University of Redlands

INSPIRe @ Redlands

MS GIS Program Major Individual Projects Theses, Dissertations, and Honors Projects

12-2012

Managing Marine Mammal Observations Using a Volunteered
Geographic Information Approach

Melodi C. King
University of Redlands

Follow this and additional works at: https://inspire.redlands.edu/gis_gradproj

6‘ Part of the Geographic Information Sciences Commons, and the Population Biology Commons

Recommended Citation

King, M. C. (2012). Managing Marine Mammal Observations Using a Volunteered Geographic Information
Approach (Master's thesis, University of Redlands). Retrieved from https://inspire.redlands.edu/
gis_gradproj/159

This work is licensed under a Creative Commons Attribution 4.0 License.

This material may be protected by copyright law (Title 17 U.S. Code).

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Honors Projects at
INSPIRe @ Redlands. It has been accepted for inclusion in MS GIS Program Major Individual Projects by an
authorized administrator of INSPIRe @ Redlands. For more information, please contact inspire@redlands.edu.


https://inspire.redlands.edu/
https://inspire.redlands.edu/gis_gradproj
https://inspire.redlands.edu/etd
https://inspire.redlands.edu/gis_gradproj?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/19?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:inspire@redlands.edu

University of Redlands

Managing Marine Mammal Observations Using a Volunteered
Geographic Information Approach

A Major Individual Project submitted in partial satisfaction of the requirements
for the degree of Master of Science in Geographic Information Systems

by

Melodi C. King

Douglas M. Flewelling, Ph.D., Committee Chair
Lei Lani Stelle, Ph.D.

December 2012



Managing Marine Mammal Observations Using a Volunteered
Geographic Information Approach

Copyright © 2012
by

Melodi C. King






The report of Melodi King is approved.

Lei Lani Stelle, Ph.D.

T2 ML

Déglas M. Flewelling, Ph.D.%mmittee Chair

December 2012



Acknowledgements

First and foremost, | would like to express my sincere gratitude and thanks to my
advisor and committee chair, Doug Flewelling. Doug consistently gave me creative
freedom during development and acted as a sounding board and mentor without being
overbearing with the project.

I would also like to thank my client, Dr. Lei Lani Stelle. I could not have asked for a
better client relationship for my major individual project. Lei Lani was enthusiastic about
the project and always made herself available when | had questions. Dr. Stelle and her
husband, Shane Keena, always made me feel very welcome and comfortable when we
were out on the boat. A special thanks to Shane for the wonderful photos donated to the
project and the adventurous whale watching trip.

Of course, the whale watching trips would not have possible without the help from
Captain Larry of Davies Locker Whale Watch. Captain Larry always made his boat
available for me if I needed to test the mobile application.

Additional thanks to the entire MS GIS department faculty and staff. A big hug and
thanks to Debbie Riley for always making sure that | had a cup of green tea. Doug
Flewelling, Mark Kumler, Ruijin Ma, and Fang Ren provided me with an unforgettable
learning experience that | will always treasure, and showed unconditional patience with
me and my plethora of questions. A special thanks to Mark for letting me create my own
learning experiences, the many brainstorming sessions of better communication with
graphics, and for not hating me after I requested a different advisor.

I’d like to thank my family and friends for their unconditional love and support while
I’ve taken the time to find and pursue the career path that was right for me. A special
thanks to my brother, Matt King, for helping me with graphics. | look forward to future
collaborations with you.

One last thank you to Cohort 21. We’ve been through a lot this year, and I’m so
thankful for each and every experience I’ve had with you.

Data is still King






Abstract

Managing Marine Mammal Observations Using a Volunteered Geographic Information
Approach

by

Melodi King

Traditional methods of gathering the data needed to understand human impact on
marine mammals requires extensive time and resources. To reduce the burden
associated with collecting and managing marine mammal observations, a geographic
information system (GIS) solution was developed using a volunteered geographic
information (VGI) approach. Web and mobile applications were built for the general
public to submit marine mammal observations and visualize the results. The web
application also includes querying and authorized download of data. Both applications
consume web services published from an ArcSDE geodatabase using ArcGIS Server
10.0.

vii






Chapter 1
1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
14
15

Chapter 2
2.1
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.4
2.4.1
2.4.2
2423
244
2.5

Chapter 3
3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
34
35

Chapter 4
4.1
4.2
4.3
4.4
4.5

Table of Contents

i 1111 o e [Tt i T Yo TOS SIS 1
(01 11T o U 1
Problem StatemMEeNt.... ..o i e e e e 1
Proposed SOIULION .......uiiiiiie e e e e e e e e e 3
GO0als aNd ObJECHIVES.... . 3
Y olo] o 1= B P PP PPN 3
V=T d Yoo USRS 5
FANE o 1= o ol =SS 5
Overview of the Rest of this Report .........ccoeeiieiiieiiie e, 6
— Background and Literature ReView .........ccccccereeiiiieinieeiiinencnenienenninne 7
Volunteered Geographic Information and Science .......cccovveeciivveeeiii e, 7
GIS & Maring RESEAICN .....uvveeieei et 8
GIS and Maring RESEArCN.....cccvii i 8
GIS and Spatial ANAlYSIS .....uveeieiiieccee e 10
Understanding Web and Mobile GIS .........ccceeeeiiii e 11
The differences between Web and Mobile GIS.........ccccvveeeeiiiicciiiiieeeeee s 11
Mobile GIS APPrOaCHES.......ccceteieeee e e e e e e e e e e eaaes 12
User INterface DESIZN.....ccuviiiiieiiie ettt e e s e s e areee e 12
SIMPLFYING TASK..etieeiiiiiiee e e s 13
RedUCE MEMOTIZAtiON...ciiiii ittt e e e e et re e e e e e e e e eaans 13
Y 0T (o] gl =3 o] RPN 13
Testing the Usability of Map User Interfaces ........ooocevvvveeeeeieeiccciineeeeeeee e, 13
SUMIMIAIY 1.eeeiiteeee e e e et cee e e e e e e ettt eee s e e e e e eeea s e seeeeeeeeasnnaaseeeeernessnnnnnseaeennnnes 14
—  Systems Analysis and DeSigN.......ccceeuereenirreencrrenerennerennereaseereaseerennens 15
Problem Statement ... 15
ReqUIrEMENTS ANAIYSiS..ciiiiiiieeiiiirieeiee ettt e eeetrrree e e e e e e eeanrrereeeeeeeenanns 15
Functional REQUIFEMENTS.......ccuviiieiiee ettt eeeearree e e e e e e e enaens 16
Non-FUNCtional REQUITEMENTS......eeviiiiieiicirieeeee e eeenrrere e e e e e e eeens 17
)V =] 0 T T 7= o USRI 18
VL] oI AN o] ] [ or= | o] o RSP 19
1V ToY o1 ISl Y o] o] LTor=] 4 (o] WSRO PPN 19
oY T=Tor o = o T USRS 20
SUMIMIAIY tittitiieie et e et ettt e s e s e e et e eat bbb aasseeeeeeaessaasseeeeeeansssnsnnseaseseanes 21
—  Database DesSigN.......ccceeeiiiiruniiiiiinniiiiiiniiiiieeiiieninn. 23
Conceptual Data MOdEl .......eeeei i 23
Logical Data MOAEl .....oceeeieeeeeeee e e e e 23
DAta SOUIMCES ...ttt e e e e e e e e e e e e e e e abaa e e e s 26
Data Scrubbing and Loading .........ceeveiiieieciiiiiieee et 27
SUMIMIAIY tittiiiieie e ceetrire e e e et ettt s e s e e e e e tatabbasseeeeeaaessaasseeeeseansssannnssesesnanes 28



Chapter 5 — Implementation of the Web Application ......ccccceveeerreeereeniereenceeennennes 29
5.1 Web Application User Interface.......ccccocuveeiieciiieicciee e 29
T I A N V=N 1V o T I - o SRR 30
5.1.2 The My Observations Tab ... ieiccciiieieee et e e e e e 31
5.2 Functional ComMpPONENTS.......cceeeiiiiieiee e e e e e e e e e 34
T R V=T Y - T o TS 34
5.2.2  Identify POPUP TOO...uii ittt e e e s e e 35
ST T © LU =1 oY A o Yo 3RS 35
5.2.4 Download Data TOOI ..cccccuiieiiiiiiieiciiiee ettt e e s e s s e e 36
5.2.5 Submit Observations FOrM ......c..ciiiiiiiieiiiiiieeeriee e s see e 36
53 SUMMAIY ettt ettt e e e e e e e e e e e e e 36

Chapter 6 — Implementation of the Mobile Application.......ccccccovvvuuiiiiiieneiinnnnnne. 37
6.1 Mobile Application’s User INterface .......ccccveviveiiieiieiiiiee e 37
6.2 Functional Components of the Activities......ccccocveeeiriiieiiiniieeecee e 40
6.2.1  SUIVEY Map ACHIVITY oo 41
6.2.2  ObSErvation ACHIVITY......cccueeeiiiiiie et e s e e e sara e e 43
6.2.3 Events Database Manager ACLIVILY ......ceovicuieeeeiiiiie e 45
6.3 SUMMAIY it e e e e e e e e e e e e e e e e e eeee s 46

Chapter 7 — Implications of Volunteered Geographic Information Software

Development 47
7.1 Considerations for Volunteered Geographic Information and Science ......... 47
7.2 The Use of VGl in Marine ReSearch ........ccccevvivcieei e 48
7.3 Connectivity in VGl Web and Mobile GIS Applications........ccccceeeeeveciniinenennnn. 48
7.4 Mobile User Interface CritiqUe .......cccuueeeeiiiiee et 49
7.5 SUMIMIAIY e tittitiieee e et eeeeiire e e e e et ettt e se s e e e e e tataba s seeeeeaaessaassseeeesseesssnnnnseseesennes 49

Chapter 8 — Conclusions and Future Work .........cccceiieeiiiimiiiieninieenininnenenseneasenen 51

Works Cited 53

Appendix A. Geodatabase DOmains..........cccceeeeerrrnnnnnnnns Error! Bookmark not defined.

Appendix B. Mobile Application Activities Code ........... Error! Bookmark not defined.

Appendix C. Web Application HTML and Javascript Code.......... Error! Bookmark not

defined.



Table of Figures

Figure 1-1: VGI-approach for collecting data for a long term study of marine

ANTMAIS ...t et e e bt et re e reenbe e nre s 2
Figure 1-2: Map of the project’s Study area.........cccvevveieereeriesieesieeseseeseeseseeseeesee s 4
Figure 1-3: Project methods life cycle diagram ... 5
Figure 2-1: Common data types in the ArcMarine Data Model .............cccccocovevvennne. 9
Figure 2-2: Some associations found in the ArcMarine Data Model ....................... 10
Figure 2-3: The overlap of Web and Mobile GIS............cccooveii i, 11
Table 3-1: Functional and Non-Functional Requirements............ccccocoovervniivnnennenn 16
Figure 3-1: Overall SYStemM deSIGN ........ccouiiieiieieiie e 18
Figure 3-2: A model of the ProjJect Plan..........cccooeieiiiininiicee e, 20
Figure 4-1: Conceptual MO ...........ccveiiiieieee e 23
Figure 4-2: Server side logical model diagram...........cccoovririiieienenneeeee, 24
Figure 4-3: Client side vs. server side database StruCture............ccccoveveviveieerecnennnnn 25
Figure 4-4: Client side logical model diagram ..........ccccooovviiiiiienen e, 26
Figure 4-5: Data collection sheet used by client’s students and volunteers .............. 27
Figure 5-1: Functional components of the web application.............cc.ccocvoviiiiniennen. 29
Figure 5-2: Overview of the Map tab of the web application................ccceovevvinennnn, 30
Figure 5-3: Date QUETY TOOL........coiiiiiiiiiiieeee e 30
Figure 5-4: Species type qUErY t0O0] ..........ccveiieiiiie e 31
Figure 5-5: My ODbServations tah ............coouiieieieniieseesseee e 31
Figure 5-6: Event type qUErY tOO] ..........cooiiiiieie e 32
Figure 5-7: Show results qUery t00l...........cooviiiiiiiiei e 32
Figure 5-8: Download data tool .............cceiiiiieiiiic e 32
Figure 5-9: Submit observations for in accordion Pane...........ccceevevenenencnneeennen, 33
Figure 5-10: The use of auto-fill and drop-down use for the Submit Observations
(0] 10 RSSO 33
Figure 5-11: Symbol selection and popup WINAOW. .........c.cccveviiiieiierieiieieese e 35
Figure 5-12: Workflow of Extract events tool...........ccccooviiiiiiiiineneeeee, 36
Figure 6-1: Home View of the mobile application ...........c.ccccooviiiiiiiiicciecece, 37
FIgure 6-2: SEttiNgS IMENU .....c..oviiiiiiiiiiieeee e 38
Figure 6-3: SUNVEY MapP VIEW .......ooiiiiieieciiecieee ettt ane s 38
Figure 6-4: Observation View showing the required and optional components

TN ENE FOMM L ettt b e 39
Figure 6-5: Screenshots from the dialog boxes in the Observation form .................. 40
Figure 6-6: Android Life CYCIe ......ccovoiiiieece e 41
Figure 6-7: Functional components of the Survey Map ACtiVIty ..........ccocovcvriinennen. 42
Figure 6-8: Functional components of the Observation ACtivity .............ccccceveeneee. 43
Figure 6-9: Detail components provided to the user upon species category

=] [=Tot AT o OSSPSR 44
Figure 6-10: Comparison of beginning and ending of the observation form ............ 45
Figure 6-11: Functional components of the Events Database Manager Activity ......46

Xi






List of Tables

Table 3-1: Functional and Non-Functional Requirements..................

Table 5-1: Functional components and their corresponding methods

Table 5-2: Web application layers .........cccccevvieiieie i

Xiii






API
CINMS
CWA
EBM
GIS
GPS
GUI
IDE

1S
NOAA
OBIS-SEAMAP

PPGIS
SDE
SDK
SOD
URL
VGI

List of Acronyms and Definitions

Application programming interface

Channel Islands National Marine Sanctuary
Coastal Web Atlas

Ecosystem-based management

Geographic information system

Global Positioning System

Graphical user interface

Integrated development environment

Internet Information Services

National Oceanic and Atmospheric Administration
Ocean Biogeographic Information System-Spatial Ecological
Analysis of Megavertebrate Populations

public participation GIS

Spatial Database Engine

Software development kit

Sudden oak death

Universal Resource Locator

Volunteered geographic information

XV



Chapter 1 — Introduction

The oceans of the world play an indirect but fundamental role in life; they are used for
activities such as shipping, procuring food, recreation, and travel. Their uses have also
expanded to include renewable energy and large scale aquaculture. However, it was not
until recently that scientists began establishing a scientific baseline for evaluating the
health of the marine ecosystem (Ruckelshaus, Klinger, Knowlton, et al., 2008). This
baseline is particularly important to recent efforts in evaluating principles for marine
spatial planning for effectively managing marine resources (Foley, Halpern, & Micheli,
2010).

In order to understand behavior of, and human impact on, marine mammals,
extensive manpower for collecting and processing data is required, due to the complex
interactions between marine mammals, humans, and oceanic processes. The burden
associated with this type of research can be reduced using a volunteered geographic
information (VGI) approach with a geographic information system (GIS). Incorporating
familiar user interfaces, such as web and mobile applications, allows researchers to spend
more time performing analyses while simultaneously encouraging awareness and
environmental stewardship in users.

This chapter was designed to introduce the reader to the project. Section 1.1
introduces the client. The second section, 1.2, defines the problem addressed. The
proposed solution, including the goals and objectives, scope, and methods are discussed
in Section 1.3. The fourth section, 1.4, outlines the target audience for this report.
Finally, Section 1.5 sets the expectations for the remainder of the document.

1.1 Client

Dr. Lei Lani Stelle is a biology professor at the University of Redlands whose research
pertains to the human impacts on marine mammals and their habitat use. Specific
components of her research include evaluating marine mammal species’ associations,
determining swim paths and behaviors, assessing vessel-induced injuries, and
understanding energy expenditures of marine mammals during a migration path affected
by human interactions.

Over the course of the project, Dr. Stelle was responsible for describing the types
of data that were collected and verifying that the system design met her needs.
Additionally, she was responsible for approving the user interface design of the web and
mobile applications during the testing and discussion tasks of the project’s life cycle.
Finally, the client acted as a domain knowledge expert when questions arose during
design and development of the solution.

1.2 Problem Statement

The challenge that the client faced was how to generate a high volume of quality data for
her long-term study on marine mammal migratory behavior and human impact. In order
to reduce the cost and effort required in the data collection process, Stelle decided to



explore a VGI approach to collecting this data, which incorporates the collection of data
by both researchers and members of the general public (Figure 1-1).

Volunteered Geographic
Information (VGI):

General public

Migration Behavior

4

Long-term marine
mammal study

T *  Human Impact

Sah AN

D}H‘\ij D-’sz:j

Researchers

Figure 1-1: VGI-approach for collecting data for a long term study of marine
animals

Currently Stelle works with volunteer citizen scientists through Earthwatch, an
organization that facilitates participation by members of the public in the scientific
process. Additionally, Stelle collects data with undergraduate students performing
research for thesis projects. She believes that by including the general public in the data
collection process she will further reduce difficulties in maintaining long-term studies
while simultaneously encouraging awareness and environmental stewardship.

Although including the general public in the data collection process would
increase the amount of data collected, it would also introduce questions of data quality.
The client has very few protocols in place for ensuring high data quality from each of the
sources. For example, currently, data are hand-written, leaving room for error during the
process of transferring them from paper to electronic source. Without continuity and
consistency in the data collection process, an unnecessary amount of time has to be spent
preparing and organizing data over the course of a long-term study.

With the approach developed in this project, Stelle would be able to focus efforts
on understanding the relationships between migrating mammals and humans, in addition
to improving the learning experience for the students and volunteers she works with.
Specifically, because of the nature of GIS databases, data collected by volunteers will
have continuity and consistency. Having a centralized database that can be queried would
allow Stelle to collaborate with other researchers. Additionally, having the data stored in
spatial tables allows her to ask advanced spatial questions.



1.3 Proposed Solution

After careful review of previous work and consideration of the client’s requests, a
solution was proposed. The following section outlines the proposed solution and its
appropriateness for the client. It includes a discussion of project goals and objectives,
scope, and methodologies used to develop the solution.

1.3.1 Goals and Objectives

The two problems addressed in this project provided the client with geographic
workflows for managing and sharing her data. The first problem was how to generate a
volume of quality data for a study on marine mammal migratory behavior and human
impact. This problem was solved using a VGI-based strategy which incorporated the
general public in the data collection process to increase the amount of data being
collected. More specifically, mobile and web application prototypes were developed that
can be used by volunteers, researchers, and members of the general public to submit
marine mammal observation data. Web and mobile technology were chosen because
they were already demonstrated to be successful in a VGI-based study (Connors, Lei, &
Kelly, 2011). This solution decreased the amount of time researchers and volunteers
spent in the field and increased the amount of data collected. It also provided the client
with the data necessary to perform her research.

The second problem addressed in this project was the data management methods.
The client stored data in Microsoft Excel, Access, in species-specific programs, and in
programs developed for specific projects. Without proper management of the data, a large
amount of time was spent on organization efforts and preparing the data for analysis.

This problem was solved with the development of a centralized geodatabase used
to manage data submitted from student and professional researchers, volunteers, and the
general public. The geodatabase was used to house marine mammal observations. The
outcomes of the solution were time savings to the client and possible identification of
marine mammal observation data standards. The development of a geodatabase allowed
Stelle to spend less time preparing data for analysis, more time improving the learning
experience for her students and volunteers, and collaborating with her colleagues in
defining a baseline for evaluating the health of the marine ecosystem.

1.3.2 Scope

While the purpose of this project was to demonstrate the feasibility of using a VGI
approach to managing marine mammal observation, only a very basic, but extendable,
solution was developed. The scope included the development of web and mobile
applications that allows the user to submit and visualize their observations. The solution
also included a geodatabase for storing the submitted observations.

The Spatial Database Engine (SDE) geodatabase, a type of relational database
management system, was developed for use with the ArcGIS Server 10.0. The
geodatabase was designed to hold observation data and corresponding evidence and to tie
observations to the user who submitted them, through the use of usernames. However, the
proof of concept was designed so that users had the same level of access. There were no



database permission differences between the experts (researchers, students) and general
public users.

Due to the time constraints of the project, the scope of the database development
was limited and client expectations were clearly defined. The geodatabase’s schema was
developed and its capability was demonstrated with sample data. However, cataloging of
the current data was the client’s responsibility. Additionally, the client was responsible
for describing the types of data that were collected and verifying that the geodatabase’s
schema met their needs.

The web application was developed to allow users to visualize, query, and
download data. Specifically, it was designed to allow users to visualize and query the
entire database by date and species type. Upon logging in, the application allowed users
to query by event type (observation, track update) and choose to visualize all of the data
in the database or only their data. The web application was also developed to allow users
to download data upon log in to the system. The users’ identity was not verified when
logging into the system with this initial concept. Finally, forms were developed to allow
users to enter data that they collect in the field.

The mobile application’s functionality was limited to data submission and
visualization. While there were several platforms for which the mobile application could
be developed, it was only developed for one. The mobile application was designed to
store collected data locally, in addition to syncing the data with the geodatabase on the
server. The client was asked to help design the appearance of the mobile application.

The solution was designed for use between Newport Beach and Long Beach (Figure
1-2) in southern California. The project was assigned a spatial scope for multiple
reasons. Keeping the region focused resulted in a small list of species native to the region
that the user would need to choose from. This small area also had reliable connectivity to
the mobile network, which supported an environment to test the data syncing.

Los Angeles Harbor

San Pedro
Bay

126

Figure 1-2: Map of the project’s study area



1.3.3 Methods

The project was split into three different packages: the geodatabase, the web application,
and the mobile application. Each package went through a staged developed life cycle
(Figure 1-3).

ET
& Design

2 Develop

Finished
Discuss

proof of
concept

Figure 1-3: Project methods life cycle diagram

During the plan and design phase for the geodatabase, requirements were classified
into functional and nonfunctional requirements. Conceptual model and logical models
were then designed. In the development phase an SDE geodatabase was created.
Additionally, map and feature services were published using ArcGIS Server 10.0 for
consumption by the web and mobile applications. The logical model went through test
and discussion phases before the finished proof of concept was reached. Each time there
was a change in the database’s schema, changes were made to a small set of test data.

During the plan and design phase for the web and mobile applications, the
appropriate technology for development was decided. The web application was
developed using Esri’s ArcGIS Application Programming Interface (API) for Javascript
and the mobile application was developed using Esri’s Android Software Development
Kit (SDK). During the develop, test, and discussion phases of the web and mobile
applications, each of the functional requirements was built and pieced together to get the
final proof of concepts. The develop phase for both of the applications included
researching the APIs’ classes and corresponding methods.

1.4 Audience

The intended audience for this report includes individuals who have an introductory
knowledge of GIS, have a basic understanding of programming concepts; are interested
in data collection using a VGI approach, or are interested in data collection techniques for
marine mammal research. No specific knowledge of ArcGIS or programming is
assumed.



1.5 Overview of the Rest of this Report

The remainder of the report describes how the project components were implemented.
Chapter 2 provides a literature review of relevant topics. Chapter 3 describes the system
design of the project. This is followed by a discussion of the database model in Chapter
4. Chapter 5 refers to the implementation of the web and mobile applications. Chapter 6
describes the lessons were learned during the software development process and the
analysis that can be done with the data collected. The report closes with Chapter 7, a
conclusion and discussion of future work.



Chapter 2 — Background and Literature Review

A literature review was performed during the project planning phase, during which four
relevant topics were chosen. Because of the VVolunteered geographic information (VGI)
nature of the project, Section 2.1 is dedicated to understanding its use in web and mobile
GIS as a means of collecting data. Section 2.2 presents the use of GIS in marine
research. Section 2.3 discusses the differences between web and mobile GIS
technologies and their appropriate applications. Designing user interfaces that can reach
a broad audience is important in VGI. Because of this, user interface design is discussed
in Section 2.4. The chapter is concluded with a summary in Section 2.5.

2.1 Volunteered Geographic Information and Science

Volunteered geographic information is closely tied to citizen science, which is the
involvement of interested members of the public in parts of a scientific project such as
data collection and analysis. It has been utilized in applications such as recording bird
observations (The Cornell Lab of Ornithology, 2011) and online game playing in
understanding protein folding (UW Center for Game Science, 2011). Allowing citizens
to participate in the scientific inquiry process may bring about awareness, empowerment,
and stewardship. Additionally, the inclusion of citizen scientists may help reduce the
gaps that have historically divided the public, researchers, and policymakers in
environmental management efforts (Connors, Lei, & Kelly, 2011).

A similar concept is public participation GIS (PPGIS). PPGIS is strongly focused
on engaging citizens in the sustainability of their communities. “It is an interdisciplinary
research, community development and environmental stewardship tool grounded in value
and ethical frameworks that promote social justice, ecological sustainability,
improvement of quality of life, redistributive justice and nurturing of civil society,”
(Aberley & Sieber, 2002).

Goodchild (2007) coined the term volunteered geographic information to describe
geographic data provided voluntarily by individuals. The development of Web 2.0,
Global Positioning System (GPS), and the rapid assimilation of mobile technology made
VGI practical. Web 2.0 resulted from the development of protocols that made the
communication between user and server a two-way conversation. This enabled users to
create and edit information stored on the servers through the browser interface. In the
1980s the GPS was developed. Originally created for military purposes, the GPS made
its way into the hands of the public around 1990. GPS allows for quick and easy direct
measurement of locations on Earth and has been used in a wide variety of applications
(Goodchild, 2007).

The use of mobile and web applications that utilize a VGI-based strategy in the
collection of data in long-term environmental studies is a relatively new field. There is a
working prototype of this data collection method called OakMapper, which was
developed at University of California at Berkeley. OakMapper is a mobile (iPhone) and
web-based effort to encourage the public in monitoring the sudden oak death (SOD) of
oak trees in California caused by the ramorum leaf blight (p. ramorum) virus (Geospatial
Innovation Facility, 2012).



Advancements in web and mobile GIS technologies that utilize a VGI strategy for
scientific data collection are limited. Glennon (2011) created the Geyser Notebook
application for Android. The application allows users to view information about the
Yellowstone geysers and report eruption observations. User accounts are created, but
there appears to be no differentiation between a researcher and a member of the general
public. Within Geyser Notebook, a timeline shows observations from all users, and "my
reports" shows only the user’s observations. In addition to a mobile application, a web
application has been developed that allows users to view the data stream (Glennon,
personal communication, 2012). However, there is no evidence that this application is
utilized by researchers in understanding geyser activity in Yellowstone National Park.

2.2 GIS & Marine Research

The complex nature of marine studies poses a unique challenge for researchers and
decision makers. “Traditional management strategies, which focus on individual sectors
of coastal ecosystems, such as managing single species habitat, or areas, have failed to
address these intricate relationships between humans and coastal ecosystems,” (Bauer,
2012). More integrated and comprehensive management strategies, such as Ecosystem-
based Management (EBM), are being developed to address this problem (Jones & Ganey,
2009). Geographic information systems are being used in data collection and
management in addition to analysis relevant to marine research.

2.2.1 GIS and Marine Research

Several efforts have been made to make data collected more widely available to
researchers and decision makers. The Ocean Biogeographic Information System Spatial
Ecological Analysis of Megavertebrate Populations (OBIS-SEAMAP) is a spatially
referenced online database, aggregating marine mammal, seabird and sea turtle
observation data from across the globe and have aggregated data since 2002. The OBIS-
SEAMARP uses of geospatial web feature services. Ideally, “this makes data easy to use
by modelers in a scientific workflow,” (Best, et al., 2006).

The OBIS-SEAMARP is just one example of geospatial web services being used by
researchers and decision makers in the field. Coastal Web Atlases (CWA) are
increasingly popular web-based tool. The California Coastal Atlas was initiated in 1993.
Its primary goals are to create a platform for sharing high quality coastal data, provide a
medium for information sharing between scientists and public policy makers (University
of Washington Sea Grant Institude, 2011). Additionally, the National Oceanic and
Atmospheric Administration (NOAA) Coast Watch has developed a browser for
downloading contour, grid, and vector datasets. The data available include: currents,
chlorophyll, sea surface temperature, and wind stress to name a few (NOAA, 2011).

While sites like OBIS-SEAMAP, California Coastal Web Atlas, and NOAA provide
a wide range of uses, there are also organizations that have made a more focused effort of
collecting and sharing data. Oregon State University has made chlorophyll and
temperature data available through an Ocean Productivity website (O'Malley, 2010).
Although the data isn’t available for download and there is no mapping component, the
Channel Islands National Marine Sanctuary has a website in which users can submit
marine mammal observations (National Ocean Service, 2011).



Essential to data collection and sharing is the data storage. The use of geospatial
web services provides a method for accessing and downloading data stored on servers,
but they do not address the need for best practices for storing data collected in the field
and data downloaded from web services. Geodatabases provide components, such as
subtypes and domains, to better manage spatial and non-spatial data.

In addition to the geodatabase are data models. Data models are schemas for
organizing groups of relevant information. The Marine (also known as ArcMarine) data
model available from Esri, is one of the more widely recognized data models for marine
phenomena. The data model can be used to store several common data types: tables,
marine points, marine lines, and marine areas (Figure 2-1).

Marine
Areas

Tables

Figure 2-1: Common data types in the ArcMarine Data Model

The tables are intended to hold non-spatial elements. These elements are
associated with one or more of the three spatial data types. Some of the associations are
illustrated in Figure 2-2 between table elements and marine points and between table
elements and marine lines. To demonstrate, a vehicle (non-spatial) such as a boat records
a run line (spatial) when it is out on a trip. Similarly, a survey info (non-spatial) record
can have one or more survey points (spatial) associated with it.



Marine Points Marine Lines

Location Time
Series Series
Point Point

Survey
Point

Tables

Survey | Measuring Marine Vehicle Observation Cruise

=Sl Info Device Events Info

Figure 2-2: Some associations found in the ArcMarine Data Model

Whether data is collected in the field or downloaded from geospatial web services
a data model, such as ArcMarine, is essential to managing the data. ArcMarine was
designed to allow users access to analysis capabilities of GIS (Wright, Blongewicz,
Halpin, & Breman, 2007). However, the data model is normalized and is not an ideal
model for web and mobile projects. Additionally, the data model doesn’t include a table
associating the user who submitted the data. This demonstrates that it was not intended
for storing volunteered geographic information.

2.2.2 GIS and Spatial Analysis

Once data has been collected and stored in a GIS, analysis can be performed to
understand a wide array of topics. These topics include, but are not limited to human
impact, and density and abundance. Some of the GIS techniques used to understand
these topics include spatio-temporal analysis to understand patterns in the data and
overlay techniques to understand human impact in marine mammals.

The use of space in understanding human impact is by no means a new idea, but it has
become increasingly popular in the marine world since 2000. Since then, it has been
used in a variety of applications. In 2008, Halpern et al. published a paper on research
assessing the human impact on marine ecosystems. The study included several indicators
relevant to fishing, pollution, and climate changes that were evaluated at a global scale.
Raster analysis was performed to calculate and cumulate human impact indicators. The
results found that there were virtually no ecosystems unaffected by humans. While this
research is extremely valuable, similar research is needed at the local and regional levels.

Another research group recently released two studies using similar overlay and
raster analysis techniques applied directly to marine mammals. One was directed at
finding geographic ranges and patterns of richness and composition in an attempt at
finding potential conservation sites (Pompa, Ehrlich, & Ceballos, 2011). Their second
study was directed at identifying which species were at greatest risk and where the risk is

10



globally (Davidson, et al., 2012). A discussion of their findings found that more local
data on migratory routes, locations of feedings, and calving/pupping could be used to
produce better results. These are the exact types of data that this proof of concept was
designed to collect, if fully deployed.

The preceding examples demonstrate the use of GIS in marine mammal research,
and how it improves our understanding of a variety of topics. A need for larger scale
assessment of human impact on marine mammals was revealed.

2.3 Understanding Web and Mobile GIS

Web and Mobile GIS are two different media for handling geographic information
systems. The method of consumption is essentially the only difference between them.
Web GIS applications are accessed through a browser on desktops and laptops. On the
other hand, Mobile GIS applications are accessed through smart phones and tablets.
However, advances in wireless communication have allowed users to access web-based
GIS applications with both smart phone browser technology and native applications.
This has caused significant overlap in the Web and Mobile GIS fields (Figure 2-3).

Connected canConnect
Shares canShare
hasLocation hasLocation:
LocationChanges
cloudStorage localStorageBuffer

hasOrientation

Figure 2-3: The overlap of Web and Mobile GIS
2.3.1 The differences between Web and Mobile GIS

There are significant advantages of Mobile over Web GIS. However, there are still
significant technical challenges that give Web GIS an upper hand. Mobile GIS
technologies can replace existing field paper-based workflows (Fu & Sun, 2011). Mobile
GIS also provides a highly mobile environment that can be accessed by several users.
Modern mobile devices are equipped with a GPS chip and other hardware devices that
can reduce the amount of equipment needed in field work. Finally, Mobile GIS also
enable users to work in a disconnected environment in which they have no access to
internet or mobile services.

However, limited wireless communications also pose a technical challenge for the
use of Mobile GIS. The desktop and server machines that are used in Web GIS provide
more powerful CPU, memory, and battery power (Fu & Sun, 2011). Mobile GIS is also

11



limited in its screen size and keyboard size. This can be particularly inhibiting to field
workers uncomfortable with mobile devices and in poor environmental conditions. There
are significant advances of Mobile GIS over Web GIS. But because there are still some
significant technical challenges, Web GIS still provides benefits.

2.3.2 Mobile GIS Approaches

The overlap in Web and Mobile GIS has resulted in two different approaches to
developing Mobile GIS applications: native-based and browser-based. Native
applications are those that are designed to run on a device’s operating system, such as
Apple iOS or Google Android. This forces the application developer to adapt the
application depending on the operating system’s platform language and operating system.

The two popular platforms are iOS using the Objective-C language and Android
using Java. Objective-C is an exclusive language that isn’t as commonly used
(Viswanathan, 2012), while Java is a commonly used language and has extensive
documentation for its SDK (Google, 2012). Java’s large programming community has
resulted in a reliable online resource community, easing the programming and cost
burden for the project developer. Finally, phones with an Android operating system have
become increasingly popular (Lloyd, 2012).

When developing a mobile application for Android devices, the developer must
decide which operating system to develop for. To date, Gingerbread (2.3.3) is the
predominant operating system on all Android platforms (Android 2.3.3 APls, 2012). In
the past eight months, all Android phones users had the option to switch to a newer
operating system (IceCream Sandwich: 4.0.4) on their phones. However, eight months
after IceCream Sandwich’s release, only 10% of users had upgraded (Aguilar, 2012).
This demonstrates that the developer must decide on both a platform and an operating
system when creating mobile applications.

Just like many Web GIS applications, mobile browser-based applications can be
built to work with a plugin, such as Flash Lite or Silverlight mobile, or with html and
JavaScript (Fu & Sun, 2011). HTML browser-based applications can be developed once
for a wider device range using a single language. This makes deployment of those
applications across several platforms much easier. These types of applications also don’t
have to be purchased through application stores.

Unfortunately, HTML browser-based do not have full, and easy, access to the
hardware on mobile devices, whereas native applications do. Additionally, because
browser-based applications require connectivity, they cannot be used in disconnected
environments. On the other hand, native applications can use local storage to work in
such environments.

2.4 User Interface Design

Graphical user interfaces (GUI) have come to be an expected part of the experience for
most computer users. When initially being developed, Apple Desktop Interfaces made
two basic assumptions, “that the user can see, on a computer screen, what they are doing;
and they can point at what they see,” (Apple, 1987). Designing a good user interface
requires the implementation of principles that have been repeatedly proven to be
effective. Several sets of principles and rules of thumb have been put together by subject

12



matter experts, some of which include: simplify the structure of tasks, minimize
memorization, plan for error, and know the user.

2.4.1 Simplifying Task

User Interfaces often provide new workflows for users to complete tasks that they were
already doing using different methods. Asking users to change the way they currently
perform a task can be difficult. In his book, The Design of Everyday Things, Donald
Norman provides three technical approaches for ensuring success that are particularly
relevant. The first is “Keep the task much the same, but provide mental aids.” Mental
Aids such as sticky notes and alarm clocks are simple examples of this. The second
approach is, “Use Technology to make obvious what would otherwise be invisible.” This
approach can be implemented by giving the user feedback and allowing them to monitor
the state of the system they are interacting with. The third approach is to “change the
nature of the task.” Having a thorough understanding of how the current workflow of a
task operates, allows the designer to alter the way in which users are asked to provide
input. Changing the nature of the task can make difficult tasks seems less daunting.

2.4.2 Reduce Memorization

There are several methods for reducing the memorization expected of the user. One
method is to use a see-and-point method over remember-and-type (Apple, 1987). This
can be implemented with the use of dropdown menus for making selections rather than
text boxes for users to fill out. Another method is to use real-world metaphors. Doing
this allows “users to transfer knowledge of how things should look and world,” (Mandel,
1997). Using knowledge that is both in the world and in the head of the user, can make
their experience with the user interface faster and more efficient (Norman, 1988).

2.4.3 Plan for Error

It is always safe to assume that the user will make mistakes in any number of ways when
interacting with the interface. One method for handling this is to allow the user to
recover if mistakes are made (Norman, 1988). This can be done by asking users to
confirm actions before completing them and allowing users the permission to undo and
redo actions.

2.4.4 Testing the Usability of Map User Interfaces

Understanding the usability of an interface is extremely important in its design and
development. A direct method for determining whether or not the interface design is
appropriate for the user is to test its usability. This is particularly important in user
interfaces that are being designed for a broad audience, such as applications involving
maps and the general public. A blog was released on mapbrief.com by Brian Timoney on
how the public interfaces with local government web maps. The blog was based on
research performed by a GIS Analyst with the City of Denver. There were a couple of
findings they were particularly relevant. The first was that people rarely changed default
settings, this includes the default basemaps. Giving the user too many options may

13



overcomplicate a normally simple task. The analyst also found that using an auto-
complete in the map’s search box drove clean queries (Timoney, 2012).

A study was recently performed on the usability of a citizen science web
application. The researchers found that users had a difficult time understanding the
concepts of layers in the map’s legend, and that layers could be turned on and off
(Newman, Zimmerman, & Crall, 2010). This demonstrates the importance of knowing
the user and the power of the real world metaphors method to engage them.

2.5 Summary

This chapter reviewed the background information relevant to the project. Section 2.1
discussed VGI in Web and Mobile Applications. VGl is a relatively new field, and its
uses in scientific research are extremely limited. Section 2.2 talked about the GIS-based
methods used in the marine field for sharing and storing data. Geospatial web services
are being used to share data at large and small scale, and the use of geodatabases and data
models can be useful is organized data for analysis. The use of GIS in marine spatial
analysis was also discussed in this section. There is a need for large scale assessment of
human impact on marine species and their environments. Section 2.3 described the
differences between web and mobile GIS and why each of them plays an important role.
While mobile GIS simplifies field-based workflows and can be accessed by a wide
audience, web GIS solutions do not have memory, battery life, or connectivity issues.
Section 2.4 discussed user interface design principles and demonstrates the importance in
understanding and applying them to web and mobile applications is extremely important.

14



Chapter 3 — Systems Analysis and Design

This chapter discusses the analysis of the system design of the proposed solution. More
specifically, it includes a Section 3.1 which revisits the problem statement. The problem
statement was used in a requirements analysis. The results from this are presented in
Section 3.2. The requirements analysis was used to develop a system design and project
plan. The proposed system design and the plan for its implementation are described in
Section 3.3 and 3.4. The chapter is wrapped up in a summary section.

3.1 Problem Statement

The challenge that the client, Dr. Lei Lani Stelle, faced was how to generate a high
volume of quality data for her long-term study on marine mammal migratory behavior
and human impact stored in a well-organized fashion for analysis. In order to reduce the
cost and effort required in the data collection process, Stelle decided to explore a VGI
approach to collecting this data, which incorporates the collection of data by both
researchers and members of the general public.

3.2 Requirements Analysis

Functional requirements describe the information and answers that the system will
provide to its end users. For example, a functional requirement of the system was to
allow users to submit marine mammal sightings from both a mobile device and a website.
On the other hand, the non-functional requirements describe the way in which the system
should perform and includes technical, operational, and transitional requirements. The
technical requirements describe both the technology the client will need to maintain the
system and the technology the end user will need to access the system. The operational
requirements include the day-to-day or periodic maintenance requirements that the client
will be responsible for to keep the system up and running. Finally, the transitional
requirements are those needed for handing the system over to the client and end-users,
such as training or usage documentation. The following subsections describe in detail the
functional and non-functional requirements of the system that are outlined in Table 3-1
below.

15



Table 3-1: Functional and Non-Functional Requirements

Functional Requirements
Store survey logs and corresponding events, including sightings and their corresponding evidence
(such as photos), and position updates
Allow users to submit events and corresponding evidence via mobile or web application
Tie submitted events with a particular user
Download of queried data on web application
Basic visualization on map of submitted data points
Allow users to rate their confidence in their submitted observations
Automated position updates on mobile application
Data stored locally on mobile device for future offline development
Non-functional Requirements
Technical Requirements User interfaces and application navigation for both the web and
mobile applications
Esri’s ArcGIS Desktop 10.0
Esri’s ArcGIS Runtime SDK for Android
Esri’s ArcGIS API for JavaScript
Notepad and Aptana 3
Eclipse Integrated Development Environment
Esri’s ArcGIS Server 10.0
Android Software Development Kit
Internet Information Services (11S) Web Server
Domain Name
Operational Requirements | Archiving the geodatabase since users are editing the default
tables
Monetary costs for operating and maintaining the web and
mobile applications
Transitional Requirements | Distribution of the mobile application

3.2.1 Functional Requirements

There were several functional requirements of the system, as outlined in the table above.
The system had to be capable of storing survey logs from a user’s trip and all of the
events that occurred in a single trip. There were two types of events that occurred during
a trip. The first was a position update, which included a time and position. The second
was an observation (or a sighting). Sightings consisted of time and position, but they also
had information about the species observed and relevant information. This included a
confidence rating on the data being submitted. The system was designed to classify all
incoming records by subtype. If the incoming event was a sighting, the observation is
classified as one of four marine mammal categories. If the incoming event was a position
update, it gets recorded accordingly.

The system allowed users to submit the above mentioned survey logs and
corresponding events using the web and mobile applications. This was done by
developing a form that could be accessed by both. The form was developed to allow
users to associate a photo with the observation being submitted. The data associated with
the events are stored locally on the mobile device and the events are submitted to the
geodatabase through the use of feature services. This was done using a creating a table in
a SQLLite database on the device itself.

16



The events submitted can be associated with the user that enters them. In the web
application, the user must log in before submitting any observations. The username is
temporarily held so that it can be used to tie observations with the user that recorded
them. On the mobile device, the user can associate their data with an email addresses on
their phone. Alternatively, by default, all data is associated with an “anonymous” user
account.

The web and mobile applications were developed to allow users to visualize
recorded observations and position updates. Visualization on the web application was
made possible through the use of map services that access the data in the geodatabase.
The events recorded on the mobile device are rendered locally from the data stored on the
device rather than through map services. The feature services are only accessed during
the submission of an event from the phone.

There were also functional requirements specific to the device. Additional core
requirements for the web application were that users had to be able to query and
download data. Querying of the data was made possible through the use of toggle
buttons and a date range that the user could adjust accordingly to visualize their desired
results. The results from the query are used if the user decides download the data from
the website. In order to download data, the user had to use a single button. This button is
associated with a geoprocessing service that selects the desired results and creates a
zipped up shapefile that is sent to the user’s temporary folder on their computer.

There was also a final functional requirement for the mobile device: position
updates had to be required automatically for the user. This was completed by using an
Android function that would repeat a particular set of tasks every given amount of time.
The repeated tasks recorded a new observation in the local database, submitted the
observation to the geodatabase using feature services, and rendered the new position
update on the map.

3.2.2 Non-Functional Requirements

The technical requirements are the backbone of the non-functional requirements as they
are focused on the technologies required to build the system. Web services were created
from a geodatabase and published from within ArcGIS Desktop 10.0 to ArcGIS Server
10.0. These services were made available to users through the mobile and web
applications.

The web application was composed of graphical user interfaces and application
navigation. It was hosted using Internet Information Services (11S) web server and
required a universal resource locator (URL) for access. The web application must be
accessed using Google Chrome or Mozilla Firefox. The application was developed using
Notepad and Aptana environment and utilized Esri’s ArcGIS Application Programming
Interface (API) for JavaScript.

The mobile application was also composed of graphical user interfaces and
application navigation. It was developed for the Android phone with an operating system
of 2.3.3 or lower in the Eclipse Integrated Development Environment (IDE). The mobile
application utilizes the Android Software Development Kit (SDK) and Esri’s ArcGIS
Runtime SDK for Android.

In order to fully understand both the operational and transitional requirements, it is
important to note that the system was built as a prototype, or proof of concept, the client

17



intended to use to get funding for development of a more permanent system. Given this,
the prototype system was intentionally designed to have very few operational
requirements, and this was done at the expense of security. This means that users were to
edit the default data set. There was no versioning or automatic archiving of the data. It is
the client’s responsible to periodically download and archive the dataset. The client will
also be responsible for the annual/semi-annual monetary requirements of maintaining a
GIS server, web server, and website.

The system was developed for the general public, so there was no documentation or
training made available to the client for using the mobile and web applications. The only
other transitional requirement was the distribution of the mobile application. While this
could be available to the public through Android’s App Store, this was beyond the scope
of the project. The client is responsible for personally downloading it onto the devices
that will be using it.

3.3 System Design

The design of the system was guided by the system requirements described above. This
section describes the system architecture design for both the mobile and web
applications, along with constraints on the design. From this point forth, the system will
be broken into two categories: server side and client side (Figure 3-1). This is done to
clarify the difference between activity on the user side of the solution and the server side,
where the system resides. The client side of the application sends requests to the server
side, which then sends responses back to the client side. The server side is composed of
the web server, ArcGIS Server, the application, and a geodatabase. The client side is
split between the web component and the mobile component.

CLIENT side SERVER side

“ -
A REQUESTS
7 M
) 1 .
v

RESPONSES

REQUESTS

Application

o

RESPONSES

Figure 3-1: Overall system design

18



3.3.1 Web Application

The web application was designed as a shell for future development of the application. It
sits on the client side and consists of a user interface, along with supporting JavaScript
functions. The JavaScript functions are responsible for the dynamic capacity of the web
application and were developed using the DOJO JavaScript framework and the ArcGIS
API for JavaScript. Both the JavaScript framework and the API were consumed by the
application through services.

The user interface includes a Home, Map, My Observations, and a Learn tab
(diagrammed in Figure 3-2 above). The Home and Learn tab were not developed during
the scope of this project. The Map tab was designed for use by visitors that didn’t want
to log into the system. The map tab was designed to allow the user to visualize
observations from a map service on top of Esri’s Ocean basemap and query them by date
and species type. Upon clicking on a particular observation, the application was designed
to display the attributes and photo of the selected observation in a popup window. The
Map’s JavaScript methods are responsible for ensuring the queries are sent to the server
and that observations are rendered on the map.

The My Observations tab requires users to log in before access. Just like the Map
tab, this one was designed to also allow users to visualize and query the data, the
difference being that the users are provided with additional query options.

The advantage of the My Observations tab is that users can download data after
querying the database and after visually confirming the selection criteria they wanted.
The My Observations tab was designed to allow users to submit new observations. This
is completed using a feature service. Just like the Map tab, the dynamic functionality and
server communication are handled by JavaScript methods in the My Observations tab.

There were several design constraints to take into consideration of the system
design. The web application was designed to only work with a modern browser, such as
Firefox or Chrome. Modern web browsers support a combination of standards, while
earlier browsers only support very simple HTML standards. Additionally, the web
application was designed to work with the ArcGIS API for JavaScript. This APl was
chosen because of its flexibility and popularity in the web programming field. It also is
the only client-side web API that doesn’t require a plugin for the browser.

3.3.2 Mobile Application

The mobile application has both user interface and supporting components. There are
three components to the user interface design of the mobile application: the Home
activity, the main activity called the Survey Map, and the Observation Activity. The
supporting components on the mobile application’s client side were the Local Database
and the Events Database Manager.

The Home activity was responsible only for starting a trip and allowing users to
decide which of their email accounts they wanted to associate their survey log with
through a login window. The Survey Map was responsible for allowing users to visualize
their trip. The activity also had a method for automatically recording and displaying the
user’s position every five minutes. In addition to recording the position update, the
Survey Map added a new position marker to the map. Finally, the Survey Map was
responsible for adding observations stored locally to the map. The Observation interface

19



provides the user with a form to complete with a series of dialog boxes with necessary
information.

There were multiple design constraints relevant to the client side of the mobile
application. The first was the choice between a native and web application. The
difference between these is discussed in more detail in Chapter Two. A native
application was chosen for the system because one of the functional requirements was
storing the data locally on the device. Having this workflow in place reduced future
development burden of the application.

The second design consideration for the mobile device was the platform for which it
would be developed natively. The Android platform was chosen because of Java’s
popularity and extensive documentation. It was also chosen because it is the operating
system on more mobile devices than the completing Apple iOs platform. The application
was developed for the Gingerbread operating system. The choices for the mobile
platform and operating system were discussed in Chapter Two.

3.4 Project Plan

The project plan and implementation was similar to spiral and agile models for software
development (Figure 3-2). After a requirements analysis, three separate phases were
initiated: the geodatabase, the web application, and the mobile application. Each phase
had the following steps: design, development, test, and discuss.

Geodatabase Test

Develop

Requirements

Figure 3-2: A model of the project plan

During the design task for the geodatabase, the client’s functional and non-functional
requirements were incorporated into a logical model. During every successive design
task for both the web and the mobile applications, a mockup of the user interface was

20



created and approved by the client. During the design and development stage for the web
and mobile applications, the developer determined the appropriate functions that would
be used in development through intensive research and training on topics including: the
ArcGIS API for JavaScript, the Android Architecture, the Eclipse Integrated
Development Environment, the Android SDK, and the ArcGIS Runtime SDK for
Android.

During the development phase of the geodatabase, a logical model was developed.
A logical model was created for both the client side (mobile applications) and the server
side (geodatabase) of the system. Additonally, map and feature services were created.
The development of the web and mobile applications were dependent on the completion
of the geodatabase development.

Testing of the geodatabase and the client side applications were performed
simultaneously. This was done because the web and mobile applications consumed
services created from the geodatabase. In addition to the developer, thhe client was also
asked to test the applications. After passing these tasks, a prototype was complete for
each phase. During this time, a dialog was exchanged between the developer and the
client. The client provided feedback on both the user interface and the functionality of
the applications. Planning for the next prototype was then completed.

During the project development life cycle, some modifications were made. Testing
the mobile application in the field gave insight, resulting significant modifications. For
example, the original project plan was for complete offline editing on a mobile device.
Field testing demonstrated that there was full connectivity in a region that could be used
as the study area. Because of this, the mobile application no longer became a complete
offline application. The application was designed to consume online basemaps rather
than cached maps stored locally on the phone. However, the developer chose to continue
storing the data locally on the device. This way, the only demand for mobile connectivity
was when the user wanted to sync observations.

Additionally, the original plan included user authentication upon login and had
the possibility of different permissions for different user types. Specifically, user
authentication was planned to be done using openID (Google accounts), so all users must
have a Google email account. However, because of the requirements of the server, this
portion of the solution will not be implemented due to University regulations. Therefore,
user verification was dropped from the implementation plan. Varied permissions were
not incorporated into the applications, but their capability was demonstrated within the
geodatabase.

3.5 Summary

The system requirements analysis process resulted in a system design that met the needs
of the client. This chapter revisited the problem statement, discussed the requirements
analysis and found that there were nine functional requirements and 13 non-functional
requirements. In addition to the requirements analysis, the system design was also
presented. This started with an overall description of the system design and continued
with the design of the two client-side applications. Finally, the chapter concluded with a
discussion of the project plan. The plan consisted of five major tasks and was adjusted
throughout its implementation. With an understanding of the required functionality and
system design, the database was ready to be developed.

21






Chapter 4 — Database Design

The purpose of this chapter is to describe the data models used in the project solution.
Section 4.1 describes the conceptual model, which was used to determine the classes and
attributes needed to store the data required for the project. Section, 4.2 describes how
the conceptual model was altered to balance data duplication and performance
optimization in the logical model. Section 4.3 describes the data sources, and Section 4.4
describes the methods performed on the data before they were ready for use in
development of the web and mobile applications.

4.1 Conceptual Data Model

The conceptual database model was developed through conversations with the client and
the field data collection sheet (described further in 4.3). The conceptual model helped
define the necessary database classes needed to solve the client’s problem (Figure 4-1)
These are the primary classes (shown in italics) that needed to be defined: Observer,
Survey, and an Event. The relationship between the Observer and the Survey is that an
Observer records surveys. E+9*-ach Survey contains one of more events. The Event
table holds two different types of events: position updates and observations. All events
must contain time and location. An event of the Observation type contains additional
information. An Observation event may contain evidence, such as a photo. The
Evidence class is the evidence, such as a photo, associated with a particular event.

Event

-eventlD
-eventType
-Date and Time
-Location

Survey

-SurveylD -Count Evidence
Observer records b -Begin Location contains b -SpeciesCategory may include ¥
-I1D -End Location -SpeciesType :.i:te;-::tl:?nentll')
1 * -Region 1 # -CalvesPresant 1
-ObserverlD -Behavior

-Notes
-CloudCover
-Beaufort
-ConfidenceRating

Figure 4-1: Conceptual Model
4.2 Logical Data Model

While the conceptual model is normalized and describes the client’s needs abstractly, the
logical model describes how the database schema was designed. The logical model
design took into consideration the most appropriate way to store data for use in web and
mobile-based applications. A diagram of the logical data model can be found in Figure 4-
2 below. There are two extremes in data modeling: a completely normalized model and a
flat file model. Flat-file databases have no explicit relations between tables, while
normal databases have undergone a normalization process to eliminate data duplication

23



and minimize the use of space. The advantage that flat-file databases have over
normalized ones is that they perform much faster. This is desirable in databases used for
web applications. The flat-file approach also reduces the learning curve for new
administrators of the database.

Because of this, the Observer and Survey classes were consolidated into the Event
table. This resulted in a geodatabase with only an Event table. It is important to note the
consequences of using a flat-file database over a normalized one. There is significant
data duplication in flat-file database and there are none in normalized ones. Additionally,
the compartmentalized effect of normalized databases makes them easier to maintain and
update. The use of domains and subtypes were incorporated into the database design to
reduce maintenance demands. A complete listing of these can be found in Appendix A.

P
Event A
Feature Class
- Fields .
Attachment 2
¢ OBJECTID Table
Vv ObserverD = Flelds
v eventID - ¢ ATTACHMENTID
® Date <> mgntmhtbnsw :J <> ¢ REL_OBJECTID
¢ CONTENT_TYPE
¥ Number s
Vv SpeciesType ¢ DATA_SIZE
¥ CalvesPresent ¢ DATA
_ | Vv Behavior + Indexes
Vv Notes Whale v \
|— v CloudCover ——> | Subtype
v Beafort
¥ ConfidenceRating Dolphin or Porpoise ¥ |
f— Vv ConfidenceNotes _ Subtype
Vv eventType .
¥ SpeciesCategory Sealor Sea Lion ¥ y
I _> Sul
@ SHAPE beype
V¥ Permissions
Unknown or Other
- — > | Subtype
None Y
Subtype

Figure 4-2: Server side logical model diagram

The data needed to be stored on both the local client mobile device and the server,
so two different components to the logical model were created. The Event table was
stored as a feature class in an ArcSDE geodatabase on the server side and it was stored as
a table in a SQLL.ite database table on the mobile device. This is outlined in Figure 4-3
below.

24



SERVER SIDE Q

Events ArcSDE R Attachment

Feature Class |l Relationshipclass [} SEE S

CLIENT SIDE

Events 5QLLite . Native Photo

Database table ' Gallery

Figure 4-3: Client side vs. server side database structure

The primary difference between the way the data were designed to be stored in the
logical model has to do with the way that evidence (photos) are associated with the
events in the Event table. There are several methods for associating evidence, such as
photos, with records in a table. These methods include storing a hyperlink as a text field,
storing the evidence as a blob field, or storing the evidence in a separate attachment table.
For the server side Events feature class, an attachment table was chosen as the method for
storing the evidence because it is not dependent on path names internally or URLS on the
web. Additionally, it keeps the evidence stored within the geodatabase without being
queried every time the event record is queried. This increased the speed of queries,
which is essential in web applications.

The photos were stored differently on the client side. The physical photos were
stored in the phone’s native gallery. Only a pathname was stored in the Events table. The
only other difference between the server side and client side Event tables was that the
client side table contained an additional field for tracking whether or not the records have
been rendered on the map.

25



eventsDB Table

OBJECTID
OBSERVERID
PHOTOPATH

EVENTTYPE

LATITUDE Photo Gallery

LONGTITUDE
SPECIESCATEGORY N Name
SPECIESTYPE
DATE

COUNT
CALVESPRESENT
BEHAVIOR
NOTES
CLOUDCOVER
BEAUFORT
CONFIDENCE RATING
PERMISSIONS
APPLYEDITS

Figure 4-4: Client side logical model diagram

4.3 Data Sources

Recall that the project’s mission was to build prototypes for collecting and managing
marine mammal sightings. The development of the proof of concept prototypes didn’t
require much data for ensuring that the client’s needs were met. Because of this, the data
could have been synthesized.

Rather than creating a complete synthetic dataset, data were obtained from the
Channel Islands National Marine Sanctuary (CINMS). CINMS has collected marine
mammal sightings since 2003 and provided an Excel sheet with nearly 16,000 marine
mammal sightings. Each sighting contained latitude, longitude, and a handful of other
attributes, including: mammal category, type, date, vessel, location, count, and behavior.

In addition to the CINMS dataset, the data collection sheet used in the field was
provided by the client. This data collection sheet is the form used by students and
volunteers in the field (Figure 4-5). It was used to provide insight for the development of
the conceptual and logical models. It was also used for development of domains for
fields.

26



University of Redlands m Sightings, Tracking Date: I 2012

1200 Colton Dr. and Photographs Start Time:

Redlands, CA 92374 Rodiands Stop Time:

(909) 793-2121 LTS Vessel (Or Shore Site Location): Region:

Theodolite Reference Point:
Observers: Page of
TIME and PLACE SPECIES IMAGE LOG COMMENTS WEATHER
Way Joode  (Time Latitude -or- Theodolie Vertical | Longituaz-cr-Theedolte Horizontal [Total  |Species [Signiing [image Numbers |Banaviors ana Associaing oud Beautort
Paint Hr Min (1o hundred®s of minute) (% hundredths of minuta) Janimals Number land Camera) o
%
%
%
%
%
%
%
%
%
%
%
%
%
odes Species: Whales Dolphins Pompoises Behavior(s) Beaufort

‘583 SMootn. mimor-ike

Soai-ike rippies, no foam crests

Large wavelets (4-5 knots [kis] wind)

Large wavelets, crests begin to break (7-10 kis)

Begin Survey BM Bue DC Common. Long-Beak PD  Dalrs o unknown
Fosition (update) MN Humpoack DD Common, Shor-BeakPP Hamor 1 Traveing
Sighting ER Gray 66 Risso's Einnipeds 2 Hawed Out
Tum Around BA Minke LE NorRigntWhal Dol ZC CA Seallon3  Logging
Teminate Survay B8 sal LO Pacfic WhiteSided PV HamorSesi 4 Miling

BP Fin 00 KilerWhaia (Orca) €U N.FurSsal 5 Feeding
- Note other behaviors In comments. TT Botlienose dolphins  Sea Otter 6 Thermoregulating
- For rarer species not listed, please consult guae. EL Seaoner

BRSNS N

Smail waves, frequent white-foam crests (11-16 ki)
Modarate waves, many whitacaps (17-21 kis)

hoa kS

Figure 4-5: Data collection sheet used by client’s students and volunteers

4.4 Data Scrubbing and Loading

Prior to loading the data provided by CINMS into the server side geodatabase, the
geodatabase schema were developed. The schema included an Event feature class. The
fields for the Event feature class included all of those listed in the logical data model in
the preceding section. Domains for the feature class were created using the data
collection sheet described in Section 4.3. Additionally, subtypes were created for four
different species categories (Whale, Dolphin or Porpoise, Seal or Seal Lions, Unknown
or Other). An additional category of “None” was created for position updates that had no
observation data associated with them. The species categories were chosen for the
subtypes to simplify the rendering of symbols and number of layers needed in the map
service.

Prior to loading the CINMS dataset into the Event feature class, the longitude
values were adjusted to a Xy grid so that they would be stored in the correct hemisphere.
Additionally, the CINMS was adjusted to include values for the coded values domains.
Approximately 100 of the CINMS data points were imported into the geodatabase. Once
in the geodatabase, several of the fields were either populated with synthetic values or
left blank. The fields that were synthesized include: Observer ID, event type, date, event
ID, calves present, cloud cover, beaufort, confidence rating, and notes.

The final step in prepping the data to be used in development was associating an
attachment table with the events feature class via a relationship class, which was created.

27



A photo was attached to each of the records in the Event feature class with an
Observation subtype. The photos used were taken by Earthwatch volunteers during a
whale watching trip.

4.5 Summary

This purpose of this chapter was to describe the database model and the data that were
relevant to the project development. In the section on the conceptual model, the classes
and their associated attributes that represent the problem proposed were described. The
conceptual model consisted of four classes. The logical model was then discussed that
was made during development of the solution for faster access of the data in both the
client and server side environments. It consisted of two classes. The chapter also
discussed the sample observation data provided by CINMS. It concluded with a
discussion on the schema that was built and the scrubbing that was performed on that
data prior to loading them into the geodatabase. With a well-designed database, and
sample data ready for testing, the applications were ready to be built.

28



Chapter 5 — Implementation of the Web Application

Two client side components were developed to meet the client’s requests: a web
application and a native mobile application. The mobile application was designed for
users who are on personal or chartered whale watching boats and interested in tracking
their trip and recording their observations instantly. On the other hand, the web
application was designed for users who are either interested in visualizing the data as a
visitor, or submitting single point observations and downloading the data for analysis as a
logged-in user. This chapter describes the implementation of the web application.
Section 5.1 discusses the web application’s user interface. Section 5.2 discusses the
functional components of the web application. The chapter concludes in Section 5.3 with
a summary of the web application.

5.1 Web Application User Interface

The web application serves a variety of roles and was organized into four tabs: Home,
Map, My Observations, and Learn (Figure 5-1). The Home and Learn tabs were
completely undeveloped and acted as placeholders for future work, as requested by the
client. The Map tab and the My Observations tab were divided into a content pane for a
map object and accordion panes for the tools and forms available to the user. The
accordion pane is a web control object that is displayed on the user interface. It appears
as a container for holding web content. The map content pane is displayed to the user
during the entire session, whereas accordion panes can be hidden and displayed as
desired.

contribute marine mammal observations {0 science.

Home | Map | My Observations | Learn

e A

Figure 5-1: Functional components of the web application.

29



5.1.1 The Map tab

The Map tab was designed for the users who don’t wish to log into the system and are
interested in visualizing observations, querying the database, and identifying details on
selected events. It consists of several components (Figure 5-1), one of which is a map for
visualization. The map is the central component of the tab. The tab includes an identify
popup tool that allows the user to learn information about a particular observation. The
tool triggers a popup when the user clicks on a symbol within the map. The identify
popup tool was designed to be accessed only when a user clicks on an observation in the
map object.

whale mApp

Home | Map | My Observations | Learn
How to use this map

Narrow your search

date range:

from: san ~ 1999 +
10: Dec - 2009 ~

species type:
7 whales
@ dolphins and porpoises
7 seals and sea lions

7 other species

Figure 5-2: Overview of the Map tab of the web application

The user interface was also designed to include basic querying tools. Querying
tools select the chosen records and only displays them to the user. These basic querying
tools are made available to the user through a content pane on the left side of the tab. The
date range query tool allows the user to query by a “to and from date” using drop down
boxes for month and date. These date tools are illustrated in Figure 5-3.

date range:

from: Jan ~ 1999 ~

to: Dec = 2012 =

The months you choose will include observations for the enfire month

Figure 5-3: Date Query Tool

30



The user can also query by species type. Species type options are made available
to the user through checkboxes (Figure 5-4). This allows the user to view results of any
combination of species at the same time.

species type:
whales

dolphins and porpoises
seals and sea lions
other species

Figure 5-4: Species type query tool

5.1.2 The My Observations Tab

The My Observations tab was designed for an active user interested in a more advanced
interaction with the data (Figure 5-5). When the user accesses the tab, they are prompted
to log in. Upon log into the system, the user has access to the same map, and identify
popup tool as in the Map tab.

whale mApp

Home | Map | My Observations | Learn
Download data
Submit Observations
Narrow your search 14

Date: 1/12/2000 21:45:00 pst vy

Species Category: Seal or Seal Lion ,

show results for

o Only me @ Everyone

date range:

from: Jan ~ 1999 +
101 Dec v 202 v

The momshs you chooze wil nchuce odcarvations for th entve monsh

event type:
Zlobservations
tracks
species type:
@ whales
@ dolphins and porpoises
@l seals and sea lions

[#! other species.

Figure 5-5: My Observations tab

This tab has more advanced query tools which are displayed within an accordion
pane. The user can query by event type, allowing them to see both observations and
tracks. This query tool is made available to the user as checkboxes, allowing them to
view any combination of event types (Figure 5-6).

31




event type:

7]observations
tracks

Figure 5-6: Event type query tool

They can also choose to see only their observations or the observations of all
users. These options are made available to the user through a radio button, and they can
choose only one option or the other (Figure 5-7).

show results for:

® Only me @ Everyone
Figure 5-7: Show results query tool

Additional accordion panes were designed for additional tools, one of which is the
download data tool, which allows users to download data as a shapefile after they have
queried the data with the desired attributes (Figure 5-8).

Download data

Found what you're looking for?

Click "Extract Data" to get a shapefile of
your selection

Extract Data

Figure 5-8: Download data tool

Also within an accordion pane, the user has access to a Submit Observations
Form (Figure 5-9). This form contains all of the information required to submit a new
observation, along with the button needed to submit it. Most of the form’s components
were made from Dojo form widgets, also known as Dijits (Dojo, 2011).

32



Submit Observations

Date: -
Time: |8:00 AM -

Latitude:

Longitude:

Species Category: Whale -

Species Type: Unidentified -
Count: 1 -

Presence of Calves: Mo calves present -

Behavior: Unknown =
Seas. Unsure -
Weather: Unsure -

Confidence: 1 -

Submit

Figure 5-9: Submit observations for in accordion pane

The Submit Observations tool was designed to minimize the amount of error in data
entry. This was done using drop-down lists and auto-fill for every option other than
location (Figure 5-10). A NumberTextBox (a Dijit) was used to restrict the user to only
entering numbers in the locational text boxes.

October ~ ~ Bi5AM __ [-]
St MusiTiai Wik Tan Faa S 1 - |
£t & 8 4 & 8 © g:00AM

7" '8¢ 9 10 11 12 13 [ 8:15 AM
14 15 16 17 18 19 20

21 22 23 24 25 26 27 | 9:00 AM .
~ t Whal
28 29 30 31 1 2 3 § | hale -
4 5 6 7 8 9 10 € }
2011 2012 2013 10:00 AM ~DulphmurP{:_rpms-a
v Seal or Sea Lion

Figure 5-10: The use of auto-fill and drop-down use for the Submit Observations
form

33



5.2 Functional Components

The user interface components described above are dependent on several functional
components. The purpose of this section is to describe each of the functional components
in detail. The functional components and their corresponding classes and methods are
illustrated in Table 5-1. Classes are shown in lower camel case (ExampleClassName)
and methods are shown in lower camel case (exampleMethodName).

Table 5-1: Functional components and their corresponding methods

Functional Component Class or Method

The Map Map

Identify Popup Tool identify

Query Tools dateChanged, speciesChanged,
changelayerDefinition,
eventTypeChanged,
showResultsFor

Download Data Tool downloadData

5.2.1 The Map

As mentioned, the map appears in both the Map and My Observations tabs. The map’s
content is dynamic, depending on the extent, map layers, and query functions. The map
extent was set to (in meters):

e -13,252,801.136300 (minimum X)

e 4,388,898.711300 (minimum y)

e -1,4091,002.8127 (maximum X)

e 3,508,363.61690 (maximum y).

The layers contained within the map component are outlined in Table 5-2 below. The

map, feature, and geoprocessing services that the map layers were composed of were

published through ArcGIS Server from a map document within ArcGIS Desktop.

Table 5-2: Web application layers

Layer Name | Type Usage Mode
Ocean Basemap | Basemap NA
Basemap
Events Feature | Display of Selection
Service | all
observations
Attachments | Map Table of NA
Service | image
attachments
ExtractEvents | GP GP tool NA
Service

34



5.2.2 Identify Popup Tool

When the user clicks on an observation on the map document, the identify method is
called. A query is sent to the server for any feature within the spatial extent of the
envelope. If something is returned, a new selection symbol is defined for the events
feature layer. The layer definition is reset (using the Map object’s
setLayerDefintion and setSelectionSymbol methods) with the new
selection and selection symbol. This replaces the species category symbol with the
unique selection symbol (Figure 5-11). This unique selection symbol has a green fill and
red outline.

Date: 1/12/2000 21:45:00 pst
Species Category: Seal or Seal Lion

Species Type: N. Fur Seal
Count: 3 or more

Calves: No calves present
Behavior description : undefined

selected
observation

Figure 5-11: Symbol selection and popup window.

After the observation is assigned a new observation symbol, a second query task is
defined and executed which searches the attachment table for a picture corresponding to
the selected observation. If an image exists in the attachment table, the content of the
map’s infoWindow is updated, the window is resized, and the infowindow is displayed.

5.2.3 Query Tools

The methods that perform the query are triggered by listeners on each of the query tool
options. A listener is an object that performs an action when the user interacts with its
corresponding part of the user interface. Each listener calls a respective function that
builds a string to query its corresponding attribute in the feature layer. For example,
when the user changes the date in the query tools, the dateChanged method is called.
Afterwards, the changeLayerDefinition is called which pieces together the
appropriate string consisting of each query tool’s current value. The function then
applied the query string to the events feature layer’s layer definition. When applied, a
request is made to the server and the server responds with the appropriate information for

35



the features that need to be added to the map. The events feature layer is then reset using
the Map object’s setLayerDefintion method.

5.2.4 Download Data Tool

The downloadbData function is triggered by a listener on the Extract Data button that
appears in the Download Data accordion pane. The function uses the current download
data query string that is built through the query tools. If the user has not narrowed their
search with the use of the query tools, a default query string is used.

Upon activation, the application sends a request to a geoprocessing service with the
required parameters. The geoprocessing service was published from a tool made with the
ArcGIS Model Builder (Figure 5.12). The tool is responsible for selecting records from a
feature class, extracting the data into shapefile format, and delivering the shapefile in a
zipped folder to the user as a downloadable file.

Select Layer By selectedEve Layers to Extract Data Output Zip
Attribute nts Clip File

events

Figure 5-12: Workflow of Extract events tool
5.2.5 Submit Observations Form

When the user completes the Submit Observations form and pushes the Submit button
from the user interface, a function that is responsible for submitting the observation event
data is called. Within the function, a graphic object is created with the geometry
specified in the latitude and longitude NumberTextBoxes (a Dijit) and the attributes
specified by each of the other options in the form. The user ID entered upon the user’s
visit to the site is also saved as an attribute of the observation. Once the graphic is
created, it is sent to the server using the ArcGIS API for JavaScript function
applyEdits function that can only be called on feature services.

5.3 Summary

The web application consists of two tabs, Map and My Observations, intended for two
different types of users. The tabs are composed of a map, an identify popup tool, and
query tools. The My Observations tab also includes a Submit Observation form and a
Download Data tool. These tools compose the functional requirements of the application
and drive the dynamic components of the website.

36



Chapter 6 — Implementation of the Mobile
Application

As stated, the mobile application is intended for users who are on the water and are
interested in tracking their trips and submitting observations. The application was
designed to allow users to visualize their trip and record survey events (tracks,
observations) locally on the device in addition to syncing them with the server. This
chapter discusses the implementation of the mobile application. Section 6.1 describes the
User interface of each of the application’s Views. Section 6.2 describes the functional
components of each of the Views.

6.1 Mobile Application’s User Interface

There are three Views associated with the mobile application: Home, Survey, and
Observation. Each of these Views is associated with an Activity, which is essentially a
custom class. From this point on, all future references to Activities will be in
UpperCamelCasing and Views will be in lowerCamelCasing.xml followed
by .xml. Upon launch of the application, the user is presented with the home . xm1 View
(Figure 6-1). This View has the application’s title, a settings button, and the “Start a
Trip” button.

r'f'é'uch

° ST 440em

o,
whale mApp

Figure 6-1: Home View of the mobile application

On selecting the settings menu, the user is allowed to only change the username that will
be associated with the observations they submit. The list made available to the user to
choose from is composed of “anonymous” along with each of the email accounts
associated with their phone (Figure 6-2).

37



@ Select a username

anonymous

meloking@gmail.com

melodi_king@spatial.redlands.edu
melo@smallmelo.com

meloking@gmail.com

Figure 6-2: Settings Menu

The “Start a trip” button simply closes the home . xm1 View and brings the user
to the Main Activity of the application: the SurveyMap. The surveyMap.xml
view is composed of a map and a button that allows the user to record the observation
(Figure 6-3). This View allows the user to visualize their trip with minimal effort.
Their current location is represented by a blue dot. Every five minutes, the user’s
location is recorded as a position update and a new black dot appears on the screen.
Each time a new observation is recorded, a symbol is added to the map to their
marine mammal’s category: whale, dolphin or porpoise, seal or sea lion, or unknown.

Figure 6-3: Survey Map View

38



When the user selects the button to record a new observation, they are presented with a
form to fill out (Figure 6-4) in the cbservation.xml View of the Observation
Activity. The user must select a species category before any other information can be
added to the form. After selecting a category, the user can scroll through the remaining
details to add. The required information is bolded and the unrequired information isn’t.

-

I‘Pé}uch

B NCRE 4:48m

Select a species

Req U i red Specify a quatity

Presence of calves

Describe Behavior

Optional Add a photo

Describe the weather

Figure 6-4: Observation View showing the required and optional components in the
form

Each time the user selects one of the components, they are presented with a dialog

box with options to choose from. Figure 6-5 illustrates each of the dialog boxes that are
presented when the user selects the whale category.

39



I (@) selecta species I

Unidentified

Sperm Whale

() speciy a quantity

1

() Are there calves present?

Gray Whal
ray Whale No calves present

Fin Whale 2 One or more calves
present

Sei Whale Slogmore

Blue Whale

A) Select a whale species B) Select a quantity C) Presence of Calves

(® ...and the cloud over?

Unknown

Feeding
Traveling
Milling

Logging

(@ Aach from

Camera

Gallery

Sea is smooth- mirror
like

Light breeze
Moderate Breeze
Strong Breeze

Unsure

Clear Skies

Some clouds

Half of the sky is
covered in clouds

Very cloudy

Unsure

Other

D) Describe Behavior

F) Describe the Beaufort

E) Add a photo G) Describe the weather

Figure 6-5: Screenshots from the dialog boxes in the Observation form

At the bottom of the observation.xml View, the user has the option to “Go
Back,” “Save,” and “Save and Sync.” The “Go Back” closes the Observation
Activity without saving. The “Save” button saves the observation locally on the phone,
and the “Save and Sync” button saves the data locally on the phone in addition to syncing
it with the server.

6.2 Functional Components of the Activities

This section describes the functional components of the mobile application by the Activity
that they are associated with. Each of the Activitity’s methods will be in
lowerCamelCasing () followed by parenthesis and all objects appear in
lowerCamelCasing.

Essential to understanding the functional components of the application is the
Android Life Cycle (Activity, 2012). The life cycle describes the states and workflow of
how applications are handled in devices running an Android operating system. Figure 6-
6 illustrates the life cycle. Most of the functional components occur in the
onCreate () function, but the onResume () and onPause () also play an important
role in some cases.

40



Activity
launched

onCreate()

v

onsStart() - onRestart()

v Y
User navigates =
to the activity onResume(}

App process "'-I Activity
killed running y
/
Another activity comes
nto the foreground

User returns
+ to the activity

Apps with higher priority | L
need memary onPause()
|

The activity is
no longer visible

User navigates
+ to the activity
J

onStop()
I

The activity is finishing or
being destroyed by the system

v

onDestroy()
Activity

_ shut down )
- g/

Figure 6-6: Android Life Cycle
Source: http://developer.android.com/reference/android/app/Activity.html

While the Home Activity is essential to the application, it contains no functional
components. The two Views with functional components in their Activities are the
surveyMap.xml and the observation.xml View. There is also a helper Activity
with functional components that doesn’t have a View: the
EventsDatabaseManager. This Activity is responsible for handling the data stored
locally on the device.

6.2.1 Survey Map Activity

The surveyMap Activity has several functional components which include: the map
object, positionUpdates () method and handler, onStatusChange Listener, and
the updateEventsLayer () Method (Figure 6-7).

41


http://developer.android.com/reference/android/app/Activity.html

SURVEY MAP: FUNCTIONAL COMPONENTS

onCreate () onResume ()

onStatus
Change
Listener

positionU

updateEvent

pdate () sLayer ()

Figure 6-7: Functional components of the Survey Map Activity

When the Activity is first called by thehome . xm1 View, the onCreate () function
is called. The onCreate () function is an essential part of the Android Life Cycle. The
map object is initialized and Esri’s Ocean basemap layer is added to it. Additionally in
the onCreate () function, the onStatusChange listener is declared. This status
change listener handles everything related to the phone’s position. It uses the Android
location service (Location & Maps, 2012), which triggers a function when the position
has changed. The listener then gets the latitude and longitude from the location service.
The latitude and longitude are used to change the position of the location marker on the
map. The envelope of the map is then adjusted to extend three miles around the new
position.

After the onCreate () method is complete, the onResume () function is called.
Within this function, the updateEventsLayer () Method is called. This method
uses a static class to create a collection of features with geometry and attributes of each
record stored in the local database. It then creates graphics from each of the features in
the collection and adds it to the map. Also in the onResume () function, a repeating
task is started to automatically record the user’s position and draw a black dot on the map
every five minutes. This repeating task utilizes Android’s Handler class which repeats
a particular action with a delayed time increment.

When the user pushes the button to add an observation, the onPause () function is
called for the SurveyMap Activity. In this function, the map is paused and the
repeating task is stopped so that the position won’t be updated during a recording of an
observation.

42



6.2.2 Observation Activity

When the Observation Activity is started, the onCreate () function is called. This
Activity is primarily responsible for responding to user actions as they fill out the form,
saving, and syncing the data (Figure 6-8).

OBSERVATION: FUNCTIONAL COMPONENTS

onCreate ()

apply
Edits () sync()

onSelect () onSelected()

Figure 6-8: Functional components of the Observation Activity

As previously mentioned, the first component of information required is the
marine species category. When the user selects a category, the first of this Activity’s
many onSelected () functions are called. The Species category’s onSelect ()
method adjusts the appearance of the detail components required, depending on which of
the categories the user selected: whale, dolphin or porpoise, seal or sea lion, unknown
(Figure 6-9).

43



Detail Componentsforeach Species Category

Select a whale species Select a dolphin or porpolse species Select a seal or sea llon species

specify a quantity Specity a quantity Specify a quantity

Presence of calves Presence of calves Presence of caives

Descride Behavior

Add a photo

)

) )

) )

Descrbe Sehavr > — )
) )

) )

Whale Dolphin Seal
Or Or
Porpoise Sea Lion

Figure 6-9: Detail components provided to the user upon species category selection

After the initial selection, each of the detail components have a similar workflow.
On selection, the component’s onSelect () method is called. These methods build a
list of options for the user to select from and populate them in an alert dialog box that is
presented to the user (AlertDialog, 2012). The AlertDialog box has a listener associated
with it that waits for the user to tap a selection. Once the selection is tapped, the
corresponding onSelected () method is called. This method is responsible for
updating the component detail’s description with the choice the user made. This serves
as a visual confirmation of what the user is recording (Figure 6-10).

44



N —— ’O

[%uch {%uch

S aCEE 4:48em ‘ | a8 S @R 2:56m

Select a species Species selected: Gray Whale

Specify a quatity Quantity: 2

Presence of calves | One or more calves present

Describe Behavior Behavior: Milling

Add a photo Path: /mnt/sdcard/DCIM/100MEDIA/

Describe the weather Light breeze, Very cloudy

Figure 6-10: Comparison of beginning and ending of the observation form

The third functional component of the Observation Activity is the Save
function. This function is called when either the “Save” or the “Sync and Save” button is
selected. The first step the method takes is verifying that each of the required pieces of
information has been recorded. Afterwards, each of the record’s attributes is stored in the
local database using methods defined in the EventDatabaseManager Activity.

The final component of the Observation Activity is the Sync function. This
function is called whenever the “Sync and Save” button is pushed. The first step the
function takes is to call the save method previously mentioned. This ensures that the
observation is stored locally. The function then creates a graphic with a geometry passed
to the Observation Activity from the SurveyMap Activity. The graphic is also
assigned the attributes corresponding to the observation details. The graphic is then
passed in a server REST APl applyEdits () method to the server.

6.2.3 Events Database Manager Activity

The EventsDatabaseManager Activity is responsible for interfacing between the
other activities and the database in which the events are stored (Ehrenstein, 2011). The
functional components of this Activity are illustrated in Figure 6-11. In the

onCreate () method, a new table is created that matches the events feature class
schema if one doesn’t exist. This should only occur on the initial installation of the
application. The open () and close () methods can be called by other activities and
are responsible for opening and closing the table so that actions can be performed on it.

45



Both of these methods are called by both the SurveyMap and the Observation
Activities.

EVENTS DATABASE MANAGER: FUNCTIONAL COMPONENTS

onCreate ()

m createEvent ()

Figure 6-11: Functional components of the Events Database Manager Activity

The fetchAll () method is responsible for querying the table and returning all
attributes for every record in the database. This method is called by the SurveyMap
Activity. The createEvents () method creates a contentValue object and fills it
with the attributes sent to it by the Activity that called the function. It then creates a new
record in the database and populates it with the incoming attributes.

6.3 Summary

The mobile application consists of three different Views: home . xm1,
surveyMap.xml, and observation.xml. Each View has a corresponding
Activity, and there is an additional Activity for interfacing with the database stored
locally on the device. Each Activity has several functional components that are essential
to the application.

Both the mobile and web applications play a fundamental role in the project
solution. As previously mentioned, the web application allows both users who are
actively collecting observations and those that are inactive and simply interested in
exploring the data. Active users have access to advanced query tools, an observation
submission form, and a data download tool. This mobile application provides a
connectivity-hybrid solution for connected editing with data stored locally for future
development of a disconnected editing solution. It complements the web application in
that it provides a tool for allowing users to submit observations directly from the field.

46



Chapter 7 — Implications of Volunteered Geographic
Information Software Development

With the web and mobile applications designed and developed, their implications should
be considered. This chapter revisits some of the topics discussed in Chapter Two to
understand the effects and implications of the system developed for this project, with an
emphasis on the mobile application. Section 7.1 discuses techniques for ensuring enough
quality data for scientific research using a VGI approach. Section 7.2 describes how
spatiotemporal analysis can be used to identify patterns in VGI data and the differences
between this project’s data model and the ArcMarine model. Section 7.3 is dedicated to
the connectivity issues with the current workflows and toolsets for mobile development.
Lastly, Section 7.4 discusses the mobile application user interface and ideas for making it
more engaging. The chapter closes with concluding remarks in Section 7.5.

7.1 Considerations for Volunteered Geographic Information and
Science

To use VGI data in research, the right questions need to be asked of the right people; and
enough people have to be asked those questions. The importance of this was discovered
during a field test of an early version of the mobile application. Applications that are
intended for use by the general public need to frame questions in ways that are easy to
understand. The application was originally designed to ask the user how many calves
were present with a group of mammals. Counting the number of animals present is a
simple task when a group of whales is being surveyed. This is because whales tend to
travel in groups of 1-4. However, determining the number of calves present in a group of
dolphins is much more difficult because they travel in larger groups of 10-500. Rather
than asking the user how many calves were present, the application was changed to
simply ask whether there were calves present or not. The true/false response of calf
presence can still be used to understand mammal behavior without an exact number.

This was an example of an easy change, which framed the question for a member
of the general public. There are some cases in research when the questions cannot be
simplified, and therefore should be reserved for trained users. In these cases, user
accounts with varying permission levels can be created. For example, an expert user
could have access to more involved questions whereas a public user could have access to
general questions.

During this project, the application was tested on a single mobile device. In order
to collect enough data for scientific research, the application would have to be deployed
on a much larger scale (i.e.- Google Play Application Store). In doing so, the design of
the system infrastructure would need to be reevaluated. Chapter Two discussed some
citizen science-based web applications deployed using open source technologies.
Unfortunately, it is difficult for small organizations to “set up a web server, learn open
source (free) web-development Content Management Systems, and ultimately, create,
design, and maintain their own website to support their own citizen science program
needs,” (Newman, Graham, Crall, & Laituri, 2011, p. 1853).

47



Esri has recently developed solutions for multi-scale deployment, as an alternate to
open source technology. One solution is ArcGIS Online for Organizations, which gives
organizations a mapping platform for sharing maps and editing through feature services.
Another solution is ArcGIS Server on Amazon Cloud. Both of these solutions are
flexible in terms of the number of users with access. They also do not require personnel
to maintain the physical servers that all of the data lives on. Unfortunately, each of the
Esri alternatives is expensive. The client would need to apply for an Esri Conservation
grant to utilize the technology.

7.2 The Use of VGI in Marine Research

Chapter two discussed methods that are currently used in the field of marine research for
storing and analyzing data. ArcMarine was described as a data model for storing a wide
range of data in an efficient manner for analysis. However, its design demonstrated that
it was not intended for volunteered geographic information. The data model would need
to be modified before it could be used for the project by eliminating most of the tables,
and adding new tables and necessary attributes. The conceptual database designed for
this project was similar to ArcMarine in that it associated non-spatial elements (such as
an observer or survey) to spatial elements (such as an event). In this respect, the survey
table of this project’s conceptual model was similar to the survey info table in the
ArcMarine data model. Similarly, this project’s events feature class is similar to the
ArcMarine location series feature class.

Regardless of the similarities in the feature classes and tables, the models diverged
during the design of the logical model. Because of the nature of Web and Mobile GIS
projects, the conceptual model was consolidated into a flat file structure to improve the
speed of queries performed on the database. This made ArcMarine an unrealistic data
model for the project’s scope.

A study that performed spatio-temporal analysis on Flickr photos found that social
media data in conjunction with geovisualization methods could be used to understand
mobility and social dynamics in urban systems (SAGL, Resch, Hawelka, & Beinat,
2012). Similar analysis could be performed on marine mammal observations contributed
using a VGI approach. Without taking this into account, improper assumptions and
assessments could be made during analysis. Spatio-temporal techniques, including those
in ArcGIS tool suite can help understand these space-time clusters. For example, the
Grouping Analysis tool can group features based on attributes and with optional
spatial/temporal constraints. Similarly, the Cluster & Outlier Tool uses Local Moran’s I
statistic to identify statistically significant hot spots, cold spots, and spatial outliers.
Tools like this could help determine if the same animal is likely being reported several
times by different users. They could also be used to identify groups of events that belong
to a particular trip and user.

7.3 Connectivity in VGI Web and Mobile GIS Applications

There were a couple of significant obstacles faced during the course of the project, both
of which pertain to connectivity of the mobile application. Providing a disconnected
editing experience using the current ArcGIS Runtime Software Development Kit (SDK)
for Android was challenging. This is because the kit does not include the necessary tools

48



for seamless disconnected editing. A work around was created for storing data in a local
SQLLite database on the phone. However, the application does not attempt to submit
observation data more than once. This is not ideal as users do not always have
connectivity. This also forces the user to submit observations as they record them rather
than retroactively at their leisure.

The second issue addressed related to connectivity pertains to the basemaps used in
the mobile application. In a true disconnected environment, the user would be accessing
basemaps stored locally on their device. The geographic scope was limited for the
project to an area that had connectivity. Because of this, Esri online basemaps were
utilized. If the application was designed for truly disconnected editing, cached basemaps
for the user’s location would have to be delivered to the mobile device. If the user
requested cached maps through the mobile application, the application could be
redesigned to identify the user’s location, and download the maps necessary for their
region. Because of the nature of cached maps, storing them on the Android device could
monopolize a significant amount of memory on the phone. For example, the project’s
study area requires approximately 4 GB of memory in cached maps.

7.4 Mobile User Interface Critique

The four areas of proper user interface design discussed in Chapter Two were simplify
the task, reduce memorization, plan for error, and test the usability of the application.
The task of submitting observations was simplified in the project by taking the scientific
form used in the client’s research and turning it into an easily accessible form in either a
mobile and web application. Reducing memorization was handled by providing the user
with a list of options to choose from rather than asking them to manually enter the
requested information. A feedback system was designed in the mobile application in
planning for error. After completing each element in the observation form, the user is
presented with a visual confirmation of their selection. This feedback system, allows
them to change their selection if desired.

The usability of the mobile and web applications were not tested over the course
of this project. There are several components of the user interface that could be improved
to make the system more engaging. One approach to this is to game-ify the experience.
Adding game elements to the applications could provide the users with opportunities for
collaboration and a feeling of belonging to something greater than themselves
(McGonigal, 2011). Some game elements include feedback loops that could tell the user
information such as how many observations they’ve submitted to the community average.
Another game element for engaging users is to challenge them intellectually. Users could
be challenged by competing or working as a team to collect data and answer trivia
questions. This method also encourages collaboration among the application users. If
users don’t already have a team to collaborate with, a notification system could be used to
inform users if they are in close proximity of other users.

7.5 Summary
In conclusion, Section 7.1 demonstrated how the right questions need to be asked to the

right people. It also discussed how expanding VGI projects to collect enough data for
research is either time consuming or expensive. Section 7.3 explored the differences

49



between the data model developed for this project and the existing ArcMarine model. It
also described how GIS can be used to identify spatiotemporal patterns in data. In
Section 7.3 the disadvantages surrounding connectivity and Mobile GIS. A better toolset
is needed for disconnected editing with the Runtime SDK for Android. Additionally,
better workflows are needed for handling offline basemaps. Finally, Section 7.4
discussed the design of the mobile user interface and how error was accounted for, tasks
were simplified, and memorization was reduced. Testing of the mobile application
usability still needs to be performed, and the user interface could be improved using
game elements to make it more engaging.

50



Chapter 8 — Conclusions and Future Work

The challenge that the client faced was how to generate a high volume of quality data for
her long-term study on marine mammal migratory behavior and human impact. In order
to reduce the cost and effort required in the data collection process, Stelle decided to
explore a VGI approach to collecting this data, which incorporates the collection of data
by both researchers and members of the general public. The proposed solution consisted
of web and mobile applications and a geodatabase for storing observations collected by
researchers and members of the general public.

A conceptual model was used to describe the client’s business model and logical
models for both the server and client side were designed. The server side logical model
consisted of a single feature class for holding all submitted events and an associated
attachment table to hold all evidence, such as photos. The client side logical model
consisted of a single table in a SQLLite database on the mobile device. All evidence was
stored as a path to its location in the Photo Gallery on the Android device. Domains and
subtypes were incorporated into the server side model to ensure data integrity.

The web application was designed for the user to visualize all data on a map and
query the data based on the type of species, date range, and event type. It was also
designed to allow users to download selected data in a shapefile format. The web
application interface includes a form for submitting observations upon login to the
system.

The mobile application was designed to allow users to visualize their whale watching
trip and corresponding recorded observations. This is done by rendering a new position
update on a map every five minutes. A form was created that allows users to submit new
observations and corresponding evidence. The user can choose to associate their
observations with a user account or submit them anonymously. The data associated with
the observations and position updates are stored locally on the device and synced with the
server when submitted. Upon which, a new symbol is rendered on the map for their
observation.

The purpose of this project was to demonstrate the capability of the system with
proofs of concept. During development of the proofs of concept, some recommendations
were determined pertaining to the user experience and expanding the project to a larger
audience.

The first suggestion for improving the user experience is to give users more control
over their data. On the mobile application, the user should be able to retroactively submit
observations after a trip. Currently, the user has a single chance to submit the
observation. In some cases, the user may also desire to edit their observations. For
example, they may have made a mistake in the details of an observation or forgot to
submit a photo with the observation. Editing capabilities of observations should be added
to the web application interface. This capability would, for example, allows users to add
photos to previously submitted observations.

There are other suggestions for improving the user interface and making the
applications more engaging. The applications could include game elements such as
feedback loops, collaboration, and competition to give the user a feeling of belonging to
something greater than themselves. Feedback loops could tell the user how many

51



observations they’ve submitted compared to the others in the community. Specific
examples of how these elements could be incorporated are discussed in Chapter Seven.

In order for the application to be deployed to a wide audience, several considerations
need to be taken into account. Currently, the applications are only designed to allow
users to select from animals in southern California. The available species list would need
to be expanded to a much larger scale. With a larger geographic scope, the mobile
application would need to be capable of working in completely disconnected
environments. To do so, basemaps would need to be cached and available for download
by users in these environments.

As the above suggestions are incorporated, it is essential that the applications are
tested on small user groups before deploying at a large scale. Testing will provide
important feedback on the user experience. These suggestions for future work will
produce a system that is ready for use by a wide range of users.

In summary, this project demonstrated how volunteered geographic information could
be used alongside Web and Mobile GIS to manage marine mammal observations. Several
suggestions for improvement have been identified for further development. Upon
deployment, the data collected using the applications can play a key role in understanding
human impact on, and behaviors of, migrating marine mammals.

52



Works Cited

Activity. (2012, 10 12). Retrieved 10 14, 2012, from Android Developer:
http://developer.android.com/reference/android/app/Activity.html

AlertDialog. (2012, 10 12). Retrieved 10 14, 2012, from Android Developer:
http://developer.android.com/reference/android/app/AlertDialog.html

Android 2.3.3 APIs. (2012). Retrieved 2012, from Android Developer :
http://developer.android.com/about/versions/android-2.3.3.html

Android Developer Reference. (2012). Retrieved 10 9, 2012, from Intent:
http://developer.android.com/reference/android/content/Intent.html

Aberley, D., & Sieber, R. (2002). PPGIS.net Open Forum on Participatory Geographic
Information Systems and Technologies. Retrieved 12 2012, from About PPGIS:
http://www.ppgis.net/ppgis.htm

Aguilar, M. (2012, July). Gizmodo.com. Retrieved July 2012, from Only 10-Percent of Androids
Have Ice Cream Sandwich After Eight Months: http://gizmodo.com/5923143/only-10-
percent-of-androids-have-ice-cream-sandwich-after-eight-months

Apple. (1987). Human Interface Guidelines: The Apple Desktop Interface. Addison-Wesley
Publishing Company Inc: New York.

Bauer, J. R. (2012, 6). Assessing the Robustness of Web Feature Services Necessary to Satisfy
the Requirements of Coastal Management Applications. MA Thesis. Retrieved 10 2012,
from Oregon State University Library:
http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/30062/BauerJennifer2012.p
df?sequence=1

Best, B., Halpin, P., Fujioka, E., Read, A., Qian, S. S., Hazen, L., et al. (2006). Geospatial Web
Services Within a Scientific Workflow: Predicting Marine Mammal Habitats in a
Dynamic Environment. Ecological Informatics.

Connors, J. P., Lei, S., & Kelly, M. (2011). Citizen Science in the Age of Neogeography:
Utilizing Volunteered Geographic Information for Environmental Monitoring. Annals of
the Association of American Geographers, Forthcoming 2012.

Davidson, A. D., Boyer, A. G., Kim, H., Pompa-Mansilla, S., Hamilton, M. J., Costa, D. P, et al.
(2012). Drivers and Hotspots of Extinction Risk in Marine Mammals. Proceedings of the
National Academy of Sciences of the United States of America, 3395-3400.

Dojo. (2011). Dojo toolkit. Retrieved 10 1, 2012, from Dijit Documentation for Version 1.6:
http://dojotoolkit.org/reference-guide/1.6/dijit/index.html#dijit-index

Ehrenstein, C. (2011). Android App Development & Design. Learn By Video. Peach Pit Press.

Esri. (2011, Dec 14). Android Runtime SDK for Android. Retrieved Feb 22, 2012, from Esri:
http://resources.arcgis.com/content/arcgis-android/sdk

Esri. (2012, Feb 1). What is a Feature Service? Retrieved Feb 20, 2012, from Esri:
http://help.arcgis.com/en/arcgisserver/10.0/help/arcgis_server_dotnet_help/index.html#//
009300000020000000

Esri. (n.d.). ArcGIS Server Training Seminars. Retrieved Feb 20, 2012, from Esri:
http://training.esri.com/campus/catalog/ServerSeminars.cfm

Foley, M. M., Halpern, B. S., & Micheli, F. (2010). Guiding Ecological Principles for Marine
Spatial Planning. Marine Policy, 955-966.

Francica, J., & Schutzberg, A. (2011, Sep 13). Top Skills Needed to be Successful in a GIS
Career. Directions Magazine Podcast. Podcast retrieved from iTunes.

53



Fu, P., & Sun, J. (2011). Web GIS Principles & Applications. Redlands: Esri Press.

Geospatial Innovation Facility. (2012). About OakMapper. Retrieved from OakMapper Sudden
Oak Death: http://www.oakmapper.org

Glennon, A. (2011). Geyser Notebook. Retrieved February 14, 2012, from Android Market:
https://market.android.com/details?id=net.geysers.app.geysernotebook

Glennon, A. (2012, February 15). personal communication. (M. King, Interviewer)

Goodchild, M. F. (2007). Citizens as Sensors: the World of Volunteered Geography.
GeoJournal, 211-221.

Google. (2012). Android. Retrieved Feb 23, 2012, from Android Developers:
http://developer.android.com/index.html

Halpern, B. (2008). A Global Map of Human Impact on Marine Ecosystems. Science, 948-952.

Halpin, P. (2004). NOAA Office of Science & Technology / EcoGIS: GIS Tools for Ecosystem
Approaches to Management. Retrieved August 15, 2012, from Spatial Analysis Needs for
Marine Ecosystem Management: Habitat Characterization, Spatio-Temporal Models and
Connectivity Analysis Frameworks:
http://www.st.nmfs.noaa.gov/ecogis/Workshop2004/Documents/Halpin_presentation.pdf

Jones, J. S., & Ganey, S. (2009). Building the Legal and Institutional Framework. Ecosystem-
based Management for the Oceans, 162-179.

Location & Maps. (2012, 10 12). Retrieved 10 14, 2012, from Android Developer:
http://developer.android.com/guide/topics/location/index.html

Lloyd, C. (2012, September 20). Android Community. Retrieved October 1, 2012, from Verizon
sees more Android activations than all other carriers:
http://androidcommunity.com/verizon-sees-more-android-activations-than-all-other-
carriers-20120920/

Mandel, T. (1997). The Elements of User Interface Design. New York: John Wiley & Sons.

McGonigal, J. (2011). Reality is Broken: Why Games Make Us Better and How They Can
Change the World. New York: The Penguin Press.

National Ocean Service. (2011, 1 6). Marine Mammal Sightings Database. Retrieved 10 16,
2012, from Channel Islands National Marine Sanctuary:
http://www.cisanctuary.org/mammals/

Newman, G., Graham, J., Crall, A., & Laituri, M. (2011). The art and science of multi-scale
citizen science support. Ecological Informatics, 218-226.

Newman, G., Zimmerman, D., & Crall, A. (2010). User-friendly web mapping: lessons from a
citizen science website. International Journal of Geographic Information Science, 1851-
1869.

NOAA. (2011, 7 31). NOAA Coastwatch: West Coast Regional Node. Retrieved 10 16, 2012,
from Coasta watch Browser: http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowser.jsp

Norman, D. A. (1988). The Design of Everyday Things. New York: DoubleDay.

O'Malley, R. (2010, 9 15). Ocean Productivity. Retrieved 10 16, 2012, from
http://www.science.oregonstate.edu/ocean.productivity/

Pelton, M. R., & Manen, F. T. (1996). Benefits and Pitfalls of Long-Term Research: A Case
Study of Black Bears in Great Smoky Mountain National Park. Wildlife Society Bulletin,
443-450.

Pian, S., & Menier, D. (2011). The use of a geodatabase to carry out a multivariate analysis of
coastline variations at various time and spave scales. Journal of Coast Research Special
Issue 64, 1722-1726.

54



Pompa, S., Ehrlich, P. R., & Ceballos, G. (2011). Global Distributions and Conservation of
Marine Mammals. Proceedings of the National Academy of Sciences of the United States
of America, 13600-13605.

Ruckelshaus, M., Klinger, T., Knowlton, N., & DeMaster, D. P. (2008). Marine Ecosystem-
based Management in Practice: Scientific and Governance Challenges. BioScience, 53-
63.

SAGL, G., Resch, B., Hawelka, B., & Beinat, E. (2012, 3 7). From Social Sensor Data to
Collective Human Behaviour Patterns - Analysing & Visualising Spatio-Temporal
Dynamics in Urban Environments. Retrieved 10 23, 2012, from GIS Point:
http://gispoint.de/index.php?id=5&tx_browser_pil1%5BnewsUid%5D=682&cHash=2082
90d911

Steiniger, S., Neun, M., & Alistair, E. (n.d.). University of Minnestota - Spatial Database and
Spatial Data Mining Research Group. Retrieved Feb 23, 2012, from Foundations of
Location Based Services:
http://www.spatial.cs.umn.edu/Courses/Spring10/8715/papers/IM7_steiniger.pdf

Stelle, L. (2008). Activity budget and diving behavior of grey whales (Eschrichtius rubustus) in
feeding grounds off coastal British Columbia. Marine Mammal Science Vol 24. No 3,
462-478.

Stelle, L. (2012, Feb 10). Data Integration: Marine Mammals and Their Ecosystems Citizen
Science "Whale mAPP" [Powerpoint slides]. Redlands, California: Unpublished.

The Cornell Lab of Ornithology. (2011). eBird. Retrieved Jan 31, 2012, from eBird:
http://ebird.org

Timoney, B. (2012, 8 1). How the Public Actually Uses Local Government Web Maps: Metrics
from Denver. Retrieved 10 1, 2012, from Map Brief:
http://mapbrief.com/2012/08/01/how-the-public-actually-uses-local-government-web-
maps-metrics-from-denver/

Tsou, M.-H. (2004). Integrating Mobile GIS and Wireless Internet Map Servers for
Environmental Monitoring and Management. Cartography and Geographic Information
Science, 153-165.

University of Washington Sea Grant Institude. (2011, 8 11). Impacts and Outcomes of Mature
Coastal Web Atlases: California. Retrieved 10 2012, from YouTube:
http://www.youtube.com/watch?v=cLPq65RjOuA

UW Center for Game Science. (2011). Fold it: Solve Puzzles for Science. Retrieved Jan 31,
2012, from Homepage: http://fold.it/portal/

Viswanathan, P. (2012). About.com. Retrieved October 1, 2012, from Android OS Vs. Apple
i0S — Which is Better for Developers?:
http://mobiledevices.about.com/od/kindattentiondevelopers/tp/Android-Os-Vs-Apple-los-
Which-Is-Better-For-Developers.htm

Wagtendonk, A. J., & De Jeu, R. A. (2007). Sensible Field Computing: Evaluating the Use of
Mobile GIS Methods in Scientific Fieldwork. Photogrammetric Engineering & Remote
Sensing Vol. 73, No. 6, 651-662.

Walker, D. A., Halfpenny, J. C., Walker, M. D., & Wessman, C. (1993). Long-term Studies of
Snow-Vegetation Interactions. BioScience, 287-301.

Wright, D., Blongewicz, M., Halpin, P. N., & Breman, J. (2007). Arc Marine. Redlands: ESRI
Press.

55



56



Appendix A. Geodatabase Domains

R LS 1
o 13- 5BEL9-S0)
|57 ¢ maie (5D of Eare)

| Cemeraadld)
| R GE

| Mar Raght drale Dalphin LE)
Papficivhite SidecilLo)

| iller e D)

| Acttlerase (TT)
Unedernfied 50

| Lagging [Loppng)

Hidtseg [ Hhifang s
Feeding Feadingd
Traveling {Treveling)
- UnenowriUnknews)
| DtRee [Behar) -\

© Clagr Shies [Cleat)

¥

| Sarmg Fouds[iond

very tlaady [Highl

Half af tre by g covered inglands [Maguen)
Ungare (Unsure)

| Sewis smoath meerorlee [Calm
| Lighrareszetight)

- Moderats Sreeze Moderate]
| Skrong Sreese [Srang)

} mmuce [Unsace)

€4 Sag Ligr (20}
- Piackar Seat (P
" B, Fur Sl 100
| eiguandied 0

= Eét {EM
‘, Humgbagh [ H)
Grag (ER)
L Minke {E2)
Sei{BEY
. Fin H=t
- Sperm M)
 Unidestfed Uh

LD
L 2L

| Fgemore (3 armgee)

Ko calves presentif)

Ore or mom catees presentil

&7

~ Whale (naled
Galphen or Forpoise [Dalphrfom)
| Writngem of Other {Uskrosn)
E Saal orSaa Lioe(Saalbeaii]

- Pogins Update )
| Deservabion )

Agmin (1)
| Eaery[)
| Pubh |3}
i3l






Appendix B. Mobile Application Activities Code

59






Observation.java

1package edu.gis.spatial.redlands.edu.Cohort2l.melodi_king;
2
3import java.io.File;
65
66 public class Observation extends Activity {
67 int SELECT_PICTURE = 1;
68 public double locy;
69 public double locx;
70 public String userlID;
71 int i = 999;
72 public boolean catPicked = false;

73 // private Spinner speciesType;

74

75 // database object

76 private EventsDBManager mDbManager;

77

78 // initial/default variable values

79 private String category = "Unknown or Other";
80 private String speciesType = "Unidentified";
81 private String count = "No calves present";
82 private String notes = "";

83 private String behavior = "Unknown";

84 private String calves = "No calves present”;
85 public String seaString = "";

86 public String weatherString = "";

87 private Cursor mCursor;

38 private RatingBar ratingBar;

89 String txtRating;

90 public boolean speciesPicked = false;

91 public boolean countPicked = false;

92 public boolean calvesPicked = false;

93 public int catInt;

94 private int ratelnt =

95

96 // no longer using credentials, can delete
97 // UserCredentials credentials = new UserCredentials();
98 // ArcGISFeaturelLayer fLayer = new

99 !/

ArcGISFeatureLayer("http://gis.spatial.redlands.edu/ArcGIS/rest/services/melodi_king/
events/FeatureServer/1",

100 // MODE.SNAPSHOT, UserCredentials(credentials));

1e1 ArcGISFeatureLayer flLayer = new ArcGISFeaturelayer(

102 "http://gis.spatial.redlands. edu/ArcGIS/rest/serv1ces/melod1 _king/events/
FeatureServer/1",

103 MODE . SNAPSHOT) ;

104

1095 int permissions = 2;

106 String layerDefinition = "{\"currentVersion\":10.02,\"id\":1,\"name\":\"events
\",\"type\":\"Feature Layer\",\"displayField\":\"ObserverID\",\"description\":\"\",
\"copyrightText\":\"\",\"relationships\":[],\"geometryType\":\"esriGeometryPoint\",
\"minScale\":0,\"maxScale\":0,\"extent\": {\"xmin\":-14115658.1665, \"ymin
\":3240128.2558,\"xmax\":-13861473.3222,\"ymax\":4321833.7614, \"spatialReference\":
{\"wkid\":102113}},\"drawingInfo\":{\"renderer\":{\"type\" :\"uniqueValue\”,
\"field1\":\"SpeciesCategory\",\"field2\" : null,\"field3\" : null,\"fieldDelimiter

Page 1



Observation.java

AN, V", \"defaultSymbol\": {\"type\":\"esriSMS\",\"style\":\"esriSMSCircle\",
\"color\":[©,158,37,255],\"size\":4,\"angle\":0, \"xoffset\":0,\"yoffset\":0
\"outline\":{\"color\":[0,0,0,255],\"width\":1}},\"defaultLabel\":\"\ue@3call other
values\u@e@3e\",\"uniqueValueInfos\":[{\"value\":\"2\",\"label\":\"Dolphin or
Porpoise\",\"description\":\"\",\"symbol\": {\"type\":\"esriPMS\",\"url\":
\"B698AF73\",\"imageData\":\"1VBORWOKGZoAAAANSUNEUgAAABEAAAAZ CAYAAAArK
+5dAAAAAXNSROIB2cksTwAAAALWSF1zAAAOXAAADSQBLS sOGWAAAWFJREFUSIN11WtIk2EUX397t/mmstSZS
20131iorDbbuYhQlkUFGYGFEd6w+FEVPRZFhSR
+EUA1BsQhaQh/EriSRYjUUwyS3LphamldZ5BtUZ1/u@pcarclpQRBOPjlwzvP/PeccznlU/GVT/RcAtZELlux
NISQsiJFSFSpAZ/tSNtbeImnbABNj/CIBN/towUVed4UF496zEN6rksIZQIt38bBc@11C5rFEOVSiw3/xZgl3
j2mF6edSxZnq/po4tyS1HITQIACFMW7+DBgiR5XtB590YDtyYEYOPi01GeXIDMFBHAZDUASjjIevbgYBSAqe
hIxKhMJyv7K1+041A38GIcgEsxQnmFkVUiwHsGqOUcABIdVHHYI1pLLPspI40crA6ahh55s9cvoFC8kR8kz9
E5SNNCHSaKfSXpNokeTpFFEXcCVrJ1Z1dUU6rNZrOMCFggS1uSMHCPaiswxEtQSyKbOcx@jIShQ2aEFuqgopp
g8KhZim5wIfgCBTIORUFILiZd4Nv1kspMgND

+VQI2RFVRWgGcOBxXpYobONx9g1UgAMduJ EwuYFSCDFQ/yHWTBz1CUEEEEWYCE/
+3w12fGeAWEG6Ww1J1hmEkAgfbkahORxBNFana1ZPpGJhKDACt3PMY01+AgQGhYTEGHqXK47waLOszh
+GVoBWS3uxMUQTYN
+ARFafYNLYpOvUihQoELtnfR366ez36KtqoHyA4iWkk48455GPUNKHE6IALL1ZUS51RNyArD90kSXriN4Mcpro
uBZovisSXzTjUiGrToSaSdRVTMYArRWH1IFPHo1KGegqxhYzjt637TTePxXPZ
+rYraUltvE7blveTVPSyQdtIFAKIN8wWYqZSOKwY8eKmclWsoY36z328LHpCg3VCgAwUzkqelVIimLp5uiGFIY
KGUDSEo/veUIBworFwv30QziPXKavlpTXmNs1ltgPIqaTtdAetpeBMDSBQCALgwv5xmOEeSRy8elk
+CRL40pb0OuB90LobnQIZPpzze7X/ky/zPAd8AI1X1ZOTULUWAAAAASUVORKSCYII=\", \"contentType\":
\"image/png\",\"color\" : null,\"width\":18,\"height\":18.75,\"angle\":@,\"xoffset
\":0,\"yoffset\":0}}, {\"value\":\"0\",\"label\":\"None\",\"description\":\"\",
\"symboIl\":{\"type\":\"esriPMS\",\"url\":\"C466E8E2\",\"imageData\":

\ "1VBORwOKGgoAAAANSUhEUgAAAAWAAAAMCAY AAABWAVZNAAAAAXNSROIB2 cks FWAAAALWSF1zAAAOXAAADS
QB1SsOGWAAAJ1JREFUKJIGtObEKQVEYB/DfQDezDBZ5C6UBAQM7V7CIyWSUhzGZWL2EzAaZ9WWxUPderl1L0eM
75nf7/75T8uEr/AHWsBHue7zDH8RO040Bmam
+AD104ZUCSITUISFI0P7TGMAMiYVQlfheVFKT6F1BGLQ/0aBSAOy75DpulmBSALW75DkvOZacEVOx5H
+sVbd1/2G0GRYfweJEUiOUB/ZOhYNQEVhsSAAAAASUVORKSCYII=\",\"contentType\":\"image/png\",
\"color\" : null,\"width\":9,\"height\":9,\"angle\":0,\"xoffset\":0,\"yoffset\":0}},
{\"value\":\"3\",\"label\":\"Seal or Sea Lion\",\"description\":\"\",\"symbol\":
{\"type\":\"esriPMS\" ,\"url\":\"82D47583\", \"imageData\":
\"1VBORWOKGgoAAAANSUhEUgAAABKAAAAZCAYAAADEGEYVAAAAAXNSROIB2cksfwAAAALIWSF1zAAAOXAAADS
QB1SsOGWAAAXVIREFUSInt1VIMU2cYWPF/vziFFkIOiJRaCREiIH5HVr3WgQUKYGDUab@S314Vkx18Yw41ZRm
K2+HGOhMwtMdkFR18gIKUWLCxZz11kmk4ABK4qiVIgWwaEIr9oKONDT@10QiaW20C8WE32uznne9zy/5zk5H2
b+hzC/U4ilqVT+oswp7cgzZeVjwajGFi0jQTH+e@CODVWGtDAGWiwlBIbYtDMNGAUqCc7Mt1qTF7XD8ebT3Yr
+/sfu
+uKCgqau9/R1gbyts2FFjaallrc9Ptybdb6lgbqj7c5AjmnPnVVwD88trIuf@1B21WvgllyVI6ILwQpWosmpF
/hCmscqilsdTc/mfgEXB/VSQBhg817cI01zMtAHCL38+1AQWArqP1FOVZ9400EeW3B
+L4qsj5I54vyyWKDBmMA6G] SGQAOtGVhgKwDmOdXDYWIWkVRhITiT
+ZmP6t2rM88BHcNRPI1C4sU2q1lUOmQPwrsXyIxIRpPL1GYMLA4TEBG
+6/Y15aeez]1Not2IykLOrXF7X0ZzcRApiNpptL5/H4zpBEeHW
+AzdQ1P4hJqCz8diy8c2u2RPgbkyoaPFAWMCGIOSdPYHuUeYTK7etaOylptSs1BczBdFOZVUEXX1jIdp
+Hs5Y/EU48paalx0gPI8KrYqUSNuvTTyZ
+9T/0Ln7UgnqqmSskkRH39KTIQFuh8SCppEAAFPPIM8K2XxVIvqUpSF1BzgmeUXG4vqLENPtMZVGDbDPs2VKG
S871Ys8DAF0o8Dpq31TMYNObGwO1BHWAFZ7XxCCO
+gkzR8e91/qcXT8XRe/fzEbnfS201HIdSoyvfNbgqdMgYD7KxwsrPCyWAgNP63L/DVyngvRACKO/qOhY
+4Px1ZFNsqS+T1/0Z1MvUblgbsvzcpRP
+Ictqrc0elkY9BH27yfvTXH1sv94yGmtOu2Wi3WsiWk]j/EcOEYvT5pf2A6fLIzWPzOqlppEYCaY8Rh4I0uo0l
vP3plQ2h06qdZiRjZiNmo6kbmoFpyZf3zih
+viFBBNVycj8iI0/zhwb2ma4N4+35vf7HImOfWEYGSjqIxnPkQAAAABIRUSErkIggg==\",\"contentType
\":\"image/png\",\"color\" : null,\"width\":18.75,\"height\":18.75,\"angle\":0@
\"xoffset\":0,\"yoffset\":08}}, {\"value\":\"4\",\"label\":\"Unknown or Other\",
\"description\":\"\",\"symbol\":{\"type\":\"esriPMS\",\"url\":\"D6B86A28\",
\"imageData\":
\"iVBORw@KGgoAAAANSUhEUgAAABSAAAACCA?QﬁﬁCéecTtAAAAAXNSR@IBZCksfwAAAAleF1ZAAAOXAAADS
QB1SsOGWAAAWNIREFUSINt1ktIVFEYX393Rj30jGO0OhVLmMk8zQNmEa2CLKyt4PKNnETOSPRykInOgxFYQ96SU
KWkJUt2ooCKOMx1Rb20A1iTIArptUhoMYpOo2fMualmmaveGUUIFNn2r7/7/3/1+9zucv71h/MUT



1e7
1e8
1e9
110
111

112

113
114
115
116
117
118
119
12e
121
122
123
124
125
126
127
128
129
13@
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

Observation.java

String confirm = "not synced";

Integer[] arr;

SpatialReference webMercator = SpatialReference.create(102100);

QueryTask querytask = new QueryTask(
"http://gis.spatial.redlands.edu/ArcGIS/rest/services/melodi king/events/

FeatureServer/1");

com.esri.core.tasks.ags.query.Query query = new

com.esri.core.tasks.ags.query.Query();

FeatureSet fset = new FeatureSet();
String filePath = "";
String syncResult;

@Override

protected void onCreate(Bundle savedInstanceState) {
// creates a new instance
super.onCreate(savedInstanceState);

// sets the content view to the "observation.xml" view in the layout
// folder
setContentView(R.layout. Layout3);

// creates rating Bar object from view ID
ratingBar = (RatingBar) findViewById(R.id.ratingBar);

// rating bar listener listens for when the user changes the value
ratingBar.setOnRatingBarChangelListener(new OnRatingBarChangelistener() {
public void onRatingChanged(RatingBar ratingBar, float rating,
boolean fromUser) {
txtRating = String.valueOf(ratingBar.getRating());
rateInt = Integer.valueOf((int) ratingBar.getRating());

}
1)

// gets the x, y location from the intent data
locx = getIntent().getDoubleExtra("locx", 99999);
locy = getIntent().getDoubleExtra("locy", 99999);
userID = getIntent().getStringExtra(“user");

mDbManager = new EventsDBManager(this);

}

public void onSaveClicked(View view) {
// save the event

if ((speciesPicked == false) || (countPicked == false)
|| calvesPicked == false) {
AlertDialog.Builder alert = new AlertDialog.Builder(this);
alert.setTitle("Fill required (bold) fields");

alert.setPositiveButton("0k",
new DialogInterface.OnClickListener() {

Page 3



159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
19@
191
192
193
194
195
196
197
198
199
200
201
202
2e3
204
285
206
207
208
209
210
211
212

3

Observation.java

public void onClick(DialogInterface dialog,
int whichButton) {
dialog.cancel();

}
¥

alert.show();
} else {
saveEventEntry(syncResult);

// finish();

private void saveEventEntry(String syncResult) {

}

// 10D0 Auto-generated method stub
int eventType = 2;

/77
AR
// / shouldn't be hard coded!!

// Calendar c¢ = Calendar.getInstance();

// SimpleDateFormat df = new SimpleDateFormat("MM/dd/YYYY HH:mm:ss");

String formattedDate = "9/29/2012";

Log.i("edits", "edits: " + catInt);

mDbManager.open();

// formattedDate have current date/time

mDbManager.createEventEntry(2, userID, locy, locx, catInt, speciesType,
formattedDate, count, calves, behavior, notes, weatherString,
seaString, rateInt, permissions, filePath);

mDbManager.close();

Log.i("edits", "done");

// Intent intent = getIntent();

// if (syncResult=="error"){

// setResult(RESULT_ CANCELED);

/1 }

// if (syncResult=="pictureSuccess"){

// setResult(RESULT_FIRST_USER);

£k

// intent.putExtra("syncResult”, syncResult);
finish();

public void onSyncClicked(View view) {

// creates a feature type object
FeatureType subType = new FeatureType();

Page 4



213
214
215
216
217
218
219
220
Pk
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

Observation.java
subType = flLayer.getTypes()[catInt];

// calls the function that sends the new record to the server
applyEdits(GeometryEngine.project(locx, locy, webMercator), subType,
flLayer, view);

}

public void applyEdits(Geometry geometry, FeatureType subType,
final ArcGISFeaturelLayer featurelLayer, View view) {

// create a graphic using .the type
Calendar rightNow = Calendar.getInstance();

// creates graphic so that that the graphic can be sent to the server
Graphic graphic = featurelLayer.createFeatureWithType(subType, geometry);

// adds attributes to the graphic

Map<String, Object> attr = graphic.getAttributes();
attr.put("Number", count);

attr.put("ObserverID", userID);
attr.put("Behavior", behavior);
attr.put("SpeciesType", speciesType);

int calfInt = 1;

if (calves == "No calves present") {
calfInt = @;

}

attr.put("CalvesPresent"”, calflnt);

attr.put("Notes", notes);

attr.put("CloudCover", weatherstring);

attr.put("Beafort", seaString);

attr.put("ConfidenceRating”, ratelInt);

attr.put("eventType", 1);

attr.put("Permissions", permissions);

attr.put("Date"”, rightNow);

// create a new graphic with the attributes. attributes are immutable
Graphic newGraphic = new Graphic(geometry, graphic.getSymbol(), attr,
graphic.getInfoTemplate());

// applies edits
featureLayer.applyEdits(new Graphic[] { newGraphic }, null, null,
new CallbackListener<FeatureEditResult[][]>() {

public void onError(Throwable error) {

}

public void onCallback(FeatureEditResult[][] editResult) {
Log.i("edits", "inside event callback");

if (editResult[@] != null && editResult[@][e] != null
&& editResult[@][@].isSuccess()) {

Page 5



267
268
269
270
271
272
273
274
275
276

; 277

278
279
280
281
282
283
284
285
286

Observation.java

syncResult = "success";
Log.i("edits"”, syncResult);
Intent intent = getlIntent();

Log.i("edits", syncResult);

if (syncResult

= "success") {

setResult(RESULT 0OK);

}

if (filePath != "") {

int obj =

editResult[@][0].getObjectId();

File fileP = new File(filePath);

featurelLayer
.addAttachment(
obj,
fileP,
new

CallbackListener<FeatureEditResult>() {

287
288
289
{
290
291
292
true) {
293
"pictureSuccess";
294
295
296
callback");
297
298
299
3ee
301
302
3e3
3e4
305
306
387
308
309
318
311
312
313
314
315

Page 6

public void onCallback(
FeatureEditResult objs)

// TODO Auto-generated
// method stub
if (objs.isSuccess() ==

syncResult =
}
Log.i("edits",
"attachment

}

public void onError(
Throwable e) {
// TODO Auto-generated
// method stub

Log.i("edits",
"attachment error");
Log.i("edits",
e.getMessage());

1)



Observation.java

316

317 }

318

319 isH

320

321 saveEventEntry(syncResult);

322

323 }

324

325 // function that adds the attachment to the feature just sent to the server
326 public void addAttachment(int objectID) {

327 flLayer.addAttachment(objectID, new File(filePath),

328 new CallbackListener<FeatureEditResult>() {

329

330 public void onCallback(FeatureEditResult objs) {

331 // TODO Auto-generated method stub

332 Log.i("edits", "attachment callback");

333

334 }

335

336 public void onError(Throwable e) {

337 // TODO Auto-generated method stub

338 Log.i("edits", "attachment error");

339

340 }

341

342 1)

343 }

344

345 public void results() {

346

347 }

348

349 public void behaviorSelected(View view) {

350 if (catPicked == false) {

351 Toast.makeText(getApplicationContext(), "please select a category”,

352 Toast.LENGTH_SHORT) .show();

353 }

354 if (catPicked == true) {

355 AlertDialog.Builder btnCount = new AlertDialog.Builder(this);

356

357 final CharSequence[] countItems = { "Unknown", "Feeding",

358 "Traveling", "Milling", "lLogging", "Other" };

359

360 // modified from

361 /
http://developer.android.com/guide/topics/ui/dialogs.html#CustomDialog

362 btnCount.setTitle("Describe behavior");

363

364 btnCount.setCancelable(true);

365

366 btnCount.setSingleChoiceItems(countItems, -1,

367 new DialogInterface.OnClickListener() {

368 public void onClick(DialogInterface dialog, int item) {

Page 7



Observation.java

369 // Toast.makeText(getApplicationContext(),

370 // countItems[item], Toast.LENGTH_SHORT).show();

371 behaviorSelected(countItems[item]);

372 dialog.cancel();

373 }

374

375 3

376

377 AlertDialog alert = btnCount.create();

378 btnCount.show();

379

380 }

381

382 }

383

384 public void calvesSelected(View view) {

385 if (catPicked == false) {

386 Toast.makeText(getApplicationContext(), "please select a category"”,

387 Toast.LENGTH_SHORT).show();

388 }

389 if (catPicked == true) {

390 AlertDialog.Builder btnCount = new AlertDialog.Builder(this);

391

392 final CharSequence[] countItems = { "No calves present”,

393 "One or more calves present” };

394

395 // modified from

396 //
http://developer.android.com/guide/topics/ui/dialogs.html#CustomDialog

397 btnCount.setTitle("Are there calves present?");

398

399 btnCount.setCancelable(true);

400

401 btnCount.setSingleChoiceItems(countItems, -1,

402 new DialogInterface.OnClickListener() {

403 public void onClick(DialogInterface dialog, int item) {

404 // Toast.makeText(getApplicationContext(),

485 // countItems[item], Toast.LENGTH_SHORT).show();

406 calvesSelected(countItems[item]);

407 dialog.cancel();

498 }

409

410 3

411

412 AlertDialog alert = btnCount.create();

413 btnCount.show();

414

415 }

416 }

417

418 public void categorySelected(View view) {

419

420 // need to reset all variables here //

421 catPicked = true;

Page 8



Observation.java

422 speciesPicked = false;

423 countPicked = false;

424 calvesPicked = false;

425 final TextView textViewToChange_count = (TextView)
findViewById(R.id.btn_count);

426 textViewToChange_count.setText("Specify a quantity");

427

428 final TextView textViewToChange_calves = (TextView)
findViewById(R.id.btn calves);

429 textViewToChange_calves.setText("Presence of calves");

430 .

431 final TextView textViewToChange_behav = (TextView)
findViewById(R.id.btn behavior);

432 textViewToChange_behav.setText("Describe Behavior");

433

434 ) final TextView textViewToChange_photo = (TextView)
findViewById(R.id.btn _photo);

435 textViewToChange photo.setText("Add a photo");

436

437 final TextView textViewToChange_weath = (TextView)
findViewById(R.id.btn weather);

438 textViewToChange weath.setText("Describe the weather");

439

440 final TextView textViewToChange_notes = (TextView)
findViewById(R.id.btn_notes);

441 textViewToChange notes.setText("Add a note");

442

443 switch (view.getId()) {

444 case R.id.btn whale:

445

446 // from:

447 L
http://stackoverflow.com/questions/4768969/how-do-i-change-textview-value-inside-jav
a-code

448 final TextView textViewToChange_whale = (TextView)
findviewById(R.id.btn species);

449 textViewToChange whale.setText("Select a whale species");

450 category = "Whale";

451 catInt = 1;

452

453 break;

454

455 case R.id.btn_dolphin:

456 // from:

457 /!
http://stackoverflow.com/questions/4768969/how-do-i-change-textview-value-inside-jav
a-code

458 final TextView textViewToChange_dolph = (TextView)
findViewById(R.id.btn species);

459 textViewToChange_dolph

460 .setText("Select a dolphin or porpoise species");

461 category = "Dolphin or Porpoise”;

462 catInt = 2;

463 break;

Page 9



Observation.java

464

465 case R.id.btn_seal:

466 // from:

467 [
http://stackoverflow.com/questions/4768969/how-do-i-change-textview-value-inside-jav
a-code

468 final TextView textViewToChange_seal = (TextView)
findViewById(R.id.btn_species);

469 textViewToChange_seal.setText("Select a seal or sea lion species");

470 category = "Seal or Sea Lion";

471 catInt = 3;

472 break;

473

474 case R.id.btn_unknown:

475 // from:

476 1/
http://stackoverflow.com/questions/4768969/how-do-i-change-textview-value-inside-jav
a-code

477 final TextView textViewToChange_unkn = (TextView)
findViewById(R.id.btn species);

478 textViewToChange unkn.setText("Describe what you see");

479 category = "Unknown or Other";

480 catInt = 4;

481 break;

482 default:

483

484 }

485

486 }

487

488 public void selectCount(View view) {

489 if (catPicked == false) {

490 Toast.makeText(getApplicationContext(), "please select a category",

491 Toast.LENGTH_SHORT).show();

492

493 if (catPicked == true) {

494 AlertDialog.Builder btnCount = new AlertDialog.Builder(this);

495

496 if (category != "Dolphin or Porpoise") {

497 final CharSequence[] countItems = { "1", "2", "3 or more" };

498

499 // modified from

500 s
http://developer.android.com/guide/topics/ui/dialogs.html#CustomDialog

501 btnCount.setTitle("Specify a quantity");

502

503 btnCount.setCancelable(true);

504

505 btnCount.setSingleChoiceItems(countItems, -1,

506 new DialogInterface.OnClickListener() {

507 public void onClick(DialogInterface dialog, int item) {

508

509 countSelected(countItems[item]);

510 dialog.cancel();

Page 16



Observation.java

511 }

512

513 3

514

515 AlertDialog alert = btnCount.create();

516 btnCount.show();

517

518 }

519

520 if (category == "Dolphin or Porpoise") {

521 final CharSequence[] countItems = { "1-10", "1@-5@",

522 "50 or more" };

523

524 // modified from

525 //
http://developer.android.com/guide/topics/ui/dialogs.html#CustomDialog

526 btnCount.setTitle("Specify a quantity");

527

528 btnCount.setCancelable(true);

529

530 btnCount.setSingleChoiceItems(countItems, -1,

531 new DialogInterface.OnClickListener() {

532 public void onClick(DialogInterface dialog, int item) {

533 // Toast.makeText{getApplicationContext(),

534 // countItems[item], Toast.LENGTH_SHORT).show();

535 countSelected(countItems[item]);

536 dialog.cancel();

537 }

538

539 3

540

541 AlertDialog alert = btnCount.create();

542 btnCount.show();

543

544 }

545

546 }

547 }

548

549 public void selectSpecies(View view) {

558 // from:

551 i
http://stackoverflow.com/questions/5646418/how-to-go-about-multiple-buttons-and-oncl
icklisteners

552 if (catPicked == false) {

553 Toast.makeText(getApplicationContext(), "please select a category",

554 Toast.LENGTH_SHORT) .show();

555

556 if (catPicked == true) {

557

558 // case R.id.btn_whale:

559 AlertDialog.Builder btnSpecies = new AlertDialog.Builder(this);

560

561 // if whale chosen

Page 11



Observation.java

562 if (category == "Whale") {

563 final CharSequence[] speciesItems = { "Unidentified",

564 "Sperm Whale", "Gray Whale", "Fin Whale", "Sei Whale",

565 "Blue Whale", "Humpback Whale", "Minke Whale" };

566

567 // modified from

568 1/
http://developer.android.com/guide/topics/ui/dialogs.html#CustomDialog

569 btnSpecies.setTitle("Select a species”);

570

571 btnSpecies.setCancelable(true);

572

573 btnSpecies.setSingleChoiceIltems(speciesItems, -1,

574 new DialogInterface.OnClickListener() {

575 public void onClick(DialogInterface dialog, int item) {

576 // Toast.makeText(getApplicationContext(),

577 // speciesItems[item],

578 // Toast.LENGTH_SHORT).show();

579 speciesSelected(speciesItems[item]);

580 dialog.cancel();

581 }

582

583 })s

584

585 AlertDialog alert = btnSpecies.create();

586 btnSpecies.show();

587

588 } // end whale category chosen

589

590 // if dolphin/porpoise is chosen

591 if (category == "Dolphin or Porpoise") {

592 final CharSequence[] items = { "Unidentified", "Common",

593 "Bottlenose"”, "Killer Whale", "Pacific White-Sided",

594 “Nor Right Whale Dolphin", "Risso's" };

595

596 // modified from

597 !/
http://developer.android.com/guide/topics/ui/dialogs.html#CustomDialog

598 btnSpecies.setTitle("Select a species”);

589

600 btnSpecies.setCancelable(true);

601

602 btnSpecies.setSingleChoiceItems(items, -1,

603 new DialogInterface.OnClicklListener() {

604 public void onClick(DialogInterface dialog, int item) {

605 // Toast.makeText(getApplicationContext(),

606 // items[item], Toast.LENGTH_SHORT).show();

607 speciesSelected(items[item]);

608 dialog.cancel();

609

610 }

611 });

612 H

613 AlertDialog alert = btnSpecies.create();

Page 12



614
615
616
617
618
619
620
621
622
623
624

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

Observation.java

btnSpecies.show();

} // end dolphin/porpoise category chosen

// if seal/sea lion is chosen

if (category ==

"Seal or Sea Lion") {

final CharSequence[] items = { "Unidentified", "CA Sea Lion",
"Harbor Seal”, "N. Fur Seal" };

// modified
//

from

http://developer.android.com/guide/topics/ui/dialogs.html#CustomDialog

btnSpecies.setTitle("Select a species");

btnSpecies.setCancelable(true);

btnSpecies.setSingleChoiceltems(items, -1,
new DialogInterface.OnClickListener() {

1)

AlertDialog

public void onClick(DialogInterface dialog, int item) {
// Toast.makeText(getApplicationContext(),
// items[item], Toast.LENGTH_SHORT).show();
spec1esSelected(1tems[1tem]),
dialog.cancel();

}

alert = btnSpecies.create();

btnSpecies.show();

} // end seal/sea lion category chosen

// 1if unknown is chosen

if (category ==

AlertDialog.

"Unknown or Other") {

Builder alert = new AlertDialog.Builder(this);

alert.setTitle("What do you see?");

// Set an EditText view to get user input
final EditText input = new EditText(this);
alert.setView(input);

alert.setPositiveButton("0k",

new

})s

DialogInterface.OnClicklListener() {
public void onClick(DialogInterface dialog,
int whichButton) { :

Editable value = input.getText();
speciesSelected(value);

Page 13



Observation.java

667 alert.setNegativeButton("Cancel”,

668 new DialogInterface.OnClickListener() {

669 public void onClick(DialogInterface dialog,

670 int whichButton) {

671 // Canceled.

672 }

673 1)

674

675 alert.show();

676

677 } // end unknown lion category chosen

678

679 } // end "if catpicked = true"

680

681 }

682

683 public void speciesSelected(CharSequence items) {

684 // from:

685 £
http://stackoverflow.com/questions/4768969/how-do-i-change-textview-value-inside-jav
a-code

686 speciesPicked = true;

687 final TextView textViewToChange = (TextView) findViewById(R.id.btn_species);

688 textViewToChange.setText("Species selected: " + items);

689 speciesType = items.toString();

690 }

691

692 public void countSelected(CharSequence items) {

693 // from:

694 I/
http://stackoverflow.com/questions/4768969/how-do-i-change-textview-value-inside-jav
a-code

695

696 countPicked = true;

697 count = items.toString();

698 final TextView textViewToChange = (TextView) findViewById(R.id.btn_ count);

699 textViewToChange.setText("Quantity: " + items);

700 }

701

702 public void calvesSelected(CharSequence items) {

703

704 calvesPicked = true;

705 // from:

706 !/
http://stackoverflow.com/questions/4768969/how-do-i-change-textview-value-inside-jav
a-code

707 final TextView textViewToChange = (TextView) findViewById(R.id.btn calves);

708 textViewToChange.setText("" + items);

709 calves = items.toString();

710 }

711

712 public void behaviorSelected(CharSequence items) {

713 // from:

714 !/

Page 14



Observation.java

http://stackoverflow.com/questions/4768969/how-do-i-change-textview-value-inside-jav

a-code

715 final TextView textViewToChange = (TextView)
findViewById(R.id.btn_behavior);

716 textViewToChange.setText("Behavior: " + items);

717 behavior = items.toString();

718 }

719

720 public void photoSelected(CharSequence items) {

721 // from:

722 //
http://stackoverflow.com/questions/4768969/how-do-i-change-textview-value-inside-jav
a-code

723 final TextView textViewToChange = (TextView) findViewById(R.id.btn photo);

724 textViewToChange.setText("Path: " + items);

725

726 }

727

728 public void seaSelected() {

729 // from:

73e L
http://stackoverflow.com/questions/4768969/how-do-i-change-textview-value-inside-jav
a-code

731 final TextView textViewToChange = (TextView) findViewById(R.id.btn weather);

732 textViewToChange.setText("" + seaString + ", " + weatherString);

733 g .

734 }

735

736 public void noteAdded(CharSequence items) {

737 // from:

738 !/ '
http://stackoverflow.com/questions/4768969/how-do-i-change-textview-value-inside-jav
a-code

739 final TextView textViewToChange = (TextView) findViewById(R.id.btn notes);

740 textViewToChange.setText("Note: " + items);

741 notes = items.toString();

742 }

743

744 public void addNote(View view) {

745 if (catPicked == false) {

746 Toast.makeText(getApplicationContext(), "please select a category"”,

747 Toast.LENGTH_SHORT).show();

748 }

749 if (catPicked == true) {

750 AlertDialog.Builder alert = new AlertDialog.Builder(this);

751

752 alert.setTitle("Add a Note");

753

754 // Set an EditText view to get user input

755 final EditText input = new EditText(this);

756 alert.setView(input);

757

758 alert.setPositiveButton("0k",

759 new DialogInterface.OnClickListener() {

Page 15



76@
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
8e1
802
883
804
805
866
8e7
808
809
810
811
812
813

Observation.java

public void onClick(DialogInterface dialog,
int whichButton) {

Editable value = input.getText();
noteAdded(value);
// Toast toast =
// Toast.makeText(getApplicationContext(), value,
// 5000);
// toast.show();

I

3

alert.setNegativeButton("Cancel",
new DialogInterface.OnClicklListener() {
public void onClick(DialogInterface dialog,
int whichButton) {
// Canceled.
}
})s

alert.show();

}

public void selectSea(View view) {
if (catPicked == false) {
Toast.makeText(getApplicationContext(), "please select a category",
Toast.LENGTH_SHORT).show();
}
if (catPicked == true) {
final CharSequence[] items = { "Sea is smooth- mirror like",
"Light breeze", "Moderate Breeze", "Strong Breeze",
"Unsure" };
AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setTitle("What are the sea conditions like?");

builder.setCancelable(true);

builder.setSingleChoiceItems(items, -1,
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int item) {
// Toast.makeText(getApplicationContext(),
// items[item], Toast.LENGTH_SHORT).show();
seaString = (String) items[item];
dialog.cancel();

selectWeather();
}
})s
AlertDialog alert = builder.create();
builder.show();

}

// modified from
// http://developer.android.com/guide/topics/ui/dialogs.html#CustomDialog

Page 16



Observation.java

814 public void selectWeather() {

815 final CharSequence[] items = { "Clear Skies", "Some clouds",

816 "Half of the sky is covered in clouds", "Very cloudy", "Unsure" };
817 AlertDialog.Builder builder = new AlertDialog.Builder(this);

818 builder.setTitle("... and the cloud over?");

819

820 builder.setCancelable(true);

821

822 builder.setSingleChoiceItems(items, -1,

823 new DialogInterface.OnClickListener() {

824 public void onClick(DialogInterface dialog, int item) {
825 // Toast.makeText(getApplicationContext(), items[item],
826 // Toast.LENGTH_SHORT).show();

827 weatherString = (String) items[item];

828 seaSelected();

829 dialog.cancel();

830 }

831 })s

832 ;

833 AlertDialog alert = builder.create();

834 builder.show();

835 }

836

837 public void selectPhoto(View view) {

838 // obtained from:

839 //

http://stackoverflow.com/questions/2507898/how-to-pick-a-image-from-gallery-sd-card-f
or-my-app-in-android

840

841 final CharSequence[] items = { "Camera", "Gallery" };

842 :

843 AlertDialog.Builder builder = new AlertDialog.Builder(this);

844 builder.setTitle("Attach from");

845 builder.setItems(items, new DialogInterface.OnClickListener() {

846 public void onClick(DialogInterface dialog, int item) {

847

848 if (items[item] == "Gallery") {

849 Intent i = new Intent(

850 Intent.ACTION PICK,

851 android.provider.MediaStore.Images.Media.EXTERNAL CONTEN
T_URI);

852 startActivityForResult(i, SELECT_PICTURE);

853 }

854 //
http://stackoverflow.com/questions/10165302/dialog-to-pick-image-from-gallery-or-fro
m-camera

855 if (items[item] == "Camera") {

856 Intent takePicture = new Intent(

857 MediaStore.ACTION IMAGE CAPTURE);

858 startActivityForResult(takePicture, 8);// zero can be

859 // replced with any

860 // action code

861 }

862

Page 17



Observation.java

863 // Toast.makeText(getApplicationContext(), items[item],
864 // Toast.LENGTH_SHORT).show();
865 }

866 });

867 AlertDialog alert = builder.create();
868 builder.show();

869

870 }

871

872 // obtained from:

873 /i

http://stackoverflow.com/questions/2507898/how-to-pick-a-image-from-gallery-sd-card-f
or-my-app-in-android
874 protected void onActivityResult(int requestCode, int resultCode,

875 Intent imageReturnedIntent) {

876 super.onActivityResult(requestCode, resultCode, imageReturnedIntent);
877

878 if (resultCode == RESULT_OK) {

879 Uri selectedImage = imageReturnedIntent.getData();

880 String[] filePathColumn = { MediaStore.Images.Media.DATA };
881

882 Cursor cursor = getContentResolver().query(selectedImage,

883 filePathColumn, null, null, null);

884 cursor.moveToFirst();

885

886 int columnIndex = cursor.getColumnIndex(filePathColumn[@]);
887 filePath = cursor.getString(columnIndex);

888 // Toast.makeText(getApplicationContext(), filePath, 566@).show();
889 cursor.close(); '

890

891 Bitmap yourSelectedImage = BitmapFactory.decodeFile(filePath);
892

893 // Toast toast=Toast.makeText(this, filePath, 2008);

894 // toast.show();

895 photoSelected(filePath);

896 1

897 }

898

899 // handles actions to take when buttons are clicked
960 public void OnButtonClick(View view) {

901 // declares intent as an Intent

962 Intent intent;

903 // switches the view based on cases

994 switch (view.getId()) {

905

906 default:

907 // sets the intent to the "Main" Activity
%08 intent = new Intent(this, Main.class);
909 intent.putExtra("newEvents", true);

910 intent.putExtra("catInt", catInt);

911 break;

912

913 }

914 // have to actually start the Activity, the intent object tells which

Page 18



Observation.java

915 // Activity to start
916

917 startActivity(intent);
918 finish();

919

920 }

921

922}

923

Page 19






1

2

3
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99
100
191
102
103
104

Main.java
package edu.gis.spatial.redlands.edu.Cohort2l.melodi_king;
import java.sql.Date;
public class Main extends Activity {

// **Declare map
MapView map;

// Declare updateEvents toggle integer
int updateEvents = @;

// creates a web mercator spatial reference object
SpatialReference webMercator = SpatialReference.create(102100);

// location variables
double locy;
double locx;

// creates Point object;
Point wgspoint;
final static double SEARCH_RADIUS = 2;

String mEventUser;

// creates database object
private EventsDBManager mDbManager;

// variables that help handle when users rotate the device
// delete both
boolean saving;
boolean paused;

// creates editlayer object
// edit layer used to send new features to the server
ArcGISFeaturelLayer editlLayer = new ArcGISFeaturelayer(
"http://gis.spatial.redlands.edu/ArcGIS/rest/services/melodi_king/events/
FeatureServer/1",
MODE . SNAPSHOT) ;

// variables for startactivity for result
// can delete

int syncSuccess = @;

int requestCode;

// event layer definition, used to define subtypes for when events are

// rendered locally on the map

String layerDefinition = "{\"currentVersion\":10.02,\"id\":1,\"name\":\"events
A", \"type\":\"Feature Layer\",\"displayField\":\"ObserverID\",\"description\":\"\",
\"copyrightText\":\"\",\"relationships\":[],\"geometryType\":\"esriGeometryPoint\",
\"minScale\":0,\"maxScale\":9,\"extent\":{\"xmin\":-14115658.1665,\"ymin
\":3240128.2558,\"xmax\":-13061473.3222,\"ymax\":4321833.7614,\"spatialReference\":
{\"wkid\":102113}},\"drawingInfo\":{\"renderer\":{\"type\":\"uniqueValue\",

Page 1



Main.java

\"field1\":\"SpeciesCategory\",\"field2\" : null,\"field3\" : null,\"fieldDelimiter
NN, N, \defaultSymbol\ " {\"type\":\"esriSMS\",\"style\":\"esriSMSCircle\",
\"color\":[0,158,37,255],\"size\":4,\"angle\":0,\"xoffset\":0,\"yoffset\":0
\"outline\":{\"color\":[9,0,0,255],\"width\":1}},\"defaultLabel\":\"\u8@3call other
values\u@e3e\",\"uniqueValueInfos\":[{\"value\":\"2\",\"label\":\"Dolphin or
Porpoise\",\"description\":\"\",\"symbol\":{\"type\":\"esriPMS\",\"url\":
\"B698AF73\",\"imageData\" : \"1VBORWOKGZgoAAAANSUhEUgAAABEAAAAZCAYAAAArK
+5dAAAAAXNSROIB2cksfwAAAALWSF1zAAAOXAAADSQBLS sOGWAAAWF JREFUSIN11WtIk2EUXx397t/mmstSZS
20i3iorDbbuYhQlkUFGYGFEd6wW+FEVPRZFhSR
+EUA1BsQhaQh/EriSRYjUUwyS3LphamJdZ5BtUZ1i/uBpcarclpQRBOPjlwzvP/PeccznlU/GVT/RcAtZELux
NISQsiJFSFSpAZ/tSNtbeImnbABNj/CIBN/towUVedUF496zEN6rks]ZQIt38bBcO11C5rFEBVSiw3/xZgl3
j2mF6edSxZnq/po4ty91HITQIACFMW7+DBgiR5XtB590YDtyYEYOPi01GeXIDMFBHAZDUAS jjIevbgYBSAqe
hIxKhMJyv7K1+041A38GIcgEsxQnmFkVUiwHsGqOUcABIdVHHYI1pLLPspI40crA6ahh55s9cvoFC8kR8kz9
E5sNNCHSaKfSXpNokeTpFFEXcCVrJ1Z1dUU6rNZrOMCFggS1uSMHCPaiswxEtQSyKbOcx0jIShQ2aEFugopp
g8KhZim5wIfgCBTIoRUFILiZd4Nv1kspMgND
+VQI2RFVRWgGcOBXxpYob9Nx9glUgAMduJEwuYFSCDFQ/yHWTBz1CUEEEEWYCE/
+3w12fGeAwE66ww1j1hmEkAngkah0RxBNFana1ZPpGJhKDACt3PMY01+AgQGhYTSGHqXK47WXJLOszh
+GVoBwS3uxMUQTYN
+ARFafYNLYpOvUihQoELtnfR366ez36KtqoHyA41Wkk48455GPUNKHEIALlzus51RnyArD90okSXriN4Mcpro
uBZovWSXzTjUiGrToSaSdRVTMYArRWHLIFPHoiKGeqxhYzjt637TTePxXPZ
+rYraUltvE7blveTVPSyQdtIFAKiIN8wYqZSOKwY8eKmcWsoY36z328LHpCg3VCgAwlzkqelLVIimLp5SuiGFJY
KGUDSEo/veUIBworFwv30QziPXKavlpTXmNs1ltgPIqaTtdAetpeBMDSBQC4LgwvSXxmOEeSRy8elk
+CRLA0pbOuUB90LobnQIZPpzze7X/ky/zPAd8AI1X1Z0TUIUWAAAAASUVORKSCYII=\", \"contentType\":
\"image/png\",\"color\" : null,\"width\":18,\"height\":18.75,\"angle\":0,\"xoffset
\":0,\"yoffset\":0}},{\"value\":\"@\",\"label\":\"None\",\"description\":\"\",
\"symbol\":{\"type\":\"esriPMS\",\"url\":\"C466E8E2\", \"imageData\":
\"1VBORwOKGgoAAAANSUhEUgAAAAWAAAAMCAYAAABWAVZNAAAAAXNSROIB2 cksFfwAAAALWSF1zAAAOXAAADS
QB1SsOGWAAAJ1JREFUKIGtObEKQVEYB/DfQDezDBZ5C6UBAQm7V7CIyWSUhzGZWL2EzAaZ9WWxUPder1LOeM
75nf7/75T8uEr/AHWs®Hue7zDH8RO040Bmam
+AD104ZUCSIIUISFOOP7TGMAMiYvQlfheVfKT6F1BGLQ/0aBSAOY75DpuImBSALW75DkveZacEVex5H
+sVbd1/2G0GeyfwejEuiOUB/ZOhYNGQEVhSAAAAASUVORKSCYII=\",\"contentType\":\"image/png\",
\"color\" : null,\"width\":9,\"height\":9,\"angle\":0,\"xoffset\":0,\"yoffset\":0}},
{\"value\":\"3\",\"label\":\"Seal or Sea Lion\",\"description\":\"\",\"symbol\":
{\"type\":\"esriPMS\",\"url\":\"82D47583\",\"imageData\":
\"1VBORwWOKGEOAAAANSUhEUgAAABKAAARAZCAYAAADEGYVJAAAAAXNSROIB2cksFWAAAAIWSF1zAAAOXAAADS
QB1SsOGWAAAXVIREFUSINnt1VIMU2cYwWPF/vziFFkIO1iJRaCREIH5HVr3WgQUKYGDUab®S3i4Vkx10Ywa1ZRm
K2+HGOhMwtMdkFRi8gJkuWLCxzilkmk4ABK4qiViqWwaEIr9oKONDT@10QiaW20C8WE32uznne9zy /5zk5H2
b+hzC/U4ilqVT+oswp7cgzZeVjwajGFi0jQTH+e®CODVWGtDAGWjwlBObYLDMNGAUqC7MtlqTF7XD8ebT3Yr
+/sfu
+uKCgqau9/R1lgbyts2FFjaallrcSPtybdb61qbqj7c5AjmnPnVVwD88trIufe1B21WvgllyVI6ILwQpWOsmpF
/hCmscqilsdTc/mfgEXB/VSQBhq817cI01zMtAHC138+1AQWArgP1FOVZ9400EeW3B
+L4qsj5I54vyyWKDBmA6GI sGQAotGVhgKwDmIdXDYW1WkVRhFIiT
+ZmP61t2rM80BHCcNRPI1C4sU2q1lUOmQPwWrsXyIXIRpPL1GYMLa4TEBG
+6/Y15aeez1Not2IykLOrXF7X0ZzcRApiNpptL5/H4zpBEeHW
+Ade1P4hJqC28d1y8c2u2RPqbkyoaPFAWMCGJBSdPYHueYTK?etaOylptSschzBdFBZvUExXl;Idp
+Hs5Y/EU48paalx0gPI8KrYqUSNuvTTyZ
+9T/0Ln7UgnqgqmSskkRH39KTIQFuh8SCppEAAPPImM8K2xVIvqUpSF1BzgmeUXG4vgLENPtMZVGDbDPs2VKG
S871Ys8DAF08Dpq31TMYnObGWO1OHWAFZ7xCCO
+qkzR8e91/qcXT8XRe/fzEbnfS201HIdSoyvfNbgqdMgYD7KxwsrPCyWAgNP63L/DVyngvRACKO/ qOhY
+4PxiZFNsqS+T1/0Z1MvUblgbsvzcpRP '
+IctqrcO0elkY9BH27yfvTXH1sv94yGmtOu2Wi3WsiWkj/EcOEYvT5pf2A6fLIzWPz0qlppEYCaY8Rh410uol
vP3plQ2h06qdZiRjZiNmo6kbmoFpyZf3z1lh
+ViFBBNVycj8iI0/zhwb2m4N4+35vf7HImOfwWEYGSjqIxnPkQAAAABIRUSErkIggeg==\",\"contentType
\":\"image/png\",\"color\" : null,\"width\":18.75,\"height\":18.75,\"angle\":0,
\"xoffset\":0,\"yoffset\":0}}, {\"value\":\"4\",\"1label\":\"Unknown or Other\",
\"description\":\"\",\"symbol\" {\"type\"'\"esrlPMS\" \"url\":\"D6B86A28\",
\"imageData\": Page 2
\"1VBORWOKGEoAAAANSUhEUgAAABSAAAACCAYAAACQBCTtAAAAAXNSROIB2 cksfwWAAAALWSF1ZzAAAOXAAADS
OB1SsOGWAAAWNIREFUSINtlktIVFEYX393R13071GO0OhVLmMk8zONmMEa2CLKyt4PKnETO5PRvkIhQaxFY0965U



Main.java

165
166 // creates featurelayer object
107 ArcGISFeaturelLayer flLayer;

108

109 // creates cursor object
110 public Cursor mCursor;
111

112 // interval for handler

113 // private int m_interval = 300000; // 5 min by default, can be changed
114 // later

115 private int m_interval = 30000;

116

117 // creates handler object for repeating task

118 private Handler m_handler;

115

120 /** Called when the activity is first created. */
121 // @0verride

122 public void onCreate(Bundle savedInstanceState) {

123 super.onCreate(savedInstanceState);

124 setContentView(R.layout.main);

125

126 // **Gets user ID from Home event

127 mEventUser = getIntent().getStringExtra("user");

128

129 // creates new map view from viewID

130 . map = (MapView) findViewById(R.id.map);

131

132 // initiates database object

133 mDbManager = new EventsDBManager(this);

134

135 // adds the basemap

136 // map.addLayer(new ArcGISDynamicMapServicelayer(

137 // "http://services.arcgisonline.com/ArcGIS/rest/services/World Street M
ap/MapServer"));

138

139 map.addLayer(new ArcGISDynamicMapServicelayer(

140 "http://services.arcgisonline.com/ArcGIS/rest/services/Ocean_Basemap/
MapServer"));

141

142 // editlayer isn't drawn, it is just used for sending position updates

143 // to the server

144 editLayer.setVisible(false);

145

146 map.addLayer(editLayer);

147

148 // calls the updatevents layer function

149 updateEventsLayers();

158

151 // ***Code snippet modified from Esri’'s Nearby Sample project

152 map.setOnStatusChangedListener(new OnStatusChangedListener() {

153

154 private static final long serialVersionUID = 1L;

155

156 // function that handles location changes, I got this function

Page 3



157
158
159
160
161
162
163
164
165
166
167
168
169
176
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
19e
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
21e

Main.java

// almost entirely from cope snippets from
// the ArcGIS Runtime SDK for Android "NearBy" Sample project
public void onStatusChanged(Object source, STATUS status) {
// verifies that the map has been initialized
if (source == map && status == STATUS.INITIALIZED) {

LocationService 1s = map.getLocationService(); -
1s.setAutoPan(false);
1s.setlLocationlListener(new LocationListener() {

// boolean locationChanged = false;

// Zooms to the current location when first GPS fix
// arrives.

public void onLocationChanged(Location loc) {

}

locy = loc.getlatitude();
locx = loc.getlongitude();
wgspoint = new Point(locx, locy);

Point mapPoint = (Point) GeometryEngine.project(
wgspoint, SpatialReference.create(4326),
map.getSpatialReference());

Unit mapUnit = map.getSpatialReference().getUnit();

double zoomWidth = Unit.convertUnits(SEARCH_RADIUS,
Unit.create(LinearUnit.Code.MILE_US),
mapUnit);

// creates an envelope around users location and

// zooms to the extent

Envelope zoomExtent = new Envelope(mapPoint,
zoomWidth, zoomWidth);

map.setExtent(zoomExtent);

public void onProviderDisabled(String arg®) {

}

public void onProviderEnabled(String argd) {

}

public void onStatusChanged(String arge, int argil,

s

Bundle arg2) {

// starts the location service listener
ls.start();

Page 4



Main.java

211 }

212

213 }

214 3

215

216 // ***End of code snippet modified from Esri's Nearby Sample project

217

218 // creates handler object

219 // can probably delete

220 m_handler = new Handler();

221

222 // starts the repeating task that updates the position every 5 minutes

223 startRepeatingTask();

224

225 }

226

227 // //////idea for handler/runnable from obtained from

228 1/
http://stackoverflow.com/questions/102087612/android-execute-code-in-regular-interval
s

229 Runnable m_statusChecker = new Runnable() {

230 public void run() {

231

232 if (locx == 0.0) {

233 Log.i("main", "locx is zero");

234

235 } else {

236 // m_interval = 1206680;

237 onPositionUpdate(null); // this function can change value of
238 // m_interval.

239

240 }

241 // tells the task to repeat in m_interval minutes

242 m_handler.postDelayed(m_statusChecker, m_interval);

243 }

244 };

245

246 void startRepeatingTask() {

247 m_statusChecker.run();

248 }

249

258 void stopRepeatingTask() {

251 m_handler.removeCallbacks(m_statusChecker);

252 }

253

254 // handles rotation of phone.. so that data isn't reset/reloaded
255 // can delete because app was updated so that the orientation never changes

256 public void onConfigurationChanged(Configuration newConfig) {
257

258 super.onConfigurationChanged(newConfig);
259

260 }

261

262 // private class for handling each event record

Page 5



Main.java

263 // idea for this came from the "Feature Collection" example
264 static class Item {

265 private double latitude;

266 private double longitude;

267 private int category;

268 private int id;

269 private String type;

270 private int eventType;

271 private String user;

272 private String date;

273 private String count;

274 private String calves;

275 private String behavior;

276 private String notes;

277 private String cloud;

278 private String sea;

279 private int confidence;

280 private int permissions;

281

282 public void setPermissions(int permissions) {
283 this.permissions = permissions;
284 }

285

286 public void getPermissions(int permissions) {
287 this.permissions = permissions;
288 }

289

290 public void setConfidence(int confidence) {
291 this.confidence = confidence;
292 }

293

294 public void getConfidence(int confidence) {
295 this.confidence = confidence;
296 }

297

298 public void setCloud(String cloud) {
299 this.cloud = cloud;

300 ¥

301

302 public void getCloud(String cloud) {
303 this.cloud = cloud;

304 }

385

306 public void setSea(String sea) {

307 this.sea = sea;

3e8 }

309

31e public void getSea(String sea) {

311 this.sea = sea;

312 }

313

314 public void setNotes(String notes) {
315 this.notes = notes;

316 }

Page 6



317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

Main.java

public void getNotes(String notes) {
this.notes = notes;
}

public void setBehavior(String behavior) {
this.behavior = behavior;
}

public void getBehavior(String behavior) {
this.behavior = behavior;
¥

public void setCalves(String calves) {
this.count = calves;
}

public void getCalves(String calves) {
this.count = calves;
}

public void setCount(String count) {
this.count = count;
}

public void getCount(String count) {
this.count = count;
}

public void setDate(String date) {
this.date = date;
}

public void getDate(String date) {
this.date = date;
}

public void setID(int id) {
this.id = id;
}

public int getID() {
return id;
k

public void setCatgeory(int category) {
this.category = category;
}

public int getCatgeory() {
return category;
}

public void setUser(String user) {

Page 7



Main.java

371 this.user = user;

372 }

373

374 public void setEventType(int eventType) {
375 this.eventType = eventType;

376 }

377

378 public double getEventType() {

379 return eventType;

380 }

381

382 public void setSpecies{String type) {

383 this.type = type;

384 }

385

386 public void getSpecies(String type) {

387 this.type = type;

388 }

389

390 public void getEventType(int eventType) {
391 this.eventType = eventType;

392 }

393

394 public void getUser(String user) {

395 this.user = user;

396 }

397

398 public double getlLatitude() {

399 return latitude;

400 }

401

402 public void setlatitude(double latitude) {
403 this.latitude = latitude;

404 }

4095

406 public double getlLongitude() {

407 return longitude;

408 }

409

410 public void setlongitude(double longitude) {
411 this.longitude = longitude;

412 }

413

414 }

415

416 // called onCreate, grabs all of the observations in the database and

417 // renders them on the map
418 public void updateEventsLayers() {

419

420 // opens the database

421 mDbManager.open();

422

423 ArraylList<Item> items = new ArrayList<Item>();

424 ArrayList<Graphic> grList = new ArraylList<Graphic>();

Page 8



425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

Main.java

mCursor = mDbManager.fetchAll();

// can probably delete, not being used

int

i=9;

mCursor.moveToFirst();

while (mCursor.isAfterLast() == false) {

for

Item item = new Item();

item.setID(mCursor.getInt(0));
item.setUser(mCursor.getString(1));
item.setEventType(mCursor.getInt(2));
item.setlLatitude(mCursor.getDouble(3));
item.setLongitude(mCursor.getDouble(4));
item.setCatgeory((mCursor.getInt(5)));
item.setSpecies(mCursor.getString(6));
item.setDate(mCursor.getString(7));
item.setCount(mCursor.getString(8));
item.setCalves(mCursor.getString(9));

item.setBehavior(mCursor.getString(10));
item.setNotes(mCursor.getString(11));

item.setCloud(mCursor.getString(12));
item.setSea(mCursor.getString(13));

item.setConfidence(mCursor.getInt(14));
item.setPermissions(mCursor.getInt(15));

items.add(item);

// can probably delete, not being used

i=1+1;

mCursor.moveToNext();

(Item item : items) {

// creates a point for each item in the item array

Point pointwm = GeometryEngine.project(item.getLongitude(),
item.getlLatitude(), webMercator);

HashMap<String, Object> attrs = new HashMap<String, Object>();

// assigns the species category to the item
attrs.put("SpeciesCategory", item.getCatgeory());

// creates a new graphic with the x, y and attributes
// adds to the list of graphics that will be added to the map
Graphic gr = new Graphic(pointwm, null, attrs, null);

grList.add(gr);

Page 9



Main.java

479

480 }

481

482 Graphic[] grs = new Graphic[grList.size()];

483

484 grs = grList.toArray(grs);

485

486 FeatureSet fs = new FeatureSet();

487

488 // creates a feature set from the graphics

489 fs.setGraphics(grs);

490

491 Options options = new Options();

492 options.mode = MODE.SNAPSHOT;

493

494 // adds the feature layer to the map

495 try {

496

497 fLayer = new ArcGISFeaturelayer(layerDefinition, fs, options);
498

499 map.addLayer(fiLayer);

560

501 } catch (Exception e) {

502 // TODO Auto-generated catch block

503 e.printStackTrace();

504 }

585

506 // closes the database

507 mDbManager.close();

508

509 }

518

511 // Ffunction that updates the position

512 public void onPositionUpdate(View view) {

513

514 // don't think i need to initiate a new object

515 // can probably delete

516 mDbManager = new EventsDBManager(this);

517

518 mDbManager.open();

519

520 // calls the mDbManager create event entry function and feeds in the
521 // required variables to create a new record in the database
522 mDbManager.createEventEntry(1, mEventUser, locy, locx, @, "",
523 Udatestrdag®, ®9, "%, B0 Bk ww aw g 2, T

524 mDbManager.close();

525

526 // lets the uesr know that the position has been updated

527 Toast toast = Toast.makeText(this, "position updated", 5600);
528 toast.show();

529

530 // calls the newEvents function so that new position update can be drawn
531 // on the map

532 newEvents();

Page 1@



Main.java

533

534 // creates a feature type so that the new position update can be sent to
535 // the server

536 FeatureType subType = new FeatureType();

537

538 // gets the subtype of the feature being sent

539 subType = editLayer.getTypes()[©];

540

541 // calls the appleEdits function to send the feature to the server
542 applyEdits(GeometryEngine.project(locx, locy, webMercator), subType,
543 editLayer);

544

545 }

546

547 public void applyEdits(Geometry geometry, FeatureType subType,

548 ArcGISFeatureLayer featurelLayer) {

549

550 // creates a calendar object with current time

551 Calendar rightNow = Calendar.getInstance();

552

553 // creates string of the calendar object

554 String dateString = DateFormat.getDateTimeInstance().format(

555 rightNow.getTime());

556

557 // creates a graphic to send to the server

558 Graphic graphic = featurelLayer.createFeatureWithType(subType, geometry);
559

560 // gets attributes of the feature

561 Map<String, Object> attr = graphic.getAttributes();

562

563 // assigns the attributes to the feature

564 attr.put("ObserverID", mEventUser);

565

566 attr.put("ConfidenceRating"”, 9);

567 attr.put("eventType", 0);

568 attr.put("Permissions™, 2);

569 attr.put("Date”, rightNow);

570

571 // create a new graphic with the attributes. attributes are immutable
572 Graphic newGraphic = new Graphic(geometry, graphic.getSymbol(), attr,
573 graphic.getInfoTemplate());

574

575 // applies edits

576 featureLayer.applyEdits(new Graphic[] { newGraphic }, null, null,

577 new CallbacklListener<FeatureEditResult[][]>() {

578

579 public void onError(Throwable error) {

580 Toast.makeText(getApplicationContext(), "error", 5008)
581 .show();

582 }

583

584 public void onCallback(FeatureEditResult[][] editResult) {
585

586 if (editResult[@] != null && editResult[@][e] != null

Page 11



Main.java

587 && editResult[@][®].isSuccess()) {
588 Log.i("main", "inside call back");
589

590 }

591

592 }

593

594 b

595

596 }

597

598 // function that is respoinsible for adding new feature to the map
599 public void newEvents() {

600 mDbManager.open{();

601

662 // populates the cursor with all of the records that havent been added
603 // to the map

604 mCursor = mDbManager.fetchUnapplied();

605

606 // don't think I need this variable anymore

607 // not being used

608 int i = o;

609

610 // repeats for every item in the cursor

611 mCursor.moveToFirst();

612

613 if (mCursor.getCount() > 8) {

614

615 ArraylList<Item> items = new ArraylList<Item>();
616 ArraylList<Graphic> grlList = new ArraylList<Graphic>();
617

618 while (mCursor.isAfterLast() == false) {

619 Item item = new Item();

620

621 // assigns

622 item.setID(mCursor.getInt(8));

623 item.setUser(mCursor.getString(1));

624 item.setEventType(mCursor.getInt(2));

625 item.setlLatitude(mCursor.getDouble(3));
626 item.setlLongitude(mCursor.getDouble(4));
627 item.setCatgeory((mCursor.getInt(5)));

628 item.setSpecies(mCursor.getString(6));

629 item.setDate(mCursor.getString(7));

630 item.setCount(mCursor.getString(8));

631 item.setCalves(mCursor.getString(9));

632

633 item.setBehavior(mCursor.getString(1e));
634

635 item.setNotes(mCursor.getString(11));

636

637 item.setCloud(mCursor.getString(12));

638 item.setSea(mCursor.getString(13));

639

640 item.setConfidence(mCursor.getInt(14));

Page 12



641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

}

Main.Jjava
item.setPermissions(mCursor.getInt(15));

mDbManager.UpdateApplied(item.getID());
items.add(item);

i=1+1;

mCursor.moveToNext();

for (Item item : items) {

// creates a point for each item in the item array

Point pointwm = GeometryEngine.project(item.getLongitude(),
item.getlLatitude(), webMercator);

HashMap<String, Object> attrs = new HashMap<String, Object>();

attrs.put("SpeciesCategory"”, item.getCatgeory());

// creates a graphic that can be rendered
Graphic gr = new Graphic(pointwm, null, attrs, null);
Toast.makeText(getApplicationContext(),

"" + item.getCatgeory(), Toast.LENGTH_SHORT).show();

// adds graphic to the graphic list
grList.add(gr);

}

Graphic[] grs = new Graphic[grList.sizé()];
grs = grlList.toArray(grs);

FeatureSet fs = new FeatureSet();

// adds graphics to the feature set
fs.setGraphics(grs);

Options options = new Options();
options.mode = MODE.SNAPSHOT;
mDbManager.close();

try {
// adds the feature set to the map

flLayer = new ArcGISFeaturelLayer(layerDefinition, fs, options);
map.addLayer(fLayer);

} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();

else {

Toast.makeText(getApplicationContext(), "no new events”,

Page 13



Main.java

695 Toast.LENGTH SHORT).show();

696 }

697

698 }

699

700 // /no longer using onActivity for Result, can delete

701 @0Override

702 protected void onActivityResult(int requestCode, int resultCode, Intent data) {

703 // TODO Auto-generated method stub

704 Log.i("main", "inActivityResult");

7085 super.onActivityResult(requestCode, resultCode, data);
706

707 if (data.getExtras().containsKey("syncResult")) {
708 Log.i("main", "synced");

709 Toast toast = Toast.makeText(this, "observation saved", 5000);
710 toast.show();

711 }

712 // if (resultCode == RESULT_ CANCELED){

713 // Log.i("main", "synced");

714 // Toast toast = Toast.makeText{this, "not synced", 5600);
715 // toast.show();

716 i}

717

718 if (resultCode == RESULT FIRST USER) {

719 Log.i("main", "synced");

720 Toast toast = Toast.makeText(this, "photo saved"”, 5000);
721 toast.show();

722 }

723 }

724

725 public void OnButtonClick(View view) {

726

727 // creates intent

728 Intent intent;

729 switch (view.getId()) {

730 default:

731 intent = new Intent(this, Observation.class);
732 intent.putExtra("locx", wgspoint.getX());

733 intent.putExtra("locy", wgspoint.getY());

734 intent.putExtra("user", mEventUser);

735 updateEvents = @;

736 break;

737

738 }

739

740 // starts new activity

741 startActivity(intent);

742

743 // pauses the Main activity

744 onPause();

745 }

746

747 // @0verride
748 protected void onDestroy() {

Page 14



Main.java

749 super.onDestroy();

756

751 // stops recording new position updates
752 stopRepeatingTask();

753

754 }

755

756 // @0Override

757 protected void onPause() {

758 // from Esri samples
759 super.onPause();

760 map.pause();

761

762 }

763

764 @0verride
765 protected void onResume() {

766 super.onResume();

767

768 map.unpause();

769

770 // no longer being used, can delete

771 if (syncSuccess == 1) {

772 Toast toast2 = Toast.makeText(getApplicationContext(),
773 "sync success", 5600);

774 toast2.show();

775 }

776 3

777

778 // calls function that adds new events to the map
779 newEvents();

780

781 }

782

783 @0verride

784 protected void onStop() {

785 // TODO Auto-generated method stub
786 super.onStop();

787 }

788

789 }

790

Page 15






Home . java

1package edu.gis.spatial.redlands.edu.Cohort21l.melodi_king;

2

3import java.util.Arraylist;

20

21public class Home extends Activity {

22

23 private String possibleEmail;

24 public String mEventUser = "anonymous";

25

26 @Override

27 protected void onCreate(Bundle savedInstanceState) {
28 // TODO Auto-generated method stub

29 super.onCreate(savedInstanceState);

30 setContentView(R.layout.home);

31

32 }

33

34 // Uses a pattern (emailPattern) to search through accounts that the user

35 // has created
36 public void setSettings(View view) {

37

38 // find user's email address

39 // Pattern emailPattern is a public class that you can use to verify
40 // that a string is actually an email address

41

42 Pattern emailPattern = Patterns.EMAIL _ADDRESS; // API level 8+
43

44 // Account is a value type that represents an account in the
45 // AccountManager

46 Account[] accounts = AccountManager.get(this).getAccounts();
47 List<String> listItems = new ArraylList<String>();

48 listItems.add("anonymous");

49

50 // Searches through all of the accounts that the user has created
51 for (Account account : accounts) {

52 if (emailPattern.matcher(account.name).matches()) {

53 possibleEmail = account.name;

54 listItems.add(possibleEmail);

1)

56 }

57

58 }

59

60 // let user choose which one

61 // from:

62 /!

http://stackoverflow.com/questions/7063831/android-how-to-populate-a-charsequence-ar
ray-dynamically-not-initializing

63 // presents the user with a dialog box to choose which account they want
64 // to associate with their survey

65 final CharSequence[] items = listItems

66 .toArray(new CharSequence[listItems.size()]);

67 // end from

68

Page 1



69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9@
91
92
93
94
25
96
97
98
99
160
101
102
1e3
104
185
166
107
1e8
1@9
110
111
112
113
114
115
116
117
118
119
120
121
122

Home. java

// final CharSequence[] items = {"Camera”, "Gallery"};

AlertDialog.Builder builder = new AlertDialog.Builder(this);

builder.setTitle("Select a username");

builder.setItems(items, new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int item) {

mEventUser = items[item].toString();

dialog.cancel();

),
b

// displays an alert box with all of the email accounts for the user to
// choose from

AlertDialog alert = builder.create();

builder.show();

}

public void OnButtonClick(View view) {

// creates intent for the main activity
Intent intent;

switch (view.getId()) {

default:

intent = new Intent(this, Main.class);
intent.putExtra("user"”, mEventUser);

break;

}

// starts Main activity
startActivity(intent);

// destroys the home activity
onDestroy();

}

@0verride

protected void onDestroy() {
// TODO Auto-generated method stub
super.onDestroy();

}

@0verride

protected void onPause() {
// TODO Auto-generated method stub
super.onPause();

}

@0verride
protected void onRestart() {
// TODO Auto-generated method stub

Page 2



Home. java

123 super.onRestart();

124 }

125

126 @0verride

127 protected void onResume() {

128 // TODO Auto-generated method stub
129 super.onResume();

130 }

131

132 @Override

133 protected void onStop() {

134 // TODO Auto-generated method stub
135 super.onStop();

136 }

137

138}

139

Page 3






EventsDBManager. java

lpackage edu.gis.spatial.redlands.edu.Cohort21.melodi_king.db;

2

3import java.sql.Date;

21

22 public class EventsDBManager {

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

public static final String DB_NAME = "eventsDB.db";
public static final int SCHEMA VERSION = 1;

private Context mContext;

private DBHelper mDbHelper;

private SQLiteDatabase mDb;

// Table fields

public static final String SQL_CREATE_TABLE = "CREATE TABLE events("
+ "_id INTEGER PRIMARY KEY AUTOINCREMENT, "

"OBSERVERID TEXT NOT NULL, " + "PHOTOPATH TEXT NOT NULL, "

"EVENTTYPE INTEGER NOT NULL, " + "latitude REAL NOT NULL, "

"longitude REAL NOT NULL, "

"SPECIESCATEGORY INTEGER NOT NULL, "

"SPECIESTYPE TEXT NOT NULL, " + "DATE TEXT NOT NULL, "

"COUNT TEXT NOT NULL, " + "CALVESPRESENT TEXT NOT NULL, "

"BEHAVIOR TEXT NOT NULL, " + "NOTES TEXT NOT NULL, "

"CLOUDCOVER TEXT NOT NULL, " + "BEAFORT TEXT NOT NULL, "

"CONFIDENCERATING INTEGER NOT NULL, "

"PERMISSIONS INTEGER NOT NULL," + "APPLYEDITS INTERGER NOT NULL"

El

o+ F o+ + o+

// old version of database schema

// can delete

// public static final String SQL_CREATE_TABLE = "CREATE TABLE events(" +
// "_id INTEGER PRIMARY KEY AUTOINCREMENT, " + "user TEXT NOT NULL, " +
// "latitude REAL NOT NULL, " + "longitude REAL NOT NULL" + ")";
public static final String USER = "OBSERVERID";

public static final String ID = " _id";

public static final String LATITUDE = "latitude";

public static final String LONGITUDE = "longitude";

public static final String TABLE NAME = "events";

public static final String SPECIESCATEGORY = "SPECIESCATEGORY";
public static final String SPECIESTYPE = "SPECIESTYPE";

public static final String EVENTTYPE = "eventType";

public static final String DATE = "DATE";

public static final String COUNT = "COUNT";

public static final String CALVESPRESENT = "CALVESPRESENT";
public static final String BEHAVIOR = "BEHAVIOR";

public static final String NOTES = "NOTES";

public static final String CLOUDCOVER = "CLOUDCOVER";

public static final String BEAFORT = "BEAFORT";

public static final String CONFIDENCERATING = "CONFIDENCERATING";
public static final String PERMISSIONS = "PERMISSIONS";

public static final String APPLYEDITS = "APPLYEDITS";

public static final String PHOTOPATH = "PHOTOPATH";

private final class DBHelper extends SQLiteOpenHelper {

public DBHelper(Context context) {

Page 1



72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
1ee
101
102
103
104
105
106
107
108
1695
11e
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

EventsDBManager.java

super(context, DB_NAME, null, SCHEMA_VERSION);
// TODO Auto-generated constructor stub

}

@Override
public void onCreate(SQLiteDatabase db) {

// creates new table, if needed
db.execSQL(SQL_CREATE_TABLE);

}

@0verride

// required function

public void onUpgrade(SQLiteDatabase arg®, int argl, int arg2) {
// TODO Auto-generated method stub

}

public EventsDBManager(Context context) {
mContext = context;
}

public void open() {
mDbHelper = new DBHelper(mContext);
mDb = mDbHelper.getWritableDatabase();

}

public void close() {
mDbHelper.close();
}

// queries the specified table for all records, an returns the attributes

// specified for all attributes

// idea for this from Ref #1

public Cursor fetchAll() {

return mDb.query(TABLE _NAME, new String[] { ID, USER, EVENTTYPE,

LATITUDE, LONGITUDE, SPECIESCATEGORY, SPECIESTYPE, DATE, COUNT,
CALVESPRESENT, BEHAVIOR, NOTES, CLOUDCOVER, BEAFORT,
CONFIDENCERATING, PERMISSIONS }, null, null, null, null, null);

}

// fetches all records in the database that haven't been rendered on the map
public Cursor fetchUnapplied() {
return mDb.query(7ABLE_NAME, new String[] { ID, USER, EVENTTYPE,
LATITUDE, LONGITUDE, SPECIESCATEGORY, SPECIESTYPE, DATE, COUNT,
CALVESPRESENT, BEHAVIOR, NOTES, CLOUDCOVER, BEAFORT,
CONFIDENCERATING, PERMISSIONS }, APPLYEDITS + " = @", null,
null, null, null, null);

}

// updates the applyedits field to 1. A value of 1 means the event has been

Page 2



EventsDBManager.java

126 // rendered on the map.
127 public boolean UpdateApplied(int id) {

128 ContentValues values = new ContentValues();

129 values.put(ID, id);

130 values.put (APPLYEDITS, 1);

131

132 return mDb.update(TABLE_NAME, values, ID + " = " + id, null) > @;
133 }

134

135 // create new event entry

136 public long createEventEntry(int eventType, String user, double latitude,
137 double longitude, int catInt, String Type, String date,

138 String count, String calves, String behavior, String notes,
139 String cloud, String sea, int confidence, int permissions,
140 String photopath) {

141

142 // creates a ContentValue object and fills it with the attributes sent
143 // to it with the activity that called the function. Created a new
144 // record

145 // in the database and populates it with the incoming variable values
146 Log.i("database"”, "in create event");

147 ContentValues values = new ContentValues();

148 values.put(USER, user);

149 values.put(EVENTTYPE, eventType);

150 values.put(LATITUDE, latitude);

151 values.put(LONGITUDE, longitude);

152 values.put (SPECIESCATEGORY, catInt);

153 values.put(SPECIESTYPE, Type);

154 values.put(DATE, date);

155 values.put(COUNT, count);

156 values.put (CALVESPRESENT, calves);

157 values.put (BEHAVIOR, behavior);

158 values.put(NOTES, notes);

159 values.put(CLOUDCOVER, cloud);

160 values.put(BEAFORT, sea);

161 values.put(CONFIDENCERATING, confidence);

162 values.put (PERMISSIONS, permissions);

163 values.put(APPLYEDITS, @);

164 values.put(PHOTOPATH, photopath);

165 return mDb.insert(TABLE_NAME, null, values);

166

167 }

168 }

169

170 // References:
171 // #1: The Android Videos that I bought (need to update)

Page 3






Appendix C. Web Application HTML and Javascript
Code

103






myobs.html

1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.81//EN"
"http://www.w3.0org/TR/html4/strict.dtd">

2<html>
3
4 <head>

5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6 <title>whale mApp!
7 </title>

8

9 <script type="text/javascript”>

16

17 <script type="text/javascript”
src="http://serverapi.arcgisonline.com/jsapi/arcgis/?v=2.7"></script>

18 <link rel="stylesheet" type="text/css" href="layoutl085.css">

19 <link rel="stylesheet" type="text/css"
href="http://serverapi.arcgisonline.com/jsapi/arcgis/2.7/js/dojo/dijit/themes/tundra/
tundra.css"/>

20 <link rel="stylesheet" type="text/css"
href="http://ajax.googleapis.com/ajax/1libs/dojo/1.6/dojox/layout/resources/FloatingpP
ane.css"/>

21

22

23

24 <script src="myobs_scriptsl@@5.js" type="text/javascript” ></script>

25

26 </head>

27

28 <body class="tundra">

29 <div id="header"><img id="loadingImg" src="header 460.png"/></div>

30 <br>

31 <br>

32

33 <div id="mainWindow" dojotype="dijit.layout.BorderContainer" design="headline”
gutters="false" style="widih:100"; height:106" ;">

34

35

36</--TABS-->

37 <div dojotype="dijit.layout.TabContainer" id="tabcontain" region="center">

38

39</--start home tab-->

40 <div id="hometab" dojotype="dijit.layout.ContentPane” title = "Home"
onShow="window. location.href="home.html" ;">

41<!--end home tab-->

42 </div>

43

44

45<!--start Map Tab-->

46 <div id="maptab" dojotype="dijit.layout.ContentPane" title="Map"

Page 1



myobs.html

onShow="window. location.href="map.html"';">

47 <!--End Map tab--1!>

48 </div>

49

56 </--START MyObs tab-->

51 «<div id="myobs" dojotype="dijit.layout.ContentPane” title = "My Observations”
selected="true">

52

53

54 <script type="dojo/method" data-dojo-event="onShow">

55dijit.byId("forcelogin").show();

56 </script>

57

58

59

6@ <!/--Dialog box that tells user that they will be redirected-->

61 <div id="forcelogin" data-dojo-type="dijit.Dialog">»

62 <table align="center">

63 <tr><td>

64 <label for="firstname":Enter your userID to get started: </label>

65

66 <input type="text" name="firstname" value="" dojoType="dijit.form.TextBox"
id="userID"/>

67 </td></tr>

68

69 <!--When the myuser clicks the "take me there" button, eventually this will take
users to Google to log in-->

70 <tr align="center"><td>

71 <button id="buttonEmail" type="button"></button>

72 </td></tr></table>

73 </div>

74

75

76

77

78

79 <!--START BORDER CONTAINER for mapAndNav -->

80 <div id="mapAndNav_border" dojotype="dijit.layout.BorderContainer" design="headline'

¥

gutters="false" style="widih:1607%; height:1807%;">

81

82

83 «div id="mapAndNav_left" dojotype="dijit.layout.ContentPane” region="left">

84 <div dojotype="dijit.layout.AccordionContainer” >

85

86 <div id="down_accord"” dojotype="dijit.layout.ContentPane"
title="Download data" >

87

88 <br>

89 <font size="5"><i> Found what you're looking for?

90 <br>

91 <br>

92 </i> Click "Extract Data" to get a <brshapefile</b> of your
selection

93 <br>

Page 2



myobs.html

94 <br>

95 </font>

96 <button dojoType="dijit.form.Button"” onclick:"();”>

97 Extract Data

98 </button>

99 bz

100 <br>

101 <img id="loadingImg" src="Load.gif" style="nosition: :
teft:40px; z-index:108;display: 4.

102

183 </div>

104

105

106

1087

108 <div id="submitNew" dojotype="dijit.layout.ContentPane" title="Submit Observations“>

109

110

111 <div id="inputDiv">
112 <table cellpadding="5">

113 <tr><td>

114 Date: <input type="text" name="datel" id="datel" value="2012-69-38"

115 data-dojo-type="dijit.form.DateTextBox"

116 required="true” />

117 </td></tr>

118 <tr>

119 <td>

120 <label for-"timel">

121 Time:

122 </label>

123 <input type="text" name="timel"” id="timel" value="T08:00:00"
dojoType="dijit.form.TimeTextBox"

124
ﬁChange:"-f" Il v21uclarcunentsEiMtostring{@lreplace|El
51

125 required="true" />

126

127 <input readonly disabled id='val' value='T08:00:00 'style="v

N

128 </td>

129 </tr>

130 </table>

131 </div>

132

133 <div id="inputDiv">
134 <table cellpadding="5">
135 <tr><td>

1970\FO\§ ). /.'H

lg 591 s

136 <label for="lat">

137 Latitude:

138 </label:>

139 <input id="lat" type="text"” dojoType="dijit.form.NumberTextBox"
name="latitude"

140 value="" constraints="{min:-98,max:98,places:6}" required="true"

141 invalidMessage="Invalid latitude">

Page 3



142
143
144
145
146
147
148
149
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

myobs.html

</td>
< /tPs

<ths
<td>
<label for="long">
Longitude:
</label>

<input id="long" type="text" dojoType="dijit.form.NumberTextBox'

name="longitude"

value="" constraints="{min:-188,max:180,places:6}"
invalidMessage="Invalid longitude”>

</td>
&t

</table>
</div>

<div id="inputDiv">
<table cellpadding="5">
<tr>

<td»Species Category:
¢select id="inputCat" onchange:“( W
<option value-"Whale" selected='truec'>
Whale
<option value="Dolphin or Porpoise">
Dolphin or Porpoise
<option value="Seal or Seca Lion">
Seal or Sea Lion
</option>
</select>
</td>
&try
<tr>
<td:-Species Type:

<select id="inputSpecies" »

<option value="Unidentified" selected='true'>

Unidentified

<option value="Blue">
Blue

<option value="Humpback">
Humpback

<option value="Gray">
Gray

<option value="Minke">
Minke

<option value="Sei">
Sei

<option value="Fin"»
Fin

<option value="Sperm”>

Page 4



myobs.html

195 Sperm

196 </option>

197 </select>

198

199 </td>»

200 </tr>

201

202 <tr>

203 <td id="inputcount">

204

205

206

207 Count: <select id="inputCount” > <option value="1" selected='true'>1<option
value="2":>2<option value="3 or more":3 or more</option> </select>

208

209

210

211 </td>

212 < /tr>

213 <try

214 <td>

215Presence of Calves:

216 <select id="inputCalves" >

217 <option value="No calves present" selected='true'>
218 No calves present

219 <option value="One or more calves present">
220 One or more calves present

221 </option>

222 </select:

223 </td>

224 <tr>

225 </table>

226

227 </div>

228

229

230 «div id="inputDiv">
231 <table cellpadding="5">

232 c4qH]

233 <td>

234 Behavior:

235 <select id="inputBehavior" >

236 <option value="Unknown" selected='true'>
237 Unknown

238 <option value="Logging">
239 Logging

240 <option value="Milling">
241 Milling

242 <option value="Feeding">
243 Feeding

244 <option value="Traveling">
245 Traveling

246 <option value="Other">

247 Other

Page 5



myobs.html

248 </option>

249 </select>

250 </td>

251 </tr>

252

253 <tr>

254 <td>

255 Seas:

256 <select id="inputSeas" >

257 <option value="Unsure" selected='true'>
258 Unsure

259 <option value="Sea is smooth- mirror like">
260 Sea is smooth- mirror like

261 <option value="Light breeze">
262 Light breeze

263 <option value="Moderate Breeze">
264 Moderate Breeze

265 <option value="Strong Breeze">
266 Strong Breeze

267 </option>

268 </select>

269 </td>

270 e

271

272 <tr>

273 <td>

274 Weather:

275 <select id="inputWeather" >

276 <option value="Unsure" selected="{rue'>
277 Unsure

278 <option value="Clear Skies"»

279 Clear Skies

280 <option value="Some clouds">

281 Some clouds

282 <option value="Half of the sky is covered in clouds"”>
283 Half of the sky is covered in clouds
284 <option value="Very cloudy">

285 Very cloudy

286

287 </option>

288 </select>

289 </td>

290 </tr>

291 <tr»>

292 <td»

293 Confidence:

294 <select id="inputConfidence" >

295 <option value="1" selected='true’>
296 1

297 <option value="2">

298 2

299 <option value="3">

300 3

301 <poption value="4">

Page 6



myobs.html

302 4

303 <option value="5">
304 5

385 </option>
306 </select>
307 </td>

308 GrERs

309 </table>

310 </div>

311 <div id="inputDiv">
312 <table>

313 L

314 <td>

315 <form id="attachment" enctype="multipart/form-data" >
316 <input name="uploadedfile” multiple="true"” type="file"
dojoType="dojox.form.Uploader"” label="attachment” id="uploader’

onChange="|dileldekIsfsllel" ; / >
317

318 </form>

319 </td>

320

321 <td id="photoadded">

322 no photo added

323 </td>

324 </tr>

325 </table>

326 </div>

327 <button dojoType="dijit.form.Button" onClick="[IiIRa0Rg();:">

328 Submit

329 </button>

330

331

332 </div>

333

334

335<div id="narrowSearch"” dojotype="dijit.layout.ContentPane"” title="Narrow your
search"” selected="true">

336 <br>

337 show results for:

338 <div id="showingFor" >

339 <form name="selectData">

340 <table >

341 b

342 <td»<input type="radio" name="selectedItem" id="onlyMe" checked=false
onchange- " ETTHTYIONSVSEE () /> </ td>

343 <td>Only mec</td>

344

345 <td><input type="radio" name="selectedItem" id="allData" checked=true
SIEIELEERE dowin LoadQuerySt ringlQRVEEAER

346 <td>Everyone</td>

347 A &

348

349 </table>

350

Page 7



351
352

353 </form>

354
355

356 <!--end showingFor-->

357 </div>
358
359
360

361date range:

362 <div id="accordianDate">

363

364 <table id="dateTable">

365

366 <tr>
367 <td>
368 from:
369 </td>
370 <td>

myobs . html

371<!--list for users to specify a start month -->
372 <select id="monthBeg" onchange="[EMdIEN{S{ ) ">
<option value="01" selected="true'>

373

374 Jan

375 </option>
376 5

377 <option value="62">
378 Feb

379 </option>
380 .option value="83">
381 Mar

382 </option>
383 <option value="84">
384 Apr

385 </option>
386 <option value="@5">
387 May

388 </option>
389 <option value="85">
390 Jun

391 </option>
392 <option value="@7">
393 Jul

394 </option>
395 <option value="68">
396 Aug

397 </option>
398 <option value="@9">
399 Sep
400 </option>
401 <option value="10">
402 Oct

403 </option>
404 <option value="11">

Page 8



myobs.html

405 Nov
406 </option>
407 <option value="12">
408 Dec

409 </option>
410 </select>
411 </td>

412 <td>

413<!--Llist for users to specify a start year -->
414 <select id="updateStart” onchange="[ElTqiEINE()"; >

415 <option value="1999" selected='true'>
416 1999
417 </option>
418 <option value="20060">
419 2000
420 </option>
421 <option value="2001">
422 2001
423 </option>
424 <option value="2002">
425 2002
426 </option>
427 <option value="2003">
428 2003

429 </option>
430 <option value="2004">
431 - 2004

432 </option>
433 <option value="2085">
434 2005
435 </option>
436 <option value="2006">
437 2006
438 </option:
439 <option value="20@7">
440 2007
441 </option>
442 <option value="2008">
443 2008
444 </option>
445 <option value="2009">
446 2009
447 </option>
448 <option value="2016">
449 2010
4508 </option>
451 <option value="2011">
452 2011
453 </option>
454 <option value="2812">
455 2012
456 </option>
457 </select>
458

Page 9



myobs . html

459 < /td>

460 <tr>

461 <td>

462 to:

463 </td>

464 <td>

465 <!/--List for users to specify an end month -->
466 <select id="monthEnd" onchange="[ElquiEIaAa() " ; >

467 <option value="@1">
468 Jan

469 </option>
470

471 <option value="62">
472 Feb :
473 </option>
474 <option value="83">
475 Mar

476 </option>
477 <option value="04">

478 Apr

479 </option>
480 <option value="25">

481 May

482 /option:
483 <option value="06">

484 Jun

485 </option>
486 <option value="67">

487 Jul

488 </option>
489 <option value="08">

490 Aug

491 (/option>
492 <option value="89">

493 Sep

494 </option>
495 <option value="18">

496 Oct

497 </option>
498 <option value="11">

499 Nov

500 </option>
501 <option value="12" selected="true'>
502 Dec

503 </option>
5e4

585

506 </select>

507 </td>

508 <td>

589 </--Llist for users to specify an end year -->
518 <select id="updateEnd" onchanger"()”; >
511 <option value="1999" >

512 1699

Page 1@



myobs.html

513 </option>
514 <option value="2000">
515 2000

516 </option>
517 <option value="2001">
518 2001

519 </option>
520 <option value="2082">
521 2002

522 </option>
523 <option value="2863">
524 2003

525 </option>
526 <option value="2004">
527 2004

528 </option>
529 <option value="2805">
53@e 2005

531 </option>
532 <option value="2006">
533 2006

534 </option>
535 <option value="20@7">
536 2007

537 </option>
538 <option value="20@8">
539 2008

540 </option>
541 <option value="2809" >
542 2009

543 </option>
544 coption value="2818">
545 2010

546 </option>
547 <option value="2811">
548 2011

549 </option>
558 <option value="2012" selected="true’>
551 2012

552 </option>
553 </select

554 </td>

555 </tr>

556

557

558 </tr>

559 </table>

560 <font size="2"»>«<i>

561 The months you choose will include observations for the entire month
562 <br>

563 </i></font>

564

565</--end date-->

566 </div>

Page 11



myobs.html

567

568 event type:

569 <!--start event accordian container-->

570 <div id="accordianEvents">

571 <table>

572 <tr>

573 <td>

574 <input id="obsBox" ><label for="obsBox">observations</label>

575 </td>

576 </tr>

577 <tr>

578 «<td>

579 <input id="trackBox" »><label for="trackBcx">»tracks</label>

580

581 </td>

582 </tr>

583 </table>

584

585

586 <!/--end event accordian-->

587 </div>

588

589 species type:

590 <div id="accordianSpecies” >

591

592 <!--Table of species options-->

593 <table  <try<td id = "species" >

594

595 <input id="whaleBox" »<label for="whaleBox"> whales </label></td>

596 </tr>

597 <tr>

598 <td id = "species” >

599 <input id="dolphBox" »><label for="dolphBox"> dolphins and porpoises
</label></td>

600

601 </tr>

602 <td id = "species" >

603 <input id="sealBox" »><label for-"sealBox"> seals and sea lions </label></td>

604

605 </tr>

686

607 </tr>

608 <td id = "species" >

609 <input id="otherBox" ><label for="otherBox"> other species </label></td>

610

611 </tr>

612 </table>

613

614 <!/--end species accordian-->

615 </div>

616

617

618

619

Page 12



myobs . html

620 <!--end narrow-->

621 </div>

622

623

624

625

626 <!--start download accordian -->

627

628

629

630 <!--end of accordian container-->

631 </div>

632

633

634 <!--end of Left border container for mapAndNav tab -->

635 </div>

636

637

638 <!--START AND END mapAndNav: MAP-- (CENTER)-->

639 <div id="map" dojotype="dijit.layout.ContentPane" region="center">

646

641<!--

642 <div dojoType="dojox.layout.Dock" id="dock"></div>

643

644 <div dojoType="dojox. layout.FloatingPane"” id="dFloatingPane" dockTo="dock"
title="Identify"

645 resizable="true” closable="false" dockable="true" style="visibility:hidden;">

646

647 <table ><tr><td id="cellobsdetails_name" style="vertical-align:middle;
text-align:left;" >

648 Click on an observation to Learn more.

649 <br>

650 <br>

651 VYou canh move this window around the screen and dock it for Later by clicking on
the arrow in the upper right hand corner.

652

653 </td></tr>

654 </td></tr></table>

655

656

657 </div>

658 -->

659

660

661

662 </div>

663

664

665

666

667

668

669 <!--END MyObs tab BORDER CONTAINER --1!>

670 </div>

Page 13



myobs.html

671 <!--END MyObs tab--1!>

672 </div>

673

674

675

676

677 <!--start Learning Tab-->

678 <div id="learn" dojotype="dijit.layout.ContentPane” title="Learn"
onShow="window.location.href="learn.html"';">

679 <!--END Learning Tab--1>

680 </div>

681

682

683

684 <!--END TAB CONTAINER --I>
685 </div>

686

687 <!--END BORDER CONTAINER--1!>
688 </div>

689

696 </body>

691 </html>

Page 14



myobs_scripts1@05.]s

ldojo.require("dijit.dijit");
2// optimize: Load dijit Layer
3dojo.require("dijit.layout.BorderContainer™);
4dojo.require("dijit.layout.ContentPane");
5dojo.require("esri.map");
6dojo.require("dijit.layout.BorderContainer™);
7dojo.require("dijit.layout.ContentPane");
8dojo.require("esri.graphic”);
9dojo.require("dijit.layout.TabContainer");
1@ dojo.require(“esri.tasks.query");
1ldojo.require("esri.dijit.TimeSlider");
12 dojo.require("dijit.Dialog");
13dojo.require("dijit.form.Button");
14 dojo.require("dijit.form.CheckBox");
15dojo.require("esri.layers.FeaturelLayer");
16 dojo.require("dijit.layout.AccordionContainer”);
17
18 dojo.require("dijit.form.TimeTextBox");
19dojo.require("dijit.form.NumberTextBox");
28 dojo.require("dijit.form.TextBox");
21dojo.require("dijit.form.DateTextBox");
22 dojo.require("dojox.laycut.FloatingPane");
23dojo.require(“esri.dijit.InfoWindow");
24 dojo.require("dojox.form.Uploader"”);
25
26 //this global object contains all references needed across functions
27 //1 dont understand how globals help, but it ensures that the map 1is filled to the
full center extent
28
29 query, queryTask;
30 featureSet;

31 map;
32 attrib;
33 eventlist;

34 obsLayer;

35 tracksLayer;

36 whaleCheck  true;
37 dolphinCheck = true;
38 sealCheck : true;

39 otherCheck - true;
40 obsCheck - true;

41 trackCheck - false;
42 PinCheck - true;

43 visibleObs - [];

44 queryWhere = "";

45 updateStart = "1999";
46 updateEnd = "2012";
47 updateStartDay;

48 updateEndDay;

49 monthBeg - 01;

50 monthEnd 12

51 //var downloadDate = "\"DATE\" >= '" + updateStart +"-" + monthBeg + "-81' AND
\"DATE\" <= '" + updateEnd + "-" + monthEnd + "-31'";
52 downloadDate - "DATE»="" + updateStart + "-" + monthBeg + "-81' AND DATE<="" +

Page 1



myobs_scriptslees.js

updateEnd + "-" + monthEnd + "-31'";
53 8p;
54 loading;
55 queryWhere;

56 downloadQuery = "(SpeciesCategory = 1 OR SpeciesCategory = 2 OR SpeciesCategory
= 3 OR SpeciesCategory = 4)";

57 downloadSpecies - "(SpeciesCategory = 1 OR SpeciesCategory = 2 OR
SpeciesCategory = 3 OR SpeciesCategory = 4)";

58 downloadEvents = "eventType = 1";

59 user;

60 inputCat - "Whale";

61 intCat 1;

62

63 //var downloadEvents = "eventType = @ OR (";

64

65 //calls the init function @ the top of the doc on Lload
66 dojo.addOnLoad(init);

67

68/////////// /71117

69 //function 1is initialized on page's Lload

70 init() {

71

72 //define a "Loading” image for perceived progress while the data is being
extracted

73 loading - dojo.byId("loadingImg”);

74

75 //defines the initial extent of the map

76 //var initialExtent = new

esri.geometry.Extent({"xmin":-140916082.812760, "ymin":3508363.61698, “xmax":-13252881.
136300, "ymax":4388898.711366, “spatialReference"”:{ "wkid":102166}});

77 initialExtent 1 esri.geometry.Extent({
78 "xmin" : -13826939.3720895,

79 "ymin" : 3543866.13823468,

80 "xmax" : -12631549.4813098,

81 "ymax" : 4216967.48443738,

82 “spatialReference” : {

83 "wkid" : 1021080

84 }

85 })s

86 map - 1= esri.Map(“"map", {

87 extent : initialExtent,

88

89 1)

90

91 //expands the map so that it fFills the full extent
92 dojo.connect(map, 'onLcad’, (map) {

93

94 dojo.connect(dijit.byId( 'map'), 'resize', resizeMap);
95 }s

96

97 //this Listener calls eventClicked

98 dojo.connect{map, 'onClick', eventClicked);

99

100 //declares the service location of the basemap

Page 2



myobs_scripts1005.]js

101 basemap - rou
esri.layers.ArcGISTiledMapServiceLayer("http://server.arcgiscnline.com/ArcGIS/rest/s
ervices/Ocean_Basemap/MapServer”);

102 map.addLayer(basemap);

103

104 //declares the map service location of the events Layer

165 obsLayer - ne
esri.layers.FeatureLayer("http://gis.spatial.redlands.edu/ArcGIS/rest/services/melod
i king/events/FeatureServer/1", {

106 mode : esri.layers.FeaturelLayer.MODE_SNAPSHOT

1e7 1);

1e8

1@9 //only displays events of type 2 (these are observations)
1180 obsLayer.setDefinitionExpression(“eventType = 1");

111

112 //adds observations to the Lap

113 map.addLayer(obsLayer);

114

115 //var selectionSymbol = new esri.symbol.SimpleFillLSymbol().setColor(new
dojo.Color([255,255,8,8.5]));

116 //obslLayer. setSelectionSymbol (selectionSymbol );

117 //declares the map service location of the events Layer

118 //tracksLayer = new
esri.layers.FeaturelLayer("http://gis.spatial.redlands.edu/ArcGIS/rest/services/melod
1_king/eventsFinal/MapServer//4", {

119 // mode: esri.layers.Featurelayer.MODE_SNAPSHOT});

120

121 //only displays events of type 2 (these are observations)

122 //trackslLayer.setDefinitionExpression(“eventType = 2");

123

124 //adds observations to the lap

125 //map.addLayer(trackslayer);

126

127 //declares new gp service

128 gp
esri.tasks.Geoprocessor("http://gis.spatial.redlands.edu/ArcGIS/rest/services/melodi_
king/events/GPServer/eventExtract”);

129

130 //check boxes for types of marine mammals

131 //whale checkbox

132 whaleBox = 1w dijit.form.CheckBox({

133 name : "whaleBox",

134 value : "agreed",

135 checked : true,

136 onChange : (b) {

137 it (b 1) {

138 whaleCheck - true;

139

140 //calls the updateVisibleSpecies function

141 updateVisibleSpecies()

142

143 } else {

144 whaleCheck = false;

145

Page 3



myobs_scripts1@e5.js

146 //calls the updateVisibleSpecies function
147 updateVisibleSpecies()

148

149 }

150 }

151 }, "whaleBox");

152

153 //dolphin checkbox

154 dolphBox = ' . dijit.form.CheckBox({
155 name : "dolphBox",

156 value : "agreed”,

157 checked : true,

158 onChange : (b) {

159 if (b -- 1) {

160 dolphinCheck  true;

161

162 updateVisibleSpecies()

163

le4 } clse {

165 dolphinCheck - false;

166

167 //calls the updateVisibleSpecies function
168 updateVisibleSpecies()

169 }

170 }

171 }, "dolphBox");

172

173 °  //seal and sea lion checkbox

174 sealBox e dijit.form.CheckBox({
175 name : "sealBox",

176 value : "agrecd”,

177 checked : true,

178 onChange : (b) {

179 L (b 1) {

180 sealCheck = true;

181

182 updateVisibleSpecies()

183

184 } else {

185 sealCheck - false;

186

187 //calls the updateVisibleSpecies function
188 updateVisibleSpecies()

189 }

190 }

191 }, "sealBox");

192

193 //other checkbox

194 otherBox 100 dijit.form.CheckBox({
195 name : “otherBox",

196 value : "agreed”,

197 checked : true,

198 onChange : (b) {

199 i€ (b == 1) {

Page 4



	Managing Marine Mammal Observations Using a Volunteered Geographic Information Approach
	Recommended Citation

	part1
	sigpage
	part2
	appenpoart1
	appendpart2
	append3

