
University of Redlands University of Redlands 

InSPIRe @ Redlands InSPIRe @ Redlands 

MS GIS Program Major Individual Projects Theses, Dissertations, and Honors Projects 

2015 

Automating the Classification of Thematic Rasters for Weighted Automating the Classification of Thematic Rasters for Weighted 

Overlay Analysis in GeoPlanner for ArcGIS Overlay Analysis in GeoPlanner for ArcGIS 

Charles J. Mayfield 
Univeristy of Redlands 

Follow this and additional works at: https://inspire.redlands.edu/gis_gradproj 

 Part of the Geographic Information Sciences Commons 

Recommended Citation Recommended Citation 
Mayfield, C. J. (2015). Automating the Classification of Thematic Rasters for Weighted Overlay Analysis in 
GeoPlanner for ArcGIS (Master's thesis, University of Redlands). Retrieved from 
https://inspire.redlands.edu/gis_gradproj/245 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This material may be protected by copyright law (Title 17 U.S. Code). 
This Thesis is brought to you for free and open access by the Theses, Dissertations, and Honors Projects at 
InSPIRe @ Redlands. It has been accepted for inclusion in MS GIS Program Major Individual Projects by an 
authorized administrator of InSPIRe @ Redlands. For more information, please contact inspire@redlands.edu. 

https://inspire.redlands.edu/
https://inspire.redlands.edu/gis_gradproj
https://inspire.redlands.edu/etd
https://inspire.redlands.edu/gis_gradproj?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:inspire@redlands.edu


 

University of Redlands 

Automating the Classification of Thematic Rasters for Weighted 

Overlay Analysis in GeoPlanner for ArcGIS 

A Major Individual Project submitted in partial satisfaction of the requirements 

for the degree of Master of Science in Geographic Information Systems 

by 

C. Joseph Mayfield 

Mark Kumler, Ph.D., Committee Chair 

Nader Afzalan, Ph.D. 

 

February 2016 



 

Automating the Classification of Thematic Rasters for Weighted Raster Overlay Analysis 

in GeoPlanner for ArcGIS 

Copyright © 2016 

by 

C. Joseph Mayfield



 

The report of C. Joseph Mayfield is approved. 

 

Nader Afzalan, Ph.D. 

 

Mark Kumler, Ph.D., Committee Chair 

 

February 2016 

 





 v 

Acknowledgements 

The successful completion of this project was facilitated by the support of a number of 

individuals who assisted in a variety of ways. As my academic advisor, Dr. Mark Kumler 

provided invaluable guidance and feedback throughout the course of the project. Dr. 

Nader Afzalan lent his perspective as both a geodesign and GIS expert. Nate Strout 

helped me get off the ground with Python and software development and then provided 

invaluable troubleshooting assistance in the later stages of the project. I’m also grateful 

for the efforts of the other faculty staff of the University of Redlands MS GIS program, 

Dr. Flewelling, Dr. Ma, Dr. Ren, Andrea Barrios, and adjunct faculty. It was a privilege 

to be a member of Cohort 25 – The Golden Cohort. The opportunity to participate in the 

program and undertake this project was made possible through the Esri Fellows 

scholarship, and I am grateful in particular for the support of my manager, Vin Thomas, 

and the project client, Rob Stauder. This project represents a significant effort that 

required sacrifices of time availability and would not have been possible without the 

loving support of my wife, Emily. I am grateful to her and the rest of my family for their 

support and providing the motivation to complete this work. 

 





 vii 

Abstract 

Automating the Classification of Thematic Rasters for Weighted Overlay Analysis in 

GeoPlanner for ArcGIS 

by 

C. Joseph Mayfield 

Esri’s GeoPlanner for ArcGIS application provides powerful analysis capabilities through 

the weighted overlay analysis modeler. This modeler consumes weighted overlay 

services composed of pre-processed raster layers. Creating custom weighted overlay 

services for GeoPlanner is a difficult and complex process that requires both domain-

specific and GIS expertise. This challenge was addressed by simplifying the weighted 

overlay service creation workflow and developing two new custom Python tools that 

guide GeoPlanner users through the process of preparing input datasets and then 

classifying the raster datasets. Where possible these tools automate the required steps and 

where user input is needed, the tools provide default recommendations based on the input 

datasets properties and characteristics.  As a result, the weighted overlay services creation 

workflow has been significantly improved and more GeoPlanner users can include their 

own data in weighted overlay analyses.  
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Chapter 1  – Introduction 

The emerging field of geodesign promises to improve the current design and planning 

paradigm by providing a number of spatially-enabled tools, services, and processes that 

bring greater understanding and transparency to the decision making process. These 

geodesign assets leverage a multi-disciplinary approach and incorporate the strengths of 

each on a common spatial platform. In 2014, Esri launched GeoPlanner for ArcGIS, a 

web-hosted geodesign application that guides users through a tailored geodesign 

workflow. This application has been designed to make geodesign accessible to a wide 

variety of users, from GIS professionals to knowledge workers in other fields with little 

to no GIS experience.  

GeoPlanner includes a number of analysis tools that can be used to assess and 

evaluate datasets. One of these core tools is the weighted overlay modeler tool that uses 

weighted overlay analysis to perform complex multi-criteria evaluations. Creating new 

weighted overlay services for GeoPlanner is a difficult and complex process that requires 

both domain-specific and GIS expertise. These requirements prevent many GeoPlanner 

users from being able to include their own datasets in the application’s weighted overlay 

analysis tool. Without this information, these users are unable to realize the full value of 

the GeoPlanner application in their design and development workflows. 

One of the primary goals of the GeoPlanner for ArcGIS application is to democratize 

the geodesign process by making it easy for non-GIS experts to use. However, these 

kinds of users currently face a number of barriers that prevent them from uploading their 

own datasets, as weighted overlay services, into the application’s weighted overlay 
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modeler tool. The client needs a better way for GeoPlanner users to create weighted 

overlay services and then upload them into the application. The purpose of this project is 

to introduce a solution that addresses these needs in a context that supports and assists all 

of the application’s end users. 

1.1 Client 

The client for this project is Mr. Robert Stauder, Product Engineer on the GeoPlanner for 

ArcGIS team, from Esri Professional Services. The client needs a solution that enables 

GeoPlanner users to create and upload new weighted overlay services from their own 

datasets. This solution needs to be developed in Python, the scripting language used in 

the development of the GeoPlanner application. 

1.2 Problem Statement 

The problem addressed in this project is the high level of GIS expertise that is required to 

create and upload weighted overlay services for the GeoPlanner for ArcGIS application. 

In the GeoPlanner application, the current process for preparing a dataset, classifying the 

data, and then uploading the layers to a weighted overlay service is quite involved, 

requiring access to ArcGIS for Desktop and Server, a high level of GIS expertise, and 

domain-specific knowledge. The process for creating a weighted overlay service includes 

four general steps. First, the user must prepare the dataset by converting it to the required 

raster format, clipping it to the area of interest, addressing any No Data cells, and more. 

Second, the dataset must classified and new raster fields must be added and populated 

with the classification information. This step is particularly challenging for users because 

it requires that they create new raster fields and populate those fields with specific 

parameters. If the parameters are entered incorrectly, the final weighted overlay service 
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will fail to deliver accurate analysis results. Third, multiple raster datasets are added to a 

mosaic dataset, a collection of raster datasets that are stored together in a single 

mosaicked image. Fourth, the mosaic must be published to ArcGIS Online as a weighted 

overlay service with specific tags for the GeoPlanner application.  

These steps require access to ArcGIS 10.3 for Desktop and Server as well as the 

Server Image Extension. The added software requirements and GIS expertise needed to 

complete this complex process create a usability barrier for users of the application. This 

is a problem because in many cases, users of the GeoPlanner application do not have this 

access or the necessary expertise. Developing a solution to this problem will expand the 

usefulness of the GeoPlanner application and allow more users to take full advantage of 

the tool. 

1.3 Proposed Solution 

Addressing the problems related to the creation of weighted overlay services for 

GeoPlanner for ArcGIS is a significant challenge. This challenge was addressed by 

simplifying the weighted overlay service creation workflow and developing two new 

tools that guide GeoPlanner users through the process of preparing input datasets and 

then classifying the raster datasets. All of the workflow steps are associated with four 

main processes: Prepare the Input Dataset, Classify the Raster Dataset, Create the Mosaic 

Dataset, and Create the Weighted Overlay Service. These processes pass the user’s 

dataset from step to step and perform all of the geoprocessing, formatting, and publishing 

tasks with minimal user input. This workflow resolves the client’s problem by making the 

GeoPlanner application easier to use by removing the barriers users currently face when 

they try to upload their own datasets as weighted overlay services.  
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1.3.1 Goals and Objectives 

The overall goal for this project is to simplify the processes of creating weighted overlay 

services and classifying thematic raster datasets for use in the GeoPlanner for ArcGIS 

application. This goal has been accomplished by meeting the following objectives: 

 Develop a tool that automates the initial preparation and processing of user-input 

datasets. 

 Develop a tool that that classifies datasets and automatically updates the raster 

fields. 

 Create an intuitive user interface that minimizes user inputs, clearly explains each 

step of the process, and reduces the required level of GIS- and domain-specific 

expertise for the end user. 

1.3.2 Scope 

The scope of this project extends from the planning and research stage to the creation of 

an automated workflow design, followed by the development of a working solution, to 

the testing and delivery of the final product. The project’s initial research included topics 

such as the history of land suitability assessment, the application of multi-criteria 

evaluations and weighted overlay analysis, the theory and methodology behind thematic 

raster classification, and Python development. A thorough understanding of these topics 

was applied to the design and development of an automated workflow that produces 

weighted overlay services. This workflow provides an enhanced user experience by 

automatically recommending appropriate classifications for user-supplied datasets, 

reducing the chance of user error by automating the configuration of the raster dataset, 

and by making the whole process faster and more efficient. 
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Testing this workflow with synthetic data and with client supplied sample data 

confirmed that the final solution successfully met the project’s objectives and the client’s 

expectations. The final product will be used by the client and the GeoPlanner for ArcGIS 

team to inform future product updates and enhancements. This project did not include 

any work related to developing other aspects of the GeoPlanner app, raster analysis, or 

data collection.  

Working on this project required access to a number of applications, tools, services, 

and data sources. The major technical components of the solution included the following 

software requirements: ArcGIS 10.3 for Desktop with the Spatial Analyst Extension, 

ArcGIS 10.3 for Server with the Image Extension, and an ArcGIS Online organizational 

account with access to GeoPlanner for ArcGIS. The Weighted Raster Overlay Services 

toolbox provided access to many of the basic geoprocessing tools that were needed for 

the new workflow. Additionally, PyScripter, a free open source IDE for Python, was used 

to develop the final solution. The services and data for GeoPlanner are hosted through 

ArcGIS Online and ArcGIS for Server. Having this clearly defined scope for the project’s 

goals and objectives informed many of the project’s major decisions and helped to 

prevent scope creep. 

1.3.3 Methods 

The final workflow was developed by first mapping out each of the processes in a 

conceptual diagram. That conceptual diagram was used to create a series of models in 

ModelBuilder and standalone Python scripts that replicated each of the steps and 

processes included in the final workflow. ModelBuilder is an Esri tool that is included in 

the ArcGIS for Desktop software package. All of the Python scripting was done in the 
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PyScripter, a common Python IDE. The final workflow utilizes a custom set of tools, 

called the Weighted Raster Overlay Service toolbox, which is provided on GitHub by the 

GeoPlanner for ArcGIS team. 

1.4 Audience 

The primary audience for this project report is the project client, Rob Stauder and his 

GeoPlanner for ArcGIS team. The secondary audience includes other planners, designers, 

and researchers exploring solutions for automating the classification of thematic rasters, 

as well as students learning more about multicriteria evaluation methods in suitability 

analyses. 

1.5 Overview of the Rest of this Report 

The following chapters and sections of this report follow the project’s framework. 

Chapter 2 provides a summary of the background research that was conducted and a 

literature review of project-related books and articles. Chapter 3 describes the system 

analysis and design. The system analysis explains the process of designing and 

developing the weighted overlay services creation workflow. Chapter 4 discusses the 

decisions that were made about data processing defaults and presets in the workflow. 

Chapter 5 details the implementation of the project – how the final workflow was 

developed and completed. Chapter 6 reviews the results of the project and the quality of 

the weighted overlay services produced by the automated workflow. The final section, 

Chapter 7, concludes this project by reviewing the overall project’s successes and 

shortcomings. Potential future work that furthers the goals and objectives of this project 

is also listed.  
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Chapter 2  – Background and Literature Review 

The challenge of automating the classification of thematic datasets for a web-based 

geodesign tool touches on a number of application domains, including land-use planning 

and suitability analysis, various multicriteria decision-making methodologies, and the 

specific techniques and approaches used in the automation of raster classification. Each 

of these domains is supported by a wealth of academic research and professional 

literature. In the following sections the concepts of land-use planning and multicriteria 

analysis are introduced, the weighted overlay analysis methodology is explained, and the 

specific techniques related to automating data classification workflows are explored.  

2.1 Land-Use Planning in the Context of Geodesign 

The practice of geodesign has its roots in the discipline of land-use planning. Land-use 

planning is the process of determining the ideal locations, in a predefined area of interest, 

for a specific design scenario based on a number of factors or characteristics (Collins, 

Steiner, & Rushman, 2001; Steiner, McSherry, & Cohen, 2000). Land-use planning 

methods have traditionally been employed by local and regional government planners, 

but today they have been adopted by others such as conservationists and commercial 

developers (Van der Merwe, 1997). As part of land-use suitability planning, geodesigners 

regularly create suitability assessments that employ multiple criteria decision-making 

(MCDM) methodologies to ensure that both environmental and socio-economic factors 

are considered in the final evaluation (Carver, 1991). A popular technique included in 

this multicriteria evaluation (MCE) approach is the weighted overlay analysis. 
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2.2 Weighted Overlay Analysis 

As a geodesign tool, GeoPlanner is largely built on the theories and practices used by 

land-use planners who have developed a variety of methods to evaluate the suitability of 

various land-uses. One of these methods is weighted overlay analysis (WOA). WOA is 

performed by overlaying classified datasets, such as soil type, land cover, or topography, 

for a defined area, assigning a weight to each dataset, summing the values of each 

vertical cell stack, and then evaluating the resulting composite map (Collins, Steiner, & 

Rushman, 2001). This method of suitability analysis, as shown in Figure 2.1, plays a key 

role in many geodesign workflows and is included in GeoPlanner for ArcGIS. 

 

 Steps in the weighted overlay analysis process 

2.2.1 History of Weighted Overlay in GIS 

The concept of using weighted overlay in the service of land-use suitability analysis was 

described at length by Ian McHarg in his seminal work, Design with Nature (1969). In 

this book, McHarg describes the process as a means of conducting multicriteria analyses 

by categorizing and ranking values from a variety of thematic datasets, creating a 

transparency for each dataset, and then overlaying the transparencies together to create a 

composite image. This final composite image was then used to evaluate the suitable land-

uses in the design scenario.  

Overlay Evaluate Weight Sum 
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The value of this weighted overlay approach to land-use suitability analysis was 

understood and adopted by designers, researchers, and others who saw great potential 

from the early GIS programs that were being pioneered and developed in the 1960s and 

1970s. With significant advancements in the field of computer science, some of the very 

first geographic information system programs, such as Harvard’s SYMAP, were designed 

to assess land-use in scenarios such as site selection for reservoirs (Chrisman, 2004). 

Roger Tomlinson states that he first proposed computerizing the overlay method while 

working at Spartan Air in 1962 (Tomlinson, 1999). As the availability and processing 

power of computers improved, modern GIS software has incorporated the practices and 

analytical processes of early land-use planners while adopting more complex and 

sophisticated decision making methodologies. 

2.2.2 Using Weighted Overlay in Multiple Criteria Decision Making 

One of the first decision making methodologies was the Weighted Linear Combination 

(WLC) technique, which improved on the map overlay approach by allowing planners to 

create composite maps. These composite maps made it possible for decision makers to 

consider multiple attributes in a single map (Hopkins, 1977). However, according to 

Malczewski (2000), WLC maps “are often used without full understanding of the 

assumptions underlying this approach” (p. 5). This issue has been addressed in some 

geographic information systems by the incorporation of robust Multiple Criteria Decision 

Making (MCDM) methods designed to help stakeholders make well-informed decisions 

based on various attributes (Jankowski, 1995). Additionally, Ordered Weighted 

Averaging (OWA) can be employed to assign importance and order to attribute values as 

weights in a dataset that extend and generalize the other methods used in creating land-
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use suitability maps (Malczewski, 2004). These various methods and approaches provide 

important context and considerations for the design of the GeoPlanner application and the 

way it classifies data and presents that data to the user.  

2.3 Automating the Classification Process 

Automating the classification of thematic rasters has been the subject of significant 

research and development efforts for several decades as organizations have undertaken 

the task of processing large datasets of remotely sensed imagery. Much of this effort has 

been directed at classifying physical features, such as topography and landform elements, 

through a combination of image processing procedures that consider variables such as 

location, elevation, slope, and surface texture (Iwahashi & Pike, 2007; Dragut & 

Blaschke, 2006). Other projects have explored using the shared characteristics of similar 

features to categorize man-made structures, such as building complexes and schools 

(Wilson, 2007). This previous work provides an extensive body of knowledge that 

informed the direction and approaches used in automating the classification of thematic 

rasters for the GeoPlanner application. 

2.3.1 Classification Methods 

Fuzzy classification of datasets, which contain multiple classes, is preferred over Boolean 

classification methods because it provides geodesigners a more realistic perspective by 

being able to consider all of an area’s characteristics, define the extent of suitability, and 

differentiate between ‘somewhat suitable’ and ‘highly suitable’ locations (Hall, Wang, & 

Subaryono, 1992).  
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2.3.2 Determining the Best Grid Resolution 

The grid resolution, which is determined by the raster’s cell size, plays an important 

role in the ability of the weighted overlay tool to produce accurate and useful composite 

maps. As a dataset is being processed in preparation for inclusion in a weighted overlay 

service, the size of the raster’s cells can have a significant impact on the required 

processing power and disk space. Smaller cell sizes are associated with high resolution 

rasters, and they tend to demand more computation power to process and take up more 

disk space with larger file sizes. Conversely, a raster with the same extent but a larger cell 

size will require less computing power and have a smaller file size. There is no ideal cell 

size or grid resolution; instead, when all factors are considered, a range of suitable 

resolutions, or cell sizes, can be employed.  

High resolution rasters with small cell sizes typically represent more data for a given 

area than a coarser raster with large cells covering the same extent. Aggregating data by 

using a large pixel size leads to a coarser grid and the potential for critical data loss. 

When high resolution rasters are resampled to a larger cell size, there is some level of 

data loss, and details are obscured by combining and averaging, in one way or another, 

the values that were previously being represented in the finer raster grid. Conversely, 

downscaling to a smaller pixel size in a finer grid can increase file size and the required 

computational power without necessarily improving the quality of the final composite 

map (Hengl, 2006). However a consideration of just the processing and storage demands 

ignores the purpose of using rasters in the first place. The benefits and shortcomings of 

both small and large pixel sizes make selecting an appropriate grid resolution a challenge 

for an automated workflow where multiple input datasets with different grid resolutions 

will need to be converted to the same pixel size. 
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In this project, multiple strategies were considered to fully automate the task of 

determining the most suitable cell size, but due to the inherent complexities and 

compromises associated with the decision, it was determined that this selection should be 

made by the user. To simplify this choice, a number of cell size calculation and selection 

guidelines were evaluated. For example, Esri’s recommended method of calculating cell 

size by dividing the shortest extent of the raster by 250 was determined to be an overly 

simplistic equation that failed to produce meaningful cell sizes. Other guidelines 

recommended selecting a cell size as a function of the map scale or data resolution. 

Waldo Tobler, for instance, proposed a simple formula based the smallest detectable size 

– “Divide the denominator of the map scale by 1,000” and then divide that number by 2 

to reach the resolution (Tobler, 1988). The idea of referencing the map scale of the raster 

is a sound principle, but the cell sizes produced by this formula are too coarse for many 

geodesign scenarios.  

A variation of this concept that considers both map scale and the maximum location 

accuracy was found to produce a more suitable range of cell sizes. To address this issue, 

Hengl (2006) suggests using the scale of the dataset and the maximum location accuracy 

(MLA) to calculate grid resolution. The MLA for typical datasets ranges from 0.1 mm for 

digitally produced maps to 0.25 mm for maps produced by analog methods (Rossiter & 

Hengl, 2002; Vink, 1975). By taking the product of the dataset’s scale and the MLA, a 

reasonable pixel size for the dataset can be calculated 

P ≥ SN • MLA = SN • 0.00025 or P ≥ SN • MLA = SN • 0.0001 

where P is the grid resolution (pixel size), SN is the scale number, and MLA is the 

maximum location accuracy (Hengl, 2006). This method of calculating grid resolution 
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offers an acceptable compromise that limits information loss from aggregation while 

ensuring the output dataset will not be needlessly large in terms of file size. The 

Maximum Location Accuracy method was determined to provide the best cell size 

recommendations for geodesign applications, and the values from Table 2.1 were added 

as dropdown selections for the tool’s second input parameter. 

 Cell Size Values  

Scale Name 
Map 

Scale  

Cell Size 

(meters) 
Description 

State (Large) 6,000,000 600 600 (Large State - 1:6,000,000) 

State (Medium) 3,000,000 300 300 (Medium State - 1:3,000,000) 

Counties 1,500,000 150 150 (Counties - 1:1,500,000) 

County 750,000 75 75 (County - 1:750,000) 

Metro Area 320,000 32 32 (Metro Area - 1:320,000) 

Cities 160,000 16 16 (Cities - 1:160,000) 

City 80,000 8 8 (City - 1:80,000) 

Town 40,000 4 4 (Town - 1:40,000) 

Neighborhood 20,000 2 2 (Neighborhood - 1:20,000)  

Block Group 10,000 1 1 (Block Group - 1:10,000) 

Street 5,000 0.5 0.5 (Street - 1:5,000) 

2.4 Summary 

Many of the tools and practices used by modern day geodesigners were pioneered and 

refined by land use planners and other designers. These academics and professionals 

recognized early on the value of leveraging computers to assist in complex MCDM 

processes. In particular, weighted overlay analysis has been incorporated into geographic 

information systems to assist in land-use suitability assessments. Recent research related 

to classification methods and determining grid resolutions informs the way an automated 

raster classification workflow could produce useful output datasets. In the next chapter 

these concepts are applied in the system analysis and design of an automated raster 

classification workflow. 
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Chapter 3  – Systems Analysis and Design 

This chapter describes the approach that was taken to address the issues with the 

weighted overlay service creation workflow. Section 3.1 details the problems with the 

original weighted overlay service creation workflow. Section 3.2 describes the functional 

and nonfunctional requirements that shaped the final tools. Section 3.3 outlines the 

conceptual system design. Section 3.4 introduces the project plan that was initially 

implemented at the beginning of this project. 

3.1 Problem Statement 

The GeoPlanner for ArcGIS application has been designed with a focus on typical 

geodesign and land-use planning workflows, emphasizing the analysis, assessment, and 

collaborative aspects of the process. One of the key features for assessing land-use 

suitability in GeoPlanner is the weighted overlay analysis modeler. Weighted overlay 

analysis includes reclassifying the rasters to a common scale, ranking the class values in 

each raster, assigning each raster a respective weight as a percentage, and then overlaying 

the rasters on top of each other and calculating the total summed value for each cell in an 

output raster. This output raster is then used to determine each raster cell’s suitability 

service, hosted on ArcGIS Online as “weighted overlay services,” to produce suitability 

models.  

Esri has created and maintains a number of these weighted overlay services for 

general usage. And for specific design scenarios, users also have the ability to build their 

own weighted overlay services with their own data. However, the process of creating a 

custom weighted overlay service is complex, requiring access to a suite of advanced 
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geoprocessing tools, a high level of GIS expertise, and domain-specific knowledge, all of 

which introduce significant barriers to the typical GeoPlanner user. This is a problem 

because it conflicts with one of the core purposes of the GeoPlanner application – 

“GeoPlanner is designed with the intent of being quick to learn and easy to use by a wide 

range of non-GIS users” (Esri, 2016). This project addresses this problem by automating 

and simplifying the most complex steps in the weighted overlay services creation 

process. 

The weighted overlay service creation workflow is composed of four processes: 

A – Prepare the Input Dataset; B – Classify the Raster Dataset; C – Create the Mosaic 

Dataset; and D – Create the Weighted Overlay Service. Of these four processes, the first 

two, preparing the input dataset and classifying the resulting raster dataset, present the 

greatest challenges to GeoPlanner users and represents the majority of the effort required 

to complete the workflow.  

Process A – Prepare the Input Dataset includes a number of steps requiring the user to 

transform all datasets into the same projection, convert any vector data into rasters, 

standardize all cells to an appropriate and uniform size, select a resampling method, 

define the extent of their project, and address any NoData values or irregularities. The 

resulting rasters must all have the same cell size, projection, extent, and be saved to the 

same file type, geoTIFF.  

Process B – Classify the Raster Dataset requires users to classify their data by first 

determining a suitable classification method and number of classes for their analysis, then 

calculating the value ranges for each class. When the value ranges have been calculated, 

the user must define the minimum and maximum values for each class by manually 



17 

entering a comma-delimited string in a custom Python tool dialog to configure the raster 

fields. Output values, range labels, and NoData ranges must also be determined and 

entered by hand. At the end of this process, all of the user-entered parameters are written 

to an XML file that is associated with the input raster dataset. Any errors in this process 

are typically difficult to identify and prevent the weighted overlay service from being 

created at the end of the workflow. 

3.2 Requirements Analysis 

The technical requirements of this project are framed in part by the geoprocessing tools 

used to prepare and classify the datasets and their system environments. To start with, as 

a web application, GeoPlanner for ArcGIS is designed to be accessed through a web 

browser, such as Internet Explorer, Chrome, Firefox, or Safari, on a computer with a 

high-speed internet connection. In addition, the Weighted Raster Overlay Service 

(WROS) toolset and the two new processing tools, as custom Python tools built with the 

ArcPy site package, require ArcGIS 10.3 for Desktop with the Spatial Analyst extension. 

Publishing the mosaic dataset as an image service and then hosting it as a weighted 

overlay service on ArcGIS Online requires access to ArcGIS 10.3 for Server with the 

Image Extension for Server and an ArcGIS Online organizational account. These 

software and system platform requirements together make up the environment necessary 

to build and run the new tools that have been developed for this project. 

At the request of the project’s client, these two new tools were developed in a custom 

Python toolbox with Esri’s ArcPy site-package for compatibility with the existing WROS 

toolset. The primary requirement for the first tool, A – Prepare the Dataset, was to 

process a variety of input datasets in preparation to be classified, mosaicked, and the 
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shared as an image service via ArcGIS for Server. The requirements for this tool are 

documented in Table 3.1. 

Table 3.1 Requirements for Process A: Prepare the Input Dataset 

Process Requirement Functional/Nonfunctional 

Allow the input of vector and raster datasets of various 

file types. 

Functional 

Determine the input data type. Functional 

Convert any input vector datasets into raster datasets.  Functional 

Repair input vector datasets by deleting any null 

geometry. 

Functional 

Assign a standardized cell size to output datasets. Functional 

Assist users in selecting an appropriate raster cell size 

based on the scale of their design projects. 

Non-functional 

Assist users in selecting an appropriate resampling 

method based on the input data type. 

Non-functional 

Provide an option to clip or mask the input dataset to 

the extent or boundary of the user’s design project. 

Functional 

Project the input dataset to Web Mercator (as required 

by the GeoPlanner for ArcGIS application). 

Functional 

Save the output raster as a geoTIFF. Functional 

Provide well documented tool help for the user. Non-functional 

Run validation rules to confirm that required 

parameters have been filled out correctly.  

Functional 

The primary requirement for the second tool, Classify the Raster Dataset, was to help 

the user configure the input raster fields with the classification information needed to 

group, label, and rank the dataset’s value ranges. The requirements for this tool are 

described in Table 3.2. 
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 Requirements for Process B: Classify the Raster Dataset 

Process Requirement Functional/Non-functional 

Restrict tool input to only accept geoTIFF rasters. Functional 

Provide the ability to classify the input rasters by equal 

intervals, quantiles, or unique values. 

Functional 

Assist users in selecting an appropriate classification 

method based on their dataset and design project. 

Non-functional 

Provide the ability to select the number of classes that 

are created in the classification process. 

Functional 

Assist the user in selected the appropriate number of 

classes based on their dataset and design project. 

Non-functional 

Automatically label the new classes through 

recommended defaults and field mapping. 

Functional 

Provide a way for users to add optional information 

such as layer description, metadata, and source URL. 

Functional 

Produce an output XML with all the required raster 

field configurations. 

Functional 

Associate the output XML with the original raster 

input. 

Functional 

Provide well documented tool help for the user. Non-functional 

Run validation rules to confirm that required 

parameters have been filled out correctly.  

Functional 

3.3 System Design 

The objective of this project was to improve the custom weighted overlay service 

creation workflow by developing two new tools to simplify and automate the 

classification of thematic rasters. These two new tools integrate with the existing WROS 

tools in the context of the full weighted overlay service creation workflow. A conceptual 

model of the overall workflow is depicted in Figure 3.1. The solid containers in the left 
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column represent the various datasets (input, intermediate, and output) that are pushed 

through the workflow. The outlined containers in the right column represent the four 

processes, or steps, that make up the workflow. The tools developed for this project 

replace the existing tools for the first of these two processes, preparing and then 

classifying the input dataset. The final row on the bottom shows the final step where the 

workflow produces a weighted overlay service that is ready to be consumed in the 

GeoPlanner application. Following the workflow’s conceptual model diagram, each of 

the processes is modeled and described in greater detail.  

 

 Weighted Overlay Service Creation Workflow 
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3.3.1 Prepare the Input Dataset 

The first process in the workflow prepares the input dataset to be classified and ensures 

that it meets the data format, metadata, and raster field configuration requirements for a 

weighted overlay service. The individual steps in this process utilize ArcGIS for 

Desktop’s geoprocessing capabilities and include projecting the dataset to a common 

projection, clipping the it to the extent of the design project to reduce file size, converting 

any vectors into a raster, resizing raster cells if needed, addressing any NoData values or 

data gaps, and saving the output as a geoTIFF. This process was simplified by combining 

the individual steps in the new Prepare the Input Dataset tool. The process and its steps 

are mapped out in Figure 3.2.  

 

 Process A: Prepare the Input Dataset Tool 
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3.3.2 Classify the Raster Dataset 

When the source dataset has been cleaned up, the prepared raster needs to be classified 

with ranks and labels assigned to each new class in preparation for it to be converted into 

a weighted overlay service. In the second workflow process, the first step is to determine 

whether the input raster’s values are nominal or continuous. Based on this data type, a 

classification method is recommended – Equal Intervals, Quantiles, or Unique Values. 

After the classification method has been chosen, the number of classes to be created is 

selected. With the classification method and number of classes defined, the raster is 

classified by calculating the raster statistics, break values, and class ranges. The next step 

adds the class labels and default ranks to these new classes, and in the final step all of this 

information is written to an XML file that is associated with the input raster. This process 

was simplified and automated by combining and refining the individual steps in the new 

Classify the Raster Dataset tool. The process and its steps are mapped out in Figure 3.3. 

 

 Process B: Classify the Raster Dataset Tool 
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3.3.3 Create the Mosaic Dataset 

The next process in the weighted overlay service creation workflow is to build the mosaic 

dataset. All of the prepared rasters, outputs from the first process, to be included in the 

weighted overlay service are input into the Convert Raster to a Mosaic Dataset tool, an 

existing tool in the WROS toolset. This process combines the rasters, ensures that the 

dataset metadata has been formatted correctly, and produces a copy of the data for 

backup storage on the user’s local machine or network (Figure 3.4). 

 

 Process C: Create the Mosaic Dataset 

3.3.4 Create the Weighted Overlay Service 

The final process in the workflow is to make the mosaic dataset available on ArcGIS 

Online as a weighted overlay service. The mosaic dataset is first published as an image 

service through ArcGIS for Server. This image service is then added to an ArcGIS Online 

for Organizations account. Metadata tags added in the classification and mosaic dataset 

creation processes allow this image service to be consumed as a weighted overlay service 

in GeoPlanner for ArcGIS. Figure 3.5 shows the final steps in the workflow – the mosaic 
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dataset is uploaded to the ArcGIS Online platform and made available inside the user’s 

organization for creating new weighted raster overlay models in GeoPlanner. 

 

 Process D: Create the Weighted Overlay Service 

3.4 Project Plan 

The central challenge of this project was the development of two new custom Python 

tools. Based on this goal, a software development approach was adopted, and the project 

plan followed a general framework focused on three distinct phases – design, develop, 

and deploy. 

3.4.1 Design Phase 

The first phase of this project was the design phase. During this phase the general outline 

of the work was defined and the work breakdown structure table was created. The design 

phase included the following tasks: 

Task 1 - Conduct background research on the history of land suitability assessment, 

the application of weighted overlay analysis, and the theory and methodology behind 

thematic raster classification.  
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Task 2 – Gather and define the project requirements through client meetings and 

feedback from GeoPlanner users. Map out the current GeoPlanner workflows and 

become more familiar with the Weighted Raster Overlay Services toolset. 

Task 3 - Design an automated workflow and user interface that includes all of the 

requirements and the new thematic raster classification recommendations. 

3.4.2 Develop Phase 

The next phase of the project was the develop phase. This phase was used to build the 

new custom Python tools for the first two processes of the weighted overlay service 

creation workflow. This included all of the coding and integration into both the existing 

WROS toolset and the ArcGIS platform. Specifically, the develop phase included the 

following tasks: 

Task 1 - Develop a web-based workflow in Python that processes input datasets by 

converting them into a geoTIFF format and then adds the geoTIFF raster to a mosaic 

dataset.  

Task 2 – Build and integrate a mosaic dataset configuration script into the workflow 

to configure the required parameters and add them to the output. 

Task 3 - Automate the publication of newly configured mosaic datasets to ArcGIS 

Online as a weighted overlay service.  

Task 4 - Develop a solution that recommends thematic raster classifications based on 

the data type and geodesign objectives. 
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3.4.3 Deploy Phase 

The deploy phase was the final phase in the project plan. In this phase, the final solution 

required extensive testing before it could be approved by the client and integrated into the 

GeoPlanner application’s WROS toolset. The new tools were initially be tested with 

synthetic data created for the purpose of verifying the functionality of the solution. After 

testing with synthetic data, further testing with real-world sample data from the project 

client and other sources confirmed that the final solution successfully met the project’s 

objectives and the client’s expectations. The results of this testing was documented to 

record any errors, bugs, or needed enhancements. Based on this documentation, revisions 

and fixes were be developed and added to the tools. The following tasks are associated 

with the deploy phase: 

Task 1 – Test each tool independently; then test the tools together; and at the end, test 

the complete workflow with synthetic data.  

Task 2 – Test each tool independently; then test the tools together; and at the end, test 

the complete workflow with sample data provided by the client. 

Task 3 – Document bugs and enhancement requests, prioritize these tasks, and 

develop fixes and resolutions them. 

Task 4 – Deliver the tools, as the final solution, to the client and then integrate it into 

the existing GeoPlanner code as a functionality update.  

Task 5 – Create and deliver product documentation for both the end users and the 

client’s team.  
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3.4.4 Work Breakdown Structure 

As part of the design phase, a work breakdown structure was created to document the 

phases of the project plan, the tasks associated with each phase, and the estimated time 

each task would require (Table 3.3). 

 Work Breakdown Structure 

 Task Title 
Start  

Month 

End  

Month 

Labor  

Hours 

1 Design Phase    

1.1 
Research land suitability assessment, weighted 

overlay analysis, and classification methods. 
1 2 40 

1.2 
Define project requirements and map the 

weighted overlay service creation workflow. 
1 2 20 

1.3 
Design an automated workflow and user interface 

that includes raster classification tools. 
2 3 20 

2 Develop Phase    

2.1 
Develop a web-based workflow in Python that 

processes and classifies input datasets. 
3 4 40 

2.2 
Build and integrate a mosaic dataset 

configuration script into the workflow. 
4 5 60 

2.3 
Automatically publish new mosaic datasets to 

ArcGIS Online as weighted overlay services. 
4 5 20 

2.4 
Build a solution that recommends thematic raster 

classifications. 
4 6 60 

2.5 Develop a user interface for the entire workflow. 5 6 20 

3 Deploy Phase    

3.1 
Test the solution and workflow with synthetic 

data. 
6 6 8 

3.2 
Test the solution and workflow with client 

supplied “real life” data. 
6 6 8 

3.3 

Deliver the solution to the client and integrate the 

solution into the existing GeoPlanner code as a 

functionality update. 

6 7 20 
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3.4 

Create and deliver product documentation for the 

end user that describes how to use the new 

functionality. 

4 7 20 

3.5 

Create and deliver backend documentation for the 

client that describes how the solution was 

designed and how code is organized. 

4 7 20 

3.4.5 Project Plan Analysis 

Over the course of the project, the project plan and work breakdown structure were useful 

in providing a framework for the tasks that needed to be completed and the general order 

and priority these tasks should hold in relation to each other. However, from the 

beginning, the project did not proceed as initially expected. Some of the changes were 

predictable; for example, under estimations of the time and effort required to finish 

certain tasks led to compounding tasks as new work was started before previous tasks 

were fully completed. The most significant impacts on the original project plan came 

from developing a better understanding of the client’s needs, the limitations of the 

ArcGIS and GeoPlanner platforms, and the experiences of learning to code in a new 

scripting language. This added experience, insight, and information required changes to 

the original project plan – the timeline was extended, the tool requirements were 

modified, and the expectations for the final deliverable changed. While this presented a 

number of challenges, it resulted in the delivery of a final solution that works with the 

existing workflow and better meets the client’s and end-users’ needs. 

3.5 Summary 

The objective of the project was to improve the existing workflow for creating new 

weighted overlay services to be used in the GeoPlanner for ArcGIS application. An 

assessment of the workflow found that two of the four processes in the workflow were 
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too difficult and complex for the average end-user. A solution was proposed to address 

these issues, and a project plan was created that provided a framework for the 

development of two new tools that would simplify and automate the most challenging 

aspects of the weighted overlay service creation workflow. This project plan followed the 

general guidelines of software development and was divided into design, development, 

and deployment phases. Throughout the course of the project, the project plan evolved as 

new information and experience necessitated changes to the originally proposed solution. 

At the conclusion of the project, two new tools that met the client’s needs and 

expectations were delivered.
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Chapter 4  – Database Design 

In this chapter, the database design of the project is reviewed. Section 4.1 describes the 

conceptual data model. Section 4.2 covers the logical data model. Section 4.3 describes 

the data sources. Section 4.4 reviews the data collection sources. Section 4.5 describes 

the data clean up processes. And the chapter concludes with a summary of these efforts in 

Section 4.6. 

4.1 Conceptual and Logical Data Models 

The efforts of this project were primarily engaged in the development of two new custom 

Python tools. These two tools were designed to integrate into a weighted overlay service 

creation workflow as part of a complete geographic information system As such, there 

was no data component in the final solution or included in the client deliverables. 

However, as the two tools were required to prepare and classify input datasets, a data 

model was required for the synthetic and real-world data that was used in the 

development and testing of the tools’ functionality.  

The Prepare the Input Dataset tool’s conceptual data model defines the input dataset, 

its influence on the processing steps, the changes to the dataset at each step, the output 

raster dataset, and the required characteristics at each step in the process. The tool’s input 

accepts both vector and raster datasets. Depending on the data type, vector or raster, the 

input dataset is processed through a series of steps that transform it into an output raster 

with uniform characteristics that match the other raster datasets to be included in the 

mosaic dataset (Figure 4.1). 
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 Prepare the Input Dataset Tool - Conceptual Data Model 

The output of the process is a prepared raster dataset with the following characteristics: 

 Saved in a geoTIFF format. 

 Projected to Web Mercator (Auxiliary Sphere). 

 Clipped to the design project’s boundaries or extent. 

 Resampled to a uniform cell size. 

 Optimized for performance by building pyramids and removing features with no 

associated spatial data. 

These characteristics are required for each raster that is added to the weighted overlay 

service because each raster layer in the service must align with every other raster layer to 

produce accurate results. The tool does not modify the original input dataset. The tool 

creates a new dataset as its output. 

The Classify the Raster Dataset tool’s conceptual data model defines the input 

datasets, the assessment and classification process, and the relationship between the 

output file and the input dataset. The raster prepared by the first tool is the input for this 

tool. The cell values of this raster are used to calculate new classes. For the output, these 

classes, and other information, are written to a new file that is associated with the input 

raster. The conceptual data model for this process is displayed in Figure 4.2. 
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 Classify the Raster Dataset Tool - Conceptual Data Model 

The output file must include the following information: 

 File name of the associated raster dataset 

 Input ranges of the new classes 

 Output values, or weights, for each of the new classes 

 Range labels for each of the new classes 

 Description of the dataset 

The prepared raster dataset from the first tool and the associated classification 

information file created by the second tool are stored together on the user’s system. Both 

files must be kept together and be stored in a location accessible to the mosaicking tool 

used in the third process.  

The logical data model for this project was designed to accommodate a wide range of 

file types for testing data. The top level file folder, labeled “Data”, contains file 

geodatabases, various raster image files, shapefiles, and other data types. Each 

geodatabase represents datasets collected for specific design scenarios, such as the South 

Campus Train Station Land Planning project, a new water treatment facility suitability 

study, landform classification sample data, and so forth. These geodatabases include both 

vector and raster datasets as well as other sample data, such as annotation, networks, and 

tables. The raster images and shapefiles represent many different file formats, pixel 

depths, cell sizes, projections, data types, extents, and NoData value ranges. 
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4.2 Data Sources 

A wide variety of synthetic sample datasets and real-world datasets were used in the 

development and testing of the Prepare the Input Dataset and Classify the Raster Dataset 

tools. These datasets were acquired from a number of sources including the project client, 

the University of Redlands Geodesign Studio, the City of Redlands, USGS image 

services, and ArcGIS Online. The objective was to collect a representative sampling of 

the various file formats, data types, and raster themes that are typically used in weighted 

raster overlay analyses. The datasets included in Table 4.1 are a sample of the inputs used 

in the development and final acceptance testing of these new tools. Note the variety of 

data types, formats, pixel depths and pixel types.  

 Project Datasets and Characteristics 

ID Name Data 

Type 

Format Nominal/ 

Continuous 

Pixel Depth and 

Type 

1 soiltype.tif raster File System 

Raster -TIFF 

Nominal 8-bit  

Signed integer 

2 inyo_landcvr raster File System 

Raster - GRID 

Nominal 8-bit  

Unsigned integer 

3 LandformClassification raster File 

Geodatabase 

Raster 

Continuous 16-bit  

Signed integer  

4 whitelev_20 raster File System 

Raster - GRID 

Nominal 8-bit  

Unsigned integer  

5 whitelev_int raster File System 

Raster - GRID 

Continuous 16-bit  

Signed integer 

6 RedlandsTerrain.tif raster File System 

Raster -TIFF 

Continuous 32-bit  

Floating point  

7 Zoning.tif raster File System 

Raster -TIFF 

Nominal 32-bit 

Signed integer 

8 SoilTypes vector File 

Geodatabase 

Feature Class 

Nominal N/A 

9 SouthCampus_Trees vector File 

Geodatabase 

Feature Class 

Nominal N/A 
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10 GeneralPlanLines vector File 

Geodatabase 

Feature Class 

Nominal N/A 

11 RedlandsLandUse.shp vector Shapefile Nominal N/A 

12 AnalysisArea.shp vector Shapefile Nominal N/A 

The data sources for GeoPlanner users varies depending on the design scenario, project 

scope, and organizational resources. Dataset characteristics such as scale, projection, and 

format are subject to each user’s needs. Because a weighted overlay service is composed 

of multiple dataset layers, it is important that every dataset included in the model shares 

the same projection and that scale, resolution, and format have been considered in the 

workflow. The weighted overlay service creation workflow has been designed to accept a 

wide range of input dataset. To accommodate this flexibility, these two new tools also 

have to able to accept a wide range of input datasets. While there are data type 

restrictions in place, the most commonly used data formats can be input and processed by 

the Prepare the Input Dataset tool. 

4.3 Data Collection Methods 

Collecting a large and diverse assortment of datasets was key to satisfying some of the 

project’s core objectives. These datasets were collected from a variety of sources. The 

project client provided a number of sample datasets that represent typical inputs for the 

weighted overlay creation workflow. To further expand the collection, datasets were 

sourced from geodesign related projects undertaken by the faculty and students of the 

University of Redlands Masters of Science in GIS program. This effort was completed by 

identifying, searching, and obtaining a subset of more obscure datasets with uncommon 

characteristics and formats. The full complement of datasets was used extensively in the 
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development and testing of the Prepare the Input Dataset and Classify the Raster Dataset 

tools.   

4.4 Data Scrubbing and Loading 

In many cases, data obtained from external sources require some level of modification or 

clean up before they can be included in the primary database. For the purposes of this 

project, however, dissimilar datasets were preferred. The design of the new tools included 

a requirement that they be able to process a wide range of dataset types. Datasets that 

returned exceptions or errors when run through the tools were not cleaned up; they were 

used as a standard to meet. In a few cases, datasets that initially worked perfectly with the 

tools were modified in ways that were intended to break or crash the tools. The process of 

assessing the properties and attributes of each dataset played a significant role in the latter 

stages of the tool development as enhancements were added to make the tools more 

robust and flexible. 

4.5 Summary 

The success of this project was related to the collection of various datasets that were used 

in the development and testing of the Prepare the Input Dataset and Classify the Raster 

Dataset tools. The project’s database was designed to meet the needs of the workflow as 

described and modeled in this chapter. The datasets were collected from the project 

client, resources in the Masters of Science in GIS program, and external sources related 

to geodesign and land-use planning. Modeling the workflow processes and creating a 

project database informed many of the design decisions made in the software 

development phase of this project and ensured that the final tools met the client’s needs. 
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Chapter 5  – Implementation 

Chapter 5 describes the implementation of the project and the development of two 

custom Python tools. These tools were built to facilitate the first two processes in the 

weighted overlay service creation workflow - Prepare the Input Dataset and Classify the 

Raster Dataset (Figure 5.1). The two tools were developed in Python 2.7 with the ArcPy 

site package. To improve the workflow processes, a number of individual steps were 

simplified by adding validation rules, default best practices, and expert recommendations 

to automate the new tools. The process for developing each of these tools and their 

functionality is covered in detail. The decisions and rational behind the automated 

components of these tools is also presented. 

 

 Input Dataset Processing through the Project Tools 

5.1 Prepare the Input Dataset 

The Prepare the Input Dataset tool prepares the user’s input dataset for the raster 

classification process. This tool produces an output raster that is correctly projected and 

repaired and then clipped to the extent of the design scenario with a defined cell size and 

pyramids to improve performance. The Prepare the Input Dataset tool was designed to 
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simplify the processing of multiple datasets by making it easy to standardize the output 

dataset’s characteristics and attributes.  

There are six parameters for the tool: Input Dataset, Select a Cell Size, Select a Raster 

Value Field, Select a Resampling Method, Select a Mask for the Design Scenario, and 

Output Raster Name and Location (Figure 5.2). The input, output, and cell size 

parameters are required, and the clipping mask parameter is optional. The Select a Raster 

Value Field and Select a Resampling Method parameters are enabled and disabled 

depending on the input data type. 

 

 Prepare the Input Dataset Tool 

5.1.1 Step 1 – Input Dataset 

The Prepare the Input Dataset tool has been configured to accept a range of inputs. These 

inputs include raster datasets and feature datasets. Because this tool is built on the 

ArcGIS platform, the supported raster data formats are dependent on Esri’s extensive 

raster list. These raster formats include: Bitmap (*.bmp), Standard Raster Product 
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(*.img), File Geodatabase (*.gdb), Graphic Interchange Format (*.gif), Joint 

Photographic Experts Group (*.jpg or *.jpeg), Portable Network Graphics (*.png), and 

many more. For the vector type inputs, the supported feature datasets include shapefiles 

and feature classes with polygon and line geometry.  

When the tool runs, the first step is to determine if the input is a vector or raster by 

using the arcpy.Describe() function. If the input is a feature class, the same function is 

used to verify that the specific data type is supported (polygon or line data). For example, 

if a vector with point geometry is input, the validation step returns an error message, 

“Input feature classes must have line or polygon geometry.” It then instructs the user to 

modify the input dataset. Depending on the input data type, the Select a Raster Value 

Field and Select a Resampling Method parameters are either enabled or disabled (Figure 

5.3). The Select a Raster Value Field parameter is only enabled when the input is a vector 

dataset. And the Select a Resampling Method parameter is only enabled when the input is 

a raster dataset.  

 

 Parameter 1: Input Dataset 



40 

5.1.2 Step 2 – Project the Input Dataset 

After the input dataset from the first parameter has been described and validated, the tool 

then projects the dataset. This task is performed for both vector and raster input datasets 

using the arcpy.Project_management() and arcpy.ProjectRaster_management() functions 

respectively. This task is run before any other geoprocessing tasks to minimize distortion 

and errors that could be introduced by running it later in the dataset preparation process.   

As an application on the ArcGIS Online platform, the GeoPlanner for ArcGIS 

requires all datasets, including weighted overlay services, to be projected in WGS 1984 

Web Mercator (Auxiliary Sphere). Requiring any one projection to be used in all cases is 

problematic, and the Web Mercator projection, in particular, presents a unique set of 

challenges including increasingly exaggerated distortions moving from the equator 

toward the poles. This is a known limitation of the GeoPlanner application and the results 

of the application’s weighted raster overlay analysis models. The client has deemed this 

as an acceptable limitation because GeoPlanner has been positioned and designed as a 

tool for rapid and iterative design, analysis, and evaluation. Additionally, weighted raster 

overlay analysis, by its nature, is not a precise tool. It incorporates many subjective value 

judgments and produces naturally fuzzy results. Initial ideas and designs created and 

proposed in GeoPlanner are typically recreated by a GIS professional in ArcMap or 

ArcGIS Pro with more exacting standards. 

For input raster datasets, the projecting process step also requires resampling the 

raster grid cells to match the selected cell size. The Prepare the Dataset tool provides two 

resampling options, Nearest Neighbor and bilinear, as the fourth parameter in the tool’s 

user interface (UI). When a raster is entered as the input for parameter 1, the Select a 

Resampling Method parameter is enabled, and the Nearest Neighbor option is selected by 
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default (Figure5.4). The nearest neighbor resampling method assigns cell values to the 

output raster based on the value of the corresponding closest cell from the input raster. 

This method does not create any new values. It is selected by default because it is suitable 

for both nominal and continuous datasets. The bilinear resampling method interpolates 

cell values by averaging the values of the four nearest cell centers. The Bilinear 

resampling method can be used for continuous datasets. 

 

 Parameter 4: Select a Resampling Method 

5.1.3  Step 3 – Convert Vector to Raster 

After the input vector dataset has been projected, it is almost ready to be converted to a 

raster. Prior to rasterization, the tool cleans up the vector dataset by deleting any features 

with null geometry through the arcpy.RepairGeometry_management() function. When 

the vector dataset has been prepared, the vector is converted into a raster. This step 

requires two parameter inputs from the user: a cell size and a raster value field. 
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The cell size for the new raster to be created is selected as the second parameter in the 

tool’s UI (Figure 5.5). The raster’s cell size plays an important role in both the process of 

creating weighted overlay services and in the quality of the weighted raster overlay 

analysis. All of the raster layers included in a weighted overlay service must have cells of 

the same size. If the cell sizes are not consistent with each other, then the data values will 

not line up and the resulting analysis model would be subject to flaws and error.  The 

Prepare the Input Dataset tool is designed to help ensure that all the raster layers can be 

processed to have the same cell size.  

 

 Parameter 2: Select a Cell Size 

The raster value field is selected as the third parameter in the tool’s UI (Figure 5.6). 

This parameter is only needed for vector inputs and is disabled for raster inputs. For this 

parameter, the user is instructed to select the attribute field that should be used to assign 

values to the raster cells during the vector to raster conversion step. Because various 

input datasets represent a wide range of phenomena and there is no standard for field 
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names, this parameter cannot be automatically selected by the tool; the user must select 

which field should be used to assign values in the new raster grid. 

  

 Parameter 3: Select a Raster Value Field 

5.1.4 Step 4 – Clip the Area of Interest 

The Prepare the Input Dataset tool is designed to process datasets from a variety of 

sources. When datasets come from different sources, it is uncommon for them to have the 

same boundaries or extent – a requirement for each of the layers in a weighted overlay 

service. The tool accommodates these discrepancies by providing a way for the user to 

clip or mask the raster to a defined area of interest. If the input dataset needs to be clipped 

to a boundary or extent, a feature or raster layer that defines the area of interest for the 

design scenario can be added as the fifth parameter (Figure 5.7). This layer is used in the 

arcpy.sa.ExtractByMask() function to remove any cells outside the defined boundary. 

This step also includes building raster pyramids to improve the processing performance 

throughout the weighted overlay service creation workflow. 
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 Parameter 4: Select a Mask for the Design Scenario 

5.1.5 Step 5 – Output the Prepared Raster 

After the input dataset has been described, projected, rasterized or resampled, cells re-

sized, and clipped, it is ready for the next process in the weighted overlay creation 

workflow. The final step in this tool is to save the prepared raster as a geoTIFF. In the 

last parameter, the user is instructed to select the destination file location for the output 

raster, and give the output a unique name (Figure 5.8). The output must be saved as a 

geoTIFF, so the name must end with the ".tif" suffix. A validation rule checks against this 

requirement and prevents the tool from running until the output meets the criteria. 
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 Parameter 6: Output Raster Name and Location 

The Prepare the Input Dataset tool is designed to walk the user through a series of 

data processing steps that are needed to prepare the input dataset for the next process in 

the weighted overlay service creation workflow – classifying the raster dataset.  

5.2 Classify the Raster Dataset 

The Classify the Raster Dataset tool classifies the input raster dataset and adds the 

weighted overlay data required by the GeoPlanner for ArcGIS application. The output of 

this tool is written to an XML file that is associated with the input raster for further 

processing in the Create a Mosaic Dataset process of the weighted overlay service 

creation workflow. The Classify the Raster Dataset tool was designed to simplify and 

automate the process of selecting a classification method, calculating the new classes, 

labeling and weighting the classes, and then recording that information in a properly 

formatted XML file.  

There are seven parameters for the tool: Input Raster, Classification Method, Number 

of Classes, Field for Class Labels, Description, Metadata, and URL (Figure 5.9). The 
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input, classification method, number of classes, and the class label field are required 

parameters, and the description, metadata, and URL parameters are optional. Depending 

on the input data type, nominal or continuous, the second, third, and fourth parameters 

have backend logic in place to provide recommended defaults to the user. 

 

 Classify the Raster Dataset Tool 

5.2.1 Step 1 – Input Prepared Raster Dataset and Determine Raster Type 

The first step of the Classify the Raster Dataset tool is to input the prepared geoTIFF 

raster that was produced previously by the Prepare the Input Dataset tool. Because the 

data type for this parameter is set to Raster Layer, this first field only accepts raster files 

(Figure 5.10). Additionally, when a raster is added to this parameter, validation rules 

confirm that the input is a geoTIFF and that it is in the Web Mercator (Auxiliary Sphere) 

projection. Input rasters that do not meet this criteria return this error message: “The 

input raster must be a TIFF. Run this dataset through the 'Prepare the Dataset' tool to 
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prepare it for this tool." This ensures that the outputs of this tool will be compatible with 

the other layers in the mosaic dataset and with the weighted overlay service requirements. 

 

 Step 1: Input the Prepared Raster 

After the raster has been added by the user and validated by the tool, a raster object is 

created in Python to both enable raster statistics calculations and to improve processing 

performance. The tool then determines the pixel type and depth of the raster by running 

the arcpy.GetRasterProperties_management() function, which returns the 

“VALUETYPE” property. The raster value type is a combination of the pixel type (e.g., 

unsigned, signed, or complex) and the pixel depth (e.g., 8-bit, 16-bit, or 32-bit). From this 

value type information, the tool determines whether the input raster represents nominal or 

continuous data based on the most common application of each specific pixel type and 

depth combination. For example, an 8-bit unsigned raster would be considered a nominal 

raster type, and a 32-bit floating point double precision raster would be considered a 
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continuous raster type. This raster type is used in the following steps to recommend 

classification methods and the number of classes to be created.    

5.2.2 Step 2 – Classify the Raster Dataset 

The classification method used to group the input raster’s values has a significant impact 

on the final weighted overlay analysis. The Classify the Raster Dataset tool has been 

designed to improve the weighted overlay service creation workflow in a number of 

ways. First, the tool clearly defines and describes each available classification method by 

outlining the benefits, drawbacks, and their typical applications. Second, the tool 

automatically recommends a classification method based on the raster type. Third, the 

tool streamlines the classification process to facilitate user testing and experimentation by 

iterating between classification methods and the number of classes used. This allows the 

user to determine which classification method best suits the needs of the design project. 

Based on the scope of this project, there are three classification methods available in the 

tool: equal intervals, quantiles, and unique values. Other classification methods, such as 

standard deviation or Jenk’s natural breaks, can also provide useful analytical 

perspectives but were not included in the scope of this project. 

Classifying the raster by equal intervals groups the cell values into classes that 

contain an equal range of values. This method is good for showing different classes when 

there are not great differences between most of the values. This type of classification 

method is straightforward and relatively easy to interpret. When the input is a continuous 

raster, the tool automatically sets the classification method parameter to “Equal Interval” 

and the number of classes to “5” by default. (Figure 5.11). 
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 Select the Classification Method and Number of Classes 

The tool calculates equal intervals by first calculating the class range value, then 

calculating the break point values, and finishes by calculating the class ranges. The class 

range value is calculated by dividing the raster’s value range by the number of classes to 

be created. The first break point is calculated by adding the class range value to the 

minimum cell value. Each subsequent break point is determined by adding the class range 

value to the previous break point value. These break point values are appended to a list 

that is fed into the next step (Figure 5.12).  

 

 Python Code for Calculating the Break Points 
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For the last step of the process, the class ranges are defined by adding the minimum 

and maximum values for each class to a new class ranges list based on the raster’s 

minimum and maximum values and the break point values list (Figure 5.13). When this 

list is interpreted by the weighted overlay service, the class ranges are defined by 

including the minimum value and excluding the maximum value for each class (a 

minimum inclusive and maximum exclusive approach). This means that the maximum 

value of the first class will be the same value as the minimum value of the next class and 

so on.  

 

 Python Code for Defining the Class Ranges 

The quantile classification method is similar to equal intervals, but instead of equal 

range values, the classes themselves have an equal number of values. In this method, the 

raster’s cell values are distributed into classes that each have an equal number of values, 

so every class is approximately the same size. Quantiles are useful in mapping and 

visualization for showing an equal representation of each class across the range of values. 

This classification method is also a suitable option for continuous raster datasets.  

The process for calculating quantiles in the tool is similar to the equal intervals 

method with the biggest difference being the way the break points list is created. First, a 

raster array is created to capture all of the dataset’s values in a new list. This list of values 



51 

is then input into a series of np.percentile() functions (from the NumPy site package) that 

have been configured to return quantile values for each potential class range from one to 

nine classes. These quantile values are then used as the break point values that are then 

used to define the class range values in the same manner as the equal intervals method.   

The third classification method in the Classify the Raster Dataset tool is the unique 

values approach. This method creates a class for each unique value in the input raster 

dataset. This option is only available to integer type rasters because creating a class for 

each unique value in a float type raster would, in the majority of cases, produce more 

classes than would be useful or meaningful in a weighted raster overlay analysis. The 

unique values approach is good for discrete datasets where there are clear boundaries or 

nominal features. When the tool’s input is a nominal dataset, the unique values 

classification method is automatically selected and the Number of Classes parameter 

defaults to the number of unique values in the dataset. 

The raster classification step is the core of this tool. The tool significantly improves 

the process by simplifying and automating the steps to classify, define, and record the 

values for the input raster dataset. The final steps in this process are related the recording 

task and associating related fields and metadata to the input raster dataset. 

5.2.3 Step 3 – Add Related Fields 

In addition to the class range values that are calculated in the second step, there are a 

number of other fields that are added and configured for the raster dataset. These fields 

provide required information, such as the weights for each class (output values) and the 

labels for each class (range labels). There are also optional fields that can be included to 

provide more information about the raster layer, such as the raster description, metadata, 
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and source URL. The Classify the Raster Dataset tool has been designed to accommodate 

the input of all of these fields. 

The required output value field is used to assign weights to each class in the raster 

layer. These weights can range from a scale of 0 to 9 and can be adjusted in the weighted 

overlay modeling UI inside the GeoPlanner application. These weights are used in the 

weighted overlay analysis to emphasize or de-emphasize classes, depending on their 

significance to the overlay model. There is no UI parameter for this field, instead the tool 

automatically assigns each class a default weight of “5.” When the weighted overlay 

service is opened in GeoPlanner, all of the classes have the same weight and the user can 

adjust each class weight as needed.  

The Field for Class Labels parameter is used to define the required range labels field. 

In the weighted overlay service, each class in a layer has a descriptive label. For nominal 

datasets, the class labels are selected from the raster’s attribute table (Figure 5.14).  

 

 Select the Field for Class Labels  
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If Unique Values has been selected as the classification method, the label values in the 

selected field are associated with the corresponding cell values during the Classify the 

Raster step. For continuous datasets, the tool automatically assigns a generic set of raster 

value descriptions (e.g., Low, Middle, High) for the class labels. These labels are used for 

each dataset when the classes are weighted in the GeoPlanner for ArcGIS application 

(Figure 5.15). If the user determines that any of these labels need to be modified, these 

labels can be edited in the output XML file.   

 

 Default class labels for continuous datasets in GeoPlanner 

In addition to the required raster fields, the Classify the Raster Dataset tool, includes 

parameters for the optional description, metadata, and URL raster fields. The Description 

field can be used to describe the raster layer. This text is displayed as part of the raster 

layer information in the weighted overlay service in GeoPlanner. The Metadata field can 

be used to record any metadata associated with the raster layer, such as its source, 
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creation date, limitations, and so forth. If the raster layer was created from a hosted image 

layer, the URL field can be used to link back to the original source.  

5.2.4 Step 4 – Write Data to an XML File 

The final step in the Classify the Raster Dataset process is to write all of the data to an 

output XML file. The data written to this XML file includes the class ranges, weights, 

and labels, as well as any information included in the optional field parameters. This 

XML file is associated with the input raster by assigning a title, or file name, that matches 

the raster. The name of the raster is cleaned up by removing the “.tiff” suffix and adding 

“.aux.wo.xml” to the end. This XML file is automatically saved to the same location as 

the input raster. When the Create Mosaic Dataset process is run, the tool loads both raster 

and XML file together into the mosaic. As a raster layer in the GeoPlanner weighted 

overlay model, the application reads the XML to determine its classes, weights, and 

labels.  

The two tools, Prepare the Input Dataset and Classify the Raster Dataset, simplify the 

weighted overlay service creation workflow for the end user by reducing the number of 

required parameters and automating a number of steps in each process. Additionally, the 

tools reduce the chance of user error by programmatically writing the raster classification 

values and other data directly to the output XML file.  
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Chapter 6  – Results and Analysis 

At the conclusion of this project, two custom Python tools have been developed to 

facilitate the creation of weighted overlay services for the GeoPlanner for ArcGIS 

application. These tools successfully satisfy the core requirements of the project to 

improve the weighted overlay service creation workflow by reducing the number of steps 

and parameters in the UI, by simplifying the front end of the dataset preparation and 

classification processes, and by automating the creation of the output XML file. 

These two tools developed for this project, Prepare the Input Dataset and Classify the 

Raster Dataset, were delivered to the client in February of 2016. The tools met the 

client’s acceptance criteria for functionality and usability and are expected to improve the 

end-user experience for GeoPlanner customers. Because these tools were designed to 

complement the existing WROS toolset, the GeoPlanner for ArcGIS team is preparing 

them for a general release to the public at a date in the near future. The efforts undertaken 

for the project have provided material benefit to the project client and the end-users of the 

GeoPlanner application. The results of the end product, a new weighted overlay service 

and a composite raster as they appear in the GeoPlanner for ArcGIS application, are 

displayed in in Figure 6.1. 
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 Weighted overlay service and composite raster in GeoPlanner 

While ultimately successful, the project presented a host of difficulties and 

challenges. The original expectation for the project was to create a single tool that would 

completely replace the WROS toolset and the weighted overlay service creation 

workflow. However, during the requirements gathering phase and initial tool 

development phase, a number of technical limitations were discovered that made that 

original goal unrealistic. At the same time, a deepening understanding of the workflow 

and its individual processes led to a realization that the most significant challenges for 

end users were in the first two steps. There was little need to revise the two latter steps, 

which are straightforward and seldom present any difficulty to GeoPlanner users. After 

discussing this new understanding with the project’s client and faculty advisor, the scope 

of the project was revised to focus on the most important elements of the workflow, the 

input dataset preparation and classification processes.  
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The actual development of the tools themselves was another significant challenge of 

this project. The project manager started this project with no software development 

experience, so in order to build these tools, Python coding skills had to be learned and the 

entire software development process had to be understood and applied. This required 

learning how to gather, define, and prioritize requirements. To this end, many hours were 

spent searching ArcPy documentation, reading through support forums online, and 

consulting with other Python developers. This experience demonstrated that novice 

software developers can successful in their efforts if they know the right questions to ask 

and where to go find the answers to those questions. 

In the tool development phase, as the tools’ code base started to take shape, 

debugging and troubleshooting skills had to be developed to understand and resolve 

issues that were preventing the tools from executing as designed and expected. Learning 

how to identify errors, and becoming more efficient at quickly fixing them, is key to the 

successfully completing this phase of the project. During the final phase of the software 

development process, testing played an important role in ensuring that the tools could 

handle a variety of different data type and variables. It is easy to feel successful when 

only a narrow subset of data types are ever used; it takes imagination and some optimism 

to test the tools with real-world datasets that can sometimes break the tool in unexpected 

ways. Testing was difficult but it resulted in a more robust set of tools that can handle 

more than just carefully curated synthetic data. 

The process of developing two new custom Python tools was educational. It 

introduced new concepts of software development and presented the opportunity to put 

many of these concepts into practice as the new tools were built from the bottom up. 
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However, this was only an introduction to the field, and there are still many things to be 

learned and improved upon.   
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Chapter 7  – Conclusions and Future Work 

The high-level goal of this project was to automate the classification of thematic rasters 

for weighted overlay analysis in the GeoPlanner for ArcGIS application. To reach this 

goal a number of specific objectives were defined. The specific requirements associated 

with these objectives evolved over the course of the project, but the core purpose 

remained unchanged. The final deliverable included two custom Python tools that replace 

and complement existing tools in the Weighted Raster Overlay Services toolset. These 

new tools significantly improve the end-user experience by reducing the number of 

required steps in the weighted overlay service creation workflow, by providing guidance 

and recommendations for best practices, and by automating much of the intermediate 

processes of the workflow. These two new tools satisfied the client’s requirements and 

expectations.  

This project has addressed the most difficult and challenging aspects of the weighted 

overlay service creation workflow, but there are still additional improvements that could 

be made in future projects. The first version of the Classify the Raster Dataset tool only 

includes three classification methods, equal interval, quantiles, and unique values. Future 

development could incorporate other popular classification methods such as standard 

deviation and Jenk’s natural breaks. This project addressed the first two processes of the 

workflow with two new tools, and these tools process one dataset at a time. Tools that 

could handle multiple datasets at the same time could potentially make the user 

experience even easier. Additionally, if a tool was built to classify multiple prepared 

rasters at the same time, the input rasters and resulting XML files could automatically be 
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mosaicked together. Automating the Create a Mosaic Dataset process would further 

reduce end-user effort in the weighted overlay service creation workflow.  

Outside of the context of the GeoPlanner for ArcGIS application, there are elements 

of this project that could be incorporated in other software products and applications. The 

idea of using Maximum Location Accuracy and map scale to determine an appropriate 

cell size in raster resampling would be a significant improvement to some of the default 

cell size selection methodologies in practice today.  

The Prepare the Input Dataset and Classify the Raster Dataset tools are evidence that 

existing processes and workflows can be enhanced by approaching the solution from a 

customer-centric perspective. The effort to design, build, test, and deploy these tools will 

translate into a more users creating their own weighted overlay services. When these 

services are consumed in weighted raster overlay modeler in GeoPlanner, the user has 

access to a powerful analytical tool that can provide a wealth of information related to 

their design project – a generic tool becomes specialized, and generalized information 

becomes more specific and relevant. This project enables users to gain and share new 

insights and perspectives from their own datasets. 

 



61 

Works Cited 

Carver, S. J. (1991). Integrating multi-criteria evaluation with geographical information 

systems. International Journal of Geographic Information Systems, 321-339. 

Chrisman, N. (2004). Charting the Unknown: How Computer Mapping at Harvard 

Became GIS. Redlands: Esri Press. 

Collins, M. G., Steiner, F. R., & Rushman, M. J. (2001). Land-Use Suitability Analysis in 

the United States: Historical Development and Promising Technological 

Achievements. Environmental Management, 611-621. 

Dragut, L., & Blaschke, T. (2006). Automated classification of landform elements using 

object-based image analysis. Geomorphology, 330-344. 

Esri. (2016, January 28). GeoPlanner for ArcGIS. Retrieved from ArcGIS Marketplace: 

https://marketplace.arcgis.com/listing.html?id=5e99f4fa519949209cd3da2966fd5

43b 

Hall, G. B., Wang, F., & Subaryono. (1992). Comparision of Boolean and fuzzy 

classification methods in land suitability analysis by using geographical 

information systesms. Environment and Planning A, 497-516. 

Hengl, T. (2006). Finding the right pixel size. Computers and Geosciences, 1283-1298. 

Hopkins, L. (1977). Methods for Generating Land Suitability Maps: A Comparative 

Evaluation. Journal of the American Institute of Planners, 380-400. 

Iwahashi, J., & Pike, R. J. (2007). Automated classifications of topography from DEMs 

by an unsupervised nested-means algorithm and a three-part geometric signature. 

Geomorphology, 409-440. 



62 

Jankowski, P. (1995). Integrating geographical information systems and multiple criteria 

decision-making methods. International Journal of Geographic Information 

Systems, 251-273. 

Malczewski, J. (2000). On the Use of Weighted Linear Combination Method in GIS: 

Common and Best Practice Approaches. Transactions in GIS, 5-22. 

Malczewski, J. (2004). GIS-based land-use suitability analysis: a critical overview. 

Progress in Planning, 3-65. 

McHarg, I. L. (1995). Design with Nature. New York: J. Wiley. (Reprinted from Design 

with Nature, 1969, Garden City, New York: Natural History Press) 

Rossiter, D., & Hengl, T. (2002). Technical note: creating geometrically-correct photo-

interpretations, photomosaics, and base maps for a project GIS. Technical Report. 

Enschede, The Netherlands: ITC, Department of Earth Systems Analysis. 

Steiner, F., McSherry, L., & Cohen, J. (2000). Land suitability analysis for the upper Gila 

River watershed. Landscape and Urban Planning, 199-214. 

Tobler, W. (1988). "Resolution, Resampling, and All That". In H. Mounsey, & R. 

Tomlinson, Building Data Bases for Global Science (pp. 129-137). London: 

Taylor and Francis. 

Tomlinson, R. F. (1999). Geographic Information Systems. New York: Wiley. 

Van der Merwe, J. H. (1997). GIS-aided land evaluation and decision-making for 

regulating urban expansion: A South African case study. GeoJournal, 135-151. 

Vink, A. (1975). Land Use in Advancing Agriculture, vol. 10. New York: Springer. 

Wilson, K. A. (2007). Building Complex and Site Categorization Using Similarity to a 

Prototypical Site. Redlands: Unpublished master's thesis, University of Redlands.



63 

Appendix A. Python Toolbox Code 

The Python toolbox code for the Prepare the Input Dataset tool and the Classify the 

Raster Dataset tool. 

import arcpy 

from arcpy import env 

from arcpy.sa import * 

arcpy.CheckOutExtension("Spatial") 

import os 

import numpy as np 

import types 

import string, random, os 

import xml 

import xml.etree.cElementTree as ET 

arcpy.env.overwriteOutput = True 

 

class Toolbox(object): 

    def __init__(self): 

        """Define the toolbox (the name of the toolbox is the name of the 

        .pyt file).""" 

        self.label = "Mayfield - WROS Tools" 

        self.alias = "MayfieldWROSTools" 

 

        # List of tool classes associated with this toolbox 

        self.tools = [A_PrepareDataset, B_ClassifyRaster] 

 

class A_PrepareDataset(object): 

    def __init__(self): 

        """Define the tool (tool name is the name of the class).""" 

        self.label = "A. Prepare the Input Dataset" 

        self.description = "This tool prepares the input dataset for classification." 

        self.canRunInBackground = False 

 

    def getParameterInfo(self): 

        """Define parameter definitions""" 

        param0 = arcpy.Parameter( 

            displayName="Input Dataset", 

            name="InputDataset", 

            datatype="DEDatasetType", 

            parameterType="Required", 

            direction="Input") 

 

        param01 = arcpy.Parameter( 
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            displayName="Select a Cell Size (in meters)", 

            name="cellSizeInput", 

            datatype="GPString", 

            parameterType="Required", 

            direction="Input") 

        param01.filter.type = 'ValueList' 

        param01.filter.list = ["600 (Large State - 1:6,000,000)", "300 (Medium State - 

1:3,000,000)", "150 (Counties - 1:1,500,000)", "75 (County - 1:750,000)", "32 (Metro 

Area - 1:320,000)", "16 (Cities - 1:160,000)", "8 (City - 1:80,000)", "4 (Town - 

1:40,000)", "2 (Neighborhood - 1:20,000)", "1 (Block Group - 1:10,000)", "0.5 (Street - 

1:5,000)"] 

 

        param02 = arcpy.Parameter( 

            displayName="Select a Raster Value Field", 

            name="rasterValueField", 

            datatype="Field", 

            parameterType="Required", 

            direction="Input") 

        param02.filter.list = ['Text', 'Short', 'Long', 'Single', 'Double', 'Date', 'OID', 'Raster', 

'GlobalID'] 

        param02.parameterDependencies = [param0.name] 

 

        param03 = arcpy.Parameter( 

            displayName="Select a Resampling Method", 

            name="resamplingType", 

            datatype="GPString", 

            parameterType="Optional", 

            direction="Input") 

        param03.filter.type = 'ValueList' 

        param03.filter.list = ["NEAREST","BILINEAR"] 

 

        param04 = arcpy.Parameter( 

            displayName="Select a Mask for the Design Scenario", 

            name="mask", 

            datatype="DEFeatureClass", 

            parameterType="Optional", 

            direction="Input") 

 

        param05 = arcpy.Parameter( 

            displayName="Output Raster Name and Location", 

            name="outputRaster", 

            datatype="DERasterDataset", 

            parameterType="Required", 

            direction="Output") 

 

        params = [param0,param01,param02,param03,param04,param05] 
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        return params 

 

    def isLicensed(self): 

        """Set whether tool is licensed to execute.""" 

        return True 

 

    def updateParameters(self, parameters): 

        """Modify the values and properties of parameters before internal 

        validation is performed.  This method is called whenever a parameter 

        has been changed.""" 

        if (parameters[0].value): 

            # Disable raster value field for raster inputs 

            userInput = parameters[0].valueAsText 

            desc = arcpy.Describe(userInput) 

 

            if desc.datasetType == "FeatureClass": 

                prepped = "vector" 

            elif desc.datasetType == "RasterDataset": 

                prepped = "raster" 

            else: 

                parameters[0].setErrorMessage("Input feature classes must be a raster or vector 

dataset.") 

 

            if prepped == "vector": 

                parameters[2].enabled = 1 #Turn Raster Value Field parameter ON 

                parameters[3].enabled = 0 #Turn Resampling Method parameter OFF 

            else: 

                parameters[2].value = " " 

                parameters[2].enabled = 0 #Turn Raster Value Field parameter OFF 

                parameters[3].enabled = 1 #Turn Resampling Method parameter ON 

 

                # Default the resampling method to NEAREST 

                if not parameters[3].altered: 

                    parameters[3].filter.type = "ValueList" 

                    parameters[3].filter.list = ["NEAREST", "BILINEAR"] 

                    parameters[3].value = "NEAREST" #Because this is the safe assumption 

        return 

 

    def updateMessages(self, parameters): 

        """Modify the messages created by internal validation for each tool 

        parameter.  This method is called after internal validation.""" 

        # Verify that the input file is a vector or raster dataset and that the feature classes are 

only line and polygon geometry 

        if parameters[0].value: 

            userInput = parameters[0].valueAsText 

            desc = arcpy.Describe(userInput) 



66 

 

            if desc.datasetType == "FeatureClass": 

                prepped = "vector" 

                if desc.shapeType == "Point": 

                    parameters[0].setErrorMessage("Input feature classes must have line or 

polygon geometry.") 

                elif desc.shapeType == "MultiPoint": 

                    parameters[0].setErrorMessage("Input feature classes must have line or 

polygon geometry.") 

                elif desc.shapeType == "MultiPatch": 

                    parameters[0].setErrorMessage("Input feature classes must have line or 

polygon geometry.") 

            elif desc.datasetType == "RasterDataset": 

                prepped = "raster" 

            else: 

                parameters[0].setErrorMessage("The input must be a vector feature class or a 

raster dataset.") 

 

        # Verify that the output file is a TIFF 

        if parameters[5].value: 

            output = parameters[5].valueAsText 

            if not output.endswith("tif"): 

                parameters[5].setErrorMessage("The output raster must be a geoTIFF. Add '.tif' 

to the end of the file name.") 

 

        if parameters[5].altered: 

            output = parameters[5].valueAsText 

            if not output.endswith("tif"): 

                parameters[5].setErrorMessage("The output raster must be a geoTIFF. Add '.tif' 

to the end of the file name.") 

        return 

 

    def execute(self, parameters, messages): 

        """The source code of the tool.""" 

        userInput = parameters[0].valueAsText 

        cellSizeInput = parameters[1].valueAsText 

        rasterValueField = parameters[2].valueAsText 

        resamplingType = parameters[3].value 

        mask = parameters[4].value 

        outputRaster = parameters[5].valueAsText 

        arcpy.env.nodata = "PROMOTION" 

 

        # Set cell size based on user input 

        if cellSizeInput == "600 (Large State - 1:6,000,000)": 

            cellSize = 600 

        elif cellSizeInput == "300 (Medium State - 1:3,000,000)": 
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            cellSize = 300 

        elif cellSizeInput == "150 (Counties - 1:1,500,000)": 

            cellSize = 150 

        elif cellSizeInput == "75 (County - 1:750,000)": 

            cellSize = 75 

        elif cellSizeInput == "32 (Metro Area - 1:320,000)": 

            cellSize = 32 

        elif cellSizeInput == "16 (Cities - 1:160,000)": 

            cellSize = 16 

        elif cellSizeInput == "8 (City - 1:80,000)": 

            cellSize = 8 

        elif cellSizeInput == "4 (Town - 1:40,000)": 

            cellSize = 4 

        elif cellSizeInput == "2 (Neighborhood - 1:20,000)": 

            cellSize = 2 

        elif cellSizeInput == "1 (Block Group - 1:10,000)": 

            cellSize = 1 

        elif cellSizeInput == "0.5 (Street - 1:5,000)": 

            cellSize = 0.5 

        else: 

            cellSize = 0.5 

 

        # Set global variables 

        arcpy.env.outputCoordinateSystem = arcpy.SpatialReference(3857) #3857 is the 

WKID for WGS_1984_Web_Mercator_Auxiliary_Sphere 

        arcpy.env.cellSize = cellSize 

 

        def main(): 

            # Determine the Input Dataset Type 

            desc = arcpy.Describe(userInput) 

            if desc.datasetType == "FeatureClass": 

                prepped = prepVector(userInput) 

            else: 

                prepped = prepRaster(userInput) 

 

        def prepVector(inVector): 

            projected = "projected" 

            outRaster = "outRaster" 

 

            # Project the Vector Dataset 

            arcpy.Project_management(inVector, projected, 

arcpy.env.outputCoordinateSystem) 

 

            # Repair the Vector Dataset 

            arcpy.RepairGeometry_management(projected) 
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            # Convert Vector to Raster 

            arcpy.FeatureToRaster_conversion (projected, rasterValueField, outRaster, 

cellSize) 

            outRaster2 = Raster(outRaster) 

 

            # Clip the Raster Dataset and Build Pyramids 

            if mask and mask != "#": 

                clipRaster = arcpy.sa.ExtractByMask(outRaster2, mask) 

                preppedRaster = clipRaster 

                arcpy.BuildPyramids_management(preppedRaster) 

                preppedRaster.save(outputRaster) 

            else: 

                preppedRaster = outRaster 

                arcpy.BuildPyramids_management(preppedRaster) 

                preppedRaster2 = Raster(preppedRaster) 

                preppedRaster2.save(outputRaster) 

            return 

 

        def prepRaster(inRaster): 

            # Define the intermediate file 

            int = parameters[5].valueAsText 

            if int.endswith(".tif"): 

                intRaster = int.replace(".tif","_int") 

 

            # Clip the Raster Dataset and Build Pyramids 

            if mask and mask != "#": 

                clipRaster = arcpy.sa.ExtractByMask(inRaster, mask) 

                preppedRaster = clipRaster 

                arcpy.BuildPyramids_management(preppedRaster) 

            else: 

                preppedRaster = inRaster 

                arcpy.BuildPyramids_management(preppedRaster) 

 

            # Project the Raster Dataset 

            arcpy.ProjectRaster_management(preppedRaster, intRaster, 

arcpy.env.outputCoordinateSystem, resamplingType, cellSize) 

            projectedRaster = arcpy.Raster(intRaster) 

            projectedRaster.save(outputRaster) 

            arcpy.Delete_management(intRaster) 

            return 

        main() 

        return 

 

 

class B_ClassifyRaster(object): 

    def __init__(self): 
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        """Define the tool (tool name is the name of the class).""" 

        self.label = "B. Classify the Raster Dataset" 

        self.description = "This tool classifies the input raster dataset and adds the weighted 

overlay data required by the GeoPlanner for ArcGIS application." 

        self.canRunInBackground = False 

 

    def getParameterInfo(self): 

        """Define parameter definitions""" 

        param0 = arcpy.Parameter( 

            displayName="Input Raster from Process A", 

            name="raster", 

            datatype="GPRasterLayer", 

            parameterType="Required", 

            direction="Input") 

 

        param01 = arcpy.Parameter( 

            displayName="Classification Method", 

            name="classMethod", 

            datatype="GPString", 

            parameterType="Required", 

            direction="Input") 

        param01.filter.type = "ValueList" 

        param01.filter.list = ["EQUAL_INTERVAL", "QUANTILE", 

"UNIQUE_VALUES"] 

 

        param02 = arcpy.Parameter( 

            displayName="Number of Classes", 

            name="numClasses", 

            datatype="GPLong", 

            parameterType="Required", 

            direction="Input") 

        param02.filter.type = "Range" 

        param02.filter.list = [1,9] 

 

        param03 = arcpy.Parameter( 

            displayName="Field for Class Labels", 

            name="labelField", 

            datatype="Field", 

            parameterType="Required", 

            direction="Input") 

        param03.filter.list = ['Text', 'Short', 'Long', 'Single', 'Double', 'Date', 'OID', 'Raster', 

'GUID', 'GlobalID'] 

        param03.parameterDependencies = [param0.name] 

 

        param04 = arcpy.Parameter( 

            displayName="Description", 
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            name="Description", 

            datatype="GPString", 

            parameterType="Optional", 

            direction="Input") 

 

        param05 = arcpy.Parameter( 

            displayName="Metadata", 

            name="Metadata", 

            datatype="GPString", 

            parameterType="Optional", 

            direction="Input") 

 

        param06 = arcpy.Parameter( 

            displayName="URL", 

            name="url", 

            datatype="GPString", 

            parameterType="Optional", 

            direction="Input") 

 

        param07 = arcpy.Parameter( 

            displayName="Output XML File", 

            name="outputXML", 

            datatype="GPRasterLayer", 

            parameterType="Derived", 

            direction="Output") 

        param07.parameterDependencies=[param0.name] 

 

        params = [param0,param01,param02,param03,param04,param05,param06,param07] 

        return params 

 

    def isLicensed(self): 

        """Set whether tool is licensed to execute.""" 

        return True 

 

    def updateParameters(self, parameters): 

        """Modify the values and properties of parameters before internal 

        validation is performed.  This method is called whenever a parameter 

        has been changed.""" 

 

        if (parameters[0].value): 

        # Assign variables 

            raster = parameters[0].valueAsText 

            classMethod = parameters[1].value 

            numClasses = parameters[2].value 

            labelField = parameters[3].value 

            rasterTitle = "" #For the XML file 
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            rasterType = "" #Continuous or Nominal 

            classLabels = [] 

            classRanges = [] 

            outputWoXmlFiles=[] 

 

        # Describe the input raster and clean up the Raster Title 

            desc = arcpy.Describe(raster) 

            rasterTitle = desc.name 

            rasterExtension = desc.extension 

            rasterTitle = rasterTitle.replace(rasterExtension,"") 

            if rasterTitle.endswith("."): 

                rasterTitle=rasterTitle.replace(".","") 

 

        # Create a raster object to improve performance 

            rasterObject = Raster(raster) 

 

        # Determine and assign the raster type (NOMINAL or CONTINUOUS) 

            rasterValTypResult = arcpy.GetRasterProperties_management (raster, 

"VALUETYPE") #Returns the pixel type and depth 

            rasterValTyp = rasterValTypResult.getOutput(0) #Value Types between 9 and 14 

are floating point, doubles, or complex 

 

            if rasterValTyp == "1": #2-bit unsigned (0 to 3) 

                rasterType = "NOMINAL" 

            elif rasterValTyp == "2": #4-bit unsigned (0 to 15) 

                rasterType = "NOMINAL" 

            elif rasterValTyp == "3": #8-bit unsigned (0 to 255) 

                rasterType = "NOMINAL" 

            elif rasterValTyp == "4": #8-bit signed (-128 to 127) 

                rasterType = "NOMINAL" 

            elif rasterValTyp == "5": #16-bit unsigned (0 to 65535) 

                rasterType = "NOMINAL" 

            elif rasterValTyp == "6": #16-bit signed (-32768 to 32767) 

                rasterType = "CONTINUOUS" 

            elif rasterValTyp == "7": #32-bit unsigned integer (0 to 4,294,967,295) 

                rasterType = "CONTINUOUS" 

            elif rasterValTyp == "8": #32-bit signed integer (approx. -2 billion to +2 billion) 

                rasterType = "CONTINUOUS" 

            elif rasterValTyp == "9": #32-bit floating point single precision 

                rasterType = "CONTINUOUS" 

            elif rasterValTyp == "10": #64-bit floating point double precision 

                rasterType = "CONTINUOUS" 

            elif rasterValTyp == "11": #8-bit complex 

                rasterType = "CONTINUOUS" 

            elif rasterValTyp == "12": #16-bit complex 

                rasterType = "CONTINUOUS" 
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            elif rasterValTyp == "13": #32-bit complex 

                rasterType = "CONTINUOUS" 

            elif rasterValTyp == "14": #64-bit complex 

                rasterType = "CONTINUOUS" 

            else: 

                arcpy.AddWarning("The raster type could not be determined.") 

 

        # Assign defaults for Nominal datasets 

            if rasterType == "NOMINAL": 

                unqValCntResult = arcpy.GetRasterProperties_management (raster, 

"UNIQUEVALUECOUNT") #Number of unique values in the raster 

                unqValCnt = int(unqValCntResult.getOutput(0)) 

                if not parameters[1].altered: 

                    parameters[1].value = "UNIQUE_VALUES" #Default classification method 

to Unique Values 

                    parameters[2].filter.type = "Range" 

                    parameters[2].filter.list = [1,unqValCnt] 

                    parameters[2].value = unqValCnt #Default number of class to the number of 

unique values 

 

        # Assign defaults for Continuous datasets 

            elif rasterType == "CONTINUOUS": 

                if not parameters[1].altered: 

                    parameters[1].filter.type = "ValueList" 

                    parameters[1].filter.list = ["EQUAL_INTERVAL", "QUANTILE"] 

#Removes Unique Values from the pick list 

                    parameters[1].value = "EQUAL_INTERVAL" #Default to Equal Interval 

                if not parameters[2].altered: 

                    parameters[2].value = "5" #Default to 5 classes for continuous rasters 

                if not parameters[3].altered: 

                    parameters[3].value = "DEFAULT" #Assigns default class labels 

 

        # Define default labels for continous datasets 

            if numClasses == 1: 

                classLabels = ["Present"] 

            elif numClasses == 2: 

                classLabels = ["Low", "High"] 

            elif numClasses == 3: 

                classLabels = ["Low", "Middle", "High"] 

            elif numClasses == 4: 

                classLabels = ["Lowest", "Somewhat Low", "Somewhat High", "Highest"] 

            elif numClasses == 5: 

                classLabels = ["Lowest", "Somewhat Low", "Middle", "Somewhat High", 

"Highest"] 

            elif numClasses == 6: 
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                classLabels = ["Lowest", "Very Low", "Somewhat Low", "Somewhat High", 

"Very High", "Highest"] 

            elif numClasses == 7: 

                classLabels = ["Lowest", "Very Low", "Somewhat Low", "Middle", 

"Somewhat High", "Very High", "Highest"] 

            elif numClasses == 8: 

                classLabels = ["Lowest", "Very Low", "Low", "Somewhat Low", "Somewhat 

High", "High", "Very High", "Highest"] 

            elif numClasses == 9: 

                classLabels = ["Lowest", "Very Low", "Low", "Somewhat Low", "Middle", 

"Somewhat High", "High", "Very High", "Highest"] 

 

        # Define the raster statistics 

            min = rasterObject.minimum 

            minResult = arcpy.GetRasterProperties_management (raster, "MINIMUM") 

            minNumber = (minResult.getOutput(0)) 

            max = rasterObject.maximum 

            maxResult = arcpy.GetRasterProperties_management (raster, "MAXIMUM") 

            maxNumber = (maxResult.getOutput(0)) 

            range = (float(maxNumber) - float(minNumber)) 

            noDataValue = rasterObject.noDataValue 

 

    # Classify the Raster 

        # UNIQUE VALUES 

            if classMethod == "UNIQUE_VALUES": 

                # Define variables for Unique Values 

                breakpoints = [] 

                classLabels = [] 

                classRanges = [] 

                prevItem = -9999 

                counter = 1 

                indxctr = 0 

                field = "Value" #Hard coded value to simplify the process 

 

                # Create lists for unique values and class labels 

                cursor = arcpy.SearchCursor(raster) 

                for row in cursor: 

                    classVal = row.getValue(field) 

                    classLbl = row.getValue(labelField) 

                    breakpoints.append(classVal) 

                    classLabels.append(classLbl) 

                breakpoints.append(9999) 

 

                # Calculate the class ranges (Input Ranges) 

                while counter < numClasses: 

                    if prevItem == -9999: 
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                        min = breakpoints[indxctr] 

                        prevItem = (breakpoints[indxctr] + 1) 

                        classRanges.append(min) 

                        classRanges.append(prevItem) 

                        continue 

                    classValMin = (breakpoints[indxctr] + 1) 

                    indxctr+=1 

                    classValMax = (breakpoints[indxctr] + 1) 

                    classRanges.append(classValMin) 

                    classRanges.append(classValMax) 

                    counter+=1 

 

        # EQUAL INTERVAL 

            if classMethod == "EQUAL_INTERVAL": 

                # Define variables 

                breakpoints = [] 

                classRanges = [] 

##                classRangeValue = (float(range) / float(numClasses)) #For precise 

calculations 

                classRangeValue = (int(range) / int(numClasses)) #For integer requirement 

                counter = 1 

                prevItem = -9999 

                cntr = 1 

                prvItem = -9999 

                indxctr = 0 

 

                # Calculate the Break Points 

                while counter < numClasses: 

                    if prevItem == -9999: 

                        # Calculate with integers 

                        prevItem = (int(min) + int(classRangeValue)) #For integer requirement 

                        breakpoints.append(int(prevItem)) #For integer requirement 

##                        # Calculate with floating point for greater precision 

##                        prevItem = (float(min) + float(classRangeValue)) 

##                        breakpoints.append(float(prevItem)) 

                        counter+=1 

                        continue 

                    classVal = prevItem + float(classRangeValue) 

##                    breakpoints.append(float(classVal)) #For precise calculations 

                    breakpoints.append(int(classVal)) #For integer requirement 

                    prevItem = classVal 

                    counter+=1 

                breakpoints.append(int(max)) #For integer requirement 

 

                # Calculate the class ranges (Input Ranges) 

                while cntr < numClasses: 
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                    if prvItem == -9999: 

                        prvItem = (breakpoints[indxctr]) 

                        classRanges.append(int(min)) #For integer requirement 

                        classRanges.append(prvItem) 

                        continue 

                    clssValMin = (breakpoints[indxctr]) 

                    indxctr+=1 

                    clssValMax = (breakpoints[indxctr]) 

                    classRanges.append(clssValMin) 

                    classRanges.append(clssValMax) 

                    cntr+=1 

 

        # QUANTILE 

            elif classMethod == "QUANTILE": 

                # Define variables 

                breakpoints = [] 

                classRanges = [] 

                counter = 1 

                prevItem = -9999 

                indxctr = 0 

                rasterValues = [] 

 

                # Calculate the raster values 

                rasterArray = arcpy.RasterToNumPyArray(raster) 

                rows, cols = rasterArray.shape 

                for rowNum in xrange(rows): 

                    for colNum in xrange(cols): 

                        value = rasterArray.item(rowNum, colNum) 

                        if value != noDataValue: 

                            rasterValues.append(value) 

                data = rasterValues 

 

                # Quantile calculations for each class range 

                q11 = int(np.percentile(data, 11.0)) 

                q13 = int(np.percentile(data, 13.0)) 

                q14 = int(np.percentile(data, 14.0)) 

                q17 = int(np.percentile(data, 17.0)) 

                q20 = int(np.percentile(data, 20.0)) 

                q22 = int(np.percentile(data, 22.0)) 

                q25 = int(np.percentile(data, 25.0)) 

                q29 = int(np.percentile(data, 29.0)) 

                q33 = int(np.percentile(data, 33.0)) 

                q38 = int(np.percentile(data, 38.0)) 

                q40 = int(np.percentile(data, 40.0)) 

                q43 = int(np.percentile(data, 43.0)) 

                q44 = int(np.percentile(data, 44.0)) 
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                q50 = int(np.percentile(data, 50.0)) 

                q56 = int(np.percentile(data, 56.0)) 

                q57 = int(np.percentile(data, 57.0)) 

                q60 = int(np.percentile(data, 60.0)) 

                q63 = int(np.percentile(data, 63.0)) 

                q66 = int(np.percentile(data, 66.0)) 

                q67 = int(np.percentile(data, 67.0)) 

                q71 = int(np.percentile(data, 71.0)) 

                q75 = int(np.percentile(data, 75.0)) 

                q78 = int(np.percentile(data, 78.0)) 

                q80 = int(np.percentile(data, 80.0)) 

                q83 = int(np.percentile(data, 83.0)) 

                q86 = int(np.percentile(data, 86.0)) 

                q88 = int(np.percentile(data, 88.0)) 

                q89 = int(np.percentile(data, 89.0)) 

                q100 = int(max) 

 

                # Calculate the break points 

                if numClasses == 1: 

                    breakpoints.append(q100) 

                elif numClasses == 2: 

                    breakpoints.append(q50) 

                    breakpoints.append(q100) 

                elif numClasses == 3: 

                    breakpoints.append(q33) 

                    breakpoints.append(q66) 

                    breakpoints.append(q100) 

                elif numClasses == 4: 

                    breakpoints.append(q25) 

                    breakpoints.append(q50) 

                    breakpoints.append(q75) 

                    breakpoints.append(q100) 

                elif numClasses == 5: 

                    breakpoints.append(q20) 

                    breakpoints.append(q40) 

                    breakpoints.append(q60) 

                    breakpoints.append(q80) 

                    breakpoints.append(q100) 

                elif numClasses == 6: 

                    breakpoints.append(q17) 

                    breakpoints.append(q33) 

                    breakpoints.append(q50) 

                    breakpoints.append(q66) 

                    breakpoints.append(q83) 

                    breakpoints.append(q100) 

                elif numClasses == 7: 
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                    breakpoints.append(q14) 

                    breakpoints.append(q29) 

                    breakpoints.append(q43) 

                    breakpoints.append(q57) 

                    breakpoints.append(q71) 

                    breakpoints.append(q86) 

                    breakpoints.append(q100) 

                elif numClasses == 8: 

                    breakpoints.append(q13) 

                    breakpoints.append(q25) 

                    breakpoints.append(q38) 

                    breakpoints.append(q50) 

                    breakpoints.append(q63) 

                    breakpoints.append(q75) 

                    breakpoints.append(q88) 

                    breakpoints.append(q100) 

                elif numClasses == 9: 

                    breakpoints.append(q11) 

                    breakpoints.append(q22) 

                    breakpoints.append(q33) 

                    breakpoints.append(q44) 

                    breakpoints.append(q56) 

                    breakpoints.append(q67) 

                    breakpoints.append(q78) 

                    breakpoints.append(q89) 

                    breakpoints.append(q100) 

                else: 

                    parameters[1].setErrorMessage("The QUANTILE classification method 

cannon be used with dataset. Please select another classifcation method.") 

 

                # Calculate the class ranges (Input Ranges) 

                while counter < numClasses: 

                    if prevItem == -9999: 

                        prevItem = (breakpoints[indxctr]) 

                        classRanges.append(int(min)) #For integer requirement 

                        classRanges.append(prevItem) 

                        continue 

                    classValMin = (breakpoints[indxctr]) 

                    indxctr+=1 

                    classValMax = (breakpoints[indxctr]) 

                    classRanges.append(classValMin) 

                    classRanges.append(classValMax) 

                    counter+=1 

 

    # Add XML Info 

            catalogPath = parameters[0].value 



78 

            inaux="{}.aux.wo.xml".format(catalogPath) 

            labelField = parameters[3].value 

            rasterDescription = parameters[4].valueAsText 

            rasterMetadata = parameters[5].valueAsText 

            rasterUrl = parameters[6].valueAsText 

 

            # Define Output Values 

            outputValues = [] 

            counterOV = 1 

            while counterOV <= numClasses: 

                outputValues.append(5) 

                counterOV+=1 

 

            # Create the wo.xml file and write data to it 

            pmdataset=ET.Element("PAMDataset") 

            metadata=ET.SubElement(pmdataset,"Metadata") 

            ET.SubElement(metadata,"MDI", key="Title").text=rasterTitle 

            ET.SubElement(metadata,"MDI", key="Description").text=rasterDescription 

            ET.SubElement(metadata,"MDI", key="Metadata").text=rasterMetadata 

            ET.SubElement(metadata,"MDI", key="url").text=rasterUrl 

            ET.SubElement(metadata,"MDI", 

key="InputRanges").text=','.join(map(str,classRanges)) 

            ET.SubElement(metadata,"MDI", 

key="OutputValues").text=','.join(map(str,outputValues)) 

            #ET.SubElement(metadata,"MDI", key="NoDataRanges").text=str(noDataValue) 

            ET.SubElement(metadata,"MDI", key="NoDataRanges").text="" 

            ET.SubElement(metadata,"MDI", 

key="RangeLabels").text=','.join(map(str,classLabels)) 

            #ET.SubElement(metadata,"MDI", key="NoDataRangeLabels").text="NoData 

Range Lables" 

            ET.SubElement(metadata,"MDI", key="NoDataRangeLabels").text="" 

            tree=ET.ElementTree(pmdataset) 

            tree.write(inaux) 

            outputWoXmlFiles.append(inaux) 

 

            arcpy.SetParameter(1,outputWoXmlFiles) 

        return 

 

    def updateMessages(self, parameters): 

        """Modify the messages created by internal validation for each tool 

        parameter.  This method is called after internal validation.""" 

        # Verify that the input file is a TIFF 

        if parameters[0].value: 

            input = parameters[0].valueAsText 

            if not input.endswith("tif"): 
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                parameters[0].setErrorMessage("The input raster must be a TIFF. Run this 

dataset through the 'Prepare the Input Dataset' tool to prepare it for this tool.") 

 

            desc = arcpy.Describe(input).spatialReference 

            code = desc.factoryCode 

            if not code == 3857: 

                parameters[0].setErrorMessage("The input raster must be projected in Web 

Mercator (Auxiliary Sphere). Run this dataset throught 'Prepare the Input Dataset' tool to 

prepare it for this tool.") 

 

        if parameters[0].altered: 

            input = parameters[0].valueAsText 

            if not input.endswith("tif"): 

                parameters[0].setErrorMessage("The input raster must be a TIFF. Run this 

dataset through the 'Prepare the Input Dataset' tool to prepare it for this tool.") 

        return 

 

    def execute(self, parameters, messages): 

        """The source code of the tool.""" 

        if arcpy.CheckExtension("Spatial")!="Available": 

            arcpy.AddError("Spatial Analyst extension is not available") 

            return 

 

        return 
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