygon to a shapefile, the user can upload predefined areas to

examine. The workflows for these two scripts are exactly the same as the Asset Selection

Geoprocessing Tool and the Asset Selection with Risk Geoprocessing Tool, respectively.

24

Similarly, these two scripts also run in ArcMap. Instead of drawing the input,

however, the user chooses a shapefile as the input layer, either from the catalog window

or by browsing the local files. The scripts then execute exactly as before.

5.2 Web Map

Once the four scripts are developed as geoprocessing (GP) tools, they can be published to

the web as geoprocessing services. Before this can occur, however, the map document

must be published to the web as a map service. These processes begin the conversion

from desktop to web. The map service will be covered in Section 5.2.1, the geoprocessing

services will be covered in Section 5.2.2. Once these GP tools are published to the web,

they can be integrated into a web application, which will be covered in Section 5.2.3.

5.2.1 Publishing Map Service

In order to have data for geoprocessing tools to work with, a map service needs to be

published. This creates an object on the web similar to a map document (.mxd) within

ArcMap for Desktop. To create one, the first step is to designate where the map service is

located. Figure 5.4 illustrates the location selection process.

25

Figure 5.4: Choose to Publish a Service

This process is important for both the system and the user. The system maintains the

map’s existence in this defined area while the user is able to call that location to notify
the web application where to look for data.

Once the location has been specified, the proofreading process begins. The main

page for this process is shown in Figure 5.5.

Figure 5.5: Service Definition and Analysis Page

The definition and analysis of the map service ensures that all the settings are filled

in and appropriate for web publishing. Some fields, such as item description, are

mandatory in order to maintain metadata and ensure all published maps have a designated

purpose. Once all required and desired fields have been filled in, the user analyzes the

map service for errors.

Once no errors are found and warnings are either dealt with or ignored, the map

service can be published to the web.

5.2.2 Publishing Geoprocessing Services

Publishing geoprocessing services happens in much the same way as publishing a map

service. To start, the script must be run in ArcMap. Geoprocessing services are published

from the Results tab. Results can be displayed on screen by going to the Geoprocessing

tab at the top of the ArcMap interface and choosing the Results option. This tab is

populated with the outcomes of the tools and scripts run within ArcMap. After running

26

the script, the results tab is opened and the script chosen. Figure 5.6 shows the Results

tab.

Figure 5.6: Results Tab

Similar to publishing a map service (Figure 5.4), the first step to publishing a

geoprocessing service is to specify where to publish. Each geoprocessing tool is

published one at a time in order to maintain its unique URL. Then, the geoprocessing

service goes through its own definition and analysis phase. Figure 5.7 shows the

geoprocessing tool definitions page.

Figure 5.7: Geoprocessing Tool Definitions Page

Once the desired and required fields have been filled in, the geoprocessing tool goes

through its own analysis process until no errors are found and all warnings are accounted

for. This procedure should be repeated for each geoprocessing service. Four

geoprocessing tools were published in this way in this project.

27

5.2.3 Developing Web Application

In order to provide the user with an application that is easy and straightforward, a simple

interface was designed. Figure 5.8 illustrates the initial sketch of the desired interface.

Figure 5.8: Web Design Sketch

The goal was to allow the user to easily identify selected assets at a glance. The

geoprocessing tools created from the scripts would be at the top left of the screen, the

most trafficked portion of a document, given users usually read from top left to bottom

right. The map containing the assets and fire risk polygons would populate the center and

majority of the screen so that the user can clearly see the region in question. The table of

contents, which allows the user to toggle different asset layers on and off, would be

located to the right to reduce the clutter with the geoprocessing tools on the left. The

tables containing asset attributes would be located at the bottom of the screen, similar to

how an attribute table might appear in ArcMap, to create a balanced feel of the interface.

To make the interface function, ArcGIS WebApp Builder was used. This software

provides a map interface that has necessities, like a table of contents and a map

document, already set up. With the basics predefined, widgets were used to make the

application fulfill its unique functionalities. Widgets are stock programs capable of

executing various search and analysis functions on the web map. Each one handles a

different tool set, and is capable of being customized to fit many kinds of specifications.

Five widgets were added to this application. The first four were geoprocessing

widgets, and housed the geoprocessing services published earlier. The fifth widget was a

custom widget designed to allow a shapefile representing the area of interest to be

uploaded. The ArcGIS WebApp Builder has strict securities on the data allowed in,

usually requiring the data to go through a server first. Uploading the shapefile through a

server causes complication for the end user. If the shapefile had to go through the server

first, the user would have to exit the application and publish the shapefile to their server,

a skill the end user may not have. By designing a custom widget, the WebApp Builder

allows the shapefile to be uploaded directly to the web application. In order to query the

28

asset information, the map service that contains the six assets’ feature classes was also

published to the web application through its custom URL. This populated the table of

contents with the various features added to the map as well as the attribute table of the

Final Assets to display. The detailed code is found in Appendix C. Figure 5.9 shows the

conversion from sketch to practical application. The geoprocessing tools live in the top

right hand corner, different from their designed location, as it is easily accessible.

Figure 5.9: Design of the Web Interface

Each pair of GP tools can be found within a folder with unique names to distinguish

them from each other. The zoom in/out options are located in the top left instead of the

GP tools. Panning the map is already included in the mouse functionality with the map

element by grabbing and dragging. With both the pan and zoom functionalities, the user

can quickly center the area of interest and zoom into it. The map is the majority of the

page, providing a clear view of the area of the interest. The table of contents is off to the

right and the attribute tables are to the bottom. In addition, the user can minimize the

table of contents and the table when they are not required on the map to view. This will

enlarge the map area facilitating map viewing.

5.3 Summary

This chapter covered the development of the scripts and the web application. The Python

scripts were created to allow interaction with the asset data. The map and scripts were

published to the web, allowing a web map to be created. This web map was turned into a

web application so that the scripts could be properly linked with the data to conduct

required analyses. This web application was designed to have a simple, straightforward

interface to facilitate user interaction and prevent confusion. The next chapter will

discuss use cases for this web application.

29

 Use Cases Chapter 6 –
This chapter discusses the use cases for the web application with a focus on the use of the

four geoprocessing tools. The geoprocessing tools allow for asset queries at different

levels of specificity and detail. According to the client’s request, the area of interest
would be either drawn on the map or uploaded as a shapefile. The first two tools are

executed based on a shape drawn by the user, while the other two tools are run with a

polygon shapefile specified by the user. Section 6.1 examines the select assets tools that

allow the user to hand draw the area of interest. Section 6.2 focuses on the shapefile

upload geoprocessing tools, and the chapter ends with a summary.

6.1 Asset Selection with Hand Drawn Polygons

Two of the four geoprocessing tools work with a hand-drawn area of interest to extract

the information about the assets within the area. The difference between these two tools

is that one simply returns the assets’ information (Asset Selection) while the other also

outputs the risk levels associated with the selected assets (Asset Selection with Risk).

Suppose that in a fire instance Southern California Edison’s Special Projects Division
received an assignment from their supervisor to send information on the assets near the

Lake Los Carneros Park in northern Goleta. Figure 6.1 shows the web application

interface when the user launches the website and expands the legend. Figure 6.2

illustrates the user changing tabs to view the list of layers. By default, all six types of

assets are displayed on the map. The five tabs on the right corner of the window are the

information tabs and geoprocessing tools. From left to right the tabs are: legend,

operational layers, add shapefile widget, geoprocessing tools for drawing, and

geoprocessing tools for uploading shapefile. To better view the map, the user can choose

to toggle the layers on and off and read the legend.

30

Figure 6.1: Legend Overlay

Figure 6.2: Layer Overlay

After zooming to the fire instance area, the user opens the Asset Selection tool by

clicking the Asset Selection via Draw tab (Figure 6.3. A variety of shapes are available

for users to choose to draw the desired area of interest.

31

Figure 6.3: Select Area of Interest

Once the user draws the area of interest as shown in Figure 6.3, he/she clicks the

Execute button to conduct the query. Figure 6.4 shows what the user would see after the

tool finishes execution.

Figure 6.4: Assets selected within the area of interest

The dialog box changes from Input to Output where there are seven different

outputs. The outputs consist of the feature classes that only contain the selected

information. Six are the individual feature classes for each asset type, while Final Assets

contains all the information from those six feature classes. The highlighted points and

lines on the map represent the point and line assets that fall within or intersect with the

32

area of interest. From here, the user can examine the tables for each of the feature classes

individually or review all the selected assets in a single combined table under the map.

Figure 6.5 shows the Final Assets table displayed. The other six tables contain the

selected assets of the six types respectively and are useful if the user is interested in only

particular kind(s) of assets. These tables can be opened one at a time as the user requires

by navigating to the operational layers tab.

Figure 6.5: Asset Selection Output Table

Once there, the attribute table can be opened for each layer through its options menu

(Figure 6.6). In addition, all the tables can be exported as a .csv file.

Figure 6.6: Operational Layer Menu

In this example, 203 assets were selected, among which there were 0 work locations,

0 sub stations, 0 major transmission lines, 6 OMS circuits, and 193 FIM poles. In less

than a minute, the user is ready to send the information on the assets within the area of

interest to their supervisor. Using this geoprocessing tool, the client is able to search for

the relevant assets in an efficient way that will in turn help them protect their valuable

facilities. In a different scenario where the client may be interested in managing the assets

in relation to fire risk or providing risk levels for an insurance company, the user can

choose the Asset Selection with Risk geoprocessing tool that is located underneath the

33

Asset Selection tool on the Asset Selection via Draw tab (Figure 6.7). Similar to the

previous tool, the user can draw the area of interest and execute the evaluation on that

area.

Figure 6.7: Asset Selection for Risk Evaluation

The difference between the GP Tools is in the table output. This table contains risk

levels for each asset based on the assets’ locations and the fire risk polygons, as discussed

in Chapter 5. Figure 6.8 shows the Final Assets table with an additional field to indicate

the fire risk associated with the selected assets. These tables work the same as those in

the Asset Selection GP tool; they can be opened and closed when necessary.

Figure 6.8: Asset Selection with Risk Output Table

6.2 Asset Selection with Shapefile Uploaded

In some situations, the area of interest may be predefined. For example, an insurance

company might be interested in evaluating the assets in the City of Goleta where the

border is very specific. To query the assets within the city limit, the user would need to

have a shapefile for the boundary of the city and upload the shapefile to the web

application. Figure 6.9 shows the Add Shape tool interface.

34

Figure 6.9: Add Shapefile to Application

The user will click the Choose File button, and browse to the shapefile for the city

border. Once this shapefile is added to the map (Figure 6.10), it becomes a graphical

operational layer and used as the area of interest.

Figure 6.10: Shapefile Upload

With the city limit uploaded to the map, the user can search for all the assets in the

city limit and output the associated risk levels. The Asset Selection via Shapefile tab is

located to the far right on the tab bar. The user can choose either the Asset Selection or

the Asset Selection with Risk geoprocessing tool. In this case, the Asset Selection with

Risk would be appropriate to use. After two minutes, 1571 assets are extracted and placed

in the Final Assets table, as well as divided into the other six tables. The user can choose

to send out the Final Assets table or specific types of assets to the insurance company.

It is worth pointing out that in order to completely clear shapefiles from the web

application, the web page must be refreshed. Hand-drawn polygons can be cleared and

shapefiles can be turned off, but complete removal of the shapefiles requires a refresh.

35

6.3 Summary

This chapter discussed the use cases of the web application and its geoprocessing tools.

These use cases demonstrated each geoprocessing tool and the reasons for using them.

The number of options available to the user allows the tool to serve the needs of the user

without overwhelming them or the intended recipient of the information.

37

 Conclusions and Future Work Chapter 7 –
This project aimed to modernize Southern California Edison’s methods of interacting
with and evaluating its various assets. This was accomplished by writing Python scripts

that searched through areas the user deemed important, and giving them multiple ways of

viewing that information.

This project fulfilled the functional and non-functional requirements set forth at the

beginning of the process. The scripts were designed in Python and uploaded to a web

server to facilitate the creation of a web application. This web application allowed easy

access to the data and GP tools for manipulating them on the internet. Each GP tool

allows the user to interact with the data in specific ways, limiting information clutter. The

asset and fire risk data were organized into a geodatabase for ease of access and

readability. By creating a web application, HTML 5 and JavaScript were utilized to

create an open source medium for interacting with data that is less restrictive than a

licensed software package.

Initial versions of this tool incorporated the ArcGIS API for JavaScript and Model

Builder for ArcGIS Desktop. However, these options became unsuitable for project

completion within the scope. Model Builder for ArcGIS Desktop is a useful local way to

string together and automate tool use. Unfortunately, Model Builder often assumes the

presence of feature layers when executing. One notable example is the Make Feature

Layer/Copy Features combination. Copy Features creates a duplicate of the input for the

tool. This is most important for selections, allowing subset feature class creation. This

works normally when used on Desktop through the Model Builder application. If this

model is published to a service on the web, however, the geoprocessing tool will fail to

run because once converted from a model to a GP tool, the Copy Features tool needs a

feature layer of the selections to be created, and to make the copy of that layer. The GP

tool cannot normally export selections that are still sitting on the base data. In Desktop, a

feature layer is automatically created behind the scenes to accomplish the copy feature

tool, a process not done on the web. This is just one example of Model Builder taking

shortcuts, and this risk compromises its usefulness in transitioning to web use.

The ArcGIS API for JavaScript has a similar problem. While it allows for

customization that cannot be obtained elsewhere, that customization requires specific

programming to achieve. In order to execute the asset selection script discussed in

Chapter 5, the script code has to be almost completely rewritten, but with a different

syntax to match JavaScript instead of Python. This drastically increases the time needed

to create the final product, forcing everything to be developed twice. Because of this,

ArcGIS Online WebApp Builder was a far simpler and straightforward approach to

meeting the requirements of the project.

Despite these inefficiencies, Model Builder and the JavaScript API for ArcGIS still

provide interesting possibilities for future work. Creating models that account for every

aspect of a GP tool allows for an easier workflow for the casual user than interpreting

Python code. The JavaScript API also provides the largest number of customization

options, and with the base functionalities created through this project, a JavaScript

adaptation of these scripts could create a user interface that is more intuitive and contains

greater options for manipulating the data.

38

Another future adaptation would be to attain the most current data on fire

occurrences, vegetation types, aspect and slope information, and to create a fire analysis

tool that calculates the fire risk instead of obtaining it from another source. This would

increase future reusability and adaptability, especially if any of the data used in the fire

analysis could be gathered on a regular basis, as this would keep risk more current and

increase reliability of the risk values.

39

Works Cited

Chow, T. E. (2008), The Potential of Maps APIs for Internet GIS Applications.

Transactions in GIS, 12: 179–191. doi: 10.1111/j.1467-9671.2008.01094.x

Finney, Mark A. (2006). An overview of FlamMap fire modeling capabilities. Pages 213-

220.

Flanagan, D. (2002). Introduction to JavaScript. In JavaScript: The definitive guide (4th

ed., p. 2). Sebastopol, CA: O'Reilly.

Goldberg, G. E., Neuenschwander, L. F., & Ryan, K. C. (2001). Introduction: Integrating

spatial technologies and ecological principles for a new age in fire

management. International Journal of Wildland Fire, 10(4), 263-265.

Gomez C., Mangeas M., Curt T., Ibanez T., Munzinger J., Dumas P., Jérémy A.,

Despinoy M., & Hély C., Ecology and Evolution 2015; 5(2): 377–390.

Haklay, M., Singleton, A. and Parker, C. (2008), Web Mapping 2.0: The Neogeography

of the GeoWeb. Geography Compass, 2: 2011–2039. doi: 10.1111/j.1749-

8198.2008.00167.

Keane, R. E., Burgan, R., & van Wagtendonk, J. (2001). Mapping wildland fuels for fire

management across multiple scales: integrating remote sensing, GIS, and

biophysical modeling. International Journal of Wildland Fire, 10(4), 301-319.

Robson, E., & Freeman, E. (2012). Getting to Know HTML. In Head first HTML and

CSS (Second ed., pp. 4-6). Beijing: O'Reilly.

Rothermel R. C. (1972) A mathematical model for predicting fire spread in wildland

fuels. USDA Forest Service Research Paper INT-115.

Sanner, M. F. (1999). Python: a programming language for software integration and

development. J Mol Graph Model, 17(1), 57-61.

Scott, J. H., & Burgan, R. E. (2005). Standard fire behavior fuel models: a comprehensive

set for use with Rothermel's surface fire spread model. The Bark Beetles, Fuels,

and Fire Bibliography, 66.

Stephens, S. L. (1998). Evaluation of the effects of silvicultural and fuels treatments on

potential fire behaviour in Sierra Nevada mixed-conifer forests. Forest Ecology

and Management, 105(1), 21-35.

VanRossum, G., & Drake, F. L. (2010). The Python Language Reference. Python

Software Foundation.

41

Appendix A. Feature Set Schema

FIM Poles

Substations

Work Locations

42

Sub Transmission Lines

Major Transmission Lines

OMS Circuits

43

Appendix B. Asset Selection Script
#--
#--

Developer: Andrew Sanchez

AssetSelectionFinal.py

Created on: 2015-06-29

Description:

Use this tool to select assets and create attribute tables of the selected
#--

#--

Import arcpy module

#--

#--
import arcpy

#--

#--

Establish Environment Qualities

#--
#--

arcpy.env.workspace = "C:\\MIP\\FireToolData_Andrew\\FireToolData.gdb"

arcpy.env.overwriteOutput= True

#--
#--

Define Variables

#--

#--

#--
#Original Asset Data from Southern California Edison (SCE) and their Feature

#Layer Version

#--

WorkLocations = "OriginalData\\WorkLocations"

WorkLocations_lyr = "in_memory\\WorkLocations_lyr"
SubTransmissionLines = "OriginalData\\SubTransmissionLines"

SubTransmissionLines_lyr = "in_memory\\SubTransmissionLines_lyr"

Substations = "OriginalData\\Substations"

Substations_lyr = "in_memory\\Substations_lyr"

OMSCircuits = "OriginalData\\OMSCircuits"

OMSCircuits_lyr = "in_memory\\OMSCircuits_lyr"
MajorTransmissionLines = "OriginalData\\MajorTransmissionLines"

MajorTransmissionLines_lyr = "in_memory\\MajorTransmissionLines_lyr"

FIMPoles = "OriginalData\\FIMPoles"

FIMPoles_lyr = "in_memory\\FIMPoles_lyr"

44

#--

#Line Feature Classes Post Analysis in their Point Representation Form

#--
SubTransmissionLines_Pts = "in_memory\\SubTransmissionLines_Pts"

OMSCircuits_Pts = "in_memory\\OMSCircuits_Pts"

MajorTransmissionLines_Pts = "in_memory\\MajorTransmissionLines_Pts"

#--

#Feature class containing the Point Representations of every feature class
#Used to create the empty Final Assets Feature Class

#--

allFeatureFC = "PointRepresentationOfAssets\\All_Features"

#--
#Variables defined by the user for Input (Area of Interest) and Output Location

#--

FeatureSetTemplate_ForTool = arcpy.GetParameterAsText(0)

if not FeatureSetTemplate_ForTool:

 FeatureSetTemplate_ForTool = "Templates\\TestPolygon"

FinalAssets = arcpy.GetParameterAsText(1)

if not FinalAssets:

 FinalAssets = "SelectedData\\FinalAssets"

#--
#Final Output Feature Classes that hold the selected and analyzed Asset Data

#Seperated by Asset Type

#--

Selected_Work_Locations = arcpy.GetParameterAsText(2)

if not Selected_Work_Locations:

 Selected_Work_Locations = "SelectedData\\Selected_Work_Locations"

Selected_FIMPoles = arcpy.GetParameterAsText(4)

if not Selected_FIMPoles:

 Selected_FIMPoles = "SelectedData\\Selected_FIMPoles"

Selected_Sub_Stations = arcpy.GetParameterAsText(3)

if not Selected_Sub_Stations:

 Selected_Sub_Stations = "SelectedData\\Selected_Sub_Stations"

Selected_Maj_Trans_Lines = arcpy.GetParameterAsText(7)

if not Selected_Maj_Trans_Lines:
 Selected_Maj_Trans_Lines = "SelectedData\\Selected_Maj_Trans_Lines"

Selected_OMS_Circuits = arcpy.GetParameterAsText(5)

if not Selected_OMS_Circuits:

 Selected_OMS_Circuits = "SelectedData\\Selected_OMS_Circuits"

Selected_Sub_Trans_Lines = arcpy.GetParameterAsText(6)

if not Selected_Sub_Trans_Lines:

 Selected_Sub_Trans_Lines = "SelectedData\\Selected_Sub_Trans_Lines"

#--
#--

Create Empty Feature classes to hold selections with the correct Schema

#--

#--

#These are the same Feature classes that had their pathways defined above

45

arcpy.CopyFeatures_management(allFeatureFC, FinalAssets, "", "0", "0", "0")

arcpy.DeleteFeatures_management(FinalAssets)

arcpy.CopyFeatures_management(WorkLocations, Selected_Work_Locations, "", "0", "0",

"0")

arcpy.DeleteFeatures_management(Selected_Work_Locations)

arcpy.CopyFeatures_management(Substations, Selected_Sub_Stations, "", "0", "0", "0")

arcpy.DeleteFeatures_management(Selected_Sub_Stations)

arcpy.CopyFeatures_management(FIMPoles, Selected_FIMPoles, "", "0", "0", "0")

arcpy.DeleteFeatures_management(Selected_FIMPoles)

arcpy.CopyFeatures_management(MajorTransmissionLines, Selected_Maj_Trans_Lines, "",
"0", "0", "0")

arcpy.DeleteFeatures_management(Selected_Maj_Trans_Lines)

arcpy.CopyFeatures_management(SubTransmissionLines, Selected_Sub_Trans_Lines, "", "0",

"0", "0")

arcpy.DeleteFeatures_management(Selected_Sub_Trans_Lines)

arcpy.CopyFeatures_management(OMSCircuits, Selected_OMS_Circuits, "", "0", "0", "0")

arcpy.DeleteFeatures_management(Selected_OMS_Circuits)

#--

#--
Use Select Layer by Location tool on variables

#--

#--

#Each of the six feature classes have assets selected by the area of interest

#defined by the user

Process: Select Work Locations By Location

arcpy.MakeFeatureLayer_management(WorkLocations, WorkLocations_lyr)

arcpy.SelectLayerByLocation_management(WorkLocations_lyr, "WITHIN",

FeatureSetTemplate_ForTool, "", "NEW_SELECTION")

#Once the assets are selected, they are made permanent in the feature classes

#created at the beginning

arcpy.CopyFeatures_management(WorkLocations_lyr, Selected_Work_Locations, "", "0", "0",

"0")

#--

#--

Process: Select FIM Poles By Location

arcpy.MakeFeatureLayer_management(FIMPoles, FIMPoles_lyr)

arcpy.SelectLayerByLocation_management(FIMPoles_lyr, "WITHIN",
FeatureSetTemplate_ForTool, "", "NEW_SELECTION")

#Once the assets are selected, they are made permanent in the feature classes

#created at the beginning

arcpy.CopyFeatures_management(FIMPoles_lyr, Selected_FIMPoles, "", "0", "0", "0")

#--

#--

Process: Select Substations By Location

arcpy.MakeFeatureLayer_management(Substations, Substations_lyr)

arcpy.SelectLayerByLocation_management(Substations_lyr, "WITHIN",
FeatureSetTemplate_ForTool, "", "NEW_SELECTION")

#Once the assets are selected, they are made permanent in the feature classes

46

#created at the beginning

arcpy.CopyFeatures_management(Substations_lyr, Selected_Sub_Stations, "", "0", "0",

"0")

#--

#--

Process: Select Sub Trans Lines By Location

arcpy.MakeFeatureLayer_management(SubTransmissionLines, SubTransmissionLines_lyr)

arcpy.SelectLayerByLocation_management(SubTransmissionLines_lyr, "INTERSECT",
FeatureSetTemplate_ForTool, "", "NEW_SELECTION")

#Once the assets are selected, they are made permanent in the feature classes

#created at the beginning

arcpy.CopyFeatures_management(SubTransmissionLines_lyr, Selected_Sub_Trans_Lines, "",
"0", "0", "0")

#For the line features, in order to be appended to the Final Assets Feature

#Class, they must first be converted into point features so that all six

#feature classes have identical geometry

arcpy.FeatureToPoint_management(SubTransmissionLines_lyr,SubTransmissionLines_Pts,
"CENTROID")

#--

#--

Process: Select OMS Circuits By Location
arcpy.MakeFeatureLayer_management(OMSCircuits, OMSCircuits_lyr)

arcpy.SelectLayerByLocation_management(OMSCircuits_lyr, "INTERSECT",

FeatureSetTemplate_ForTool, "", "NEW_SELECTION")

#Once the assets are selected, they are made permanent in the feature classes

#created at the beginning
arcpy.CopyFeatures_management(OMSCircuits_lyr, Selected_OMS_Circuits, "", "0", "0",

"0")

#For the line features, in order to be appended to the Final Assets Feature

#Class, they must first be converted into point features so that all six
#feature classes have identical geometry

arcpy.FeatureToPoint_management(OMSCircuits_lyr,OMSCircuits_Pts, "CENTROID")

#--

#--

Process: Select Maj Trans Lines By Location
arcpy.MakeFeatureLayer_management(MajorTransmissionLines, MajorTransmissionLines_lyr)

arcpy.SelectLayerByLocation_management(MajorTransmissionLines_lyr, "INTERSECT",

FeatureSetTemplate_ForTool, "", "NEW_SELECTION")

#Once the assets are selected, they are made permanent in the feature classes
#created at the beginning

arcpy.CopyFeatures_management(MajorTransmissionLines_lyr, Selected_Maj_Trans_Lines, "",

"0", "0", "0")

#For the line features, in order to be appended to the Final Assets Feature

#Class, they must first be converted into point features so that all six
#feature classes have identical geometry

arcpy.FeatureToPoint_management(MajorTransmissionLines_lyr,MajorTransmissionLines_Pts,

"CENTROID")

#--
#--

Append all Values Together

47

#--

#--

#All of the point assets and the point representations of the line assets are

#appended into the Final Assets Feature Class for convenient storage

arcpy.Append_management([Selected_FIMPoles, MajorTransmissionLines_Pts,

OMSCircuits_Pts, Selected_Sub_Stations, SubTransmissionLines_Pts,

Selected_Work_Locations], FinalAssets, "NO_TEST", "", "")

Appendix C. Asset Selection with Risk Script
#--

#--

Developer: Andrew Sanchez

AssetSelectionFinal.py

Created on: 2015-06-29

Description:
Use this tool to select assets and create attribute tables of the selected

#--

#--

Import arcpy module
#--

#--

import arcpy

#--

#--
Establish Environment Qualities

#--

#--

arcpy.env.workspace = "C:\\MIP\\FireToolData_Andrew\\FireToolData.gdb"

arcpy.env.overwriteOutput= True

#--

#--

Define Variables

#--

#--

#--

#Polygons That hold the Fire Risk Values

#--

Fire_Threat_Polygons = "OriginalData\\Fire_Threat_Polygons"

#--

#Original Asset Data from Southern California Edison (SCE) and their Feature

#Layer Version

#--
WorkLocations = "OriginalData\\WorkLocations"

WorkLocations_lyr = "in_memory\\WorkLocations_lyr"

SubTransmissionLines = "OriginalData\\SubTransmissionLines"

SubTransmissionLines_lyr = "in_memory\\SubTransmissionLines_lyr"

Substations = "OriginalData\\Substations"

Substations_lyr = "in_memory\\Substations_lyr"
OMSCircuits = "OriginalData\\OMSCircuits"

OMSCircuits_lyr = "in_memory\\OMSCircuits_lyr"

MajorTransmissionLines = "OriginalData\\MajorTransmissionLines"

MajorTransmissionLines_lyr = "in_memory\\MajorTransmissionLines_lyr"

48

FIMPoles = "OriginalData\\FIMPoles"

FIMPoles_lyr = "in_memory\\FIMPoles_lyr"

#--

#Line Feature Classes Post Analysis in their Point Representation Form

#--

SubTransmissionLines_Pts = "in_memory\\SubTransmissionLines_Pts"

OMSCircuits_Pts = "in_memory\\OMSCircuits_Pts"

MajorTransmissionLines_Pts = "in_memory\\MajorTransmissionLines_Pts"

#--

#Point Feature Classes containing Fire Risk Attributes alongside the default

#descriptive attributes of the features

#--
SpatialFIM = "in_memory\\SpatialFIM"

SpatialSubSt = "in_memory\\SpatialSubSt"

SpatialWrkLoc = "in_memory\\SpatialWrkLoc"

#--

#Feature class containing the Point Representations of every feature class
#Used to create the empty Final Assets Feature Class

#--

allFeatureFC = "PointRepresentationOfAssets\\All_Features"

#--
#The Portions of the Line Feature Classes Which Fall Within the Area of Interest

#--

SubTranLnClip = "in_memory\\SubTranLnClip"

MajTranLnClip = "in_memory\\MajTranLnClip"

OMSClip = "in_memory\\OMSClip"

#--

#Variables involved in the Summary Statistics performed on the Sub Transmission

#Lines to determine what risk level should be assigned

#--

SubTransSum = "in_memory\\SubTransSum"
SubTranMax = "in_memory\\SubTranMax"

SubTranLnClip_lyr = "in_memory\\SubTranLnClip_lyr"

SubTranLnIntersect = "in_memory\\SubTranLnIntersect"

#--

#Variables involved in the Summary Statistics performed on the Major
#Transmission Lines to determine what risk level should be assigned

#--

MajTranSum = "in_memory\\SubTransSum"

MajTranMax = "in_memory\\SubTranMax"

MajTranClip_lyr = "in_memory\\SubTranLnClip_lyr"
MajTranIntersect = "in_memory\\SubTranLnIntersect"

#--

#Variables involved in the Summary Statistics performed on the OMS Circuits

#o determine what risk level should be assigned

#--

OMSSum = "in_memory\\SubTransSum"

OMSMax = "in_memory\\SubTranMax"

OMSClip_lyr = "in_memory\\SubTranLnClip_lyr"

OMSIntersect = "in_memory\\SubTranLnIntersect"

#--

#Variables defined by the user for Input (Area of Interest) and Output Location

49

#--

FeatureSetTemplate_ForTool = arcpy.GetParameterAsText(0)

if not FeatureSetTemplate_ForTool:
 FeatureSetTemplate_ForTool = "Templates\\TestPolygon"

FinalAssets = arcpy.GetParameterAsText(1)

if not FinalAssets:

 FinalAssets = "SelectedData\\FinalAssets"

#--

#Final Output Feature Classes that hold the selected and analyzed Asset Data

#Seperated by Asset Type

#--

Selected_Work_Locations = arcpy.GetParameterAsText(2)
if not Selected_Work_Locations:

 Selected_Work_Locations = "SelectedData\\Selected_Work_Locations"

Selected_FIMPoles = arcpy.GetParameterAsText(4)

if not Selected_FIMPoles:

 Selected_FIMPoles = "SelectedData\\Selected_FIMPoles"

Selected_Sub_Stations = arcpy.GetParameterAsText(3)

if not Selected_Sub_Stations:

 Selected_Sub_Stations = "SelectedData\\Selected_Sub_Stations"

Selected_Maj_Trans_Lines = arcpy.GetParameterAsText(7)

if not Selected_Maj_Trans_Lines:

 Selected_Maj_Trans_Lines = "SelectedData\\Selected_Maj_Trans_Lines"

Selected_OMS_Circuits = arcpy.GetParameterAsText(5)

if not Selected_OMS_Circuits:
 Selected_OMS_Circuits = "SelectedData\\Selected_OMS_Circuits"

Selected_Sub_Trans_Lines = arcpy.GetParameterAsText(6)

if not Selected_Sub_Trans_Lines:

 Selected_Sub_Trans_Lines = "SelectedData\\Selected_Sub_Trans_Lines"

#--

#--

Create Empty Feature classes to hold selections with the correct Schema

#--

#--

#These are the same Feature classes that had their pathways defined above

arcpy.CopyFeatures_management(allFeatureFC, FinalAssets, "", "0", "0", "0")

arcpy.DeleteFeatures_management(FinalAssets)

arcpy.CopyFeatures_management(WorkLocations, Selected_Work_Locations, "", "0", "0",

"0")

arcpy.DeleteFeatures_management(Selected_Work_Locations)

arcpy.CopyFeatures_management(Substations, Selected_Sub_Stations, "", "0", "0", "0")
arcpy.DeleteFeatures_management(Selected_Sub_Stations)

arcpy.CopyFeatures_management(FIMPoles, Selected_FIMPoles, "", "0", "0", "0")

arcpy.DeleteFeatures_management(Selected_FIMPoles)

arcpy.CopyFeatures_management(MajorTransmissionLines, Selected_Maj_Trans_Lines, "",

"0", "0", "0")

arcpy.DeleteFeatures_management(Selected_Maj_Trans_Lines)

50

arcpy.CopyFeatures_management(SubTransmissionLines, Selected_Sub_Trans_Lines, "", "0",

"0", "0")
arcpy.DeleteFeatures_management(Selected_Sub_Trans_Lines)

arcpy.CopyFeatures_management(OMSCircuits, Selected_OMS_Circuits, "", "0", "0", "0")

arcpy.DeleteFeatures_management(Selected_OMS_Circuits)

#--
#--

Add Necessary Field to House Fire Risk Attributes

#--

#--

#The Final Assets Feature Class does not contain a Threat Level Field by default

#but needs one to house the incoming data

arcpy.AddField_management(FinalAssets, "THREAT_LEVEL", "TEXT")

#--

#--
Use Select Layer by Location tool on variables

#--

#--

#Each of the six feature classes have assets selected by the area of interest
#defined by the user

Process: Select Work Locations By Location

arcpy.MakeFeatureLayer_management(WorkLocations, WorkLocations_lyr)

arcpy.SelectLayerByLocation_management(WorkLocations_lyr, "WITHIN",

FeatureSetTemplate_ForTool, "", "NEW_SELECTION")

#Spatial Join is used to unite the point assets with their corresponding risk

#levels based on their location

arcpy.SpatialJoin_analysis(WorkLocations_lyr, Fire_Threat_Polygons, SpatialWrkLoc,

"JOIN_ONE_TO_ONE", "KEEP_ALL", "", "WITHIN", "", "")

#Once the assets and their risk levels are joined, they are made permanent

#in the feature classes created at the beginning

arcpy.CopyFeatures_management(SpatialWrkLoc, Selected_Work_Locations, "", "0", "0",

"0")

#--

#--

Process: Select FIM Poles By Location

arcpy.MakeFeatureLayer_management(FIMPoles, FIMPoles_lyr)

arcpy.SelectLayerByLocation_management(FIMPoles_lyr, "WITHIN",
FeatureSetTemplate_ForTool, "", "NEW_SELECTION")

#Spatial Join is used to unite the point assets with their corresponding risk

#levels based on their location

arcpy.SpatialJoin_analysis(FIMPoles_lyr, Fire_Threat_Polygons, SpatialFIM,

"JOIN_ONE_TO_ONE", "KEEP_ALL", "", "WITHIN", "", "")

#Once the assets and their risk levels are joined, they are made permanent

#in the feature classes created at the beginning

arcpy.CopyFeatures_management(SpatialFIM, Selected_FIMPoles, "", "0", "0", "0")

#--

#--

Process: Select Substations By Location

51

arcpy.MakeFeatureLayer_management(Substations, Substations_lyr)

arcpy.SelectLayerByLocation_management(Substations_lyr, "WITHIN",

FeatureSetTemplate_ForTool, "", "NEW_SELECTION")

#Spatial Join is used to unite the point assets with their corresponding risk

#levels based on their location

arcpy.SpatialJoin_analysis(Substations_lyr, Fire_Threat_Polygons, SpatialSubSt,

"JOIN_ONE_TO_ONE", "KEEP_ALL", "", "WITHIN", "", "")

#Once the assets and their risk levels are joined, they are made permanent

#in the feature classes created at the beginning

arcpy.CopyFeatures_management(SpatialSubSt, Selected_Sub_Stations, "", "0", "0", "0")

#--
#--

Process: Select Sub Trans Lines By Location

arcpy.MakeFeatureLayer_management(SubTransmissionLines, SubTransmissionLines_lyr)

arcpy.SelectLayerByLocation_management(SubTransmissionLines_lyr, "INTERSECT",

FeatureSetTemplate_ForTool, "", "NEW_SELECTION")

#Lines have to be treated differently from points. Instead of Spatial Join

#the line features are clipped to the area of interest and intersected with the

#Fire Risk Polygons to receive their fire risk levels

arcpy.Clip_analysis(SubTransmissionLines_lyr, FeatureSetTemplate_ForTool,

SubTranLnClip)
arcpy.Intersect_analysis([SubTranLnClip, Fire_Threat_Polygons], SubTranLnIntersect,

"ALL", "", "INPUT")

arcpy.AddField_management(SubTranLnIntersect, "Shape_Length", "DOUBLE")

arcpy.CalculateField_management(SubTranLnIntersect, "Shape_Length", "!SHAPE.length!",

"PYTHON_9.3")

#Once the assets have been intersected with their fire risk levels, a summary

#statistics is applied to the clipped lines to determine which fire risk level

#most influences the asset

#Then a Max statistic is applied in order to export the records that hold the

#most inflience over the assets
arcpy.Statistics_analysis(SubTranLnIntersect, SubTransSum, [["Shape_Length", "SUM"]],

["Asset_ID", "THREAT_LEVEL"])

arcpy.Statistics_analysis(SubTransSum, SubTranMax, [["SUM_Shape_Length", "MAX"]],

["Asset_ID", "THREAT_LEVEL"])

#After creating a table that contains the most relevant risk levels for each
#line feature, those values are joined back to the line feature classes clipped

#to the area of interest

#These assets are then copied over to their permanent location in the feature

#classes designed at the start

arcpy.MakeFeatureLayer_management(SubTranLnClip, SubTranLnClip_lyr)
arcpy.JoinField_management(SubTranLnClip_lyr, "Asset_ID", SubTranMax, "Asset_ID",

"THREAT_LEVEL")

arcpy.CopyFeatures_management(SubTranLnClip_lyr, Selected_Sub_Trans_Lines, "", "0",

"0", "0")

#The attributes within the final feature classes is converted into points
#in order to allow them to be appended into the Final Assets Feature Class

arcpy.FeatureToPoint_management(Selected_Sub_Trans_Lines, SubTransmissionLines_Pts,

"CENTROID")

#--
#--

Process: Select OMS Circuits By Location

arcpy.MakeFeatureLayer_management(OMSCircuits, OMSCircuits_lyr)

52

arcpy.SelectLayerByLocation_management(OMSCircuits_lyr, "INTERSECT",

FeatureSetTemplate_ForTool, "", "NEW_SELECTION")

#Lines have to be treated differently from points. Instead of Spatial Join

#the line features are clipped to the area of interest and intersected with the

#Fire Risk Polygons to recieve their fire risk levels

arcpy.Clip_analysis(OMSCircuits_lyr, FeatureSetTemplate_ForTool, OMSClip)

arcpy.Intersect_analysis([OMSClip, Fire_Threat_Polygons], OMSIntersect, "ALL", "",

"INPUT")
arcpy.AddField_management(OMSIntersect, "Shape_Length", "DOUBLE")

arcpy.CalculateField_management(OMSIntersect, "Shape_Length", "!SHAPE.length!",

"PYTHON_9.3")

#Once the assets have been intersected with their fire risk levels, a summary
#statistics is applied to the clipped lines to determine which fire risk level

#most influences the asset

#Then a Max statistic is applied in order to export the records that hold the

#most inflience over the assets

arcpy.Statistics_analysis(OMSIntersect, OMSSum, [["Shape_Length", "SUM"]], ["Asset_ID",

"THREAT_LEVEL"])
arcpy.Statistics_analysis(OMSSum, OMSMax, [["SUM_Shape_Length", "MAX"]], ["Asset_ID",

"THREAT_LEVEL"])

#After creating a table that contains the most relevant risk levels for each

#line feature, those values are joined back to the line feature classes clipped
#to the area of interest

#These assets are then copied over to their permanent location in the feature

#classes designed at the start

arcpy.MakeFeatureLayer_management(OMSClip, OMSClip_lyr)

arcpy.JoinField_management(OMSClip_lyr, "Asset_ID", OMSMax, "Asset_ID", "THREAT_LEVEL")

arcpy.CopyFeatures_management(OMSClip_lyr, Selected_OMS_Circuits, "", "0", "0", "0")

#The attributes within the final feature classes is converted into points

#in order to allow them to be appended into the Final Assets Feature Class

arcpy.FeatureToPoint_management(Selected_OMS_Circuits, OMSCircuits_Pts, "CENTROID")

#--

#--

Process: Select Maj Trans Lines By Location

arcpy.MakeFeatureLayer_management(MajorTransmissionLines, MajorTransmissionLines_lyr)

arcpy.SelectLayerByLocation_management(MajorTransmissionLines_lyr, "INTERSECT",

FeatureSetTemplate_ForTool, "", "NEW_SELECTION")

#Lines have to be treated differently from points. Instead of Spatial Join

#the line features are clipped to the area of interest and intersected with the

#Fire Risk Polygons to receive their fire risk levels

arcpy.Clip_analysis(MajorTransmissionLines_lyr, FeatureSetTemplate_ForTool,
MajTranLnClip)

arcpy.Intersect_analysis([MajTranLnClip, Fire_Threat_Polygons], MajTranIntersect,

"ALL", "", "INPUT")

arcpy.AddField_management(MajTranIntersect, "Shape_Length", "DOUBLE")

arcpy.CalculateField_management(MajTranIntersect, "Shape_Length", "!SHAPE.length!",

"PYTHON_9.3")

#Once the assets have been intersected with their fire risk levels, a summary

#statistics is applied to the clipped lines to determine which fire risk level

#most influences the asset

#Then a Max statistic is applied in order to export the records that hold the
#most inflience over the assets

arcpy.Statistics_analysis(MajTranIntersect, MajTranSum, [["Shape_Length", "SUM"]],

["Asset_ID", "THREAT_LEVEL"])

53

arcpy.Statistics_analysis(MajTranSum, MajTranMax, [["SUM_Shape_Length", "MAX"]],

["Asset_ID", "THREAT_LEVEL"])

#After creating a table that contains the most relevant risk levels for each

#line feature, those values are joined back to the line feature classes clipped

#to the area of interest

#These assets are then copied over to their permanent location in the feature

#classes designed at the start

arcpy.MakeFeatureLayer_management(MajTranLnClip, MajTranClip_lyr)
arcpy.JoinField_management(MajTranClip_lyr, "Asset_ID", MajTranMax, "Asset_ID",

"THREAT_LEVEL")

arcpy.CopyFeatures_management(MajTranClip_lyr, Selected_OMS_Circuits, "", "0", "0",

"0")

#The attributes within the final feature classes is converted into points

#in order to allow them to be appended into the Final Assets Feature Class

arcpy.FeatureToPoint_management(Selected_Maj_Trans_Lines, MajorTransmissionLines_Pts,

"CENTROID")

#--
#--

Append all Values Together

#--

#--

#All of the point assets and the point representations of the line assets are

#appended into the Final Assets Feature Class for convenient storage

arcpy.Append_management([Selected_FIMPoles, MajorTransmissionLines_Pts,

OMSCircuits_Pts, Selected_Sub_Stations, SubTransmissionLines_Pts,

Selected_Work_Locations], FinalAssets, "NO_TEST", "", "")

	Managing Utility Properties: Fire Risk Awareness and Mitigation
	Recommended Citation

	Chapter 1 – Introduction
	1.1 Client
	1.2 Problem Statement
	1.3 Proposed Solution
	1.3.1 Goals and Objectives
	1.3.2 Scope
	1.3.3 Study Area
	1.3.4 Methods

	1.4 Audience
	1.5 Overview of the Rest of this Report

	Chapter 2 – Background and Literature Review
	2.1 Fire Analysis
	2.2 Fire Models
	2.3 Web GIS Development
	2.4 Python
	2.5 Summary

	Chapter 3 – Systems Analysis and Design
	3.1 Problem Statement
	3.2 Requirements Analysis
	3.2.1 Functional Requirements
	3.2.2 Non-Functional Requirements

	3.3 System Design
	3.4 Project Plan
	3.4.1 Requirements Analysis
	3.4.2 Data Acquisition
	3.4.3 Application Development and Testing
	3.4.4 Deployment

	3.5 Summary

	Chapter 4 – Database Design
	4.1 Conceptual Data Model
	4.2 Logical Data Model
	4.3 Data Sources
	4.4 Data Management
	4.5 Data Scrubbing and Loading
	4.6 Summary

	Chapter 5 – Implementation
	5.1 Script Toolset Development
	5.1.1 Asset Selection GP tool
	5.1.2 Asset Selection with Risk GP Tool
	5.1.3 Asset Selection via Upload With and Without Risk GP Tools

	5.2 Web Map
	5.2.1 Publishing Map Service
	5.2.2 Publishing Geoprocessing Services
	5.2.3 Developing Web Application

	5.3 Summary

	Chapter 6 – Use Cases
	6.1 Asset Selection with Hand Drawn Polygons
	6.2 Asset Selection with Shapefile Uploaded
	6.3 Summary

	Chapter 7 – Conclusions and Future Work
	Works Cited
	Appendix A. Feature Set Schema
	Appendix B. Asset Selection Script
	Appendix C. Asset Selection with Risk Script

