
University of Redlands University of Redlands

InSPIRe @ Redlands InSPIRe @ Redlands

MS GIS Program Major Individual Projects Theses, Dissertations, and Honors Projects

2015

Automating the Classification of Thematic Rasters for Weighted Automating the Classification of Thematic Rasters for Weighted

Overlay Analysis in GeoPlanner for ArcGIS Overlay Analysis in GeoPlanner for ArcGIS

Charles J. Mayfield
Univeristy of Redlands

Follow this and additional works at: https://inspire.redlands.edu/gis_gradproj

 Part of the Geographic Information Sciences Commons

Recommended Citation Recommended Citation
Mayfield, C. J. (2015). Automating the Classification of Thematic Rasters for Weighted Overlay Analysis in
GeoPlanner for ArcGIS (Master's thesis, University of Redlands). Retrieved from
https://inspire.redlands.edu/gis_gradproj/245

This work is licensed under a Creative Commons Attribution 4.0 License.
This material may be protected by copyright law (Title 17 U.S. Code).
This Thesis is brought to you for free and open access by the Theses, Dissertations, and Honors Projects at
InSPIRe @ Redlands. It has been accepted for inclusion in MS GIS Program Major Individual Projects by an
authorized administrator of InSPIRe @ Redlands. For more information, please contact inspire@redlands.edu.

https://inspire.redlands.edu/
https://inspire.redlands.edu/gis_gradproj
https://inspire.redlands.edu/etd
https://inspire.redlands.edu/gis_gradproj?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:inspire@redlands.edu

University of Redlands

Automating the Classification of Thematic Rasters for Weighted

Overlay Analysis in GeoPlanner for ArcGIS

A Major Individual Project submitted in partial satisfaction of the requirements

for the degree of Master of Science in Geographic Information Systems

by

C. Joseph Mayfield

Mark Kumler, Ph.D., Committee Chair

Nader Afzalan, Ph.D.

February 2016

Automating the Classification of Thematic Rasters for Weighted Raster Overlay Analysis

in GeoPlanner for ArcGIS

Copyright © 2016

by

C. Joseph Mayfield

The report of C. Joseph Mayfield is approved.

Nader Afzalan, Ph.D.

Mark Kumler, Ph.D., Committee Chair

February 2016

 v

Acknowledgements

The successful completion of this project was facilitated by the support of a number of

individuals who assisted in a variety of ways. As my academic advisor, Dr. Mark Kumler

provided invaluable guidance and feedback throughout the course of the project. Dr.

Nader Afzalan lent his perspective as both a geodesign and GIS expert. Nate Strout

helped me get off the ground with Python and software development and then provided

invaluable troubleshooting assistance in the later stages of the project. I’m also grateful

for the efforts of the other faculty staff of the University of Redlands MS GIS program,

Dr. Flewelling, Dr. Ma, Dr. Ren, Andrea Barrios, and adjunct faculty. It was a privilege

to be a member of Cohort 25 – The Golden Cohort. The opportunity to participate in the

program and undertake this project was made possible through the Esri Fellows

scholarship, and I am grateful in particular for the support of my manager, Vin Thomas,

and the project client, Rob Stauder. This project represents a significant effort that

required sacrifices of time availability and would not have been possible without the

loving support of my wife, Emily. I am grateful to her and the rest of my family for their

support and providing the motivation to complete this work.

 vii

Abstract

Automating the Classification of Thematic Rasters for Weighted Overlay Analysis in

GeoPlanner for ArcGIS

by

C. Joseph Mayfield

Esri’s GeoPlanner for ArcGIS application provides powerful analysis capabilities through

the weighted overlay analysis modeler. This modeler consumes weighted overlay

services composed of pre-processed raster layers. Creating custom weighted overlay

services for GeoPlanner is a difficult and complex process that requires both domain-

specific and GIS expertise. This challenge was addressed by simplifying the weighted

overlay service creation workflow and developing two new custom Python tools that

guide GeoPlanner users through the process of preparing input datasets and then

classifying the raster datasets. Where possible these tools automate the required steps and

where user input is needed, the tools provide default recommendations based on the input

datasets properties and characteristics. As a result, the weighted overlay services creation

workflow has been significantly improved and more GeoPlanner users can include their

own data in weighted overlay analyses.

 ix

Table of Contents

Chapter 1 – Introduction ... 1

1.1 Client ... 2

1.2 Problem Statement .. 2

1.3 Proposed Solution ... 3

1.3.1 Goals and Objectives .. 4

1.3.2 Scope ... 4

1.3.3 Methods... 5

1.4 Audience ... 6

1.5 Overview of the Rest of this Report ... 6

Chapter 2 – Background and Literature Review .. 7

2.1 Land-Use Planning in the Context of Geodesign ... 7

2.2 Weighted Overlay Analysis .. 8

2.2.1 History of Weighted Overlay in GIS .. 8

2.2.2 Using Weighted Overlay in Multiple Criteria Decision Making 9

2.3 Automating the Classification Process ... 10

2.3.1 Classification Methods.. 10

2.3.2 Determining the Best Grid Resolution .. 11

2.4 Summary ... 13

Chapter 3 – Systems Analysis and Design .. 15

3.1 Problem Statement .. 15

3.2 Requirements Analysis ... 17

3.3 System Design .. 19

 x

3.3.1 Prepare the Input Dataset .. 21

3.3.2 Classify the Raster Dataset ... 22

3.3.3 Create the Mosaic Dataset .. 23

3.3.4 Create the Weighted Overlay Service ... 23

3.4 Project Plan ... 24

3.4.1 Design Phase ... 24

3.4.2 Develop Phase ... 25

3.4.3 Deploy Phase .. 26

3.4.4 Work Breakdown Structure .. 27

3.4.5 Project Plan Analysis .. 28

3.5 Summary ... 28

Chapter 4 – Database Design ... 31

4.1 Conceptual and Logical Data Models ... 31

4.2 Data Sources ... 34

4.3 Data Collection Methods .. 35

4.4 Data Scrubbing and Loading .. 36

4.5 Summary ... 36

Chapter 5 – Implementation .. 37

5.1 Prepare the Input Dataset .. 37

5.1.1 Step 1 – Input Dataset ... 38

5.1.2 Step 2 – Project the Input Dataset ... 40

5.1.3 Step 3 – Convert Vector to Raster .. 41

5.1.4 Step 4 – Clip the Area of Interest.. 43

 xi

5.1.5 Step 5 – Output the Prepared Raster ... 44

5.2 Classify the Raster Dataset ... 45

5.2.1 Step 1 – Input Prepared Raster Dataset and Determine Raster Type 46

5.2.2 Step 2 – Classify the Raster Dataset ... 48

5.2.3 Step 3 – Add Related Fields.. 51

5.2.4 Step 4 – Write Data to an XML File ... 54

Chapter 6 – Results and Analysis.. 55

Chapter 7 – Conclusions and Future Work ... 59

Works Cited ... 61

Appendix A. Python Toolbox Code .. 63

 xiii

Table of Figures

 Steps in the weighted overlay analysis process 8

 Weighted Overlay Service Creation Workflow 20

 Process A: Prepare the Input Dataset Tool .. 21

 Process B: Classify the Raster Dataset Tool 22

 Process C: Create the Mosaic Dataset ... 23

 Process D: Create the Weighted Overlay Service 24

 Prepare the Input Dataset Tool - Conceptual Data Model 32

 Classify the Raster Dataset Tool - Conceptual Data Model 33

 Input Dataset Processing through the Project Tools 37

 Prepare the Input Dataset Tool .. 38

 Parameter 1: Input Dataset ... 39

 Parameter 4: Select a Resampling Method .. 41

 Parameter 2: Select a Cell Size .. 42

 Parameter 3: Select a Raster Value Field ... 43

 Parameter 4: Select a Mask for the Design Scenario 44

 Parameter 6: Output Raster Name and Location 45

 Classify the Raster Dataset Tool .. 46

 Step 1: Input the Prepared Raster ... 47

 Select the Classification Method and Number of Classes 49

 Python Code for Calculating the Break Points 49

 Python Code for Defining the Class Ranges...................................... 50

 Select the Field for Class Labels .. 52

 xiv

 Default class labels for continuous datasets in GeoPlanner 53

 Weighted overlay service and composite raster in GeoPlanner 56

 xv

List of Tables

 Cell Size Values .. 13

Table 3.1 Requirements for Process A: Prepare the Input Dataset 18

 Requirements for Process B: Classify the Raster Dataset 19

 Work Breakdown Structure .. 27

 Project Datasets and Characteristics ... 34

 xvii

List of Acronyms and Definitions

geoTIFF Raster file format that associates spatial information with a TIFF image

GIS Geographic Information System

IDE Integrated Development Environment

MCDM Multiple Criteria Decision-Making

MCE Multicriteria Evaluation

MLA Maximum Location Accuracy

MS GIS University of Redlands Masters of Science in Geographic Information

Systems

OWA Ordered Weighted Averaging

WLC Weighted Linear Combination

WOA Weighted Overlay Analysis

WROS Weighted Raster Overlay Service

1

Chapter 1 – Introduction

The emerging field of geodesign promises to improve the current design and planning

paradigm by providing a number of spatially-enabled tools, services, and processes that

bring greater understanding and transparency to the decision making process. These

geodesign assets leverage a multi-disciplinary approach and incorporate the strengths of

each on a common spatial platform. In 2014, Esri launched GeoPlanner for ArcGIS, a

web-hosted geodesign application that guides users through a tailored geodesign

workflow. This application has been designed to make geodesign accessible to a wide

variety of users, from GIS professionals to knowledge workers in other fields with little

to no GIS experience.

GeoPlanner includes a number of analysis tools that can be used to assess and

evaluate datasets. One of these core tools is the weighted overlay modeler tool that uses

weighted overlay analysis to perform complex multi-criteria evaluations. Creating new

weighted overlay services for GeoPlanner is a difficult and complex process that requires

both domain-specific and GIS expertise. These requirements prevent many GeoPlanner

users from being able to include their own datasets in the application’s weighted overlay

analysis tool. Without this information, these users are unable to realize the full value of

the GeoPlanner application in their design and development workflows.

One of the primary goals of the GeoPlanner for ArcGIS application is to democratize

the geodesign process by making it easy for non-GIS experts to use. However, these

kinds of users currently face a number of barriers that prevent them from uploading their

own datasets, as weighted overlay services, into the application’s weighted overlay

2

modeler tool. The client needs a better way for GeoPlanner users to create weighted

overlay services and then upload them into the application. The purpose of this project is

to introduce a solution that addresses these needs in a context that supports and assists all

of the application’s end users.

1.1 Client

The client for this project is Mr. Robert Stauder, Product Engineer on the GeoPlanner for

ArcGIS team, from Esri Professional Services. The client needs a solution that enables

GeoPlanner users to create and upload new weighted overlay services from their own

datasets. This solution needs to be developed in Python, the scripting language used in

the development of the GeoPlanner application.

1.2 Problem Statement

The problem addressed in this project is the high level of GIS expertise that is required to

create and upload weighted overlay services for the GeoPlanner for ArcGIS application.

In the GeoPlanner application, the current process for preparing a dataset, classifying the

data, and then uploading the layers to a weighted overlay service is quite involved,

requiring access to ArcGIS for Desktop and Server, a high level of GIS expertise, and

domain-specific knowledge. The process for creating a weighted overlay service includes

four general steps. First, the user must prepare the dataset by converting it to the required

raster format, clipping it to the area of interest, addressing any No Data cells, and more.

Second, the dataset must classified and new raster fields must be added and populated

with the classification information. This step is particularly challenging for users because

it requires that they create new raster fields and populate those fields with specific

parameters. If the parameters are entered incorrectly, the final weighted overlay service

3

will fail to deliver accurate analysis results. Third, multiple raster datasets are added to a

mosaic dataset, a collection of raster datasets that are stored together in a single

mosaicked image. Fourth, the mosaic must be published to ArcGIS Online as a weighted

overlay service with specific tags for the GeoPlanner application.

These steps require access to ArcGIS 10.3 for Desktop and Server as well as the

Server Image Extension. The added software requirements and GIS expertise needed to

complete this complex process create a usability barrier for users of the application. This

is a problem because in many cases, users of the GeoPlanner application do not have this

access or the necessary expertise. Developing a solution to this problem will expand the

usefulness of the GeoPlanner application and allow more users to take full advantage of

the tool.

1.3 Proposed Solution

Addressing the problems related to the creation of weighted overlay services for

GeoPlanner for ArcGIS is a significant challenge. This challenge was addressed by

simplifying the weighted overlay service creation workflow and developing two new

tools that guide GeoPlanner users through the process of preparing input datasets and

then classifying the raster datasets. All of the workflow steps are associated with four

main processes: Prepare the Input Dataset, Classify the Raster Dataset, Create the Mosaic

Dataset, and Create the Weighted Overlay Service. These processes pass the user’s

dataset from step to step and perform all of the geoprocessing, formatting, and publishing

tasks with minimal user input. This workflow resolves the client’s problem by making the

GeoPlanner application easier to use by removing the barriers users currently face when

they try to upload their own datasets as weighted overlay services.

4

1.3.1 Goals and Objectives

The overall goal for this project is to simplify the processes of creating weighted overlay

services and classifying thematic raster datasets for use in the GeoPlanner for ArcGIS

application. This goal has been accomplished by meeting the following objectives:

 Develop a tool that automates the initial preparation and processing of user-input

datasets.

 Develop a tool that that classifies datasets and automatically updates the raster

fields.

 Create an intuitive user interface that minimizes user inputs, clearly explains each

step of the process, and reduces the required level of GIS- and domain-specific

expertise for the end user.

1.3.2 Scope

The scope of this project extends from the planning and research stage to the creation of

an automated workflow design, followed by the development of a working solution, to

the testing and delivery of the final product. The project’s initial research included topics

such as the history of land suitability assessment, the application of multi-criteria

evaluations and weighted overlay analysis, the theory and methodology behind thematic

raster classification, and Python development. A thorough understanding of these topics

was applied to the design and development of an automated workflow that produces

weighted overlay services. This workflow provides an enhanced user experience by

automatically recommending appropriate classifications for user-supplied datasets,

reducing the chance of user error by automating the configuration of the raster dataset,

and by making the whole process faster and more efficient.

5

Testing this workflow with synthetic data and with client supplied sample data

confirmed that the final solution successfully met the project’s objectives and the client’s

expectations. The final product will be used by the client and the GeoPlanner for ArcGIS

team to inform future product updates and enhancements. This project did not include

any work related to developing other aspects of the GeoPlanner app, raster analysis, or

data collection.

Working on this project required access to a number of applications, tools, services,

and data sources. The major technical components of the solution included the following

software requirements: ArcGIS 10.3 for Desktop with the Spatial Analyst Extension,

ArcGIS 10.3 for Server with the Image Extension, and an ArcGIS Online organizational

account with access to GeoPlanner for ArcGIS. The Weighted Raster Overlay Services

toolbox provided access to many of the basic geoprocessing tools that were needed for

the new workflow. Additionally, PyScripter, a free open source IDE for Python, was used

to develop the final solution. The services and data for GeoPlanner are hosted through

ArcGIS Online and ArcGIS for Server. Having this clearly defined scope for the project’s

goals and objectives informed many of the project’s major decisions and helped to

prevent scope creep.

1.3.3 Methods

The final workflow was developed by first mapping out each of the processes in a

conceptual diagram. That conceptual diagram was used to create a series of models in

ModelBuilder and standalone Python scripts that replicated each of the steps and

processes included in the final workflow. ModelBuilder is an Esri tool that is included in

the ArcGIS for Desktop software package. All of the Python scripting was done in the

6

PyScripter, a common Python IDE. The final workflow utilizes a custom set of tools,

called the Weighted Raster Overlay Service toolbox, which is provided on GitHub by the

GeoPlanner for ArcGIS team.

1.4 Audience

The primary audience for this project report is the project client, Rob Stauder and his

GeoPlanner for ArcGIS team. The secondary audience includes other planners, designers,

and researchers exploring solutions for automating the classification of thematic rasters,

as well as students learning more about multicriteria evaluation methods in suitability

analyses.

1.5 Overview of the Rest of this Report

The following chapters and sections of this report follow the project’s framework.

Chapter 2 provides a summary of the background research that was conducted and a

literature review of project-related books and articles. Chapter 3 describes the system

analysis and design. The system analysis explains the process of designing and

developing the weighted overlay services creation workflow. Chapter 4 discusses the

decisions that were made about data processing defaults and presets in the workflow.

Chapter 5 details the implementation of the project – how the final workflow was

developed and completed. Chapter 6 reviews the results of the project and the quality of

the weighted overlay services produced by the automated workflow. The final section,

Chapter 7, concludes this project by reviewing the overall project’s successes and

shortcomings. Potential future work that furthers the goals and objectives of this project

is also listed.

7

Chapter 2 – Background and Literature Review

The challenge of automating the classification of thematic datasets for a web-based

geodesign tool touches on a number of application domains, including land-use planning

and suitability analysis, various multicriteria decision-making methodologies, and the

specific techniques and approaches used in the automation of raster classification. Each

of these domains is supported by a wealth of academic research and professional

literature. In the following sections the concepts of land-use planning and multicriteria

analysis are introduced, the weighted overlay analysis methodology is explained, and the

specific techniques related to automating data classification workflows are explored.

2.1 Land-Use Planning in the Context of Geodesign

The practice of geodesign has its roots in the discipline of land-use planning. Land-use

planning is the process of determining the ideal locations, in a predefined area of interest,

for a specific design scenario based on a number of factors or characteristics (Collins,

Steiner, & Rushman, 2001; Steiner, McSherry, & Cohen, 2000). Land-use planning

methods have traditionally been employed by local and regional government planners,

but today they have been adopted by others such as conservationists and commercial

developers (Van der Merwe, 1997). As part of land-use suitability planning, geodesigners

regularly create suitability assessments that employ multiple criteria decision-making

(MCDM) methodologies to ensure that both environmental and socio-economic factors

are considered in the final evaluation (Carver, 1991). A popular technique included in

this multicriteria evaluation (MCE) approach is the weighted overlay analysis.

8

2.2 Weighted Overlay Analysis

As a geodesign tool, GeoPlanner is largely built on the theories and practices used by

land-use planners who have developed a variety of methods to evaluate the suitability of

various land-uses. One of these methods is weighted overlay analysis (WOA). WOA is

performed by overlaying classified datasets, such as soil type, land cover, or topography,

for a defined area, assigning a weight to each dataset, summing the values of each

vertical cell stack, and then evaluating the resulting composite map (Collins, Steiner, &

Rushman, 2001). This method of suitability analysis, as shown in Figure 2.1, plays a key

role in many geodesign workflows and is included in GeoPlanner for ArcGIS.

 Steps in the weighted overlay analysis process

2.2.1 History of Weighted Overlay in GIS

The concept of using weighted overlay in the service of land-use suitability analysis was

described at length by Ian McHarg in his seminal work, Design with Nature (1969). In

this book, McHarg describes the process as a means of conducting multicriteria analyses

by categorizing and ranking values from a variety of thematic datasets, creating a

transparency for each dataset, and then overlaying the transparencies together to create a

composite image. This final composite image was then used to evaluate the suitable land-

uses in the design scenario.

Overlay Evaluate Weight Sum

9

The value of this weighted overlay approach to land-use suitability analysis was

understood and adopted by designers, researchers, and others who saw great potential

from the early GIS programs that were being pioneered and developed in the 1960s and

1970s. With significant advancements in the field of computer science, some of the very

first geographic information system programs, such as Harvard’s SYMAP, were designed

to assess land-use in scenarios such as site selection for reservoirs (Chrisman, 2004).

Roger Tomlinson states that he first proposed computerizing the overlay method while

working at Spartan Air in 1962 (Tomlinson, 1999). As the availability and processing

power of computers improved, modern GIS software has incorporated the practices and

analytical processes of early land-use planners while adopting more complex and

sophisticated decision making methodologies.

2.2.2 Using Weighted Overlay in Multiple Criteria Decision Making

One of the first decision making methodologies was the Weighted Linear Combination

(WLC) technique, which improved on the map overlay approach by allowing planners to

create composite maps. These composite maps made it possible for decision makers to

consider multiple attributes in a single map (Hopkins, 1977). However, according to

Malczewski (2000), WLC maps “are often used without full understanding of the

assumptions underlying this approach” (p. 5). This issue has been addressed in some

geographic information systems by the incorporation of robust Multiple Criteria Decision

Making (MCDM) methods designed to help stakeholders make well-informed decisions

based on various attributes (Jankowski, 1995). Additionally, Ordered Weighted

Averaging (OWA) can be employed to assign importance and order to attribute values as

weights in a dataset that extend and generalize the other methods used in creating land-

10

use suitability maps (Malczewski, 2004). These various methods and approaches provide

important context and considerations for the design of the GeoPlanner application and the

way it classifies data and presents that data to the user.

2.3 Automating the Classification Process

Automating the classification of thematic rasters has been the subject of significant

research and development efforts for several decades as organizations have undertaken

the task of processing large datasets of remotely sensed imagery. Much of this effort has

been directed at classifying physical features, such as topography and landform elements,

through a combination of image processing procedures that consider variables such as

location, elevation, slope, and surface texture (Iwahashi & Pike, 2007; Dragut &

Blaschke, 2006). Other projects have explored using the shared characteristics of similar

features to categorize man-made structures, such as building complexes and schools

(Wilson, 2007). This previous work provides an extensive body of knowledge that

informed the direction and approaches used in automating the classification of thematic

rasters for the GeoPlanner application.

2.3.1 Classification Methods

Fuzzy classification of datasets, which contain multiple classes, is preferred over Boolean

classification methods because it provides geodesigners a more realistic perspective by

being able to consider all of an area’s characteristics, define the extent of suitability, and

differentiate between ‘somewhat suitable’ and ‘highly suitable’ locations (Hall, Wang, &

Subaryono, 1992).

11

2.3.2 Determining the Best Grid Resolution

The grid resolution, which is determined by the raster’s cell size, plays an important

role in the ability of the weighted overlay tool to produce accurate and useful composite

maps. As a dataset is being processed in preparation for inclusion in a weighted overlay

service, the size of the raster’s cells can have a significant impact on the required

processing power and disk space. Smaller cell sizes are associated with high resolution

rasters, and they tend to demand more computation power to process and take up more

disk space with larger file sizes. Conversely, a raster with the same extent but a larger cell

size will require less computing power and have a smaller file size. There is no ideal cell

size or grid resolution; instead, when all factors are considered, a range of suitable

resolutions, or cell sizes, can be employed.

High resolution rasters with small cell sizes typically represent more data for a given

area than a coarser raster with large cells covering the same extent. Aggregating data by

using a large pixel size leads to a coarser grid and the potential for critical data loss.

When high resolution rasters are resampled to a larger cell size, there is some level of

data loss, and details are obscured by combining and averaging, in one way or another,

the values that were previously being represented in the finer raster grid. Conversely,

downscaling to a smaller pixel size in a finer grid can increase file size and the required

computational power without necessarily improving the quality of the final composite

map (Hengl, 2006). However a consideration of just the processing and storage demands

ignores the purpose of using rasters in the first place. The benefits and shortcomings of

both small and large pixel sizes make selecting an appropriate grid resolution a challenge

for an automated workflow where multiple input datasets with different grid resolutions

will need to be converted to the same pixel size.

12

In this project, multiple strategies were considered to fully automate the task of

determining the most suitable cell size, but due to the inherent complexities and

compromises associated with the decision, it was determined that this selection should be

made by the user. To simplify this choice, a number of cell size calculation and selection

guidelines were evaluated. For example, Esri’s recommended method of calculating cell

size by dividing the shortest extent of the raster by 250 was determined to be an overly

simplistic equation that failed to produce meaningful cell sizes. Other guidelines

recommended selecting a cell size as a function of the map scale or data resolution.

Waldo Tobler, for instance, proposed a simple formula based the smallest detectable size

– “Divide the denominator of the map scale by 1,000” and then divide that number by 2

to reach the resolution (Tobler, 1988). The idea of referencing the map scale of the raster

is a sound principle, but the cell sizes produced by this formula are too coarse for many

geodesign scenarios.

A variation of this concept that considers both map scale and the maximum location

accuracy was found to produce a more suitable range of cell sizes. To address this issue,

Hengl (2006) suggests using the scale of the dataset and the maximum location accuracy

(MLA) to calculate grid resolution. The MLA for typical datasets ranges from 0.1 mm for

digitally produced maps to 0.25 mm for maps produced by analog methods (Rossiter &

Hengl, 2002; Vink, 1975). By taking the product of the dataset’s scale and the MLA, a

reasonable pixel size for the dataset can be calculated

P ≥ SN • MLA = SN • 0.00025 or P ≥ SN • MLA = SN • 0.0001

where P is the grid resolution (pixel size), SN is the scale number, and MLA is the

maximum location accuracy (Hengl, 2006). This method of calculating grid resolution

13

offers an acceptable compromise that limits information loss from aggregation while

ensuring the output dataset will not be needlessly large in terms of file size. The

Maximum Location Accuracy method was determined to provide the best cell size

recommendations for geodesign applications, and the values from Table 2.1 were added

as dropdown selections for the tool’s second input parameter.

 Cell Size Values

Scale Name
Map

Scale

Cell Size

(meters)
Description

State (Large) 6,000,000 600 600 (Large State - 1:6,000,000)

State (Medium) 3,000,000 300 300 (Medium State - 1:3,000,000)

Counties 1,500,000 150 150 (Counties - 1:1,500,000)

County 750,000 75 75 (County - 1:750,000)

Metro Area 320,000 32 32 (Metro Area - 1:320,000)

Cities 160,000 16 16 (Cities - 1:160,000)

City 80,000 8 8 (City - 1:80,000)

Town 40,000 4 4 (Town - 1:40,000)

Neighborhood 20,000 2 2 (Neighborhood - 1:20,000)

Block Group 10,000 1 1 (Block Group - 1:10,000)

Street 5,000 0.5 0.5 (Street - 1:5,000)

2.4 Summary

Many of the tools and practices used by modern day geodesigners were pioneered and

refined by land use planners and other designers. These academics and professionals

recognized early on the value of leveraging computers to assist in complex MCDM

processes. In particular, weighted overlay analysis has been incorporated into geographic

information systems to assist in land-use suitability assessments. Recent research related

to classification methods and determining grid resolutions informs the way an automated

raster classification workflow could produce useful output datasets. In the next chapter

these concepts are applied in the system analysis and design of an automated raster

classification workflow.

14

15

Chapter 3 – Systems Analysis and Design

This chapter describes the approach that was taken to address the issues with the

weighted overlay service creation workflow. Section 3.1 details the problems with the

original weighted overlay service creation workflow. Section 3.2 describes the functional

and nonfunctional requirements that shaped the final tools. Section 3.3 outlines the

conceptual system design. Section 3.4 introduces the project plan that was initially

implemented at the beginning of this project.

3.1 Problem Statement

The GeoPlanner for ArcGIS application has been designed with a focus on typical

geodesign and land-use planning workflows, emphasizing the analysis, assessment, and

collaborative aspects of the process. One of the key features for assessing land-use

suitability in GeoPlanner is the weighted overlay analysis modeler. Weighted overlay

analysis includes reclassifying the rasters to a common scale, ranking the class values in

each raster, assigning each raster a respective weight as a percentage, and then overlaying

the rasters on top of each other and calculating the total summed value for each cell in an

output raster. This output raster is then used to determine each raster cell’s suitability

service, hosted on ArcGIS Online as “weighted overlay services,” to produce suitability

models.

Esri has created and maintains a number of these weighted overlay services for

general usage. And for specific design scenarios, users also have the ability to build their

own weighted overlay services with their own data. However, the process of creating a

custom weighted overlay service is complex, requiring access to a suite of advanced

16

geoprocessing tools, a high level of GIS expertise, and domain-specific knowledge, all of

which introduce significant barriers to the typical GeoPlanner user. This is a problem

because it conflicts with one of the core purposes of the GeoPlanner application –

“GeoPlanner is designed with the intent of being quick to learn and easy to use by a wide

range of non-GIS users” (Esri, 2016). This project addresses this problem by automating

and simplifying the most complex steps in the weighted overlay services creation

process.

The weighted overlay service creation workflow is composed of four processes:

A – Prepare the Input Dataset; B – Classify the Raster Dataset; C – Create the Mosaic

Dataset; and D – Create the Weighted Overlay Service. Of these four processes, the first

two, preparing the input dataset and classifying the resulting raster dataset, present the

greatest challenges to GeoPlanner users and represents the majority of the effort required

to complete the workflow.

Process A – Prepare the Input Dataset includes a number of steps requiring the user to

transform all datasets into the same projection, convert any vector data into rasters,

standardize all cells to an appropriate and uniform size, select a resampling method,

define the extent of their project, and address any NoData values or irregularities. The

resulting rasters must all have the same cell size, projection, extent, and be saved to the

same file type, geoTIFF.

Process B – Classify the Raster Dataset requires users to classify their data by first

determining a suitable classification method and number of classes for their analysis, then

calculating the value ranges for each class. When the value ranges have been calculated,

the user must define the minimum and maximum values for each class by manually

17

entering a comma-delimited string in a custom Python tool dialog to configure the raster

fields. Output values, range labels, and NoData ranges must also be determined and

entered by hand. At the end of this process, all of the user-entered parameters are written

to an XML file that is associated with the input raster dataset. Any errors in this process

are typically difficult to identify and prevent the weighted overlay service from being

created at the end of the workflow.

3.2 Requirements Analysis

The technical requirements of this project are framed in part by the geoprocessing tools

used to prepare and classify the datasets and their system environments. To start with, as

a web application, GeoPlanner for ArcGIS is designed to be accessed through a web

browser, such as Internet Explorer, Chrome, Firefox, or Safari, on a computer with a

high-speed internet connection. In addition, the Weighted Raster Overlay Service

(WROS) toolset and the two new processing tools, as custom Python tools built with the

ArcPy site package, require ArcGIS 10.3 for Desktop with the Spatial Analyst extension.

Publishing the mosaic dataset as an image service and then hosting it as a weighted

overlay service on ArcGIS Online requires access to ArcGIS 10.3 for Server with the

Image Extension for Server and an ArcGIS Online organizational account. These

software and system platform requirements together make up the environment necessary

to build and run the new tools that have been developed for this project.

At the request of the project’s client, these two new tools were developed in a custom

Python toolbox with Esri’s ArcPy site-package for compatibility with the existing WROS

toolset. The primary requirement for the first tool, A – Prepare the Dataset, was to

process a variety of input datasets in preparation to be classified, mosaicked, and the

18

shared as an image service via ArcGIS for Server. The requirements for this tool are

documented in Table 3.1.

Table 3.1 Requirements for Process A: Prepare the Input Dataset

Process Requirement Functional/Nonfunctional

Allow the input of vector and raster datasets of various

file types.

Functional

Determine the input data type. Functional

Convert any input vector datasets into raster datasets. Functional

Repair input vector datasets by deleting any null

geometry.

Functional

Assign a standardized cell size to output datasets. Functional

Assist users in selecting an appropriate raster cell size

based on the scale of their design projects.

Non-functional

Assist users in selecting an appropriate resampling

method based on the input data type.

Non-functional

Provide an option to clip or mask the input dataset to

the extent or boundary of the user’s design project.

Functional

Project the input dataset to Web Mercator (as required

by the GeoPlanner for ArcGIS application).

Functional

Save the output raster as a geoTIFF. Functional

Provide well documented tool help for the user. Non-functional

Run validation rules to confirm that required

parameters have been filled out correctly.

Functional

The primary requirement for the second tool, Classify the Raster Dataset, was to help

the user configure the input raster fields with the classification information needed to

group, label, and rank the dataset’s value ranges. The requirements for this tool are

described in Table 3.2.

19

 Requirements for Process B: Classify the Raster Dataset

Process Requirement Functional/Non-functional

Restrict tool input to only accept geoTIFF rasters. Functional

Provide the ability to classify the input rasters by equal

intervals, quantiles, or unique values.

Functional

Assist users in selecting an appropriate classification

method based on their dataset and design project.

Non-functional

Provide the ability to select the number of classes that

are created in the classification process.

Functional

Assist the user in selected the appropriate number of

classes based on their dataset and design project.

Non-functional

Automatically label the new classes through

recommended defaults and field mapping.

Functional

Provide a way for users to add optional information

such as layer description, metadata, and source URL.

Functional

Produce an output XML with all the required raster

field configurations.

Functional

Associate the output XML with the original raster

input.

Functional

Provide well documented tool help for the user. Non-functional

Run validation rules to confirm that required

parameters have been filled out correctly.

Functional

3.3 System Design

The objective of this project was to improve the custom weighted overlay service

creation workflow by developing two new tools to simplify and automate the

classification of thematic rasters. These two new tools integrate with the existing WROS

tools in the context of the full weighted overlay service creation workflow. A conceptual

model of the overall workflow is depicted in Figure 3.1. The solid containers in the left

20

column represent the various datasets (input, intermediate, and output) that are pushed

through the workflow. The outlined containers in the right column represent the four

processes, or steps, that make up the workflow. The tools developed for this project

replace the existing tools for the first of these two processes, preparing and then

classifying the input dataset. The final row on the bottom shows the final step where the

workflow produces a weighted overlay service that is ready to be consumed in the

GeoPlanner application. Following the workflow’s conceptual model diagram, each of

the processes is modeled and described in greater detail.

 Weighted Overlay Service Creation Workflow

21

3.3.1 Prepare the Input Dataset

The first process in the workflow prepares the input dataset to be classified and ensures

that it meets the data format, metadata, and raster field configuration requirements for a

weighted overlay service. The individual steps in this process utilize ArcGIS for

Desktop’s geoprocessing capabilities and include projecting the dataset to a common

projection, clipping the it to the extent of the design project to reduce file size, converting

any vectors into a raster, resizing raster cells if needed, addressing any NoData values or

data gaps, and saving the output as a geoTIFF. This process was simplified by combining

the individual steps in the new Prepare the Input Dataset tool. The process and its steps

are mapped out in Figure 3.2.

 Process A: Prepare the Input Dataset Tool

22

3.3.2 Classify the Raster Dataset

When the source dataset has been cleaned up, the prepared raster needs to be classified

with ranks and labels assigned to each new class in preparation for it to be converted into

a weighted overlay service. In the second workflow process, the first step is to determine

whether the input raster’s values are nominal or continuous. Based on this data type, a

classification method is recommended – Equal Intervals, Quantiles, or Unique Values.

After the classification method has been chosen, the number of classes to be created is

selected. With the classification method and number of classes defined, the raster is

classified by calculating the raster statistics, break values, and class ranges. The next step

adds the class labels and default ranks to these new classes, and in the final step all of this

information is written to an XML file that is associated with the input raster. This process

was simplified and automated by combining and refining the individual steps in the new

Classify the Raster Dataset tool. The process and its steps are mapped out in Figure 3.3.

 Process B: Classify the Raster Dataset Tool

23

3.3.3 Create the Mosaic Dataset

The next process in the weighted overlay service creation workflow is to build the mosaic

dataset. All of the prepared rasters, outputs from the first process, to be included in the

weighted overlay service are input into the Convert Raster to a Mosaic Dataset tool, an

existing tool in the WROS toolset. This process combines the rasters, ensures that the

dataset metadata has been formatted correctly, and produces a copy of the data for

backup storage on the user’s local machine or network (Figure 3.4).

 Process C: Create the Mosaic Dataset

3.3.4 Create the Weighted Overlay Service

The final process in the workflow is to make the mosaic dataset available on ArcGIS

Online as a weighted overlay service. The mosaic dataset is first published as an image

service through ArcGIS for Server. This image service is then added to an ArcGIS Online

for Organizations account. Metadata tags added in the classification and mosaic dataset

creation processes allow this image service to be consumed as a weighted overlay service

in GeoPlanner for ArcGIS. Figure 3.5 shows the final steps in the workflow – the mosaic

24

dataset is uploaded to the ArcGIS Online platform and made available inside the user’s

organization for creating new weighted raster overlay models in GeoPlanner.

 Process D: Create the Weighted Overlay Service

3.4 Project Plan

The central challenge of this project was the development of two new custom Python

tools. Based on this goal, a software development approach was adopted, and the project

plan followed a general framework focused on three distinct phases – design, develop,

and deploy.

3.4.1 Design Phase

The first phase of this project was the design phase. During this phase the general outline

of the work was defined and the work breakdown structure table was created. The design

phase included the following tasks:

Task 1 - Conduct background research on the history of land suitability assessment,

the application of weighted overlay analysis, and the theory and methodology behind

thematic raster classification.

25

Task 2 – Gather and define the project requirements through client meetings and

feedback from GeoPlanner users. Map out the current GeoPlanner workflows and

become more familiar with the Weighted Raster Overlay Services toolset.

Task 3 - Design an automated workflow and user interface that includes all of the

requirements and the new thematic raster classification recommendations.

3.4.2 Develop Phase

The next phase of the project was the develop phase. This phase was used to build the

new custom Python tools for the first two processes of the weighted overlay service

creation workflow. This included all of the coding and integration into both the existing

WROS toolset and the ArcGIS platform. Specifically, the develop phase included the

following tasks:

Task 1 - Develop a web-based workflow in Python that processes input datasets by

converting them into a geoTIFF format and then adds the geoTIFF raster to a mosaic

dataset.

Task 2 – Build and integrate a mosaic dataset configuration script into the workflow

to configure the required parameters and add them to the output.

Task 3 - Automate the publication of newly configured mosaic datasets to ArcGIS

Online as a weighted overlay service.

Task 4 - Develop a solution that recommends thematic raster classifications based on

the data type and geodesign objectives.

26

3.4.3 Deploy Phase

The deploy phase was the final phase in the project plan. In this phase, the final solution

required extensive testing before it could be approved by the client and integrated into the

GeoPlanner application’s WROS toolset. The new tools were initially be tested with

synthetic data created for the purpose of verifying the functionality of the solution. After

testing with synthetic data, further testing with real-world sample data from the project

client and other sources confirmed that the final solution successfully met the project’s

objectives and the client’s expectations. The results of this testing was documented to

record any errors, bugs, or needed enhancements. Based on this documentation, revisions

and fixes were be developed and added to the tools. The following tasks are associated

with the deploy phase:

Task 1 – Test each tool independently; then test the tools together; and at the end, test

the complete workflow with synthetic data.

Task 2 – Test each tool independently; then test the tools together; and at the end, test

the complete workflow with sample data provided by the client.

Task 3 – Document bugs and enhancement requests, prioritize these tasks, and

develop fixes and resolutions them.

Task 4 – Deliver the tools, as the final solution, to the client and then integrate it into

the existing GeoPlanner code as a functionality update.

Task 5 – Create and deliver product documentation for both the end users and the

client’s team.

27

3.4.4 Work Breakdown Structure

As part of the design phase, a work breakdown structure was created to document the

phases of the project plan, the tasks associated with each phase, and the estimated time

each task would require (Table 3.3).

 Work Breakdown Structure

 Task Title
Start

Month

End

Month

Labor

Hours

1 Design Phase

1.1
Research land suitability assessment, weighted

overlay analysis, and classification methods.
1 2 40

1.2
Define project requirements and map the

weighted overlay service creation workflow.
1 2 20

1.3
Design an automated workflow and user interface

that includes raster classification tools.
2 3 20

2 Develop Phase

2.1
Develop a web-based workflow in Python that

processes and classifies input datasets.
3 4 40

2.2
Build and integrate a mosaic dataset

configuration script into the workflow.
4 5 60

2.3
Automatically publish new mosaic datasets to

ArcGIS Online as weighted overlay services.
4 5 20

2.4
Build a solution that recommends thematic raster

classifications.
4 6 60

2.5 Develop a user interface for the entire workflow. 5 6 20

3 Deploy Phase

3.1
Test the solution and workflow with synthetic

data.
6 6 8

3.2
Test the solution and workflow with client

supplied “real life” data.
6 6 8

3.3

Deliver the solution to the client and integrate the

solution into the existing GeoPlanner code as a

functionality update.

6 7 20

28

3.4

Create and deliver product documentation for the

end user that describes how to use the new

functionality.

4 7 20

3.5

Create and deliver backend documentation for the

client that describes how the solution was

designed and how code is organized.

4 7 20

3.4.5 Project Plan Analysis

Over the course of the project, the project plan and work breakdown structure were useful

in providing a framework for the tasks that needed to be completed and the general order

and priority these tasks should hold in relation to each other. However, from the

beginning, the project did not proceed as initially expected. Some of the changes were

predictable; for example, under estimations of the time and effort required to finish

certain tasks led to compounding tasks as new work was started before previous tasks

were fully completed. The most significant impacts on the original project plan came

from developing a better understanding of the client’s needs, the limitations of the

ArcGIS and GeoPlanner platforms, and the experiences of learning to code in a new

scripting language. This added experience, insight, and information required changes to

the original project plan – the timeline was extended, the tool requirements were

modified, and the expectations for the final deliverable changed. While this presented a

number of challenges, it resulted in the delivery of a final solution that works with the

existing workflow and better meets the client’s and end-users’ needs.

3.5 Summary

The objective of the project was to improve the existing workflow for creating new

weighted overlay services to be used in the GeoPlanner for ArcGIS application. An

assessment of the workflow found that two of the four processes in the workflow were

29

too difficult and complex for the average end-user. A solution was proposed to address

these issues, and a project plan was created that provided a framework for the

development of two new tools that would simplify and automate the most challenging

aspects of the weighted overlay service creation workflow. This project plan followed the

general guidelines of software development and was divided into design, development,

and deployment phases. Throughout the course of the project, the project plan evolved as

new information and experience necessitated changes to the originally proposed solution.

At the conclusion of the project, two new tools that met the client’s needs and

expectations were delivered.

31

Chapter 4 – Database Design

In this chapter, the database design of the project is reviewed. Section 4.1 describes the

conceptual data model. Section 4.2 covers the logical data model. Section 4.3 describes

the data sources. Section 4.4 reviews the data collection sources. Section 4.5 describes

the data clean up processes. And the chapter concludes with a summary of these efforts in

Section 4.6.

4.1 Conceptual and Logical Data Models

The efforts of this project were primarily engaged in the development of two new custom

Python tools. These two tools were designed to integrate into a weighted overlay service

creation workflow as part of a complete geographic information system As such, there

was no data component in the final solution or included in the client deliverables.

However, as the two tools were required to prepare and classify input datasets, a data

model was required for the synthetic and real-world data that was used in the

development and testing of the tools’ functionality.

The Prepare the Input Dataset tool’s conceptual data model defines the input dataset,

its influence on the processing steps, the changes to the dataset at each step, the output

raster dataset, and the required characteristics at each step in the process. The tool’s input

accepts both vector and raster datasets. Depending on the data type, vector or raster, the

input dataset is processed through a series of steps that transform it into an output raster

with uniform characteristics that match the other raster datasets to be included in the

mosaic dataset (Figure 4.1).

32

 Prepare the Input Dataset Tool - Conceptual Data Model

The output of the process is a prepared raster dataset with the following characteristics:

 Saved in a geoTIFF format.

 Projected to Web Mercator (Auxiliary Sphere).

 Clipped to the design project’s boundaries or extent.

 Resampled to a uniform cell size.

 Optimized for performance by building pyramids and removing features with no

associated spatial data.

These characteristics are required for each raster that is added to the weighted overlay

service because each raster layer in the service must align with every other raster layer to

produce accurate results. The tool does not modify the original input dataset. The tool

creates a new dataset as its output.

The Classify the Raster Dataset tool’s conceptual data model defines the input

datasets, the assessment and classification process, and the relationship between the

output file and the input dataset. The raster prepared by the first tool is the input for this

tool. The cell values of this raster are used to calculate new classes. For the output, these

classes, and other information, are written to a new file that is associated with the input

raster. The conceptual data model for this process is displayed in Figure 4.2.

33

 Classify the Raster Dataset Tool - Conceptual Data Model

The output file must include the following information:

 File name of the associated raster dataset

 Input ranges of the new classes

 Output values, or weights, for each of the new classes

 Range labels for each of the new classes

 Description of the dataset

The prepared raster dataset from the first tool and the associated classification

information file created by the second tool are stored together on the user’s system. Both

files must be kept together and be stored in a location accessible to the mosaicking tool

used in the third process.

The logical data model for this project was designed to accommodate a wide range of

file types for testing data. The top level file folder, labeled “Data”, contains file

geodatabases, various raster image files, shapefiles, and other data types. Each

geodatabase represents datasets collected for specific design scenarios, such as the South

Campus Train Station Land Planning project, a new water treatment facility suitability

study, landform classification sample data, and so forth. These geodatabases include both

vector and raster datasets as well as other sample data, such as annotation, networks, and

tables. The raster images and shapefiles represent many different file formats, pixel

depths, cell sizes, projections, data types, extents, and NoData value ranges.

34

4.2 Data Sources

A wide variety of synthetic sample datasets and real-world datasets were used in the

development and testing of the Prepare the Input Dataset and Classify the Raster Dataset

tools. These datasets were acquired from a number of sources including the project client,

the University of Redlands Geodesign Studio, the City of Redlands, USGS image

services, and ArcGIS Online. The objective was to collect a representative sampling of

the various file formats, data types, and raster themes that are typically used in weighted

raster overlay analyses. The datasets included in Table 4.1 are a sample of the inputs used

in the development and final acceptance testing of these new tools. Note the variety of

data types, formats, pixel depths and pixel types.

 Project Datasets and Characteristics

ID Name Data

Type

Format Nominal/

Continuous

Pixel Depth and

Type

1 soiltype.tif raster File System

Raster -TIFF

Nominal 8-bit

Signed integer

2 inyo_landcvr raster File System

Raster - GRID

Nominal 8-bit

Unsigned integer

3 LandformClassification raster File

Geodatabase

Raster

Continuous 16-bit

Signed integer

4 whitelev_20 raster File System

Raster - GRID

Nominal 8-bit

Unsigned integer

5 whitelev_int raster File System

Raster - GRID

Continuous 16-bit

Signed integer

6 RedlandsTerrain.tif raster File System

Raster -TIFF

Continuous 32-bit

Floating point

7 Zoning.tif raster File System

Raster -TIFF

Nominal 32-bit

Signed integer

8 SoilTypes vector File

Geodatabase

Feature Class

Nominal N/A

9 SouthCampus_Trees vector File

Geodatabase

Feature Class

Nominal N/A

35

10 GeneralPlanLines vector File

Geodatabase

Feature Class

Nominal N/A

11 RedlandsLandUse.shp vector Shapefile Nominal N/A

12 AnalysisArea.shp vector Shapefile Nominal N/A

The data sources for GeoPlanner users varies depending on the design scenario, project

scope, and organizational resources. Dataset characteristics such as scale, projection, and

format are subject to each user’s needs. Because a weighted overlay service is composed

of multiple dataset layers, it is important that every dataset included in the model shares

the same projection and that scale, resolution, and format have been considered in the

workflow. The weighted overlay service creation workflow has been designed to accept a

wide range of input dataset. To accommodate this flexibility, these two new tools also

have to able to accept a wide range of input datasets. While there are data type

restrictions in place, the most commonly used data formats can be input and processed by

the Prepare the Input Dataset tool.

4.3 Data Collection Methods

Collecting a large and diverse assortment of datasets was key to satisfying some of the

project’s core objectives. These datasets were collected from a variety of sources. The

project client provided a number of sample datasets that represent typical inputs for the

weighted overlay creation workflow. To further expand the collection, datasets were

sourced from geodesign related projects undertaken by the faculty and students of the

University of Redlands Masters of Science in GIS program. This effort was completed by

identifying, searching, and obtaining a subset of more obscure datasets with uncommon

characteristics and formats. The full complement of datasets was used extensively in the

36

development and testing of the Prepare the Input Dataset and Classify the Raster Dataset

tools.

4.4 Data Scrubbing and Loading

In many cases, data obtained from external sources require some level of modification or

clean up before they can be included in the primary database. For the purposes of this

project, however, dissimilar datasets were preferred. The design of the new tools included

a requirement that they be able to process a wide range of dataset types. Datasets that

returned exceptions or errors when run through the tools were not cleaned up; they were

used as a standard to meet. In a few cases, datasets that initially worked perfectly with the

tools were modified in ways that were intended to break or crash the tools. The process of

assessing the properties and attributes of each dataset played a significant role in the latter

stages of the tool development as enhancements were added to make the tools more

robust and flexible.

4.5 Summary

The success of this project was related to the collection of various datasets that were used

in the development and testing of the Prepare the Input Dataset and Classify the Raster

Dataset tools. The project’s database was designed to meet the needs of the workflow as

described and modeled in this chapter. The datasets were collected from the project

client, resources in the Masters of Science in GIS program, and external sources related

to geodesign and land-use planning. Modeling the workflow processes and creating a

project database informed many of the design decisions made in the software

development phase of this project and ensured that the final tools met the client’s needs.

37

Chapter 5 – Implementation

Chapter 5 describes the implementation of the project and the development of two

custom Python tools. These tools were built to facilitate the first two processes in the

weighted overlay service creation workflow - Prepare the Input Dataset and Classify the

Raster Dataset (Figure 5.1). The two tools were developed in Python 2.7 with the ArcPy

site package. To improve the workflow processes, a number of individual steps were

simplified by adding validation rules, default best practices, and expert recommendations

to automate the new tools. The process for developing each of these tools and their

functionality is covered in detail. The decisions and rational behind the automated

components of these tools is also presented.

 Input Dataset Processing through the Project Tools

5.1 Prepare the Input Dataset

The Prepare the Input Dataset tool prepares the user’s input dataset for the raster

classification process. This tool produces an output raster that is correctly projected and

repaired and then clipped to the extent of the design scenario with a defined cell size and

pyramids to improve performance. The Prepare the Input Dataset tool was designed to

38

simplify the processing of multiple datasets by making it easy to standardize the output

dataset’s characteristics and attributes.

There are six parameters for the tool: Input Dataset, Select a Cell Size, Select a Raster

Value Field, Select a Resampling Method, Select a Mask for the Design Scenario, and

Output Raster Name and Location (Figure 5.2). The input, output, and cell size

parameters are required, and the clipping mask parameter is optional. The Select a Raster

Value Field and Select a Resampling Method parameters are enabled and disabled

depending on the input data type.

 Prepare the Input Dataset Tool

5.1.1 Step 1 – Input Dataset

The Prepare the Input Dataset tool has been configured to accept a range of inputs. These

inputs include raster datasets and feature datasets. Because this tool is built on the

ArcGIS platform, the supported raster data formats are dependent on Esri’s extensive

raster list. These raster formats include: Bitmap (*.bmp), Standard Raster Product

39

(*.img), File Geodatabase (*.gdb), Graphic Interchange Format (*.gif), Joint

Photographic Experts Group (*.jpg or *.jpeg), Portable Network Graphics (*.png), and

many more. For the vector type inputs, the supported feature datasets include shapefiles

and feature classes with polygon and line geometry.

When the tool runs, the first step is to determine if the input is a vector or raster by

using the arcpy.Describe() function. If the input is a feature class, the same function is

used to verify that the specific data type is supported (polygon or line data). For example,

if a vector with point geometry is input, the validation step returns an error message,

“Input feature classes must have line or polygon geometry.” It then instructs the user to

modify the input dataset. Depending on the input data type, the Select a Raster Value

Field and Select a Resampling Method parameters are either enabled or disabled (Figure

5.3). The Select a Raster Value Field parameter is only enabled when the input is a vector

dataset. And the Select a Resampling Method parameter is only enabled when the input is

a raster dataset.

 Parameter 1: Input Dataset

40

5.1.2 Step 2 – Project the Input Dataset

After the input dataset from the first parameter has been described and validated, the tool

then projects the dataset. This task is performed for both vector and raster input datasets

using the arcpy.Project_management() and arcpy.ProjectRaster_management() functions

respectively. This task is run before any other geoprocessing tasks to minimize distortion

and errors that could be introduced by running it later in the dataset preparation process.

As an application on the ArcGIS Online platform, the GeoPlanner for ArcGIS

requires all datasets, including weighted overlay services, to be projected in WGS 1984

Web Mercator (Auxiliary Sphere). Requiring any one projection to be used in all cases is

problematic, and the Web Mercator projection, in particular, presents a unique set of

challenges including increasingly exaggerated distortions moving from the equator

toward the poles. This is a known limitation of the GeoPlanner application and the results

of the application’s weighted raster overlay analysis models. The client has deemed this

as an acceptable limitation because GeoPlanner has been positioned and designed as a

tool for rapid and iterative design, analysis, and evaluation. Additionally, weighted raster

overlay analysis, by its nature, is not a precise tool. It incorporates many subjective value

judgments and produces naturally fuzzy results. Initial ideas and designs created and

proposed in GeoPlanner are typically recreated by a GIS professional in ArcMap or

ArcGIS Pro with more exacting standards.

For input raster datasets, the projecting process step also requires resampling the

raster grid cells to match the selected cell size. The Prepare the Dataset tool provides two

resampling options, Nearest Neighbor and bilinear, as the fourth parameter in the tool’s

user interface (UI). When a raster is entered as the input for parameter 1, the Select a

Resampling Method parameter is enabled, and the Nearest Neighbor option is selected by

41

default (Figure5.4). The nearest neighbor resampling method assigns cell values to the

output raster based on the value of the corresponding closest cell from the input raster.

This method does not create any new values. It is selected by default because it is suitable

for both nominal and continuous datasets. The bilinear resampling method interpolates

cell values by averaging the values of the four nearest cell centers. The Bilinear

resampling method can be used for continuous datasets.

 Parameter 4: Select a Resampling Method

5.1.3 Step 3 – Convert Vector to Raster

After the input vector dataset has been projected, it is almost ready to be converted to a

raster. Prior to rasterization, the tool cleans up the vector dataset by deleting any features

with null geometry through the arcpy.RepairGeometry_management() function. When

the vector dataset has been prepared, the vector is converted into a raster. This step

requires two parameter inputs from the user: a cell size and a raster value field.

42

The cell size for the new raster to be created is selected as the second parameter in the

tool’s UI (Figure 5.5). The raster’s cell size plays an important role in both the process of

creating weighted overlay services and in the quality of the weighted raster overlay

analysis. All of the raster layers included in a weighted overlay service must have cells of

the same size. If the cell sizes are not consistent with each other, then the data values will

not line up and the resulting analysis model would be subject to flaws and error. The

Prepare the Input Dataset tool is designed to help ensure that all the raster layers can be

processed to have the same cell size.

 Parameter 2: Select a Cell Size

The raster value field is selected as the third parameter in the tool’s UI (Figure 5.6).

This parameter is only needed for vector inputs and is disabled for raster inputs. For this

parameter, the user is instructed to select the attribute field that should be used to assign

values to the raster cells during the vector to raster conversion step. Because various

input datasets represent a wide range of phenomena and there is no standard for field

43

names, this parameter cannot be automatically selected by the tool; the user must select

which field should be used to assign values in the new raster grid.

 Parameter 3: Select a Raster Value Field

5.1.4 Step 4 – Clip the Area of Interest

The Prepare the Input Dataset tool is designed to process datasets from a variety of

sources. When datasets come from different sources, it is uncommon for them to have the

same boundaries or extent – a requirement for each of the layers in a weighted overlay

service. The tool accommodates these discrepancies by providing a way for the user to

clip or mask the raster to a defined area of interest. If the input dataset needs to be clipped

to a boundary or extent, a feature or raster layer that defines the area of interest for the

design scenario can be added as the fifth parameter (Figure 5.7). This layer is used in the

arcpy.sa.ExtractByMask() function to remove any cells outside the defined boundary.

This step also includes building raster pyramids to improve the processing performance

throughout the weighted overlay service creation workflow.

44

 Parameter 4: Select a Mask for the Design Scenario

5.1.5 Step 5 – Output the Prepared Raster

After the input dataset has been described, projected, rasterized or resampled, cells re-

sized, and clipped, it is ready for the next process in the weighted overlay creation

workflow. The final step in this tool is to save the prepared raster as a geoTIFF. In the

last parameter, the user is instructed to select the destination file location for the output

raster, and give the output a unique name (Figure 5.8). The output must be saved as a

geoTIFF, so the name must end with the ".tif" suffix. A validation rule checks against this

requirement and prevents the tool from running until the output meets the criteria.

45

 Parameter 6: Output Raster Name and Location

The Prepare the Input Dataset tool is designed to walk the user through a series of

data processing steps that are needed to prepare the input dataset for the next process in

the weighted overlay service creation workflow – classifying the raster dataset.

5.2 Classify the Raster Dataset

The Classify the Raster Dataset tool classifies the input raster dataset and adds the

weighted overlay data required by the GeoPlanner for ArcGIS application. The output of

this tool is written to an XML file that is associated with the input raster for further

processing in the Create a Mosaic Dataset process of the weighted overlay service

creation workflow. The Classify the Raster Dataset tool was designed to simplify and

automate the process of selecting a classification method, calculating the new classes,

labeling and weighting the classes, and then recording that information in a properly

formatted XML file.

There are seven parameters for the tool: Input Raster, Classification Method, Number

of Classes, Field for Class Labels, Description, Metadata, and URL (Figure 5.9). The

46

input, classification method, number of classes, and the class label field are required

parameters, and the description, metadata, and URL parameters are optional. Depending

on the input data type, nominal or continuous, the second, third, and fourth parameters

have backend logic in place to provide recommended defaults to the user.

 Classify the Raster Dataset Tool

5.2.1 Step 1 – Input Prepared Raster Dataset and Determine Raster Type

The first step of the Classify the Raster Dataset tool is to input the prepared geoTIFF

raster that was produced previously by the Prepare the Input Dataset tool. Because the

data type for this parameter is set to Raster Layer, this first field only accepts raster files

(Figure 5.10). Additionally, when a raster is added to this parameter, validation rules

confirm that the input is a geoTIFF and that it is in the Web Mercator (Auxiliary Sphere)

projection. Input rasters that do not meet this criteria return this error message: “The

input raster must be a TIFF. Run this dataset through the 'Prepare the Dataset' tool to

47

prepare it for this tool." This ensures that the outputs of this tool will be compatible with

the other layers in the mosaic dataset and with the weighted overlay service requirements.

 Step 1: Input the Prepared Raster

After the raster has been added by the user and validated by the tool, a raster object is

created in Python to both enable raster statistics calculations and to improve processing

performance. The tool then determines the pixel type and depth of the raster by running

the arcpy.GetRasterProperties_management() function, which returns the

“VALUETYPE” property. The raster value type is a combination of the pixel type (e.g.,

unsigned, signed, or complex) and the pixel depth (e.g., 8-bit, 16-bit, or 32-bit). From this

value type information, the tool determines whether the input raster represents nominal or

continuous data based on the most common application of each specific pixel type and

depth combination. For example, an 8-bit unsigned raster would be considered a nominal

raster type, and a 32-bit floating point double precision raster would be considered a

48

continuous raster type. This raster type is used in the following steps to recommend

classification methods and the number of classes to be created.

5.2.2 Step 2 – Classify the Raster Dataset

The classification method used to group the input raster’s values has a significant impact

on the final weighted overlay analysis. The Classify the Raster Dataset tool has been

designed to improve the weighted overlay service creation workflow in a number of

ways. First, the tool clearly defines and describes each available classification method by

outlining the benefits, drawbacks, and their typical applications. Second, the tool

automatically recommends a classification method based on the raster type. Third, the

tool streamlines the classification process to facilitate user testing and experimentation by

iterating between classification methods and the number of classes used. This allows the

user to determine which classification method best suits the needs of the design project.

Based on the scope of this project, there are three classification methods available in the

tool: equal intervals, quantiles, and unique values. Other classification methods, such as

standard deviation or Jenk’s natural breaks, can also provide useful analytical

perspectives but were not included in the scope of this project.

Classifying the raster by equal intervals groups the cell values into classes that

contain an equal range of values. This method is good for showing different classes when

there are not great differences between most of the values. This type of classification

method is straightforward and relatively easy to interpret. When the input is a continuous

raster, the tool automatically sets the classification method parameter to “Equal Interval”

and the number of classes to “5” by default. (Figure 5.11).

49

 Select the Classification Method and Number of Classes

The tool calculates equal intervals by first calculating the class range value, then

calculating the break point values, and finishes by calculating the class ranges. The class

range value is calculated by dividing the raster’s value range by the number of classes to

be created. The first break point is calculated by adding the class range value to the

minimum cell value. Each subsequent break point is determined by adding the class range

value to the previous break point value. These break point values are appended to a list

that is fed into the next step (Figure 5.12).

 Python Code for Calculating the Break Points

50

For the last step of the process, the class ranges are defined by adding the minimum

and maximum values for each class to a new class ranges list based on the raster’s

minimum and maximum values and the break point values list (Figure 5.13). When this

list is interpreted by the weighted overlay service, the class ranges are defined by

including the minimum value and excluding the maximum value for each class (a

minimum inclusive and maximum exclusive approach). This means that the maximum

value of the first class will be the same value as the minimum value of the next class and

so on.

 Python Code for Defining the Class Ranges

The quantile classification method is similar to equal intervals, but instead of equal

range values, the classes themselves have an equal number of values. In this method, the

raster’s cell values are distributed into classes that each have an equal number of values,

so every class is approximately the same size. Quantiles are useful in mapping and

visualization for showing an equal representation of each class across the range of values.

This classification method is also a suitable option for continuous raster datasets.

The process for calculating quantiles in the tool is similar to the equal intervals

method with the biggest difference being the way the break points list is created. First, a

raster array is created to capture all of the dataset’s values in a new list. This list of values

51

is then input into a series of np.percentile() functions (from the NumPy site package) that

have been configured to return quantile values for each potential class range from one to

nine classes. These quantile values are then used as the break point values that are then

used to define the class range values in the same manner as the equal intervals method.

The third classification method in the Classify the Raster Dataset tool is the unique

values approach. This method creates a class for each unique value in the input raster

dataset. This option is only available to integer type rasters because creating a class for

each unique value in a float type raster would, in the majority of cases, produce more

classes than would be useful or meaningful in a weighted raster overlay analysis. The

unique values approach is good for discrete datasets where there are clear boundaries or

nominal features. When the tool’s input is a nominal dataset, the unique values

classification method is automatically selected and the Number of Classes parameter

defaults to the number of unique values in the dataset.

The raster classification step is the core of this tool. The tool significantly improves

the process by simplifying and automating the steps to classify, define, and record the

values for the input raster dataset. The final steps in this process are related the recording

task and associating related fields and metadata to the input raster dataset.

5.2.3 Step 3 – Add Related Fields

In addition to the class range values that are calculated in the second step, there are a

number of other fields that are added and configured for the raster dataset. These fields

provide required information, such as the weights for each class (output values) and the

labels for each class (range labels). There are also optional fields that can be included to

provide more information about the raster layer, such as the raster description, metadata,

52

and source URL. The Classify the Raster Dataset tool has been designed to accommodate

the input of all of these fields.

The required output value field is used to assign weights to each class in the raster

layer. These weights can range from a scale of 0 to 9 and can be adjusted in the weighted

overlay modeling UI inside the GeoPlanner application. These weights are used in the

weighted overlay analysis to emphasize or de-emphasize classes, depending on their

significance to the overlay model. There is no UI parameter for this field, instead the tool

automatically assigns each class a default weight of “5.” When the weighted overlay

service is opened in GeoPlanner, all of the classes have the same weight and the user can

adjust each class weight as needed.

The Field for Class Labels parameter is used to define the required range labels field.

In the weighted overlay service, each class in a layer has a descriptive label. For nominal

datasets, the class labels are selected from the raster’s attribute table (Figure 5.14).

 Select the Field for Class Labels

53

If Unique Values has been selected as the classification method, the label values in the

selected field are associated with the corresponding cell values during the Classify the

Raster step. For continuous datasets, the tool automatically assigns a generic set of raster

value descriptions (e.g., Low, Middle, High) for the class labels. These labels are used for

each dataset when the classes are weighted in the GeoPlanner for ArcGIS application

(Figure 5.15). If the user determines that any of these labels need to be modified, these

labels can be edited in the output XML file.

 Default class labels for continuous datasets in GeoPlanner

In addition to the required raster fields, the Classify the Raster Dataset tool, includes

parameters for the optional description, metadata, and URL raster fields. The Description

field can be used to describe the raster layer. This text is displayed as part of the raster

layer information in the weighted overlay service in GeoPlanner. The Metadata field can

be used to record any metadata associated with the raster layer, such as its source,

54

creation date, limitations, and so forth. If the raster layer was created from a hosted image

layer, the URL field can be used to link back to the original source.

5.2.4 Step 4 – Write Data to an XML File

The final step in the Classify the Raster Dataset process is to write all of the data to an

output XML file. The data written to this XML file includes the class ranges, weights,

and labels, as well as any information included in the optional field parameters. This

XML file is associated with the input raster by assigning a title, or file name, that matches

the raster. The name of the raster is cleaned up by removing the “.tiff” suffix and adding

“.aux.wo.xml” to the end. This XML file is automatically saved to the same location as

the input raster. When the Create Mosaic Dataset process is run, the tool loads both raster

and XML file together into the mosaic. As a raster layer in the GeoPlanner weighted

overlay model, the application reads the XML to determine its classes, weights, and

labels.

The two tools, Prepare the Input Dataset and Classify the Raster Dataset, simplify the

weighted overlay service creation workflow for the end user by reducing the number of

required parameters and automating a number of steps in each process. Additionally, the

tools reduce the chance of user error by programmatically writing the raster classification

values and other data directly to the output XML file.

55

Chapter 6 – Results and Analysis

At the conclusion of this project, two custom Python tools have been developed to

facilitate the creation of weighted overlay services for the GeoPlanner for ArcGIS

application. These tools successfully satisfy the core requirements of the project to

improve the weighted overlay service creation workflow by reducing the number of steps

and parameters in the UI, by simplifying the front end of the dataset preparation and

classification processes, and by automating the creation of the output XML file.

These two tools developed for this project, Prepare the Input Dataset and Classify the

Raster Dataset, were delivered to the client in February of 2016. The tools met the

client’s acceptance criteria for functionality and usability and are expected to improve the

end-user experience for GeoPlanner customers. Because these tools were designed to

complement the existing WROS toolset, the GeoPlanner for ArcGIS team is preparing

them for a general release to the public at a date in the near future. The efforts undertaken

for the project have provided material benefit to the project client and the end-users of the

GeoPlanner application. The results of the end product, a new weighted overlay service

and a composite raster as they appear in the GeoPlanner for ArcGIS application, are

displayed in in Figure 6.1.

56

 Weighted overlay service and composite raster in GeoPlanner

While ultimately successful, the project presented a host of difficulties and

challenges. The original expectation for the project was to create a single tool that would

completely replace the WROS toolset and the weighted overlay service creation

workflow. However, during the requirements gathering phase and initial tool

development phase, a number of technical limitations were discovered that made that

original goal unrealistic. At the same time, a deepening understanding of the workflow

and its individual processes led to a realization that the most significant challenges for

end users were in the first two steps. There was little need to revise the two latter steps,

which are straightforward and seldom present any difficulty to GeoPlanner users. After

discussing this new understanding with the project’s client and faculty advisor, the scope

of the project was revised to focus on the most important elements of the workflow, the

input dataset preparation and classification processes.

57

The actual development of the tools themselves was another significant challenge of

this project. The project manager started this project with no software development

experience, so in order to build these tools, Python coding skills had to be learned and the

entire software development process had to be understood and applied. This required

learning how to gather, define, and prioritize requirements. To this end, many hours were

spent searching ArcPy documentation, reading through support forums online, and

consulting with other Python developers. This experience demonstrated that novice

software developers can successful in their efforts if they know the right questions to ask

and where to go find the answers to those questions.

In the tool development phase, as the tools’ code base started to take shape,

debugging and troubleshooting skills had to be developed to understand and resolve

issues that were preventing the tools from executing as designed and expected. Learning

how to identify errors, and becoming more efficient at quickly fixing them, is key to the

successfully completing this phase of the project. During the final phase of the software

development process, testing played an important role in ensuring that the tools could

handle a variety of different data type and variables. It is easy to feel successful when

only a narrow subset of data types are ever used; it takes imagination and some optimism

to test the tools with real-world datasets that can sometimes break the tool in unexpected

ways. Testing was difficult but it resulted in a more robust set of tools that can handle

more than just carefully curated synthetic data.

The process of developing two new custom Python tools was educational. It

introduced new concepts of software development and presented the opportunity to put

many of these concepts into practice as the new tools were built from the bottom up.

58

However, this was only an introduction to the field, and there are still many things to be

learned and improved upon.

59

Chapter 7 – Conclusions and Future Work

The high-level goal of this project was to automate the classification of thematic rasters

for weighted overlay analysis in the GeoPlanner for ArcGIS application. To reach this

goal a number of specific objectives were defined. The specific requirements associated

with these objectives evolved over the course of the project, but the core purpose

remained unchanged. The final deliverable included two custom Python tools that replace

and complement existing tools in the Weighted Raster Overlay Services toolset. These

new tools significantly improve the end-user experience by reducing the number of

required steps in the weighted overlay service creation workflow, by providing guidance

and recommendations for best practices, and by automating much of the intermediate

processes of the workflow. These two new tools satisfied the client’s requirements and

expectations.

This project has addressed the most difficult and challenging aspects of the weighted

overlay service creation workflow, but there are still additional improvements that could

be made in future projects. The first version of the Classify the Raster Dataset tool only

includes three classification methods, equal interval, quantiles, and unique values. Future

development could incorporate other popular classification methods such as standard

deviation and Jenk’s natural breaks. This project addressed the first two processes of the

workflow with two new tools, and these tools process one dataset at a time. Tools that

could handle multiple datasets at the same time could potentially make the user

experience even easier. Additionally, if a tool was built to classify multiple prepared

rasters at the same time, the input rasters and resulting XML files could automatically be

60

mosaicked together. Automating the Create a Mosaic Dataset process would further

reduce end-user effort in the weighted overlay service creation workflow.

Outside of the context of the GeoPlanner for ArcGIS application, there are elements

of this project that could be incorporated in other software products and applications. The

idea of using Maximum Location Accuracy and map scale to determine an appropriate

cell size in raster resampling would be a significant improvement to some of the default

cell size selection methodologies in practice today.

The Prepare the Input Dataset and Classify the Raster Dataset tools are evidence that

existing processes and workflows can be enhanced by approaching the solution from a

customer-centric perspective. The effort to design, build, test, and deploy these tools will

translate into a more users creating their own weighted overlay services. When these

services are consumed in weighted raster overlay modeler in GeoPlanner, the user has

access to a powerful analytical tool that can provide a wealth of information related to

their design project – a generic tool becomes specialized, and generalized information

becomes more specific and relevant. This project enables users to gain and share new

insights and perspectives from their own datasets.

61

Works Cited

Carver, S. J. (1991). Integrating multi-criteria evaluation with geographical information

systems. International Journal of Geographic Information Systems, 321-339.

Chrisman, N. (2004). Charting the Unknown: How Computer Mapping at Harvard

Became GIS. Redlands: Esri Press.

Collins, M. G., Steiner, F. R., & Rushman, M. J. (2001). Land-Use Suitability Analysis in

the United States: Historical Development and Promising Technological

Achievements. Environmental Management, 611-621.

Dragut, L., & Blaschke, T. (2006). Automated classification of landform elements using

object-based image analysis. Geomorphology, 330-344.

Esri. (2016, January 28). GeoPlanner for ArcGIS. Retrieved from ArcGIS Marketplace:

https://marketplace.arcgis.com/listing.html?id=5e99f4fa519949209cd3da2966fd5

43b

Hall, G. B., Wang, F., & Subaryono. (1992). Comparision of Boolean and fuzzy

classification methods in land suitability analysis by using geographical

information systesms. Environment and Planning A, 497-516.

Hengl, T. (2006). Finding the right pixel size. Computers and Geosciences, 1283-1298.

Hopkins, L. (1977). Methods for Generating Land Suitability Maps: A Comparative

Evaluation. Journal of the American Institute of Planners, 380-400.

Iwahashi, J., & Pike, R. J. (2007). Automated classifications of topography from DEMs

by an unsupervised nested-means algorithm and a three-part geometric signature.

Geomorphology, 409-440.

62

Jankowski, P. (1995). Integrating geographical information systems and multiple criteria

decision-making methods. International Journal of Geographic Information

Systems, 251-273.

Malczewski, J. (2000). On the Use of Weighted Linear Combination Method in GIS:

Common and Best Practice Approaches. Transactions in GIS, 5-22.

Malczewski, J. (2004). GIS-based land-use suitability analysis: a critical overview.

Progress in Planning, 3-65.

McHarg, I. L. (1995). Design with Nature. New York: J. Wiley. (Reprinted from Design

with Nature, 1969, Garden City, New York: Natural History Press)

Rossiter, D., & Hengl, T. (2002). Technical note: creating geometrically-correct photo-

interpretations, photomosaics, and base maps for a project GIS. Technical Report.

Enschede, The Netherlands: ITC, Department of Earth Systems Analysis.

Steiner, F., McSherry, L., & Cohen, J. (2000). Land suitability analysis for the upper Gila

River watershed. Landscape and Urban Planning, 199-214.

Tobler, W. (1988). "Resolution, Resampling, and All That". In H. Mounsey, & R.

Tomlinson, Building Data Bases for Global Science (pp. 129-137). London:

Taylor and Francis.

Tomlinson, R. F. (1999). Geographic Information Systems. New York: Wiley.

Van der Merwe, J. H. (1997). GIS-aided land evaluation and decision-making for

regulating urban expansion: A South African case study. GeoJournal, 135-151.

Vink, A. (1975). Land Use in Advancing Agriculture, vol. 10. New York: Springer.

Wilson, K. A. (2007). Building Complex and Site Categorization Using Similarity to a

Prototypical Site. Redlands: Unpublished master's thesis, University of Redlands.

63

Appendix A. Python Toolbox Code

The Python toolbox code for the Prepare the Input Dataset tool and the Classify the

Raster Dataset tool.

import arcpy

from arcpy import env

from arcpy.sa import *

arcpy.CheckOutExtension("Spatial")

import os

import numpy as np

import types

import string, random, os

import xml

import xml.etree.cElementTree as ET

arcpy.env.overwriteOutput = True

class Toolbox(object):

 def __init__(self):

 """Define the toolbox (the name of the toolbox is the name of the

 .pyt file)."""

 self.label = "Mayfield - WROS Tools"

 self.alias = "MayfieldWROSTools"

 # List of tool classes associated with this toolbox

 self.tools = [A_PrepareDataset, B_ClassifyRaster]

class A_PrepareDataset(object):

 def __init__(self):

 """Define the tool (tool name is the name of the class)."""

 self.label = "A. Prepare the Input Dataset"

 self.description = "This tool prepares the input dataset for classification."

 self.canRunInBackground = False

 def getParameterInfo(self):

 """Define parameter definitions"""

 param0 = arcpy.Parameter(

 displayName="Input Dataset",

 name="InputDataset",

 datatype="DEDatasetType",

 parameterType="Required",

 direction="Input")

 param01 = arcpy.Parameter(

64

 displayName="Select a Cell Size (in meters)",

 name="cellSizeInput",

 datatype="GPString",

 parameterType="Required",

 direction="Input")

 param01.filter.type = 'ValueList'

 param01.filter.list = ["600 (Large State - 1:6,000,000)", "300 (Medium State -

1:3,000,000)", "150 (Counties - 1:1,500,000)", "75 (County - 1:750,000)", "32 (Metro

Area - 1:320,000)", "16 (Cities - 1:160,000)", "8 (City - 1:80,000)", "4 (Town -

1:40,000)", "2 (Neighborhood - 1:20,000)", "1 (Block Group - 1:10,000)", "0.5 (Street -

1:5,000)"]

 param02 = arcpy.Parameter(

 displayName="Select a Raster Value Field",

 name="rasterValueField",

 datatype="Field",

 parameterType="Required",

 direction="Input")

 param02.filter.list = ['Text', 'Short', 'Long', 'Single', 'Double', 'Date', 'OID', 'Raster',

'GlobalID']

 param02.parameterDependencies = [param0.name]

 param03 = arcpy.Parameter(

 displayName="Select a Resampling Method",

 name="resamplingType",

 datatype="GPString",

 parameterType="Optional",

 direction="Input")

 param03.filter.type = 'ValueList'

 param03.filter.list = ["NEAREST","BILINEAR"]

 param04 = arcpy.Parameter(

 displayName="Select a Mask for the Design Scenario",

 name="mask",

 datatype="DEFeatureClass",

 parameterType="Optional",

 direction="Input")

 param05 = arcpy.Parameter(

 displayName="Output Raster Name and Location",

 name="outputRaster",

 datatype="DERasterDataset",

 parameterType="Required",

 direction="Output")

 params = [param0,param01,param02,param03,param04,param05]

65

 return params

 def isLicensed(self):

 """Set whether tool is licensed to execute."""

 return True

 def updateParameters(self, parameters):

 """Modify the values and properties of parameters before internal

 validation is performed. This method is called whenever a parameter

 has been changed."""

 if (parameters[0].value):

 # Disable raster value field for raster inputs

 userInput = parameters[0].valueAsText

 desc = arcpy.Describe(userInput)

 if desc.datasetType == "FeatureClass":

 prepped = "vector"

 elif desc.datasetType == "RasterDataset":

 prepped = "raster"

 else:

 parameters[0].setErrorMessage("Input feature classes must be a raster or vector

dataset.")

 if prepped == "vector":

 parameters[2].enabled = 1 #Turn Raster Value Field parameter ON

 parameters[3].enabled = 0 #Turn Resampling Method parameter OFF

 else:

 parameters[2].value = " "

 parameters[2].enabled = 0 #Turn Raster Value Field parameter OFF

 parameters[3].enabled = 1 #Turn Resampling Method parameter ON

 # Default the resampling method to NEAREST

 if not parameters[3].altered:

 parameters[3].filter.type = "ValueList"

 parameters[3].filter.list = ["NEAREST", "BILINEAR"]

 parameters[3].value = "NEAREST" #Because this is the safe assumption

 return

 def updateMessages(self, parameters):

 """Modify the messages created by internal validation for each tool

 parameter. This method is called after internal validation."""

 # Verify that the input file is a vector or raster dataset and that the feature classes are

only line and polygon geometry

 if parameters[0].value:

 userInput = parameters[0].valueAsText

 desc = arcpy.Describe(userInput)

66

 if desc.datasetType == "FeatureClass":

 prepped = "vector"

 if desc.shapeType == "Point":

 parameters[0].setErrorMessage("Input feature classes must have line or

polygon geometry.")

 elif desc.shapeType == "MultiPoint":

 parameters[0].setErrorMessage("Input feature classes must have line or

polygon geometry.")

 elif desc.shapeType == "MultiPatch":

 parameters[0].setErrorMessage("Input feature classes must have line or

polygon geometry.")

 elif desc.datasetType == "RasterDataset":

 prepped = "raster"

 else:

 parameters[0].setErrorMessage("The input must be a vector feature class or a

raster dataset.")

 # Verify that the output file is a TIFF

 if parameters[5].value:

 output = parameters[5].valueAsText

 if not output.endswith("tif"):

 parameters[5].setErrorMessage("The output raster must be a geoTIFF. Add '.tif'

to the end of the file name.")

 if parameters[5].altered:

 output = parameters[5].valueAsText

 if not output.endswith("tif"):

 parameters[5].setErrorMessage("The output raster must be a geoTIFF. Add '.tif'

to the end of the file name.")

 return

 def execute(self, parameters, messages):

 """The source code of the tool."""

 userInput = parameters[0].valueAsText

 cellSizeInput = parameters[1].valueAsText

 rasterValueField = parameters[2].valueAsText

 resamplingType = parameters[3].value

 mask = parameters[4].value

 outputRaster = parameters[5].valueAsText

 arcpy.env.nodata = "PROMOTION"

 # Set cell size based on user input

 if cellSizeInput == "600 (Large State - 1:6,000,000)":

 cellSize = 600

 elif cellSizeInput == "300 (Medium State - 1:3,000,000)":

67

 cellSize = 300

 elif cellSizeInput == "150 (Counties - 1:1,500,000)":

 cellSize = 150

 elif cellSizeInput == "75 (County - 1:750,000)":

 cellSize = 75

 elif cellSizeInput == "32 (Metro Area - 1:320,000)":

 cellSize = 32

 elif cellSizeInput == "16 (Cities - 1:160,000)":

 cellSize = 16

 elif cellSizeInput == "8 (City - 1:80,000)":

 cellSize = 8

 elif cellSizeInput == "4 (Town - 1:40,000)":

 cellSize = 4

 elif cellSizeInput == "2 (Neighborhood - 1:20,000)":

 cellSize = 2

 elif cellSizeInput == "1 (Block Group - 1:10,000)":

 cellSize = 1

 elif cellSizeInput == "0.5 (Street - 1:5,000)":

 cellSize = 0.5

 else:

 cellSize = 0.5

 # Set global variables

 arcpy.env.outputCoordinateSystem = arcpy.SpatialReference(3857) #3857 is the

WKID for WGS_1984_Web_Mercator_Auxiliary_Sphere

 arcpy.env.cellSize = cellSize

 def main():

 # Determine the Input Dataset Type

 desc = arcpy.Describe(userInput)

 if desc.datasetType == "FeatureClass":

 prepped = prepVector(userInput)

 else:

 prepped = prepRaster(userInput)

 def prepVector(inVector):

 projected = "projected"

 outRaster = "outRaster"

 # Project the Vector Dataset

 arcpy.Project_management(inVector, projected,

arcpy.env.outputCoordinateSystem)

 # Repair the Vector Dataset

 arcpy.RepairGeometry_management(projected)

68

 # Convert Vector to Raster

 arcpy.FeatureToRaster_conversion (projected, rasterValueField, outRaster,

cellSize)

 outRaster2 = Raster(outRaster)

 # Clip the Raster Dataset and Build Pyramids

 if mask and mask != "#":

 clipRaster = arcpy.sa.ExtractByMask(outRaster2, mask)

 preppedRaster = clipRaster

 arcpy.BuildPyramids_management(preppedRaster)

 preppedRaster.save(outputRaster)

 else:

 preppedRaster = outRaster

 arcpy.BuildPyramids_management(preppedRaster)

 preppedRaster2 = Raster(preppedRaster)

 preppedRaster2.save(outputRaster)

 return

 def prepRaster(inRaster):

 # Define the intermediate file

 int = parameters[5].valueAsText

 if int.endswith(".tif"):

 intRaster = int.replace(".tif","_int")

 # Clip the Raster Dataset and Build Pyramids

 if mask and mask != "#":

 clipRaster = arcpy.sa.ExtractByMask(inRaster, mask)

 preppedRaster = clipRaster

 arcpy.BuildPyramids_management(preppedRaster)

 else:

 preppedRaster = inRaster

 arcpy.BuildPyramids_management(preppedRaster)

 # Project the Raster Dataset

 arcpy.ProjectRaster_management(preppedRaster, intRaster,

arcpy.env.outputCoordinateSystem, resamplingType, cellSize)

 projectedRaster = arcpy.Raster(intRaster)

 projectedRaster.save(outputRaster)

 arcpy.Delete_management(intRaster)

 return

 main()

 return

class B_ClassifyRaster(object):

 def __init__(self):

69

 """Define the tool (tool name is the name of the class)."""

 self.label = "B. Classify the Raster Dataset"

 self.description = "This tool classifies the input raster dataset and adds the weighted

overlay data required by the GeoPlanner for ArcGIS application."

 self.canRunInBackground = False

 def getParameterInfo(self):

 """Define parameter definitions"""

 param0 = arcpy.Parameter(

 displayName="Input Raster from Process A",

 name="raster",

 datatype="GPRasterLayer",

 parameterType="Required",

 direction="Input")

 param01 = arcpy.Parameter(

 displayName="Classification Method",

 name="classMethod",

 datatype="GPString",

 parameterType="Required",

 direction="Input")

 param01.filter.type = "ValueList"

 param01.filter.list = ["EQUAL_INTERVAL", "QUANTILE",

"UNIQUE_VALUES"]

 param02 = arcpy.Parameter(

 displayName="Number of Classes",

 name="numClasses",

 datatype="GPLong",

 parameterType="Required",

 direction="Input")

 param02.filter.type = "Range"

 param02.filter.list = [1,9]

 param03 = arcpy.Parameter(

 displayName="Field for Class Labels",

 name="labelField",

 datatype="Field",

 parameterType="Required",

 direction="Input")

 param03.filter.list = ['Text', 'Short', 'Long', 'Single', 'Double', 'Date', 'OID', 'Raster',

'GUID', 'GlobalID']

 param03.parameterDependencies = [param0.name]

 param04 = arcpy.Parameter(

 displayName="Description",

70

 name="Description",

 datatype="GPString",

 parameterType="Optional",

 direction="Input")

 param05 = arcpy.Parameter(

 displayName="Metadata",

 name="Metadata",

 datatype="GPString",

 parameterType="Optional",

 direction="Input")

 param06 = arcpy.Parameter(

 displayName="URL",

 name="url",

 datatype="GPString",

 parameterType="Optional",

 direction="Input")

 param07 = arcpy.Parameter(

 displayName="Output XML File",

 name="outputXML",

 datatype="GPRasterLayer",

 parameterType="Derived",

 direction="Output")

 param07.parameterDependencies=[param0.name]

 params = [param0,param01,param02,param03,param04,param05,param06,param07]

 return params

 def isLicensed(self):

 """Set whether tool is licensed to execute."""

 return True

 def updateParameters(self, parameters):

 """Modify the values and properties of parameters before internal

 validation is performed. This method is called whenever a parameter

 has been changed."""

 if (parameters[0].value):

 # Assign variables

 raster = parameters[0].valueAsText

 classMethod = parameters[1].value

 numClasses = parameters[2].value

 labelField = parameters[3].value

 rasterTitle = "" #For the XML file

71

 rasterType = "" #Continuous or Nominal

 classLabels = []

 classRanges = []

 outputWoXmlFiles=[]

 # Describe the input raster and clean up the Raster Title

 desc = arcpy.Describe(raster)

 rasterTitle = desc.name

 rasterExtension = desc.extension

 rasterTitle = rasterTitle.replace(rasterExtension,"")

 if rasterTitle.endswith("."):

 rasterTitle=rasterTitle.replace(".","")

 # Create a raster object to improve performance

 rasterObject = Raster(raster)

 # Determine and assign the raster type (NOMINAL or CONTINUOUS)

 rasterValTypResult = arcpy.GetRasterProperties_management (raster,

"VALUETYPE") #Returns the pixel type and depth

 rasterValTyp = rasterValTypResult.getOutput(0) #Value Types between 9 and 14

are floating point, doubles, or complex

 if rasterValTyp == "1": #2-bit unsigned (0 to 3)

 rasterType = "NOMINAL"

 elif rasterValTyp == "2": #4-bit unsigned (0 to 15)

 rasterType = "NOMINAL"

 elif rasterValTyp == "3": #8-bit unsigned (0 to 255)

 rasterType = "NOMINAL"

 elif rasterValTyp == "4": #8-bit signed (-128 to 127)

 rasterType = "NOMINAL"

 elif rasterValTyp == "5": #16-bit unsigned (0 to 65535)

 rasterType = "NOMINAL"

 elif rasterValTyp == "6": #16-bit signed (-32768 to 32767)

 rasterType = "CONTINUOUS"

 elif rasterValTyp == "7": #32-bit unsigned integer (0 to 4,294,967,295)

 rasterType = "CONTINUOUS"

 elif rasterValTyp == "8": #32-bit signed integer (approx. -2 billion to +2 billion)

 rasterType = "CONTINUOUS"

 elif rasterValTyp == "9": #32-bit floating point single precision

 rasterType = "CONTINUOUS"

 elif rasterValTyp == "10": #64-bit floating point double precision

 rasterType = "CONTINUOUS"

 elif rasterValTyp == "11": #8-bit complex

 rasterType = "CONTINUOUS"

 elif rasterValTyp == "12": #16-bit complex

 rasterType = "CONTINUOUS"

72

 elif rasterValTyp == "13": #32-bit complex

 rasterType = "CONTINUOUS"

 elif rasterValTyp == "14": #64-bit complex

 rasterType = "CONTINUOUS"

 else:

 arcpy.AddWarning("The raster type could not be determined.")

 # Assign defaults for Nominal datasets

 if rasterType == "NOMINAL":

 unqValCntResult = arcpy.GetRasterProperties_management (raster,

"UNIQUEVALUECOUNT") #Number of unique values in the raster

 unqValCnt = int(unqValCntResult.getOutput(0))

 if not parameters[1].altered:

 parameters[1].value = "UNIQUE_VALUES" #Default classification method

to Unique Values

 parameters[2].filter.type = "Range"

 parameters[2].filter.list = [1,unqValCnt]

 parameters[2].value = unqValCnt #Default number of class to the number of

unique values

 # Assign defaults for Continuous datasets

 elif rasterType == "CONTINUOUS":

 if not parameters[1].altered:

 parameters[1].filter.type = "ValueList"

 parameters[1].filter.list = ["EQUAL_INTERVAL", "QUANTILE"]

#Removes Unique Values from the pick list

 parameters[1].value = "EQUAL_INTERVAL" #Default to Equal Interval

 if not parameters[2].altered:

 parameters[2].value = "5" #Default to 5 classes for continuous rasters

 if not parameters[3].altered:

 parameters[3].value = "DEFAULT" #Assigns default class labels

 # Define default labels for continous datasets

 if numClasses == 1:

 classLabels = ["Present"]

 elif numClasses == 2:

 classLabels = ["Low", "High"]

 elif numClasses == 3:

 classLabels = ["Low", "Middle", "High"]

 elif numClasses == 4:

 classLabels = ["Lowest", "Somewhat Low", "Somewhat High", "Highest"]

 elif numClasses == 5:

 classLabels = ["Lowest", "Somewhat Low", "Middle", "Somewhat High",

"Highest"]

 elif numClasses == 6:

73

 classLabels = ["Lowest", "Very Low", "Somewhat Low", "Somewhat High",

"Very High", "Highest"]

 elif numClasses == 7:

 classLabels = ["Lowest", "Very Low", "Somewhat Low", "Middle",

"Somewhat High", "Very High", "Highest"]

 elif numClasses == 8:

 classLabels = ["Lowest", "Very Low", "Low", "Somewhat Low", "Somewhat

High", "High", "Very High", "Highest"]

 elif numClasses == 9:

 classLabels = ["Lowest", "Very Low", "Low", "Somewhat Low", "Middle",

"Somewhat High", "High", "Very High", "Highest"]

 # Define the raster statistics

 min = rasterObject.minimum

 minResult = arcpy.GetRasterProperties_management (raster, "MINIMUM")

 minNumber = (minResult.getOutput(0))

 max = rasterObject.maximum

 maxResult = arcpy.GetRasterProperties_management (raster, "MAXIMUM")

 maxNumber = (maxResult.getOutput(0))

 range = (float(maxNumber) - float(minNumber))

 noDataValue = rasterObject.noDataValue

 # Classify the Raster

 # UNIQUE VALUES

 if classMethod == "UNIQUE_VALUES":

 # Define variables for Unique Values

 breakpoints = []

 classLabels = []

 classRanges = []

 prevItem = -9999

 counter = 1

 indxctr = 0

 field = "Value" #Hard coded value to simplify the process

 # Create lists for unique values and class labels

 cursor = arcpy.SearchCursor(raster)

 for row in cursor:

 classVal = row.getValue(field)

 classLbl = row.getValue(labelField)

 breakpoints.append(classVal)

 classLabels.append(classLbl)

 breakpoints.append(9999)

 # Calculate the class ranges (Input Ranges)

 while counter < numClasses:

 if prevItem == -9999:

74

 min = breakpoints[indxctr]

 prevItem = (breakpoints[indxctr] + 1)

 classRanges.append(min)

 classRanges.append(prevItem)

 continue

 classValMin = (breakpoints[indxctr] + 1)

 indxctr+=1

 classValMax = (breakpoints[indxctr] + 1)

 classRanges.append(classValMin)

 classRanges.append(classValMax)

 counter+=1

 # EQUAL INTERVAL

 if classMethod == "EQUAL_INTERVAL":

 # Define variables

 breakpoints = []

 classRanges = []

classRangeValue = (float(range) / float(numClasses)) #For precise

calculations

 classRangeValue = (int(range) / int(numClasses)) #For integer requirement

 counter = 1

 prevItem = -9999

 cntr = 1

 prvItem = -9999

 indxctr = 0

 # Calculate the Break Points

 while counter < numClasses:

 if prevItem == -9999:

 # Calculate with integers

 prevItem = (int(min) + int(classRangeValue)) #For integer requirement

 breakpoints.append(int(prevItem)) #For integer requirement

Calculate with floating point for greater precision

prevItem = (float(min) + float(classRangeValue))

breakpoints.append(float(prevItem))

 counter+=1

 continue

 classVal = prevItem + float(classRangeValue)

breakpoints.append(float(classVal)) #For precise calculations

 breakpoints.append(int(classVal)) #For integer requirement

 prevItem = classVal

 counter+=1

 breakpoints.append(int(max)) #For integer requirement

 # Calculate the class ranges (Input Ranges)

 while cntr < numClasses:

75

 if prvItem == -9999:

 prvItem = (breakpoints[indxctr])

 classRanges.append(int(min)) #For integer requirement

 classRanges.append(prvItem)

 continue

 clssValMin = (breakpoints[indxctr])

 indxctr+=1

 clssValMax = (breakpoints[indxctr])

 classRanges.append(clssValMin)

 classRanges.append(clssValMax)

 cntr+=1

 # QUANTILE

 elif classMethod == "QUANTILE":

 # Define variables

 breakpoints = []

 classRanges = []

 counter = 1

 prevItem = -9999

 indxctr = 0

 rasterValues = []

 # Calculate the raster values

 rasterArray = arcpy.RasterToNumPyArray(raster)

 rows, cols = rasterArray.shape

 for rowNum in xrange(rows):

 for colNum in xrange(cols):

 value = rasterArray.item(rowNum, colNum)

 if value != noDataValue:

 rasterValues.append(value)

 data = rasterValues

 # Quantile calculations for each class range

 q11 = int(np.percentile(data, 11.0))

 q13 = int(np.percentile(data, 13.0))

 q14 = int(np.percentile(data, 14.0))

 q17 = int(np.percentile(data, 17.0))

 q20 = int(np.percentile(data, 20.0))

 q22 = int(np.percentile(data, 22.0))

 q25 = int(np.percentile(data, 25.0))

 q29 = int(np.percentile(data, 29.0))

 q33 = int(np.percentile(data, 33.0))

 q38 = int(np.percentile(data, 38.0))

 q40 = int(np.percentile(data, 40.0))

 q43 = int(np.percentile(data, 43.0))

 q44 = int(np.percentile(data, 44.0))

76

 q50 = int(np.percentile(data, 50.0))

 q56 = int(np.percentile(data, 56.0))

 q57 = int(np.percentile(data, 57.0))

 q60 = int(np.percentile(data, 60.0))

 q63 = int(np.percentile(data, 63.0))

 q66 = int(np.percentile(data, 66.0))

 q67 = int(np.percentile(data, 67.0))

 q71 = int(np.percentile(data, 71.0))

 q75 = int(np.percentile(data, 75.0))

 q78 = int(np.percentile(data, 78.0))

 q80 = int(np.percentile(data, 80.0))

 q83 = int(np.percentile(data, 83.0))

 q86 = int(np.percentile(data, 86.0))

 q88 = int(np.percentile(data, 88.0))

 q89 = int(np.percentile(data, 89.0))

 q100 = int(max)

 # Calculate the break points

 if numClasses == 1:

 breakpoints.append(q100)

 elif numClasses == 2:

 breakpoints.append(q50)

 breakpoints.append(q100)

 elif numClasses == 3:

 breakpoints.append(q33)

 breakpoints.append(q66)

 breakpoints.append(q100)

 elif numClasses == 4:

 breakpoints.append(q25)

 breakpoints.append(q50)

 breakpoints.append(q75)

 breakpoints.append(q100)

 elif numClasses == 5:

 breakpoints.append(q20)

 breakpoints.append(q40)

 breakpoints.append(q60)

 breakpoints.append(q80)

 breakpoints.append(q100)

 elif numClasses == 6:

 breakpoints.append(q17)

 breakpoints.append(q33)

 breakpoints.append(q50)

 breakpoints.append(q66)

 breakpoints.append(q83)

 breakpoints.append(q100)

 elif numClasses == 7:

77

 breakpoints.append(q14)

 breakpoints.append(q29)

 breakpoints.append(q43)

 breakpoints.append(q57)

 breakpoints.append(q71)

 breakpoints.append(q86)

 breakpoints.append(q100)

 elif numClasses == 8:

 breakpoints.append(q13)

 breakpoints.append(q25)

 breakpoints.append(q38)

 breakpoints.append(q50)

 breakpoints.append(q63)

 breakpoints.append(q75)

 breakpoints.append(q88)

 breakpoints.append(q100)

 elif numClasses == 9:

 breakpoints.append(q11)

 breakpoints.append(q22)

 breakpoints.append(q33)

 breakpoints.append(q44)

 breakpoints.append(q56)

 breakpoints.append(q67)

 breakpoints.append(q78)

 breakpoints.append(q89)

 breakpoints.append(q100)

 else:

 parameters[1].setErrorMessage("The QUANTILE classification method

cannon be used with dataset. Please select another classifcation method.")

 # Calculate the class ranges (Input Ranges)

 while counter < numClasses:

 if prevItem == -9999:

 prevItem = (breakpoints[indxctr])

 classRanges.append(int(min)) #For integer requirement

 classRanges.append(prevItem)

 continue

 classValMin = (breakpoints[indxctr])

 indxctr+=1

 classValMax = (breakpoints[indxctr])

 classRanges.append(classValMin)

 classRanges.append(classValMax)

 counter+=1

 # Add XML Info

 catalogPath = parameters[0].value

78

 inaux="{}.aux.wo.xml".format(catalogPath)

 labelField = parameters[3].value

 rasterDescription = parameters[4].valueAsText

 rasterMetadata = parameters[5].valueAsText

 rasterUrl = parameters[6].valueAsText

 # Define Output Values

 outputValues = []

 counterOV = 1

 while counterOV <= numClasses:

 outputValues.append(5)

 counterOV+=1

 # Create the wo.xml file and write data to it

 pmdataset=ET.Element("PAMDataset")

 metadata=ET.SubElement(pmdataset,"Metadata")

 ET.SubElement(metadata,"MDI", key="Title").text=rasterTitle

 ET.SubElement(metadata,"MDI", key="Description").text=rasterDescription

 ET.SubElement(metadata,"MDI", key="Metadata").text=rasterMetadata

 ET.SubElement(metadata,"MDI", key="url").text=rasterUrl

 ET.SubElement(metadata,"MDI",

key="InputRanges").text=','.join(map(str,classRanges))

 ET.SubElement(metadata,"MDI",

key="OutputValues").text=','.join(map(str,outputValues))

 #ET.SubElement(metadata,"MDI", key="NoDataRanges").text=str(noDataValue)

 ET.SubElement(metadata,"MDI", key="NoDataRanges").text=""

 ET.SubElement(metadata,"MDI",

key="RangeLabels").text=','.join(map(str,classLabels))

 #ET.SubElement(metadata,"MDI", key="NoDataRangeLabels").text="NoData

Range Lables"

 ET.SubElement(metadata,"MDI", key="NoDataRangeLabels").text=""

 tree=ET.ElementTree(pmdataset)

 tree.write(inaux)

 outputWoXmlFiles.append(inaux)

 arcpy.SetParameter(1,outputWoXmlFiles)

 return

 def updateMessages(self, parameters):

 """Modify the messages created by internal validation for each tool

 parameter. This method is called after internal validation."""

 # Verify that the input file is a TIFF

 if parameters[0].value:

 input = parameters[0].valueAsText

 if not input.endswith("tif"):

79

 parameters[0].setErrorMessage("The input raster must be a TIFF. Run this

dataset through the 'Prepare the Input Dataset' tool to prepare it for this tool.")

 desc = arcpy.Describe(input).spatialReference

 code = desc.factoryCode

 if not code == 3857:

 parameters[0].setErrorMessage("The input raster must be projected in Web

Mercator (Auxiliary Sphere). Run this dataset throught 'Prepare the Input Dataset' tool to

prepare it for this tool.")

 if parameters[0].altered:

 input = parameters[0].valueAsText

 if not input.endswith("tif"):

 parameters[0].setErrorMessage("The input raster must be a TIFF. Run this

dataset through the 'Prepare the Input Dataset' tool to prepare it for this tool.")

 return

 def execute(self, parameters, messages):

 """The source code of the tool."""

 if arcpy.CheckExtension("Spatial")!="Available":

 arcpy.AddError("Spatial Analyst extension is not available")

 return

 return

	Automating the Classification of Thematic Rasters for Weighted Overlay Analysis in GeoPlanner for ArcGIS
	Recommended Citation

	tmp.1463604016.pdf.uoDl3

