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Abstract 

Water Budget Analysis of Coachella Valley Aquifer 

by 

René Pretorius 

The Coachella Valley is a desert region located in Southern California with high 

temperatures and low variable rainfall. It is also an oasis due to its aquifer, which is in 

both the Whitewater River and Salton Sea catchment regions.   The water from this 

aquifer is used for a variety of applications by the Coachella Valley community, but it is 

a finite water resource and the natural recharge in this desert region is low. If the aquifer 

is depleted it can collapse, which would lead to infrastructure damage and affect the local 

economy.   This study used GIS to create models and tools to assist the Coachella Valley 

Economic Partnership in analyzing aspects of the water budget, and what the effect of 

land cover change will have. These models and tools were used for estimating 

infiltration, change an area of interest’s land cover classifications, and generated water 

depth surfaces.  These outputs made it possible to create maps showing these results, and 

the results were visualized in 2-D and 3-D to find possible trends. 
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Chapter 1  – Introduction 

The Coachella Valley is a desert region in Southern California, but also an oasis due to its 

aquifer. The valley extends for approximately 45 miles, averaging 15 miles wide, into 

Riverside County southeast from the San Bernardino Mountains and to the northern shore 

of the Salton Sea. The Coachella Valley study area is shown in Figure 1.1.  

 
Figure 1.1 The Study Area 

The valley is the northernmost extent of a vast trough that includes the Salton Sea, 

the Imperial Valley, and the Gulf of California. It is bounded on the west by the San 

Jacinto and Santa Rosa Mountains, and on the north and east by the Little San Bernardino 

Mountains. The aquifer is largely loose material ranging from clay to sand to gravel 

(unconsolidated) and is moderately to highly permeable. It is recharged both naturally 
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and artificially; the former through percolation of surface water, drainage of intermittent 

streams, and runoff from nearby mountain ranges (June, 2008).  

This aquifer is the main source of all drinking and household water for the region. 

The majority of the golf courses in the area use the aquifer for irrigation, and it also 

supplies water for up to a third of the agricultural applications in the area. Other sources 

of water in the area are recycled and imported water from the Coachella Canal, which 

draws from the Colorado River  (CVWD, n.d.). 

The Coachella Valley Economic Partnership (CVEP) wanted to determine if tools 

could be created to analyze the Coachella Valley water budget – discharge and recharge 

of aquifer – with specific interest given to three groups impacting the aquifer and area’s 

economy: golf courses, agriculture, and residential users. The main focus of this project 

was to aid the CVEP in creating a system containing these tools.   

1.1 Client 

The project client was CVEP, a nonprofit economic development organization devoted to 

attracting, retaining, and expanding business, as well as to developing a highly skilled 

workforce to enhance the economy and quality of life of the region. The client required 

desktop GIS-based tools to produce easy-to-understand water budget analysis results. The 

point-of-contact at CVEP was David Robinson, the GIS Coordinator.  

1.2 Problem Statement 

The aquifer of the Coachella Valley is a finite water source located in a desert area. 

Overuse of the aquifer without sufficient recharge can lead to its collapse, which would 

not only cause a water shortage problem and damage to property and infrastructure, but 

could also severely affect the local economy. CVEP does not currently have a method to 

analyze the aquifer discharge, recharge, and the parameters influencing it, nor do they 

currently have a method to predict the effect land use change would have on the water 

budget. 

1.3 Proposed Solution 

The proposed solution for this project involved the development of two geoprocessing 

models: a hydrological model to analyze the water budget (water use and aquifer 

recharge) and the parameters influencing it, and a model to predict change in the water 

budget should land use change. Supplementary maps to showcase some of the results 

from these models were created. 

1.3.1 Goals and Objectives 

The goal of this project was to develop a solution that would facilitate analysis of the 

water budget and assess the impact of land use change.  
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The main objectives of the project: 

 Create a tool to aid in the water recharge and discharge rate analysis; 

 Allow users to dynamically assess how land use change might affect the 

water budget.  

1.3.2 Scope 

This project and the associated results and models were limited to the Coachella Valley in 

California. The project scope included the creation of a water budget analysis and a land 

cover change analysis system. This system included spatial query tools to compute water 

discharge and recharge rate, as well as this rate’s change when land use changes. The 

tools were developed with Python and ArcGIS Model Building for desktop use. The 

database was created to store the data provided to the client and the outputs created by the 

system. 

1.3.3 Methods 

The data used in this project were clipped to the Coachella Valley area, and projected to 

World Geodetic System Datum 1984 (WGS84) Universal Transverse Mercator (UTM) 

Zone 11 North. The data used consisted of well data from the Department of Water 

Resources, soil data from Soil Survey Geographic Database (SSURGO), geology data 

from United States Geological Survey (USGS) Mineral Resources, hydrography features 

from the National Hydrography Dataset (NHD), land cover from the National Land 

Cover Dataset (NLC), and rainfall from Parameter-Elevation Regressions on Independent 

Slopes Model Dataset (PRISM). 

The project was done using Esri ArcGIS desktop 10.3, ArcGIS Model Builder, 

Python scripts, and Esri Arc Hydro tools 2.0. Esri Arc Hydro was used for initial 

processing and creation of some datasets required for later analysis. A combination of 

Python scripts and Model Builder models were used to create models to calculate the 

infiltration and estimate the groundwater level.  

Model Builder application and Python scripts were used to create a land use change 

analysis tool. This tool allows the user draw a polygon in the study area and select the 

new land use for the area defined by the polygon.  Using this information, the tool then 

calculates the new recharge rates and compares them to the original.  

1.4 Audience 

This project and its tools are aimed at the client, mainly the GIS Coordinator. This paper 

discusses how GIS was used to create tools and maps for water budget analysis, and the 

paper assumes familiarity with GIS, but little to no familiarity with water resources. The 

tools created during this project are intended for use by people familiar with GIS, while 

the final output maps are intended for a wider audience who may have no familiarity with 

GIS or water resources.  
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1.5 Overview of the Rest of this Report 

The rest of the report consist of chapters’ two to seven. Chapter Two, the literature 

review, looks at the different approaches and results of projects with similar problems. 

Chapter Three offers a description of the problem statement and the requirements 

analysis for completing this project. This is followed by an outline of the system design 

and project plan. Chapter Four details the database design, starting with the details about 

the conceptual data model, and going into the logical data model. This is followed by 

information about the data: the data sources, how the data was collected, and how the 

data were formatted initially. The details of the processes, tasks, and workflow to 

complete both functional and non-functional requirements are discussed in Chapter Five. 

Chapter Six contains the details about the results and analysis from the system. Chapter 

Seven provides conclusions and possible future expansions upon this project. 
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Chapter 2  – Background and Literature Review 

The knowledge that water resources in arid and semi-arid region are limited drives the 

search for analysis and calculation of the water budgets in these areas. Hydrologic 

systems are influenced by many natural and human factors. In the hydrological cycle 

rainfall is a major component, especially for surface runoff, infiltration, and ground water 

recharge. Human factors relating to the discharge and recharge of ground water include 

the pumping of water from wells and land use.  

Hydrological models were first created as stand-alone software and were not well 

integrated with GIS, but as the advantages of GIS became clear integration between the 

two fields started. Hydrological modeling is even more important in arid regions where 

water is scarce.  

2.1 Coachella Valley Aquifer 

Many arid and semi-arid areas have limited surface water resources, with the ground 

water being the main water source for agriculture, industrial, and domestic water supplies 

(Kumar, 2003). Although the Coachella Valley is a desert region, it is also an oasis due to 

its aquifer. This has led to numerous groups using the aquifer’s water, and not all of these 

individuals acknowledge the recharge necessary to sustain the aquifer. The need to check 

usage and recharge is even more vital in light of the drought in recent years (James, 

2015). Three main aquifer user groups are discussed in section 2.3.2: golf courses, 

agriculture, and residential.  

The Coachella Valley aquifer is generally unconfined and composed of coarse-

grained sediments. The San Andreas Fault acts as natural barrier to keep groundwater 

from migrating to other aquifers. This valley is grouped into four ground water subbasins: 

Indio, Mission Creek, Desert Hot Springs, and San Gorgonia. Figure 2.1 shows the four 

subbasins that make up the Coachella Valley aquifer, and where they lie in relation to the 

area’s watersheds. The Colorado River is an important source for the Coachella Valley 

aquifer recharge. There are two Colorado River water conduits which deliver  water to 

the Coachella Valley: the Colorado River Aqueduct and the Coachella Canal (June, 2008; 

Weisheit, 2008). 
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Figure 2.1 Coachella Valley Aquifers 

Aquifers are geologic formations, groups of hydraulically connected formations that 

store and transmit significant quantities of portable ground water. They are the focal point 

of any hydrogeologic conceptual site model. Intergranular aquifers develop in 

unconsolidated sediment, composed of mixed grains varying in size and shape such as 

clay, silt, sand, and gravel. This is the Coachella Valley’s aquifer type. Other types of 

aquifers include alluvial, basin-fill, and glacial-deposit aquifers (Kresic & Mikszewski, 

2013).  

2.2 Rainfall Water Distribution 

Rainfall in a specific area is intercepted by trees, shrubs, and other vegetation or ends ups 

striking the ground surface to become overland flow, subsurface flow, and groundwater 

flow. Rainfall distribution between summer and winter varies greatly in arid regions. 

Generally arid regions also have low annual rainfall, and the monthly and yearly rainfall 

distributions vary (FAO, 1989; Hernadez et al., 2000; Hudson, n.d.). 

2.2.1 Runoff 

When rain hits the soil, the amount of surface water that does not directly infiltrate, 

evaporate, become lost to surface storage, or intercepted by plants, is turned into runoff 

(Poullain, 2012). Runoff from rainfall is an important variable in hydrological modelling 

and consists of two main elements: base flow with origins in groundwater, and surface 

runoff which is the accumulation of rainfall that drains to streams (Hammouri & El-Naqa, 

2007).   

There are two types of runoff. Hortonian flow, otherwise known as infiltration-

excess runoff, occurs when rainfall intensity exceeds the rate at which water can infiltrate 
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the soil. Saturation-excess runoff, according to Schneiderman, occurs when 

rain/snowmelt encounters soils that are saturated due to a perched water table. This water 

table forms when the infiltration front reaches a zone of low transmission (Schneiderman 

et al., 2007). 

2.2.2 Infiltration 

Infiltration occurs when water enters the soil and is one of the most common methods by 

which groundwater recharge occurs in arid regions. Soil infiltration rate is the velocity at 

which water enters the soil. These rates are influenced by soil characteristics, vegetation, 

and land use practices (Schneiderman et al., 2007; USDA NRCS, 2008).  

The soil characteristics include soil texture and clay mineralogy. Soil texture is a 

description of the pore spaces between soil particles. The size of the pore spaces 

determine how quickly water will move through it. Water will move more quickly 

through sandy soil with larger pore spaces than through clayey soil with small pores. 

Soils can contain different amounts and types of clay minerals. Shrinkage cracks are 

developed in many clayey soils when they dry. These cracks create a direct path for water 

to enter the soil. Clay soils with these cracks will exhibit a high infiltration capacity, but 

when these cracks are not present the infiltration rate is characteristically slow (USDA 

NRCS, 2008).  

The Soil Conservation Services, now known as Natural Resource Conservation 

Services (NRCS), proposed a relationship for estimating cumulative infiltration. This 

relationship depends on the amount of precipitation (rainfall and snowmelt) received by a 

basin, the initial losses, and the maximum retention potential of the soil. The basis for this 

was the NRCS Curve Number method (Craciun & Haidu, 2011). Craciun  investigated 

and utilized this method in a GIS methodology for indirect estimation of soil moisture. 

The first part of the methodology created an algorithm to estimate the infiltration and to 

develop a GIS module to run this algorithm.  

2.2.3 Evaporation 

When the NRCS Curve Number method is used to calculate the infiltration, initial losses 

are taken into consideration. One of the contributing factors to these losses is 

evapotranspiration, which can be divided up into evaporation and transpiration. 

Evaporation is when a liquid water changes into vapor. This water is then removed 

from the source such as the soil surface, wet vegetation, pavement, or water body. 

Transpiration, which is the vaporization of liquid water within a plant, occurs 

simultaneously with evaporation. Both of these process depend on solar radiation, air 

temperature, relative humidity, amount of rainfall, and wind speed. The transpiration rate 

is also influenced by factors such as crop characteristics, cultivation methods, and 

environmental aspects (Zotarelli & Dukes, 2010). 

2.3 Hydrography 

Hydrography is the scientific study of the movement, distribution, and quality of water on 

Earth, including the hydrologic cycle, water resources, and environmental watershed 

sustainability. 
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Water budget is the difference between water input and water output, resulting in 

changes in stored water. Water budget equations can be written in terms of volumes 

(fixed time interval), fluxes (volume per time), and flux densities (volume per unit area of 

land surface per time, mm per day). The complexity of determining the water budget 

depends on many natural and anthropogenic factors. Climate, hydrography and 

hydrology, geologic and geomorphic characteristics, hydrogeologic characteristics of the 

surficial soils and subsurface porous media, land cover/use, presence and operation of 

artificial surface water reservoirs, surface/groundwater withdrawals for consumptive use 

and irrigation, and water waste management must all be taken into consideration (Kresic 

& Mikszewski, 2013). 

2.3.1 Aquifer 

Aquifers are classified as either confined or unconfined. A confined aquifer is below the 

land surface and saturated with water. This type of aquifer has layers of impermeable 

material above and below the aquifer. An unconfined aquifer’s upper water surface – the 

water table – is at atmospheric pressure, and thus can rise and fall. Water seeps into it 

from the ground surface directly above the aquifer. Since this type of aquifer is closer to 

the Earth’s surface compared to a confined aquifer, it is impacted by drought conditions 

sooner (USGS, n.d.).  

Water in unconfined aquifers is subject to losses due to plant uptake and evaporation. 

When a well is constructed in an unconfined aquifer, the water level will temporarily 

remain at the same level at which it was found, but can change later due to many factors. 

The surface of the zone of saturation is defined by the well water level. This surface has 

the same pressure everywhere as the atmospheric pressure (NGWA, n.d.).  

2.3.2 Aquifer Discharge 

Aquifer discharge can happen many ways, including groundwater being pumped out 

through wells. Well and borehole data are common datasets available for use in 

groundwater related projects. The permits for well construction are issued and 

documented by different organizations, from national to city level. Numerous agencies 

have databases that contain information on well use and location. This information is 

important for the development of groundwater management plans and groundwater 

simulation models (Strassberg et al., 2010). 

With 123 different golf courses, Coachella Valley is a world-renowned golf 

destination and one of the most popular golf vacation spots in California. According to 

the Los Angeles Times, these golf courses use about 37 billion gallons of water annually 

(Stevens, 2014). Of the 123 golf courses, 53 use water from treated waste/recycled water 

or the Coachella Canal. The remaining 70 courses rely on wells pumping groundwater. 

(CVWD, n.d.; James, 2014). 

Agriculture is a major industry in the valley. Some of the top crops are citrus, grapes, 

bell peppers, and dates. It is also a primary date production region and responsible for 

almost all of the dates grown in the United States (Austin, 2012; CVWD, n.d.). Regional 

agriculture was most successful in the lower Coachella Valley. Initially it relied on the 

aquifer, but this proved to be unpredictable considering that droughts would deplete it. 

The Coachella Canal, completed in 1984, brought more stability and reliability farming 
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(Patten, 2014). Currently in the fourth year of a drought, mandatory reductions in 

portable water have been ordered. This has resulted in farmers being forced to become 

more water efficient by implementing better technologies and strategies. However, many 

farmers have been forced to leave fields fallow and cut jobs (Marx & James, 2015).  

Residents of this the Coachella Valley are accustomed to using large amounts of 

water, most of which comes directly from the aquifer. Besides drinking water, the 

residents use the water for lawns, turf-filled gated communities, and landscaping. Some 

of the area’s largest homes are five-acre lots with green lawns, towering trees, old orange 

groves, and stables for horses. There has been relatively low water rates in the Coachella 

Valley for years, considering it is a desert region, as well as some of the highest levels of 

per-capita water use in California. Recently the State Water Resources Control board has 

included the area’s main water suppliers on the list of entities required to implement 35 

percent mandatory water cuts (James, 2015). 

2.3.3 Aquifer Recharge 

Recharge, the hydrological process where water moves downward to groundwater, is an 

important factor when evaluating groundwater resources but can be difficult to quantify 

(Kumar, 2003). Al Kuisi (2013) performed a study on groundwater recharge to develop 

the WetSpass model for arid regions. This model calculated the groundwater recharge as 

a residual term of the water balance, taking into account precipitation, evapotranspiration, 

surface runoff and initial losses. According to Kumar (2003) ground water recharge is a 

complex function of meteorological conditions, soil, vegetation, physiographic 

characteristics, and the properties of the geological material within the flow path. This 

makes quantifying the recharge a major problem in water-resource investigations. 

Various models have been designed to represent the actual physical process. Current 

methods include soil water balance method: zero flux plane method, one-dimensional soil 

water flow model, inverse modelling for estimation of recharge, saturated volume 

fluctuation method (ground water balance), and isotope techniques and solute profile 

techniques (Kumar, 2003).  

The water balance model is a procedure to estimate the balance between the inflow 

and outflow of water. The soil water deficit in the standard soil water balance calculation 

is the volume of water required to saturate the soil and is expressed as an equivalent 

depth of water. The soil water balance equation can be represented as: 𝐺𝑟 = 𝑃 − 𝐸𝑎 +
∆𝑆 − 𝑅𝑜 where Gr is the recharge, P is the precipitation, Ea is the actual 

evapotranspiration, ∆𝑆 is the change in soil water storage, and Ro is the run-off (Kumar, 

2003). 

Ground water recharge is a major factor determining the amount of water that can be 

extracted from an aquifer without causing depletion (Kumar, 2003). Aquifers are 

recharged through both natural and non-natural methods. The Coachella Valley aquifer is 

naturally recharged through percolation of surface water, drainage of intermittent 

streams, and runoff from nearby mountain ranges. It is also artificially recharged from the 

Colorado River through man-made canals (June, 2008). The factors determining the 

amount of recharge consist of the rate and duration of rainfall, subsequent conditions at 

the upper boundary, antecedent soil moisture conditions, soil type, and the water table 

depth (Kumar, 2003). 
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2.4 Hydrological Models and GIS 

“Geographic data models are important because they establish a common language 

enabling us to describe aspects of our environment systematically a consistently over 

large areas” (Strassberg et al., 2011, p. viii). 

Considering the spatial characteristics of the parameters which control hydrologic 

processes, it is no surprise that GIS is now an integral part of hydrologic studies. A 

hydrological model can be lumped or distributed depending on whether or not the 

domain/basin is subdivided. Defining the watershed and the drainage network forms the 

basic framework for applying both lumped and distributed hydrologic models. Soil maps 

are another important source of hydrologic modeling parameters like soils for infiltration 

simulations as a function of soil properties. The runoff characteristics of the land surface 

are affected by land use, vegetation cover, and urbanization. This information can be 

derived from aerial photography or satellite imagery. In order to be useful, such land 

use/cover data is reclassified into parameters representative of the hydrologic processes. 

Some examples of this include: hydraulic roughness, surface roughness heights affecting 

evapotranspiration, and impervious areas that limit soil infiltration capacity. Rainfall-

runoff modeling depends on the estimation of infiltration extended over large areas 

covering experimental plots, river basins, or regions. It is difficult to consider infiltration 

modeling independently from rainfall and soil moisture. Some infiltration methods 

include the non-linear partial differential equation (Richard’s equation), and the more 

simplified Green and Ampt equation (Vieux, 2004). 

Arc Hydro is a set of information models and tools to assist with surface water 

resource analysis. It models the relationships and connections of surface water resources 

(features), and prepares the data for use in hydrologic models (Esri, 2013). Arc Hydro 

Groundwater is an expansion on the framework of Arc Hydro designed for representing 

groundwater datasets. It provides representation and simulation over time and space, as 

well as 3D hydrogeologic models (Strassberg et al., 2011).  

There are other independent hydrological models such as the Groundwater (GW) 

Toolbox, created by the U.S. Geological Survey (USGS). This toolbox estimates base 

flow, surface runoff, and groundwater recharge based on streamflow data. This software 

allows for the retrieval of certain datasets including: hydrologic time-series data 

(streamflow, groundwater levels, and precipitation) from the USGS National Water 

Information System; and preprocessed meteorological data from the National Oceanic 

and Atmospheric Administration National Climatic Data Center (USGS, 2015). 

2.5 Summary 

This chapter introduced key concepts that were vital to complete this project. An in-depth 

background study was done on the Coachella Valley area, and methods on previous 

studies used to solve similar problems. The study area is in a desert area, with high 

temperature and low variable rainfall, and water being pumped from the aquifer for a 

variety of applications. As a result, natural recharge is low and does not match water 

discharge by human factors, and could lead to the aquifer collapsing. The developed 

system looks into the infiltration by natural methods, and water levels using well 

measurements. The NRCS Curve Number method is one of the most commonly used 

methods for calculating runoff and infiltration, due to its simplicity and widespread 
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applicability. An adjusted NRCS Curve Number method was used for infiltration 

calculations.   
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Chapter 3  – Systems Analysis and Design 

Before a project solution could be implemented, careful planning was done to specify the 

requirements and the solution design. To facilitate this it was essential to understand the 

client’s problem. This chapter begins with a brief description of the problem statement, 

followed by the requirements analysis, which describes the functional and non-functional 

requirements.  The system design section explains the requirements for the software and 

hardware design. A project plan was created to help track project progress.  

3.1 Problem Statement 

The Coachella Valley aquifer is an essential part of the Coachella Valley region due to 

the water needs in this desert region. The vitality of the aquifer is important not only 

because it is a competitive asset to the region or the water it provides, but also to avoid 

the structural damages that may occur from its collapse when it is depleted. The CVEP 

wanted a method to analyze the water budget of the area and the change land cover/use 

on the recharge and discharge. The information from these analyses helped to determine 

which areas and user groups have the greatest disparity between recharge and discharge 

in the study area. 

3.2 Requirements Analysis 

Requirements are the crux of every project and determine whether a project will be a 

success. According to Poddar (2009) if you don’t know where you going, you don’t know 

where you might wind up. Meetings were held with David Robinson to discuss the 

project requirements and gain a thorough understanding of the client’s needs. A 

requirement analysis was conducted to gain an understanding of the functions required 

for the project’s solution, and are divided into functional and non-functional 

requirements. 

3.2.1 Functional Requirements 

Functional requirements are the capabilities that the system must provide. 0 provides an 

outline and a short description of the functional requirements for this project.  
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Table 3-1   Functional Requirements 

Requirement Description 

Open, edit, export, save, or print map 

documents 

ArcGIS desktop used to view, modify, 

and export maps to JPG, PDF, or PNG 

format. 

Interactively draw area of interest  The system must allow the user to 

interactively draw area of interest within 

the study area. 

Interactively select new land use/cover The system must allow the user to select 

the new land use/cover for the area of 

interest drawn. 

Calculate groundwater level surface Use water levels from wells to create 

surfaces for different times.  

Produce surface showing infiltration Calculate the infiltration for study area 

from precipitation 

 

The system must allow the user to open ArcGIS map documents, to view the input 

data and results, view pre-setup map layouts, and export or print maps with results. The 

system must be able to calculate runoff parameters and infiltration, and these results 

should be available as attribute data. The creation of recharge and groundwater surfaces 

for different times is a function required for the system. An interactive function is 

required that allows the user to outline an area of interest and assign it a new land use 

/cover. This result ought to be used in the tool to re-calculate the recharge and water use 

of the area. A geodatabase is required to store the input data as well as the initial output 

data from the tools and user created output data.  

The project was created as an ArcGIS desktop application and used ArcGIS desktop 

extensions. It contained maps and a toolbox with the different models and scripts setup as 

tools. These maps have layout setups which display the different user groups’ recharge 

and discharge/groundwater level change. The toolbox was installed on the local computer 

used for the geodatabase.  

3.2.2 Non-Functional Requirements 

Non-functional requirements are the considerations that focus on how well the system 

must perform. The types of non-functional requirements include: interfaces, usability and 

accessibility, integration, operational, performance, maintenance and system 

administration, and documentation. 0 lists the non-functional requirements and a short 

description for each.    

  



14 

Table 3-2   Non-Functional Requirements 

Requirement Description 

Data format All input and output data must be in an 

ArcGIS readable format. 

Software ArcGIS desktop 10.3, Spatial Analyst 

extension 

Geoprocessing Tools Coded using Python 

ArcGIS Model Builder 

Stored in ArcGIS toolbox 

User Familiarity with ArcGIS required to use 

models and little to none experience 

needed for output maps. 

User guide documentation Documentation on tools and input data 

should provide information about steps 

and parameters 

 

The system was designed on a computer with 3GHz processor speed, and 8 GB of 

RAM. The system required ESRI ArcGIS desktop 10.3 to be installed with the Spatial 

Analyst extension activated.  

It was required that all the input data and results should be in an ArcGIS readable 

format, preferably rasters, feature classes, or tables. The tool development environment 

had to be Python code and/or ArcGIS Model Builder, and these ought to be stored in an 

ArcGIS toolbox within the geodatabase. In order to use the tools, familiarity with ArcGIS 

is required, but little experience is needed for the pre-setup map layouts and to export or 

print them. Completion of the project also requires documentation on the different 

datasets and a guide on how to use each tool be provided. 

 

3.3 System Design 

The project was designed for a desktop platform, and did not require access to the 

internet. The system design is shown in Figure 3.1. A file geodatabase was created for 

data and tools storage, as well as data entry. This database contained vector, raster, and 

table data formats. All datasets obtained from the various sources required processing 

before being stored in the geodatabase. The different tools load different data from the 

geodatabase, and then store the results back in the geodatabase. ArcGIS map documents 

were set up with a connection to the geodatabase, template map layout showing analysis 

results and reference data, and the tools – scripts and models – setup in the toolbar. The 

map layouts can then be printed or exported to different formats: JPG, PDF, PNG, or 

TIFF. 
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Figure 3.1 System Design 

3.4 Project Plan 

At the start of the project a project plan was created with associated tasks to provide a 

reference to initiate the project and keep it on schedule. The following section outlines 

the project phases and the associated tasks, the final deliverables to complete the project, 

and assumptions made during formulation of the models and project. During the creation 

of the project, modifications had to be incorporated, which are also discussed in the 

sections below. 

3.4.1 Phases 

This section discusses the three phases of the project: design, development, and 

deployment. Figure 3.2 shows the structure of the three phases and their associated tasks. 
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Figure 3.2 Project Phase 

The design phase consisted of gathering the requirements and designing the database 

and the models. The requirements were specified and verified by the client during regular 

meetings, and used as the basis of the requirement analysis. The design of the database 

included identifying the datasets needed, their attributes, and how they would be stored. 

The Arc Hydro template database was used as an example of the hydrological data 

needed for the models and their various attributes. The database design also included 

determining which projection to use and what preprocessing needed to be done. 

Designing the models of this project consisted of determining the tools, functions, and 

equations the models would use, as well as the workflow for them. This design also 

expanded the dataset list and the required attributes.  

Development was the second phase of the project. This included the creation of the 

database, construction of the required tools based on the models designed, testing each 

unit of the tools, and doing modifications based on test results. The creation of the 

database included the creation of the geodatabase for the input data and results, as well as 

obtaining data from different sources and preprocessing the data before entering them 

into the geodatabase. The tools were developed based on the designed models. The tools 

were created with Python scripts, ArcGIS Model Builder models, and by combining these 

two methods. The tools were tested in the developer environment, the results were 

analyzed and discussed with the client, and all modification deemed necessary were made 

to the models. The process of testing and modification was iterated until the client was 

satisfied with the results and workflow. 

The final stage of the project was deployment, which consisted of final testing, final 

map documents, and creation of the user guide. The final testing took place on the 

client’s side, ensuring the tools worked on the hardware and software. Map documents 

Design Phase

• Requirement Gathering and Analysis

• Database Model

• Design Hydrological Model

• Design Predictive Hydrological Model

Development 
Phase

• Geodatabase

• Tools

• Modify Models

• Test on Developer Side

Deployment 
Phase

• Client Side 
Testing

• Map Documents

• User Guide
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were created that had the tools added to the toolbar, as well as a template layout setup 

that can be used to export the map to different formats (PDF, JPG, PNG, and TIFF).  

Documentation was created that described the tool parameters together with a user 

guide on how the different tools work. Explanations of each of the datasets were also 

created that included their purpose, source, format, and the fields required by the models. 

3.4.2 Deliverables 

There were four deliverables for this project. The first deliverable was the database. In 

order to deliver this, the geodatabase with the input data and last set of test results were 

migrated to the client’s system. The tools were the second deliverable, and were 

completed by installing the toolbox containing the tools, models, and Python scripts on 

the client’s system. The pre-setup map documents were the third deliverable provided to 

the client. The last deliverable was the documentation on the datasets and the step-by-step 

user guide for the tools explaining the workflow and parameters. 

3.5 Summary 

Meetings with the client contact, Mr. David Robinson, helped to define the requirements 

for the project. These requirements were analyzed and a project plan was developed. The 

project plan consisted of three phases – design, development, and deployment – which 

were guides to design the different units of the project, how to develop and test them, and 

finally how and what should be delivered to the client. 
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Chapter 4  – Database Design 

Database design is the process of producing a detailed model of the required database. 

This was a very important part of the project, since it modeled the geographic entities, 

their attributes, and relationships. This chapter discusses the conceptual and logical data 

models that were created, as well as the data sources. This is followed by a detailed 

explanation of the data scrubbing and preprocessing done before the data were loaded 

into the database and used for analysis.  

4.1 Conceptual Data Model 

The entities for this conceptual model included: watershed, geology, soil, precipitation, 

river, surface water, evaporation, runoff, basin, aquifer, subbasin, well, terrain, land use, 

and user group (Figure 4.1). The precipitation is the main source of water that falls in a 

basin forming surface water. This surface water evaporates, turns into runoff, or 

infiltrates through the soil of the basin into the groundwater. The runoff amount for each 

basin is influenced not only by precipitation, but also by soil, land use, and slope. The 

geology that underlies the watershed determines the type of aquifer, as well as the 

amount and rate water can infiltrate into the ground water of the aquifer. Water pumped 

from the wells drilled into the aquifer is used by different consumer groups.  

 
Figure 4.1 Conceptual Model 

The geology that underlies the watershed consists of different rock types formed 

over a long time period. The geology is covered by loose soil that forms the surface of the 

watershed and each basin. The soil for this model was differentiated based on the four 

specific hydrologic soil groups: A, B, C, and D. The hydrologic soil group is an 

indication whether the runoff potential and infiltration are high or low. These are further 
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explained in section 4.4.2. The watershed contains two subclasses – aquifer and basin – 

with the major difference between them being that the aquifer is beneath the basin. The 

aquifer consists of different subbasins. The geographic entities for this project and their 

relationships are illustrated in Figure 4.1. 

 

4.2 Logical Data Model 

A logical data model, derived from the conceptual data model, is how data are organized 

or in other words how the physical creation of the geodatabase would look. The logical 

model schema is shown in the diagram in Figure 4.2. The Esri File Geodatabase and File 

Folder formats were selected for this project. Esri Arc Hydro schema was used as an 

initial reference for the geodatabase, and after changes were made to suite the project the 

initial file geodatabase (IFG) was created. This project’s focus included surface water and 

groundwater, and to incorporate this the initial IFG structure was modified. When Arc 

Hydro is used it automatically creates a feature dataset within the initial file geodatabase 

to store vector datasets, and a folder in the same directory to store all the rasters created 

from its tools. A scratch file geodatabase was created to hold the datasets that were not 

part of the final results. A third file geodatabase was created that held all the final results.  

 
Figure 4.2 Logical Model 

The initial geodatabase contained most of the data that were gathered, which were in 

both vector and raster formats. The precipitation data collected were initially stored in 

folders before being processed. This geodatabase also contained the feature dataset, 

named “Layers”, and feature classes that were created by Arc Hydro. The intermediate or 

scratch geodatabase was a temporary holding location for intermediate data created by 

the models and tools. The intermediate data were not meant to be long term. After all the 

models and tools have run successfully the intermediate data were deleted to clean the 

scratch geodatabase. The results geodatabase held all the final results produced by the 
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models and tools. These datasets would provide the client with the required information, 

and used in the final map documents created.   

4.3 Data Sources 

The client provided the Parcels dataset, while the rest of the required data had to be 

obtained from external sources. It was important that the data were freely available from 

a trustworthy source. To ensure correct and complete metadata, any data found and 

downloaded had to include the metadata or a link to the metadata. The datasets, where 

they came from, and what format they were obtained in are listed in Table 4-1.  

Table 4-1   Data Sources 

Dataset Source Format 

National Elevation 

Dataset (NED) 10m 

U.S. Department of Agriculture (USDA), 

Natural Resources Conservation 

Services, National Cartography & 

Geospatial Center 

Raster 

National Hydrography 

Dataset (NHD) 

U.S. Geological Survey in cooperation 

with U.S. Environmental Protection 

Agency 

Shapefile 

Land Cover 2011 National Land Cover (NLC) Raster 

Precipitation 

Frequency 

NOAA/NWS/Office of Hydrologic 

Development, Hydrometeorological 

Design Studies. 

NOAA Atlas 14 Volume 6 

Raster 

Precipitation Average PRISM Climate Group at Oregon State 

University 

Raster 

Soil (SSURGO) U.S. Department of Agriculture (USDA), 

Natural Resources Conservation Service 

Shapefile, 

tables, and 

access database 

Geology U.S. Department of Agriculture (USDA), 

Service Center Agencies 

Shapefile 

Wells Coachella Valley Water District 

(CVWD) 

Department of Water Resources (DWR) 

Excel 

Spreadsheet 

Parcel County of Riverside Feature Class 

PLSS GeoCommunicator – Bureau of Land 

Management’s publication site 

Shapefile and 

xml 

 

4.4 Data Scrubbing and Loading 

Most of the original datasets downloaded had a spatial extent that covered more than just 

the study area, as was in different projections. Before these datasets could be loaded into 

the database they had to be projected to WGS 84 UTM Zone 11N and clipped. Some of 

the datasets required extra preprocessing to ensure all required attributes and values were 
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present. Other datasets had to be converted from different formats, such as Excel 

spreadsheets, into Esri feature classes.  

4.4.1 Elevation Data Preprocessing 

The original elevation dataset had a 10m resolution and were available in 7.5 x 7.5 

minute quadrangles that covered the entire United States. Only data for Riverside and San 

Bernadino County were downloaded. To ensure the data were applicable for the analysis, 

the elevation dataset had to undergo processing. First, the quadrangles that fall within the 

watershed for the study area were mosaicked to create a mosaic Digital Elevation Model 

(DEM) dataset. This mosaic DEM was converted to a raster DEM dataset by creating an 

empty raster dataset and loading the mosaic DEM into the empty raster dataset. This was 

then clipped to the Whitewater and Salton Sea watersheds. A portion of the Salton Sea 

watershed was used since it contains a part of the aquifer.   

4.4.2 Soil Data Preprocessing 

The soil data downloaded consisted of five detailed shapefiles that cover most of the 

study area, and a more generalized shapefile that covers the whole State of California. 

The downloaded data included spatial data, tabular data, and an access database. To 

utilize this dataset, ArcMap Soil Data Viewer from NRCS was also downloaded and 

installed. Before the data could be utilized by the viewer and used in this project there 

were certain steps recommended by the NRCS that had to be completed first. These steps 

included: importing the empty template access database provided, ensuring the shapefile 

associated with that database was in the map document, the associated database was 

selected by the viewer, and that the Soil Qualities and Features-Hydrologic Soil Group 

was mapped to the shapefile. 

The soils were classified into hydrological soil groups (HSG’s) to indicate infiltration and 

runoff potential. The four HSG groups are A, B, C, and D. The SCS soil scientist 

definition of each group is described in Table 4-2 (USDA NRCS, 1986). 
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Table 4-2   Hydrological Soil Groups  

Hydrological 

Soil Group 

(HSG) 

Definition Texture 

A These soils have low runoff potential and high 

infiltration rates even when they are thoroughly wetted. 

They consist chiefly of deep, well to excessively 

drained sand or gravel and also have a high rate of 

water transmission (greater than 0.30 in/hr). 

Sand, loamy 

sand, or 

sandy loam 

B These soils have moderate infiltration rates when 

thoroughly wetted. They consist chiefly of moderately 

deep to deep, moderately well to well drained soils 

with moderately fine to moderately coarse textures. 

These soils have a moderate rate of water transmission 

(0.15-0.30 in/hr) 

Silt load or 

loam 

C These soils have low infiltration rates when thoroughly 

wetted and they consist chiefly of soils with a layer 

that impedes downward movement of water and soils 

with moderately fine to fine texture. These soils have a 

low rate of water transmission (0.05-0.15 in/hr). 

Sandy clay 

loam 

D Soils have high runoff potential. They have very low 

infiltration rates when thoroughly wetted. They consist 

chiefly of clay soils with a high swelling potential, 

soils with a permanent high water table, soils with a 

claypan or clay layer at or near the surface, and 

shallow soils over nearly impervious material. These 

soils have a very low rate of water transmission (0-0.05 

in/hr). 

Clay loam, 

silty loam, 

sandy clay, 

silty clay, or 

clay 

Note. Adapted from USDA – NRCS Urban Hydrology for Small Watersheds Technical Release 55 (1986) 

 

The detailed shapefiles, besides not covering the whole study area, also contained 

null values. All the shapefiles had to be clipped to the study area, and the detailed null 

features had to be intersected with the more general shapefile to obtain the missing 

values. The final features were then dissolved to get rid of unnecessary small features that 

were introduced when features were intersected.   

4.4.3 Land Cover Data Preprocessing 

The original raster land cover data downloaded from The National Land Cover Dataset 

(NLCD), encompassed California. This dataset was classified into different land cover 

types and symbolized accordingly. This dataset had to be cut down to the study area, 

which was done using the ArcGIS Extract by Mask tool. The Whitewater and a section of 

the Salton Sea watershed were used as the polygon mask.  
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4.4.4 Wells Data Preprocessing 

All the well data obtained were originally in Excel format from two different sources: the 

Coachella Valley Water District (CVWD), and the Department of Water Resources 

(DWR). The Excel spreadsheet formats from the two sources were distinctly different 

and required different preprocessing steps. Preprocessing the data resulted in point 

features that contained depth measurements for different dates.  

A main assumption made regarding the well dataset was that the well data obtained 

from the CVWD did not contain any information on the use of the wells, and the well 

data from DWR contained incomplete well use information. Therefore it was assumed 

that a well’s use is the same as the use of land the well falls in.  

The data the CVWD provided were in Excel spreadsheet format that contained the 

state well number, dates, basin name, and water depth measurement from the ground 

surface. These spreadsheets did not contain coordinate locations for each well, so it was 

necessary to extract each well coordinate from the state well number which indicates 

location down to a 40 acre parcel. This extraction was done by first splitting up the state 

well numbers into the township, range, section, quarter quarter, and well number values 

in the excel spreadsheet. A Python script was then created to use these values and match 

them to the PLSS data for Riverside. A new feature class was created from these matches 

containing all the above-mentioned attribute values. Since wells are point features, the 

new feature class was converted to points based on the center location of each parcel 

polygon. If there was more than one well for a 40 acre parcel, the amount of wells were 

created at random locations within that parcel and assigned a well number ranging from 

one to the amount of wells in the parcel.  The fields of the final feature class containing 

all these points had to be adjusted to ensure they contained depth below ground surface, 

the well station number, the measurement, the date of the measurement, well use, and the 

basin name. 

The water level for each well was available as feet below ground level. By 

estimating the locations of the wells, the accuracy of both the ground level associated to it 

and the groundwater surface are lowered. Since the well use was determined by the land 

use related to its location, this was skewed as well. If the correct locations of these wells 

were obtained in the future, it would increase the accuracy of the ground water surface 

and assigned land use.  

The well data from the DWR were downloaded from the DWR water data library. 

The downloaded folders contained three CSV delimited files. The two files used were 

GST, which contains the location information for each well, and GWL, which contains 

the groundwater level measurements at different dates. The CSV files were put into a file 

geodatabase before being turned into point features. Figure 4.3 shows the model used to 

achieve this.   
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Figure 4.3 Table to Point Feature Class 

After the points were created they were joined to the GWL files and point features 

were created with the different dates measurements. A final feature class was created 

with a combination of all the well locations and their respective measurements. The fields 

of the feature class had to be adjusted to ensure the depth below ground surface, well 

station number, measurement, date of the measurement, well use, and basin name fields 

existed and their naming were correct. 

After the well data from the CVWD and DWR were combined, there were a total of 

359 wells in the dataset. The dataset contained well measurement records that date back 

to 1926, and records as recent as 2015. Even though the well measurement dates are 

within such an extensive time period, the temporal coverage is not complete for each 

well. Thus, some well are missing data for specific months in specific years, or only 

contain measurements in a short time period.  

4.4.5 Hydrography Data Preprocessing 

The National Hydrography Data (NHD) were downloaded per county. The counties 

necessary to cover the watersheds for the study area were Riverside, San Bernadino, San 

Diego, and Imperial County. The Riverside County data contained most of the rivers and 

lakes required for the preprocessing of other data and analysis, but the other county data 

were also required to have a complete coverage. The datasets were obtained in the North 

American Datum of 1983 (NAD83) UTM Zone 11N, and had to be projected to WGS 84 

UTM Zone 11N. The data from the different counties were combined into one line 

feature class and then clipped to the Whitewater and Salton Sea watersheds respectively. 

The data from the NHD included the watershed and basin data (HU8, HU10, and HU12), 

and required clipping and projecting of the data. The Whitewater watershed was used as 

the study area, because it covers the aquifer area. The basins within this watershed were 

extracted from the original feature class.   

4.5 Summary 

Chapter 4 discussed the different data sources, what data were needed, what the database 

structure looked like, and all the preprocessing that went into preparing and creating the 

initial data. The client provided the Parcels dataset; the other datasets were obtained from 

various other trustworthy sources. During the process of obtaining the data from the other 

sources it was verified that the metadata were present. All the data required some degree 

of cleaning or preprocessing, and had to be projected to WGS 84 UTM Zone 11N and 

clipped to the study area. The extent of preprocessing necessary for the elevation, soil, 
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land cover, well, and hydrograph was discussed. The assumption that the well’s use 

relates to the land use of its location had to be made due to missing information. The 

inclusion of error due to estimating some of the wells was also discussed.  
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Chapter 5  – Implementation 

The estimation of infiltration and water level required several different mathematical 

formulas and workflows. Current workflows in the GIS software that are simple but 

tedious to repeat were automated. For the implementation of the project solution, both 

ArcGIS Model Builder and Python scripts were utilized. Model Builder did not contain 

all the functionality necessary to create all the tools required. To provide the remaining 

functionality, Python scripts were written to create custom tools that leveraged pre-

existing ArcGIS tools and Excel read/write capabilities. These scripts were created to 

perform specific tasks that were either used as a stand-alone tool or in a Model Builder 

model.  

This chapter explores the GIS methods that were utilized to create tools that met the 

project requirements. The methods are discussed under three main headings: Infiltration 

Using Curve Number, Land Cover Change, and Water Level Estimation. Each section 

breaks down the workflow into detailed steps to explain what was used, how it was used, 

and why.  

5.1 Infiltration using Curve Number 

Infiltration is precipitation that seeps into the soil, and it is a main contributing factor for 

ground water recharge. The conditions above and below ground influence the amount of 

infiltration. The National Research Conservation Service (NRCS), previously named the 

Soil Conservation Service (SCS), developed the Curve Number (CN) parameter by 

combining the effect of soils, watershed, and land use into this single parameter (Soil 

Conservation Service, 1989).  This project used the NRCS-CN method as the basis for 

calculating the infiltration. This method is based on a relationship between the amount of 

precipitation received, initial losses, and maximum retention potential. A workflow for 

estimating the infiltration was created using Model Builder. This consisted of individual 

tools, created from models and Python scripts, to calculate the required attributes and 

values. The following subsections contain detailed discussion about the GIS workflows 

for generating the attributes and values, as well as the formulas for estimating infiltration 

with the CN method. Figure 5.1 shows the workflow for the infiltration calculation 

model. 
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Figure 5.1 Infiltration Estimation Workflow 

5.1.1 Curve Number Calculation  

The CN is an empirical parameter used in hydrology for predicting runoff or infiltration 

from excessive rainfall. The CN values in this project ranged from 35 to 100. Lower 

numbers indicate a low runoff potential with higher infiltration rates; larger numbers 

indicate a higher runoff potential with lower infiltration rates. Figure 5.2 shows the 

workflow used to calculate and assign the Curve Numbers. 

 
Figure 5.2 Curve Number Calculation Workflow 
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The calculation of the CN values required three input datasets: land cover, 

hydrological soil group, and CN table. For the models to run successfully, each of these 

datasets required the presence and calculation of certain fields. The land cover data had to 

be in a polygon format and contain the field “LandCover,” which specified the land cover 

types of the area. The hydrological soil group data had to have the field “HG” which 

specified the soil hydrological groups in the study area. The first step in this workflow 

was to use the intersect tool to combine the land cover and hydrological soil group data. 

Next, the “LC_Soil” field was created to store all the land cover and hydrological soil 

group combinations. This field was populated using the field calculator tool to join the 

“LandCover” and “HG” values of each record. These values were required for the join 

with the CN table. The CN table contained the “LC_Soil” and “CN” fields. These fields 

were created during the initial setup of the table. The “LC_Soil” field was populated with 

all possible combinations of the land cover and hydrological soil group. The “CN” field 

was populated with the Curve Number associated with each combination. The join field 

tool was used to add the “CN” field from the CN table, providing the Curve Numbers for 

each land cover/hydrological soil group combination to the intersected data. These 

polygons were then converted to rasters representing the Curve Numbers. 

5.1.2 Rainfall Extraction 

Rainfall was one of the main component of the infiltration calculation because it 

determined the time intervals and periods for which the infiltration could be calculated. 

The precipitation data from PRISM encompassed the entire United States. The PRISM 

data used had two different resolutions: the 30-year averages, 1980-2010, for each month 

had 800 m resolution; and the monthly data for every year from 1981-2014 had 4 km 

resolution. All the PRISM data had to be resample to the elevation cell size and clipped 

to the study area.  

 
Figure 5.3 Precipitation Extraction 
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By using the 30-year average precipitation data an infiltration estimation was 

calculated for each month. Thus, the surfaces generated represents an infiltration 

possibility based upon the 30 years used. The 4 km precipitation data were used to 

calculate the infiltration that could occur in a specific month of a specific year.  

5.1.3 Slope 

The infiltration calculation method used in this project included slope in the formulas. 

The slope is required to have a unit of decimal degrees. Figure 5.4 shows the workflow 

followed to calculate the slope.  

 
Figure 5.4 Slope Calculation 

The first step was to use the Arc Hydro fill tool to remove any possible sinks in the 

elevation data. This filled elevation was then reconditioned to the streams of the study 

area. To ensure no sinks were introduced during the reconditioning, the fill tool was 

implemented a second time, creating the second and final filled elevation data. The final 

filled elevation data were used in the slope tool to generate the slope in degrees for the 

study area. The Arc Hydro tools are based on tools from Spatial Analyst extension. The 

fill tool can also be found under the Spatial Analyst Tools toolbox, but the reconditioning 

tool belongs to the Arc Hydro toolset.  

5.1.4 Calculating β 

 Craciun et al. (2009) introduced the β coefficient to the calculation of infiltration. This 

was used to evaluate the vegetation’s capacity to lag the drainage to soil for a part of the 

water quantity initially stored. This coefficient was created because of the idea that not all 

water quantities retained by a land cover type are lost and contribute to define the initial 

loss. A part of this initially retained water will be drained and reach the soil to contribute 



31 

to the infiltration process. Table 5-1 shows the values used for the β coefficient according 

to land use (Craciun, Haidu, Magyasi-Saska, & Imbrone, 2009). 

Table 5-1   Estimation of β Coefficient According to Land Use 

Land Use β 

Forest 0.5 

Shrubbery 0.4 

Grass/Pasture 0.3 

Agricultural 0.2 

Settlement 0.1 
Note. Obtained from Craciun & Haidu (2011) 

 

To utilize this coefficient in the final infiltration calculation, a raster with the β 

values was created. As shown in Figure 5.5, the land use raster (NLCD) had to be 

reclassified to match the values in the β coefficient table.  

 
Figure 5.5 β Coefficient 

5.1.5 Infiltration Calculation 

Once the attributes and values of the data were calculated, and all required data were in 

the correct format, an algorithm based on the classical NRCS-CN method was used to 

calculate the infiltration. To estimate infiltration – cumulative infiltration – NRCS 

proposed a relationship that depends on the quantity of the precipitation, the initial losses, 

and maximum retention potential. Equation 5-1 shows the original form of the equation 

(Craciun et al., 2009; Musy & Higy, 1998).  

𝐹 =  
𝑆 ∗ (𝑃 − 𝐼𝑎)

𝑃 − 𝐼𝑎 + 𝑆
 (5-1) 

where: 

F = Cumulative infiltration (mm) 

P = Rainfall (mm) 

Ia = Initial abstraction (evaporation, retention in the canopy); 

S = Maximum capacity of retention; 

The NRCS proposed an empirical relationship of Ia to S, shown in Equation 5-2. In 

the original development the Initial Abstraction Ration (λ) was set to a value of 0.20 

(Craciun et al., 2009; Hawkins et al., 2003; Plummer & Woodward, 1998). 

𝐼𝑎 = 0.2 ∗ 𝑆 (5-2) 
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This equation was adjusted by Craciun et al. (2009) to take into account the β 

coefficient. This adjusted equation is shown in Equation 5-3. 

𝐼𝑎 = 0.2 ∗ 𝑆 ∗ 𝛽 (5-3) 
The potential maximum retention was calculated by using Equation 5-4. This 

equation is used when the quantity of water is in millimeters (mm), which was 

appropriate since the precipitation data was in millimeters.  

𝑆 =
25400

𝐶𝑁
− 254 

(5-4) 

where: 

S = Water retention 

CN = Curve Number assigned 

Some weaknesses in the original NRCS-CN model were identified, the most 

important problem being the failure to take slope into account. The NRCS-CN formula 

was adjusted, as shown in Equation 5-5, to take into account this parameter’s 

mathematical relation to the infiltration (Craciun et al., 2009; Gajbhiye & Mishra, 2012).  

𝐹 =
𝑆 ∗ (𝑃 − 𝐼𝑎)

𝑃 − 𝐼𝑎 + 𝑆
∗ (1 −

𝐼𝑏
100⁄ ) 

(5-5) 

where: 

Ib = Slope in degrees 

The workflow developed for indirect determination of the infiltration of rain was 

based on integrating all the parameters defined by the NRCS method. The precipitation 

data used in this project were monthly data per year and monthly averages from 30 years, 

thus the infiltration calculated was either the monthly infiltration for a specific year or the 

estimated infiltration for a specific month based upon the 30-year average precipitation.  

5.2 Land Cover Change (LCC) 

Changes in land cover can affect the hydrological cycle, such as the infiltration within a 

specific area. To project influence future development would have, it was necessary to 

create a method to adjust the current land cover dataset with the new land cover 

classification for an area of interest (AOI). Molis (2012) created a geoprocessing tool to 

illustrate how land cover change in a user specified region would alter the recharge rates, 

using the island of Hawaii as a study area. 

To create a tool for land cover change, a Python script was written to leverage 

ArcGIS tools through ArcPy. A Python script provides more control over how the tools 

are run, how data and records are handled, and how the outputs are generated. To perform 

the necessary functions, the script utilized the ArcGIS Spatial Analyst functionality 

through ArcPy, and the array functionality provided the NumPy Python module. NumPy 

provides an N-dimensional array type to work with raster data. Figure 5.6 shows the 

overall workflow followed to change the land cover classification. 
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Figure 5.6 Land Cover Change Workflow 

The developed Python script can be divided into seven steps, and contains two 

functions. The seven steps, shown in Figure 5.7 include: loading the parameter values 

specified by user, extracting the spatial location information of the land cover raster, 

loading the data into an array, extracting the area of interest (AOI) pixels, assigning new 

land cover classification values, saving the new land cover raster dataset, and updating 

the raster’s attributes. The two functions were used to find the pixel value from a land 

cover description, and to find the land cover description from a pixel value. 

 
Figure 5.7 Python Script Workflow 

The script starts by loading the five user specified parameters into variables. Three of 

the five parameters were input datasets: the original land cover, the selected Coachella 

Valley parcels, and the Coachella Valley study area. The remaining parameters were the 

new land cover raster location, and the new land cover classification selected from a 

dropdown list.  Next, the script extracted the spatial information necessary to create the 

reclassified land cover dataset. This information was extracted from the metadata of the 

original land cover dataset specified by the user. The spatial location information was 
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used when the NumPy arrays were set up, the AOI was extracted, and when the new land 

cover dataset was saved.  

Initially the script created two NumPy arrays, one for the original land cover dataset 

and an empty one to store the output results. Next, the AOI pixels were extracted from 

the original land cover dataset using the Extract by Mask function from ArcGIS. This 

mask consisted of the parcel polygons the user selected from the Coachella Valley 

Parcels. These AOI pixels was then converted to a NumPy array using the ArcGIS Raster 

to NumPy function, and had the same number of rows and columns as the previously 

created NumPy arrays.  

In order to assign new values to the extracted pixels, a function was used to find the 

pixel values from the land cover description. This function used the ArcPy Data Access 

module to iterate through the data and a dictionary to find the corresponding values. Once 

the new values were assigned the resulting NumPy array was converted back to a raster 

by using the NumPy to Raster function from ArcGIS. This raster was then saved to the 

location specified by the user. To provide this new raster with the land cover descriptions 

associated with the pixel values, a second function was used. This function finds the land 

cover description from the pixel values. As with the first, this function used ArcPy Data 

Access module to iterate through the data and a data dictionary to find the corresponding 

values.  

5.3 Water Level Estimation 

The groundwater level was estimated from the well data. The well data originally 

contained the depth to water in feet, but this was adjusted to millimeters (mm) to 

correspond with the infiltration that was in mm. The 2-D groundwater levels, water depth 

surfaces, were created using the Spline interpolation method. Since the wells did not 

cover the whole Coachella Valley aquifer, some extrapolations were necessary. The 

depth values of the wells were positive, with higher values indicating a water level 

further below the ground surface. These values were adjusted to be negative values below 

ground surface in order for the 3-D surfaces to be generated with the correct orientation 

and not up-side-down. Figure 5.8 shows the workflow followed to generate the water 

level surfaces. The following subsections provide a detailed explanation of each step.  

 
Figure 5.8 Water Level Estimation Workflow 
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5.3.1 Well Data Preprocessing 

The water depth values of the well data required some adjustment before they could be 

used in the groundwater surface creation. Figure 5.9 shows the workflow used to adjust 

and calculate the values. The depth to water values were in feet, but meters were more 

appropriate since the infiltration was calculated in mm. For conversion from feet to 

meters the constant value of 0.3048 was used. The measurement values in the data were 

positive, with the larger values indicating greater depth below the ground elevation and 

the smaller values indicating closer levels closer to the ground. To convert the 

measurement values from feet to meters, a new field was added and the field calculator 

was used to multiply the values in feet with -0.3048. The negative of the conversion 

constant was used to clarify that the values are beneath the ground surface, and when they 

are used in a 3-D environment they will extrude downward as they should. 

 
Figure 5.9 Depth to Water Adjustment Workflow 

 

5.3.2 Water Surface Interpolation 

A main component of this project was to visualize the groundwater level of the aquifer by 

creating surface rasters. Since the well data were not uniformly distributed and not 

complete for every month and every year, interpolation and extrapolation were done on 

averages to create the water level surfaces. These surfaces was constricted to a 1.5 

Kilometer (km) buffer around three out of the four aquifer subbasins: Mission Creek, 

Desert Hot Springs, and Indio. A buffer was used to ensure all possible wells were 

included in calculations. The fourth subbasin was not used for this analysis because the 

number of wells located in it and the amount of measurements taken from there were too 

low, which resulted in too much extrapolation. Raster were extracted in the model to the 

boundary of the three subbasins to produce the final surfaces. The Spline with Barriers 

interpolation method was used to create rasters that represent the groundwater depth.  

Two tools were developed to generate these surface rasters. The first tool generated 

monthly surface rasters for specified years, and the second tool generated surfaces for the 

monthly averages of a specified time period. The surfaces were monthly based to 

correspond to the rainfall data that were in monthly intervals. The first tool, generating 

monthly surfaces for a specified year, was developed as a Python script. The second tool, 

generating the monthly averages, was developed using ArcGIS Model Builder. Both of 

these tools are based on a similar workflow, which is shown by Figure 5.10.  
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Figure 5.10 Water Depth Surface Workflow  

The workflow starts with selecting the records from the well data that was measured 

in the specified time period, which was provided by the user. The selected records were 

then divided up into the different months, and all further calculations and analysis were 

run per month. After this division, the summary statistics tool was used to calculate the 

mean of the depth to water measurement for each well. This table was then joined to the 

well data that contained only one entry for each well. This was done to assign the mean 

water depth value for this instance to the well location. Next, the Spline interpolation tool 

was used with these values and the 1.5 km buffer around three of the aquifer subbasins. 

This generated raster surfaces representing the water depth, and the values were 

constricted to the buffer area.   

The Spline interpolation method creates a smooth surface that will go through all the 

measurement points used, and will follow the trend set by the points in areas where there 

are no measurements. Even though the Spline surface goes through all the measurement 

points it is not restricted to the minimum and maximum values of the data. When the 

Spline interpolation method is used with the inconsistent data and data not covering the 

whole study area some problems arise. For example, when the points closest to the border 

have an increasing trend, then the spline surface will continue this trend and could result 

in very high values at the border.  

These two developed tools differ from each other in that they used the start and end 

date provided by the user differently. The first tool generates monthly surfaces for every 

year from the start to end date. Thus, it runs the whole workflow for every year in the 

time period specified. The second tool generates an average for each month from the start 

to the end date. Thus, it runs the workflow once and only generates 12 rasters surfaces.  
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5.4 Summary 

This chapter discussed how a set of tools that met the client’s requirements was created 

by combining ArcGIS Model Builder models and Python scripts. These tools were used 

to calculate all the attributes and values needed to generate the final results for the 

infiltration, land cover change, and water level surfaces. For the infiltration calculation, 

the tools generated raster sets for CN, precipitation, slope, β, maximum retention, initial 

losses, and finally, the infiltration for each month. The tools associated with the water 

level estimation ensured that the depth to water values were appropriate, and used these 

values to calculate the water surface rasters and extract them to the specified area.   
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Chapter 6  – Results and Analysis 

This chapter discusses the different tools developed for the project, and results generated 

from running them. The infiltration tools and the associated results are discussed in the 

first section. This is followed by an explanation of the land cover change tools, and an 

illustration of how this tool works. The next section explores the water depth surface tool 

the results generated, and a method to visualize the surfaces and the differences between 

them.  The last section explains how the water depth surfaces and the wells were 

visualized in a 3-D.  

6.1 Infiltration 

The methodology outlined in Chapter 5 was followed to develop a set of tools that 

calculate the infiltration. This section explains the tools by looking at how they are used 

and what they require from the user. Results generated by these tools are then shown and 

explained.  

6.1.1 Infiltration Tools 

The development of the infiltration tool was divided into three steps: generate the CN 

raster, calculate all remaining parameters, and calculate the final infiltration by using the 

results from step one and two together with precipitation data.  

The user interface for the tool used to generate the Curve Number raster is shown in 

Figure 6.1. The user specifies three input datasets and one output location. The inputs are 

the land cover dataset, the soil dataset, and the CN table used to assign CN values. The 

land cover dataset must be a raster dataset and contains the Land_Cover field. The soil 

datasets must be a polygon dataset and contain the HG field, and the CN table needs to 

contain the LC_Soil and CN fields. The output location is necessary for the resulting CN 

raster.  

 
Figure 6.1. Create Curve Number Raster User Interface 
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Figure 6.2 shows the result of the first step. This output will have the same resolution 

as the land cover input data. The CN values for this raster range from 35 to 100, where 

low values indicate areas with higher infiltration potential and high values indicate areas 

with low infiltration potential.  A value of 100 indicates the lowest infiltration potential. 

The graph in Figure 6.2 illustrates the distribution of the CN values. This graph shows 

that most of the CN values fall in the mid-70’s, while the second and third most values 

fall between 35 and 60. This indicates that the region has more areas with a higher 

infiltration potential. 

 

 
Figure 6.2 Curve Number Raster 

The second step calculated the parameters of the infiltration equation: adjusted slope 

(α), reclassified land cover (β), maximum retention (S), and the initial abstraction (Ia). 

After the initial run, the first and second step tools just needed to run when a different 

location was taken into account or when there was a change in the land cover dataset.  

Figure 6.3 shows the user interface for the second step’s tool.  
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Figure 6.3 Calculating Infiltration Parameters User Interface 

The required user input datasets are land cover, elevation, and the CN raster from 

step one. The rest are the output locations for the four parameters.  The resulting rasters 

for the parameters are shown in Figure 6.4. 
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Figure 6.4 Results from Step Two of the Infiltration Calculation 

There are two variations of the final step: running for a single instance, and running 

for every raster in a workspace that meets the name requirement. Both variations follow 

the same basic steps, but they are used differently.  

Figure 6.5 shows the user interface to run the tool for a single instance, variation 1. 

The user must specify the parameters calculated in step two (Figure 6.4), except for β, 

and the precipitation data to be used. A location for the Scratch database (location for 

intermediate results) and the final infiltration calculated also need to be provided.  
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Figure 6.5 Calculate Final Infiltration User Interface, Variation 1 (Single Instance) 

Figure 6.6 shows the user interface to run the tool on a database, variation 2. Here 

the previously calculated parameters have to be specified (Figure 6.4) except β, as well as 

the input workspace containing the precipitation datasets, the output database for the 

infiltration results, and the Scratch database. The input workspace should contain rasters 

with “PRISM” at the start of their name. The resulting infiltration datasets will be named 

based on the associated precipitation data. 

 
Figure 6.6 Calculate Final Infiltration User Interface, Variation 2 (Workspace) 
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6.1.2 Infiltration Results 

The infiltration was first estimated for each month using the 30 year averages (1980 – 

2010) from the 800m PRISM data. Figure 6.7 shows the results from January to June, and 

Figure 6.8 shows the results from July to December. These results show a trend of higher 

infiltration during the winter months compared to the summer months. The western 

mountainside and the north of the Coachella Valley show a higher infiltration trend in 

both summer and winter months. 
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Figure 6.7 Infiltration from PRISM 30 Year Precipitation Averages, January to 

June: a) January, b) February, c) March, d) April, e) May, f) June. 

d) January 

e) February 

f) March 

a) February 

b) April 

c) June 
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Figure 6.8 Infiltration from PRISM 30 Year Precipitation Averages, July to 

December: a) July, b) August, c) September, d) October, e) November, f) December. 

For shorter time periods, the user can use the 4 km PRISM data to calculate 

infiltration. The 4 km data can be used to calculate infiltration for each month between 

1981 and 2014. For an example the infiltration was calculated each month in 2013 and 

2014. Figure 6.9 shows a comparison between the infiltration and the precipitation in 

December of these two years.  

a) July 

b) September 

c) November 

d) August 

e) October 

f) December 
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Figure 6.9 Comparison between Infiltration (Left) and Precipitation (Right) for 

December, 2013 and 2014.  

The comparison in Figure 6.9  illustrates that the infiltration for a specific time 

period is related to the precipitation. Thus, the less precipitation that occurs the less 

infiltration can occur.  

6.2 Land Cover Change Tool 

A potential use for these sets of tools is to show the effects that a change in the land cover 

have on the infiltration. The land cover change (LCC) tool developed for the project 

provided the ability to change the land cover classification of a selected area to a land 

cover classification specified by the user. The land cover classifications available in the 

tool are limited to those of the current study area, but can be expanded for use in other 

regions. Figure 6.10 shows the user interface of the LCC tool and an area of interest 

selected. The user provides the original land cover data that will be changed. Next the 

user specifies the CV_Parcels layer from the dropdown list and select parcels from this 

dataset. This indicates the area of interest where the land cover values will be reassigned. 

The user will be prompted to provide a name and location for the new land cover dataset. 

A dropdown list of possible land cover classification is provided. The user selects one of 

these land cover description to assign to the area of interest and provides the location of 

the study area polygon. In this example the Whitewater River catchment and a part of the 

Salton Sea Catchment were used.  

a) 2013

b) 2014
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Figure 6.10 Land Cover Change Tool User Interface with Selected Parcels in Blue 

The following are some examples of how these tools would work. The setup of the 

tool and the results when an area is selected are shown in Figure 6.10. Figure 6.11 

illustrates how a few Cultivated Crops and Hay/Pastures areas are changed to a 

Developed, High Intensity area. The light blue lines indicate the parcels that were 

selected as the area of interest to change the land cover classification. When comparing 

the left and right images in Figure 6.11, it is clear that the land cover classification has 

been changed. The light brown/yellow indicating Cultivated Crops/Hay Pasture was 

changed to dark red, indicating Developed, High Intensity land cover.  

 
Figure 6.11 An Example of Changing Cultivated Crops and Hay/Pastures Areas 

Changed to Developed, High Intensity 
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After the LCC tool is used to change the land cover classification of an area of 

interest, the infiltration tools are run again to see what the new infiltration will be. All 

steps of the infiltration calculation must be run.  

6.3 Water Depth Surfaces 

The methodology described in Chapter 5 was used to develop tools to generate water 

depth surfaces (WDS). These were developed by using ArcGIS Model Builder and 

Python scripts. They generate results on a monthly basis for different years, and monthly 

averages for a time period. These results are compared to gain a better understanding of 

the aquifer and explain possible problems associated with the current data. 

6.3.1 Water Depth Surface Tools 

The water depth surface (WDS) tools were divided up into two parts: ensure the 

measurements are in the required units; for the second part the main tool generated the 

water depth surfaces using the spline interpolation method.  Figure 6.12 shows the user 

interface for the first part of the tool. This tool requires the user to only select the well 

point features with the measurement information. One field is then added to the dataset.  

 
Figure 6.12 Unit Check Tool User Interface.  

The second part of the tool generated the WDS. There are two variations of this 

second part: one to generate monthly WDS for each year in a specified time period, and 

one variation that generates average monthly WDS for time period specified. These two 

variations are based on the same back-end methodology.  

Figure 6.13 shows the user interface to generate monthly WDS for each year. This 

requires the user to specify the well dataset with all measurements and the well location 

dataset. Next, the user needs to insert a start and end year, thus the process will be run for 

every year from beginning to end. The user must specify the cell size of the raster surface 

to be generated. A smaller cell sizes will cause the tool to take longer to run. The dataset 

containing the three aquifer subbasins needs to be specified by the user, as well as the 

location for the intermediate results (Scratch Database) and for the final results (Results 

Database).  
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Figure 6.13 WDS Generation Tool User Interface, Variation 1 (Monthly WDS) 

 Figure 6.14 shows the user interface used to generate monthly averages for the 

specified time period. This tool required the wells dataset with the measurement and 

location information, and the cell size of the surfaces to be generated. The user must 

specify the start and end date, which designates the period to average for each month. It 

also requires workspace locations to be set for the intermediate results (Scratch 

Database), and the final spline surfaces that were generated and extracted to the study 

area (Results Database). Lastly it requires the dataset with the three aquifer subbasins. 
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Figure 6.14 WDS Generation Tool User Interface, Variation 2 (Average Monthly 

WDS) 

6.3.2 Water Depth Surfaces Results 

Both the variations of the WDS generation tool was run to obtain results to compare and 

analyze. The amount of wells and the measurements from each well used when the tool is 

run was also investigated, since it was established that the temporal data coverage of the 

wells are not complete. Figure 6.15 shows the wells and how they are distributed across 

the three subbasins: Desert Hot Springs, Indio, and Mission Creek.  
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Figure 6.15 Well Distribution in Three of the Four Coachella Valley Subbasins 

Monthly results were generated for 2012 and 2014, and Figure 6.16 shows January 

and July for these two years with the wells used to generate these surfaces. When each of 

these four surfaces were generated, the amount of measurement records selected by the 

tool differed. This has to be kept in mind when the user analyzes these images to see 

changes in the surfaces and find possible trends, since this problem with the temporal 

data coverage influences the accuracy and consistency of the surfaces. 
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Figure 6.16 WDS Results for 2012 and 2014, for January (left) and July (right). 

The average monthly WDS for a specified time period were then generated by 

running the Water Depth Average Surfaces tool, which is variation 2 of the WDS 

generation tool. Two sets of three year average surfaces were generated as examples: 

2003 to 2005, and 2012 to 2014. The average January and July surfaces for both of these 

three year periods are shown by Figure 6.17, together with the wells used to generate the 

surfaces. By looking at these figures it is clear that the number of wells used to generate 

each of these average surfaces differ, which is due to the incomplete temporal coverage.  

To obtain the average value for each well that has measurements within this time period, 

the summed measurements were divided by the number of records used for that well.  

2012

 
 a) 2011 

2014

 
 a) 2011 

62 Measurements used  61 Measurements used  

82 Measurements used  128 Measurements used  
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Figure 6.17 Three Year Average WDS of January (left) and July (right) 

The surfaces generated by the WDS tools can be used to gain a better understanding 

of the WDS and how it changes over time. One method to utilize these surfaces is to 

calculate the difference between two surfaces to see the change over time. To illustrate 

this two years were considered: 2012, and 2014. The differences between two winter 

months, a winter and summer month, and start and end of the year were generated.  

Figure 6.18 shows the results obtained for the difference between WDS’s. These 

differences can then be examined by the user to find possible trends. 

2003 to 2005

2012 to 2014

382 

Measurements 

used 

182  

Measurements 

used 

222 

Measurements 

used 

286 

Measurements 

used 
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Figure 6.18. Differences between WDS’s 

In Figure 6.18 the purple colors indicate where January’s water depth was greater, 

and the green colors indicate where the compared month (February, July, and December) 

showed deeper levels. The user can visually compare these images to find trend over 

years or between months. For example, the difference between January and February of 

2012 and 2014 is similar, while the difference between January and December in these 

two years are very different.   

6.3.3 3-D Visualization 

To help gain a better understanding of the water depth level and how it changes over time 

a 3-D environment was used. The raster surfaces generated and the well measurements 

were visualized in a 3-D setting, which required ArcScene. A profile view was also 

created of the wells and their measurements to illustrate the rise and fall of the water 

depth.  

When the surface rasters generated were pulled into the 3-D environment, flat 

surfaces were created, due to the difference of the vertical values being too small. These 

flat surfaces were not useful for visualizing the water depth level or to illustrate the 

differences between them. To obtain better 3-D visualization the surface values had to be 

adjusted. To adjust these values they were firstly extruded by a 100. This kept the value 
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ratio the same, while producing surfaces that better represented the differences in water 

levels.  

The well data were also pulled into the 3-D setting to visualize how the wells and 

their measurements were distributed; not only on but beneath the ground surface. They 

were converted to a point feature class that contains z-values (elevation) by using the 

ArcGIS Feature to 3-D by Attribute tool. Next, they had to undergo the same adjustment 

as the surfaces to see the difference between the measurements. Figure 6.19 shows a side 

view, as seen from the east. The dark blue points are deeper beneath the ground surface 

than the yellow points. Looking at this side view, the middle of the aquifer contains more 

wells than the Salton Sea area (left of image) or the northern area (right of image). 

  
Figure 6.19 Two Side Views of all the Wells and their Measurements (1926 to 2015) 

Taking a closer look at specific wells can help determine if an area’s water level is 

stable or unstable. It can also give an indication of the relationship between the recharge 

and the discharge. Since when the recharge balances out the discharge the water depth 

should stay the same, and would be seen as stable. Figure 6.20 shows the location of the 

ground surface of well number 04S06E18P01S and 04S06E22C01S, and their 

measurements classified according to the year it was measured.  

Salton Sea 

Salton Sea 
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Figure 6.20 Closer Look at Two Wells 

For these two selected wells the water depth has not been stable, as the 

measurements taken in earlier years are closer to the ground surface than the more recent 

measurements. Figure 6.21 shows a zoomed-in image of the wells in Figure 6.20. This 

image shows the trend of these wells water depth getting deeper clearly.  

 
Figure 6.21 Close-up of Wells 04S06E18P01S and 04S06E22C01S 

Lastly, a profile view of the wells and their measurements were created. This helped 

to understand the rise and fall of the water for a specific well, or a group of wells. To 

illustrate this three wells were selected, shown by Figure 6.22.  
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Figure 6.22 Three Wells Selected for Profile View 

Figure 6.23 shows the profile view of these three wells: 03S05E17J01S, 

04S06E18P01S, and 04S06E22C01S.  

 
Figure 6.23 Depth to Water Profile 

All three of these wells show an overall increase in the depth to water, thus the water 

level is getting deeper below the ground surface. Wells 03S05E17J01S and 

04S06E18P01S started to show a decrease in the water depth, water level increasing and 

getting closer to ground surface, during their most recent measurements. This could be an 

indication of better recharge in the area.  
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6.4 Summary 

The tools developed and what their results could be were discussed in this chapter.  The 

user can calculate the infiltration for different precipitation data, and examples were used 

to show what the results would look like. The land use of specified areas within the study 

area can be changed when the user interactively selects and area of interest and new land 

cover classification. The infiltration calculation can be run on this new land cover to see 

what the change in infiltration would be. The last tool discussed generates water depth 

surfaces, which was generated from the well measurements. Methods of how these 

surfaces could be used by the user were discussed, and included looking at the 

differences between surfaces and visualizing the results in 3-D.  
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Chapter 7  – Conclusions and Future Work 

The Coachella Valley is an oasis in a desert region, due to its aquifer. This aquifer is a 

main source of water for the region. As long as the aquifer can still provide water, the 

region will continue to grow and develop. Observation over the years show that in some 

areas the depth of water table is getting lower. When this aquifer is depleted it will 

collapse and result in structural and infrastructure damage. The CVEP needed a method 

to analyze the Coachella Valley water budget, to help with future development decisions. 

The GIS tools developed in this project provide a way to easily analyze and visualize 

aspects of the water budget.  

The tools were developed using Python scripts and ArcGIS Model Builder. Python 

was used for data preprocessing and cleanup. The adjusted Curve Number infiltration 

method was integrated with ArcGIS through a custom set of tools. This toolset consisted 

of the three parts to calculate the infiltration: calculating the CN raster, calculating the 

equation parameters, and calculating the final infiltration. The water depth surfaces were 

generated using a different set of custom which consisted of two parts: converting 

measurement units, and generating WDS using the spline interpolation method. Both 

toolsets were created using ArcGIS Model Builder and Python scripts. The Land Cover 

Change (LCC) tool was created using a Python script, allowing the user to change the 

land use classification for selected parcels and a selected land use classification.  

The developed system included an initial ArcGIS file geodatabase, which housed 

most of the data required by the different tools, such as elevation, land cover, CN table, 

and soil datasets. The 800 m and 4 km PRISM precipitation data were stored in their own 

geodatabases, and each also had a geodatabase to store the clipped and resampled rasters. 

Empty file geodatabases were provided to store the results from the infiltration, WDS, 

and LCC toolsets, to better organize results. 

In calculating infiltration a standard value was used for the initial loss. In the future a 

study could be done to adjust this value to more accurately represent the Coachella 

Valley and make the infiltration estimation more accurate. The two sets of precipitation 

data used in this project had coarse temporal or spatial resolution. Using precipitation 

data with improved temporal and spatial resolution, better comparisons could be made in 

the future between the water levels, infiltration, and recharge to better understand the 

water budget. Future studies could look into using different kind of precipitation data 

from different sources, such as data from NOAA, to obtain better resolution and to 

examine and compare the results from the different precipitation data.  

It was not possible to calculate the total recharge of the aquifer in this project, 

because some required data were not available. Future studies could use the water budget 

equation to calculate the total recharge of the aquifer. This equation required the recharge 

by human factor, the site location, and amount. Using the Curve Number method, the 

runoff could also be calculated and used in the water budget equation with higher 

accuracy with improved precipitation data. Other future studies could also investigate the 

hydraulic conductivity, formation porosity, saturated thickness, and formation 

transmissivity to calculate the Darcy’s Flow of the infiltrated water (groundwater flow). 

This would provide information on the amount of groundwater from infiltration each 

subbasin will receive. This information can then be used in the water budget equation to 

improve its accuracy.   
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Currently well water levels are not measured on a consistent basis, future studies 

could look into how to improve the data collection, especially more consistent 

measurement dates, of these wells to generate a more accurate interpretation of the water 

depth surfaces. The well water usage is also not tracked or updated after the initial permit 

was issued. The data used in this study had to rely on incomplete well water use data. 

Future studies could use updated well use data or find a method to update this usage 

information, which will provide a better look at which user groups use more of the 

aquifer water.  

In conclusion, the developed tools fulfilled the functional and non-functional 

requirements set by the client. The system provides the user with surfaces for infiltration 

and water levels, as well as maps that help with informed decision making for future 

developments. 
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Appendix A. Python script for finding PLSS 
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Appendix B. Infiltration Python scripts and Models 

 
Figure B-1 Create CN Raster 

 
Figure B-2 Calculate α 
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Figure B-3 Create β Raster 

 
Figure B-4 Calculate Maximum Retention 
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Figure B-5 Calculate Initial Abstraction 

 
Figure B-6 Calculate Infiltration Equation Parameters 
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Figure B-7 Infiltration Calculation for Single Instance 

 
Figure B-8 Infiltration Calculation for Database 
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Appendix C. Land Cover Change Tool 
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Appendix D. Unit Conversion Model and Tool 

 
Figure D-1 Water Depth Measurement Unit Cnversion 

Update measurement unit script: 
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Appendix E. Average Water Depth Surface Tool 
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Appendix F. Monthly Water Depth Surfaces Tool 
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