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Abstract 

Predicting Archaeological Sensitivity of Puerto Rico using GIS  

by 

Loderay I.M. Bracero Marrero 

The knowledge of Puerto Rican archaeological heritage has increased in different 

perspectives and approaches because of influences of several archaeological theories. The 

Puerto Rican archaeology scientific transformation applying geographic information 

systems (GIS) has been conducted but not with the full potential. This project used 

statistical and spatial analysis to study the archaeological site patterns in Puerto Rico. 

Using a logistic regression model (LRM), the project developed a predictive model for 

archaeological sites in Puerto Rico. The predictive model describes high, medium, and 

low likelihood areas where archaeological sites could be found. Tools and techniques 

such as Model Builder, photogrammetry analysis, and different sampling methods were 

implemented to accomplish the goal of this project.   
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Chapter 1  – Introduction 

This project focused on the creation of predictive models for precolonial archaeological 

sites in Puerto Rico. Puerto Rico is located in the eastern most part of the Caribbean and 

is the smallest island among the Greater and Lesser Antilles Islands. It includes various 

insular territories near the principal islands: Vieques, Culebra, Mona Island, and diverse 

islets and cays (Figure 1.1). 

 

 
Figure 1.1: Puerto Rico in Relation to the Caribbean Region 

This project aimed to increase the knowledge of the environmental characteristics of 

archaeological sites in Puerto Rico. In addition, this project sought to find 

archaeologically sensitive areas—both existing and potential—from a geographic 

perspective. In Puerto Rico, geographic information systems (GIS) have been applied to 

study specific archaeological sites, such as at the Caguana site in the municipality of 

Utuado (Torres & Rodríguez Ramos, 2008). However, the application of GIS on a larger 

scale analyzing the spatial distribution of archaeological sites in Puerto Rico had not been 

done. 

In Puerto Rico, two government agencies are in charge of protecting the 

archaeological heritage and endorsing urban projects: the State Historic Preservation 

Office (SHPO) and Consejo para la Protección del Patrimonio Arqueológico Terrestre de 

Puerto Rico or Council for the Protection of the Terrestrial Archaeological Heritage of 

Puerto Rico (CAT). Both agencies have created inventories of archaeological sites and 

archaeological reports for Puerto Rico. The principal difference between these two 

agencies is that SHPO is in charge of the administration of federally funded projects and 

CAT is in charge of implementing national patrimony legislation. 

Puerto Rico’s geological history has been documented back to the Jurassic Period of 

the Mesozoic Era (Morelock, Ramírez, & Barreto, 2002). The pre-Columbian history of 
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Puerto Rico dates back to 4000 BCE. The earliest site documented is Angostura located 

in the northern central coast area of the main island and known today as the municipality 

of Barceloneta (Vega, 1999). Many archaeological sites are related to the colonial period, 

which extends from the Spanish conquest initiated in 1493 to the Spanish American War 

of 1898 with the arrival of United States troops. 

The ecosystems in this region are diverse and play important roles in shaping the 

spatial patterns of archaeological sites. A predictive model was developed for this project 

to predict possible archaeological areas in Puerto Rican territory.  

 Client 

The client for this project was the Acting Director of CAT, Laura Del Olmo Frese. The 

Instituto de Cultura Puertorriqueña (ICP) that is also named the Institute of Puerto Rican 

Culture appoints CAT. CAT is in charge of archaeological reports and data. The client 

provided the geographical data in vector format for the cultural heritage (points) and the 

archaeological reports (polygons). 

CAT has been producing a geographical inventory of archaeological sites and reports 

since 2008. In 2011, CAT updated this inventory and published a web application for use 

by archaeologists, historians, and students (Instituto de Cultura Puertorriqueña, 2014). 

 Problem Statement 

Archaeological sites may not be documented due to problems such as private land 

ownership, budgetary concerns, and unlawful development practices. When these sites go 

undocumented, their archaeological values may be lost forever. 

In Puerto Rico, there were no attempts to predict the potential archaeological sites 

using quantitative approaches. This led to the problem of not knowing how to allocate 

limited resources to search for undocumented sites. Therefore, a predictive model 

accessible to the client would help identify the possibility of finding archaeological sites 

that have not been documented officially in certain areas when evaluating new urban 

development plans.  

 Proposed Solution 

A predictive model for archaeology (PMA) could provide the essential methodological 

approach to predicting the areas that are most likely to have archaeological sites. This 

approach was considered to reduce the necessity of extensive fieldwork that could not be 

accomplished because of budgetary concerns. 

To address the problems discussed in Section 1.2, CAT provided the geographical 

data required to conduct the desired spatial analyses for this project. CAT also provided 

additional information, including bibliography information and access to the 

documentation of archaeological sites. 
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1.3.1 Goals and Objectives 

The principal goal of this project was to design a PMA to predict possible archaeological 

sites and to evaluate the sensitivity of a place to disturbances from an archaeological 

perspective. 

The objectives of this project were: 

 To evaluate the viability of developing a PMA for predicting 

archaeological sites in Puerto Rico 

 To develop a predictive model to analyze the probability of the presence 

of archaeological sites and patterns of past settlements 

 To create a probability surface delimitating archaeological sensitive areas 

Reaching these objectives would also promote GIS application in conservation of the 

archaeological heritage of Puerto Rico. 

1.3.2 Scope 

The study area is located in the central part of Puerto Rico. It contains major rivers, 

central mountain chain areas, karst areas, and coastal areas of Puerto Rico (Figure 1.2). 

There were 571 sites within the study area. Among those, 274 were recorded as 

precolonial sites, 165 were recorded as colonial sites, and 132 sites were recorded with no 

information on periods. The data used for the project were provided in May of 2014. New 

digitalization from the client after this date was not used in this project. 
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Figure 1.2: Study Area 

The precolonial history of Puerto Rico is longer than its colonial history and 

precolonial sites were analyzed for this project. Analyses considering specific cultural 

periods or types of archaeological sites were not done due to data limitations. Thus, the 

precolonial samples were not divided into culture periods such as Pre-Ceramic, Huecoids, 

or Saladoids. These sub-categories of periods could be considered in the future. Details 

about the data will be discussed in Chapter 4. The software and tools used were limited to 

ArcGIS 10.2.2 and Statistical Analysis Software (SAS) for analyzing and creating 

independent and dependent variables 

1.3.3 Methods 

This project took the spiral approach to testing the viability of the PMA using different 

variables. The first phase of the project consisted of scrubbing and creating the 

independent and dependent variables. This process was accomplished using ArcGIS 

10.2.2, ArcGIS ModelBuilder workflows were created to calculate the variables in the 

study area. 

The independent variables included both environmental and social factors. Each 

factor was represented by a single raster layer in ArcGIS. The DEM was a main data 
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source to calculate other independent variables such as aspect, slope, and relief. The 

dependent variable was a point layer with each point representing whether archaeological 

sites were found in that location. 

Once all the data layers were created, both principal component analysis (PCA) and 

logistic regression analysis were conducted in ArcGIS 10.2.2 and SAS respectively. 

Using the coefficients calculated from the logistic regression, a probability surface was 

computed using the Raster Calculator in ArcGIS 10.2.2. Finally, the model was validated 

using sampled archaeological sites. 

 Audience 

The principal audience for this project will be archaeologists who use CAT to consult the 

national archaeological data. This includes students, professors, and the public. 

 Overview of the Rest of This Report 

The next chapter covers previous work that has been developed using PMA. Chapter 3 

discusses how the data were analyzed to create a system to solve the client’s problem. 

Chapter 4 covers the description of the data used to create the independent and dependent 

variables. Chapter 5 describes the procedures to create the variables and detailed LRM 

developed. Chapter 6 describes the results and validation processes conducted for the 

model. Lastly, Chapter 7 covers the conclusions and future work for this project. 
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Chapter 2  – Background and Literature Review 

In Puerto Rican archaeology, most of the applications of geographic information system 

(GIS) have been for cultural heritage management (CHM) and used to develop maps of 

archaeological sites. GIS has been used to develop new theories of settlements and the 

archaeological history of Puerto Rico using GIS (Rodríguez López, 2013). Additionally, 

GIS has been applied by different agencies in Puerto Rico, including entities such as 

transportation, environmental studies, and cadaster agencies. The Office of Management 

and Budget of Puerto Rico (2013) created a web page where it publishes different spatial 

datasets and web applications. This allows users to access different educational materials 

and download spatial data of interest. 

Although GIS has been applied broadly in other disciplines, its application in 

archaeology is still limited. In 2013, the Council of Terrestrial Archaeology of Puerto 

Rico (CAT), in collaboration with the OGP, conducted one of the first national efforts to 

apply GIS in archaeology. They published a web application in Silverlight to publish 

information of archaeological sites and cultural resources, accessible to both, the public 

and archaeologists (Instituto de Cultura Puertorriqueña, 2014). The archaeological data 

were published after being converted into grids for security purposes, which avoided the 

disclosure of the location of the sensitive sites. CAT also has hardcopies of 

archaeological reports and inventories that can be accessed by the public. The web 

applications allow the examination of archaeological reports and cultural resources from 

a geographical perspective using maps and aerial images. 

 GIS in Archaeology 

Archaeologists have used new approaches and new technologies to interpret the history 

of past societies worldwide. Other disciplines, such as geography and statistics, have also 

influenced archaeologists to apply different methods to interpret history from a holistic 

perspective. Geography and GIS have contributed significantly to the discipline of 

archaeology. GIS has been used in archaeology as a tool to map the archaeological 

samples and conduct various spatial analyses.  

In spite of this, a broad method to interpret the collected samples with GIS is lacking 

on Puerto Rican archaeology. Wheatley and Gillings (2002) described the term “GISing” 

(p.1) as the action of collecting big amount of data without developing any further 

analysis. This is most common in CHM and archaeological heritages offices. 

Since the 1970s, cartographic and spatial analysis applications in archaeology 

increased with the creation of software such as the Synteny Mapping and Analysis 

Program (SYMAP) (Wheatley & Gillings, 2002). Starting in 1980s, GIS and archaeology 

began to intersect in their methodologies and approaches with the use of spatial data such 

as digital elevation models (DEM). This influence of GIS on archaeology was primarily 

established in the United States, the Netherlands, the United Kingdom, and Europe 

(Wheatley & Gillings, 2002). Among other applications, integrating GIS into 

archaeological research started with the predictive models. For example, Kvamme (1988) 

developed different methods and algorithms to build predictive models. He specified how 

to calculate the independent and dependent variables. Other authors, such as Hodder and 
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Orton (1976), described broadly different statistical and spatial applications in GIS, such 

as point patterns and artifact distributions with regression analysis. 

As mentioned before, the predictive model in archaeology (PMA) is one of the first 

applications of GIS in the archaeology discipline. It was also one of most controversial 

approaches. According to Wheatley and Gillings (2002), many researchers including 

Kvamme (1988) had different perspectives about the application of PMA in archaeology. 

Such scientist considered that predictive modeling is a valuable tool for archaeology.  

In the following sections, details of PMA will be discussed, considering theoretical 

background, statistical approaches, variables, and data used to develop such models. A 

predictive model can be defined as a mathematical approach to predicting future patterns 

or facts by analyzing present patterns (Fernández-Cacho, 2009). 

 Predictive Models for Archaeology 

According to Fernández-Cacho (2009) the difference between the statistical predictive 

model and a PMA was that the statistical model is used to evaluate the changes on a 

variable such as a disease, while a PMA uses the variables of existing archaeological sites 

to predict possible future discoveries. Fernández-Cacho (2009) defined the PMA as: 

“models to evaluate the grade of archaeological sensitivity areas and evaluates their 

potential” (p. 9). She further stated that “… predictive model is valuable in archaeology 

considering that the patterns of settlements of human could be quantified: is possible to 

evaluate the potential of human settlements for certain territory in the past” (p. 9). 

Kvamme (1990) defined a PMA as “an assignment procedure, or rule that correctly 

indicates an archaeological event outcome at a land parcel location with greater 

probability than the attributable to chance” (p. 261). Kvamme’s work is one of the most 

cited in the literature about PMA. 

Kvamme (1988) developed methods to calculate variables such as shelter, relief, and 

aspect. For example, after examining the traditional shelter, Kvamme developed an 

“interval-level-measure of shelter” (p. 335). This approach and others are discussed 

further in Chapter 5, with the implementation of some of his methods to calculate 

variables for the PMA of this project. 

2.2.1 Inductive vs. Deductive Methods 

One of the main debates regarding applications of PMA is between inductive and 

deductive methods. The inductive method is commonly described as generalizing 

information from the specific to the general. When a PMA is based on individual 

observations to make general relationships, it is described as an inductive method or a 

data-driven method (Wheatley & Gillings, 2002). According to Fernández-Cacho (2009), 

the inductive model depends on reliable information to be proven. It was considered 

mechanic without deep theoretical foundations. Thus, it could be used to do statistical 

correlations but it lacked interpretation after being conducted. 

The deductive method is theory-driven (Wheatley & Gillings, 2002). This method 

uses known data about the archaeological sites, either empirical or ethnographical 

(Fernández-Cacho, 2009). The understanding of sites patterns and having a theory a 

priori, before conducting a PMA is needed. An example, archaeological sites are known 

to be found in a 500m distance from water resources and in farmland areas. The 
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deductive method is enriched by statistical analysis to establish the actual presence or 

non-presence of archaeological sites. With this information, it is possible to identify 

potential locations of archaeological sites. 

Different mathematical approaches are used in both inductive and deductive 

analyses. The deductive approach often uses functions and map algebra to evaluate 

certain rules and relationship among variables. In contrast, the inductive analyses depend 

on the rules that are derived from the characteristics of the data. Methods, such as 

frequency tables to evaluate the importance of each variable, are applied in inductive 

studies (Wheatley & Gillings, 2002). 

2.2.2 Environmental Determinism 

Many authors and archaeologists argued that the PMA is too static. This is because 

environmental determinism (ED) influences PMA in many ways (Wheatley & Gillings, 

2002). ED assumes that human behaviors are influenced by environmental factors, or that 

environmental factors control human behavior. This school of thought was present in 

many disciplines including geography and anthropology. A PMA is based on a variety of 

environmental factors to determine the possible locations of humans, thus, is considered 

to be influenced by the ED. Scholars such as van Lausen argued that patterns of 

archaeological sites could be extracted by correlating the presence of archaeological sites 

with other factors (Wheatley & Gillings, 2002). Other scholars, such as Gaffney (Lock & 

Stančič, 1995), argued that a PMA is not suitable as it is highly influenced by ED. 

Another reason that PMA is considered deterministic is that the independent 

variables chosen by the researcher are mostly environmental factors. This is because 

there exist a limitation of cultural variables, which are not commonly produced. On the 

contrary, the environmental data and archaeological data are produced frequently and 

accessible for analysis (Wheatley & Gillings, 2002). In addition, the environmental 

conditions represented by the data in an analysis may not faithfully represent the 

environmental conditions of past times. 

2.2.3 Statistical Regression Methods 

Regression methods are often applied in archaeology, including linear regression method 

and logistic multiple regression (Wheatley & Gillings, 2002). When a logistic regression 

model (LRM) is applied to conduct a PMA, the independent variables are environmental 

factors such as elevation, slope, rivers, and creeks (Wheatley & Gillings, 2002). The 

dependent variable, which is a binary variable, represents the absence or presence of 

archaeological sites (Wheatley & Gillings, 2002). The presence of archaeological sites is 

positive data. The absence of archaeological sites is negative data.  

However, the negative data could introduce some problems. When a LRM is 

conducted only with sites (positive data), the negative data are assumed to be simply the 

absence of positive data. Thus, the negative data are not actual negative data from 

surveyed areas without archaeological remains (Wheatley & Gillings, 2002). This gap 

can be filled by having areas surveyed. 

 



10 

2.2.4 Limitations of PMA 

Fernández-Cacho (2009) discussed the limitations of independent and dependent 

variables used in PMA. These limitations are related to the compliance of the data and the 

archaeological survey approach when the data were collected. These limitations 

established by Fernández-Cacho (2009) are presented in the following tables, which are 

based on case studies in Puerto Rico. The limitations established in Table 2.1 are relevant 

to determining archaeological sites. 

 

Table 2.1: Dependent Variable Limitations in a PMA 

Archaeological sites: Dependent variable 
Limitation Effect 

Archaeological site definition 
 Archaeological site could be defined as 

a group of remains or isolated remains. 

Archaeological tendencies 

The methodologies used to collect data 

in the field by archaeologists could 

vary. This could affect the 

chronological periods assigned to the 

archaeological sites. 

Archaeological sites visibility 

The changing in topography or 

anthropogenic impacts on a terrain 

could impede the documentation of 

sites. 

Methodology 
Methodologies applied in the field 

could differ by the archaeologists 

Data entry errors 

Errors could occur when entering the 

location of the archaeological sites or 

assigning a chronological period 

 

The techniques to record the archaeological information varies. Limitations such as 

the change government entities, budget problems, and the lack of documentation can 

affect the collection of archaeological data. For example, regarding data entry errors, 

different technicians may have different approaches entering information into databases 

or conducting GIS process. This increases the uncertainty in the documentation of 

archaeological data. 

Throughout Puerto Rican archaeology history, various methods have been used to 

assign chronological periods to archaeological sites. The most common model to assign 

relative chronology to precolonial history in Puerto Rico was established by Rouse 

(1952). Despite the fact that this interpretation model is the most widely used among 

archaeologists in Puerto Rico, new generations of researchers have established and 

contributed to new theories of settlements in local and regional chronologies (Rodríguez 

Ramos, 2010). 

Table 2.2 lists the limitations regarding the independent variables (Fernández-Cacho, 

2009). These limitations are related to the environmental data and the accuracy of data 

derived from cartographic materials. According to Fernández-Cacho (2009), most of the 
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data available are for environmental variables, with very few cultural data. As mentioned 

before, this is one of the main limitations and most controversial topics about developing 

a PMA (Wheatley & Gillings, 2002). 

 

Table 2.2: Independent Variable Limitations in PMA 

 

 

 

 

2.2.5 Case Studies 

PMA have been applied in many different contexts and at different scales. In the 

Caribbean, one of the main sources found was the book “Archaeology and 

Geoinformatics: Case of studies from the Caribbean” by Basil Reid (2008). In this book, 

various authors discussed diverse cases in the Caribbean and approaches that involved the 

use of GIS. These studies included cultural resource management and theories about 

human settlements in the Caribbean. 

Reid (2008) discussed the problems in Trinidad about the management of cultural 

resources given the funding shortage. In order to be able to accomplish studies in 

archaeologically sensitive areas, a PMA can contribute to the focusing of resources in 

these areas. He analyzed the presence of archaeological sites using the following 

variables: watershed, soil texture, land capability, relief, and alluvial plains. The PMA 

developed by Reid was applied to characterize archaeological sensitivity areas by 

calculating the probability of finding new archaeological sites. He found that pre-

Columbian archaeological sites are most likely to be located in the areas with hilly relief. 

The predictive models were also applied in places, including Venezuela (Molina, 

2009) and Delaware (Custer et al., 1986). Molina (2009) analyzed a single archaeological 

site located in Mérida state, evaluating the accessibility for this archaeological site and 

the optimized routes to access main sources such as water. This analysis was 

accomplished by using digital elevation models and evaluating characteristics such as 

environmental zones, height, and economic relations. Molina analyzed the patterns of a 

single archaeological site to estimate the possible patterns of other archaeological sites. 

Environmental factors: Independent variable 
Limitation Effect 

Environmental factor are from the 

present 

The environmental factors described 

the present landscape, not the past 

landscape 

Derived cartography 
Variables such as slope or aspect are 

related to elevation. 

Lack of cultural variables 
Cultural variables are not frequently 

produced on geographical data. 

Dissimilar information 

The information assigned for each 

archaeological site could be 

dissimilar. For example, an 

archaeological site could be situated 

in a non-agricultural area but very 

near to other. This spatial 

information is ignored. 
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Custer et al. (1986) developed a predictive model using LANDSAT images. This 

PMA consisted of environmental zones as independent variables. The LANDSAT 

satellite images were analyzed to evaluate the different types of environmental zones. 

First, it was applied the regression method to link the environmental ground areas to the 

archaeological sites. The study area was then divided into grids to analyze the frequency 

of archaeological sites by each grid. Probability classes for the archaeological sites were 

developed and the possible presence of a site in each grid was predicted in this project. 

The approach of this project emphasized the role of satellite images and the application of 

statistical logistical regression models. 

Another important example of PMA is the Minnesota Archaeological Predictive 

Model in an area of 12, 872 square kilometers (Minnesota Deparment of Transportation, 

2002). This was one of the most complicated PMA’s because it considered different types 

of variables that normally are not available, such as geological formations. In addition, 

the model included environmental variables as well as cultural and social variables. This 

model’s results indicated that 86% of observed sites were located high archaeologically 

sensitive areas. 

 Summary 

This chapter reviewed the application of PMA, debates, limitations, and its relevance to 

this project. There are both valid critics and defenders of the PMA. Different methods, 

such as inductive and deductive, have been applied to develop a PMA. For this project, 

the main consideration was to develop a PMA able to describe archaeologically sensitive 

areas. 
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Chapter 3  – Systems Analysis and Design 

The major requirement of the client, the Consejo para la Protección del Patrimonio 

Arqueológico Terrestre de Puerto Rico (CAT), was to develop a predictive model for 

archaeology (PMA) to evaluate archaeologically sensitive areas in Puerto Rico. The 

client is in charge of approving future urban development while protecting archaeological 

remains from destruction caused by these development activities. Thus, the client sought 

to streamline the process of evaluating possible impact on archaeological sites in various 

geographical areas by any future urban projects.  

 Problem Statement 

Limited funds made difficult conducting extensive archaeological investigation, thus, it is 

possible that archaeological sites are undocumented in Puerto Rico. On other hand, sites 

may be documented but for construction purposes, and not as an academic investigation. 

Low budgetary allocations do not allow CAT to support fieldwork data collection across 

the entire Puerto Rican region.  

Since 2000, in order to protect the archaeological heritage, one of the primary tasks 

of CAT has been to initiate the digitization of archaeological sites reported to date using 

geographic information systems (GIS). Continuous updating of new archaeological sites 

would improve the database for accurate spatial analysis.  

 Requirements Analysis 

Developing a PMA entailed several functional and non-functional requirements. Table 

3.1 lists the requirements that this project addressed. The main functional requirement of 

the project model was to produce a map of probability surface showing archaeologically 

sensitive areas in the study area. 
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Table 3.1: Project Requirements 

 

Other requirements considered in the project were related to the type of data needed 

to develop the model. The main vector layer was the cultural resources layer representing 

the archaeological sites or positive sites. This layer was comprised of both precolonial 

and colonial sites. The other vector data used were the archaeological surveys, which 

represent positive or negative surveys. This layer was used to extract the negative areas. 

Additional data, including soils, hydrology, topography, forests, and land use, were 

required in order to analyze the environmental characteristics of the archaeological sites. 

Digital elevation model (DEM) data were used to derive additional attributes of 

archaeological data. 

 System Design 

Figure 3.1 illustrates the system architecture of this project. The system was based on the 

data acquisition and its manipulation by different software used to create a final 

probability surface.  

Type Requirements 

Non-

Functional 

Data produced by the project should follow archaeological 

sharing laws in Puerto Rico 

ArcGIS, ERDAS, and SPSS software are required to run the 

PMA 

Functional  

The predictive model must evaluate the presence of 

archaeological sites using variables such as slope, elevation, 

cost distance to water bodies, soils, forests and others 

The model should produce probability surface ranking 

locations with the probabilities with the probabilities to find 

archaeological sites 

Identify significant factors to the PMA 

Archaeological sites should be divided into chronological 

periods 
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Figure 3.1: System Design 

The basic scheme included data acquisition from the client and other agencies. The 

data were processed in ArcGIS to create the desired variables in a data scrubbing process. 

After scrubbing process, it was evaluated and calculated independent and dependent 

variables using ArcMap 10.2.2 software. After having all the data processed and 

scrubbed, the project advanced to run different statistical analyses. The outputs obtained 

from the statistical analyses were then used to create the probability surface. 

The validation process was conducted using different statistical analyses in 

Statistical System Analysis (SAS). This was accomplished by using different tools 

provided by the software and creating models using Model Builder to automate the 

process of data preparation. 

Figure 3.2 shows the data-scrubbing component in the system design. It describes the 

association of dependent and independent variables after being scrubbed. For any 

archaeological sites (positive or negative), independent variables, and the dependent 

variables should be to be linked. A table created with dependent and independent 

variables were used run the logistic regression analysis and other statistical analysis. 

After the significant independent variables were identified, a probability surface was 

created using the coefficients obtained from the logistic regression analysis. 
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Figure 3.2: Detailed Project Design  

 Project Plan 

The project was divided into three phases: design, develop and test, and deploy. The 

development and testing stage was the most intensive, as it entailed the development of 

all the variables used in the PMA and the statistical analysis. 

The first phase — design — consisted of the identification of previous work, 

external resources for the data, and appropriate models for the PMA (Table 3.2). This 

was to identify previous case studies of PMA developed in other geographical areas. 

 

Table 3.2: Phase I Tasks 

Phases Task Title 

1 Design  

1.1 Identifying previous work: literature review  

1.2 Identify the data model 

1.3 Identify archaeological data 

1.4 Identify environmental data 

 



17 

In the second phase, a series of tasks were accomplished (see Table 3.3). The 

archaeological survey data were cleaned and separated based on chronological periods. In 

addition, other data representing the independent variables were scrubbed. Different 

software such as ArcGIS 10.2.2 and SAS were used to create required variables and 

conduct multiple trials of building the predict model with logistic regression method. 

 

Table 3.3: Phase II Tasks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

The third and final phase — deploy — consisted of finalizing the model, validating 

the model results, mapping the results of the PMA, and delivering the project products to 

the client (Table 3.4). 

Phases Task Title 

2 Development  and Testing 

2.1 Select and collect additional spatial data 

2.2 Select geographical study area  using main rivers as reference 

2.3 Clean the study area data 

2.4 Select archaeological sites that are precolonial 

2.5 Select negatives archaeological surveys 

2.6 
Analyze archaeological sites in negative surveys for quality 

purposes 

2.7 Rasterize independent variables 

2.8 Create independent variables from DEM 

2.9 Create multi-bands raster with the independent variables 

2.10 Extract attribute table to table format 

2.11 Run the LRM analysis in SAS to assign weights 

2.12 
Extract logistic coefficients of each independent variable to 

ArcGIS Raster Calculator tool to create final probability surface 

2.13 Map low probability and high probability areas 

2.14 Perform quality control analysis for product spatial data 
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Table 3.4: Phase III Tasks 

Phases Task Title 

3 Deploy 

1 
Select significant variables to include in the last 

model using different statistical analysis (LRM)  

3.1 Run, improve and test final LRM 

3.2 Map probability surface 

33 
Testing, upgrading and checking the products to 

deliver 

3.4 Organized final geodatabase for the client 

 

 Summary 

This chapter described the design of the system to accomplish the goals of the project. 

After examining the system requirements, the system architecture was developed. 

Additionally, the project plan was developed to help implement the project. 
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Chapter 4  – Database Design 

This chapter discusses the database development processes involved in the project. Data 

types used in the project included raster, vector, and tabular datasets. All of these data 

were stored in an Esri file geodatabase (GBD). The Modelbuilder application within 

ArcGIS was used to streamline the data processing procedures. The vector data were 

divided and stored in the GDB as feature datasets. The raster images were stored in the 

GDB as Raster Catalogs, which organized several raster data into the same catalog. The 

probabilities and statistical analysis results produced by the logistic regression model 

(LRM) were stored as tables in the GDB.  

 Conceptual Data Model 

The conceptual model gives an overview of the entities considered in this project based 

on a previous model presented by Kadar about data modeling for archaeology (Kadar, 

n/d). Figure 4.1 illustrates the spatial interactions of these entities. 

 

 
Figure 4.1: Conceptual Model 

Human beings left behind materials that in the future becomes evidence for new 

generations. These materials left behind are called artifacts. A group of artifacts is what 

makes an archaeological site. Each archaeological site has its own characteristics, defined 

by the type of remains and the context. The context is defined in this project by the 

environmental characteristics of a site including topography, land cover, soils, and 

hydrology. Aspect, elevation, slope, relief, presence of shelter, represented the 

topography. The soil properties were measured by the drainage and potential for farming. 

The agricultural areas, urban areas, and forest areas were indicators for land cover. 

Lastly, hydrology included rivers, creeks, and coastal areas. 

 Logical Data Model 

The logical data model for this project was based primarily on the types of variables that 

were chosen for conducting PMA. The GDB for this project contained both vector and 

raster data (Figure 4.2). 
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Figure 4.2: Logical Data Model 

The vector data included the presence or absence of archaeological sites and 

locations of rivers and creeks. All of the independent variables were represented in the 

geodatabase as raster datasets. These included the topographic variables derived from the 

digital elevation model such as aspect, slope, and relief. Other raster data included the 

social variables, which are represented by cost distances to different water resources. The 

cost distance raster was developed to represent how costly it is to traverse an area. The 

land cover variables of interest to the project were comprised of specific land uses 

including forests, urban areas, and agricultural land uses. The various outputs were then 

generated from the different statistical analysis and stored in the geodatabase as raster 

and tabular data. Figure 4.3 shows an example of how the data was stored. The vector 

data were organized in feature datasets and raster data were organized using raster 

catalogs. 

 

 
Figure 4.3: Example of Data Stored in the GBD 

All raster data were kept individually in the GBD. The tabular data were also 

inserted in the GBD. 

 Data Sources 

The majority of the spatial datasets used in the project were downloaded from the Office 

and Management Budget (OGP) website. A catalog of different types of data was 
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available on the website: transportation, education, environmental, census, and many 

others. Due to data restrictions, some datasets, such as orthophotos and topographic 

maps, could not downloaded to the local machine. These datasets were accessed using the 

web server available from the OGP website. The OGP also publishes public data from the 

federal government agencies, such as Census Bureau and United States Geological 

Survey (USGS). Most of the data available had metadata. The vector data downloaded 

from the OGP website were in shapefile format, including hydrology, soils, and legal 

boundaries in Puerto Rico. The DEM was obtained through a link provided by the OGP. 

Land cover data were acquired from the Unites States Department of Agriculture 

(USDA) website. These datasets represent the land cover in 1991 and 2000. For the 

purposes of this project, the 1991 land cover images were chosen. The data downloaded 

from the USDA websites ( (2014) were organized into a single folder (Figure 4.4). 

 

 
Figure 4.4: USDA Land Cover Data 

The data on archaeological sites and surveys, provided by the Consejo para la 

Protección del Patrimonio Arqueológico Terrestre de Puerto Rico (CAT), had sufficient 

metadata, including descriptions of the methodologies used to collect and create the data 

(Figure 4.5). 

 

 
Figure 4.5: Data Received from the Client  

 

The “bc_munis” shapefile records the archaeological sites and “ea_mayo2014” refers 

to the archaeological surveys. All three “ea_mayo_2014” shapefiles were merged into a 

single feature class. The main difference between the archaeological sites and the 

archaeological surveys is that the sites are areas where archaeological evidence has been 

found and the archaeological surveys are those archaeological studies that have been 

conducted to ensure the protection of archaeological heritage. The surveys could be either 

positive or negative, which means finding or not finding archaeological evidence. Despite 

the fact that many archaeological sites were discovered without the use of surveys, many 
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others have been documented because of the positive archaeological surveys made 

compulsory in 1988. (Instituto de Cultura Puertorriqueña, 2014).  

 Data Scrubbing and Loading 

A data scrubbing process and information extraction for the study area were performed.  

First, the data were clipped to the extent of the study area. The DEM was smoothed by 

using the mean elevation within a 100-meter radius. Reducing the noise in the DEM was 

necessary for deriving other topographic variables such as aspect and slope. From the 

hydrology dataset, rivers and creeks were extracted. The coastline was digitized using the 

boundaries of the municipalities.  

The archaeological surveys were coded into sites (positive) and no-sites (negative). 

The sites were coded as 1. The no-sites were extracted from the negative surveys in the 

“ea_mayo” datasets. The no-sites were coded as 0, representing the areas where no 

archaeological remains were found. The archaeological surveys, represented as polygons 

in the original datasets, were converted to points using the Polygons to Point tool. 

 Further scrubbing of the archaeological data received from the client was 

conducted. First, the archaeological negative surveys that had sites inside the polygon 

area were eliminated from the dataset. Negative surveys that were with a 100-meter 

distance from archaeological positive sites were eliminated as well. 

 Summary 

This chapter examined the data and the various processes involved in data preparation. 

Considering the main dependent and independent variables of the project, the file 

geodatabase structure was chosen. The project used vector, raster, and tabular data. The 

vector datasets were obtained in form of shapefiles. These datasets were converted into 

feature classes. Categorized and stored within feature datasets. Raster data received in 

form of .img format were converted and stored in the file geodatabase as raster datasets in 

the raster catalog. The final database as described in Figure 4.3 included the data used in 

analysis and final products of the project. 
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Chapter 5  – Implementation 

This chapter explains the procedures used to develop a predictive model for archaeology 

(PMA) in Puerto Rico. Calculations of the dependent and independent variables are 

discussed in this chapter. The data preparation procedures to run the logistic regression 

model (LRM), such as reclassification of some of the variables, are discussed as well. 

This chapter also discusses the processes to identify the significant variables in the LRM 

and the statistical analyses conducted to avoid redundancy. Finally, it is explained how 

the probability surface was created.  

 Dependent Variables  

The dependent variable is binary representing whether or not archaeological remains 

were found at an archaeological site. A value of one indicates positive or the presence of 

archaeological remains (sites), while a value of zero means the negative or the absence of 

archaeological remains (no-sites). There are a total number of 274 precolonial sites and 

436 no-sites within the study area, which are represented as points in a feature class. 

Figure 5.1 shows the sites and no-sites within the study area. 

 

 
Figure 5.1: Site Samples and No-Site Samples 
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 Independent Variables  

Three types of independent variables were considered: topographic variables, soil and 

land cover variables, and social variables. Topographic variables such as aspect were 

used to describe the terrain characteristics that may affect the decision of choosing 

habitats. For example, it is expected that human beings prefer to choose flat areas that 

face south. It was also considered the soils and land cover variables, which were 

characterized their suitability for agriculture and drainage. For social factors, it 

considered variables such as cost distance to main water resources in the study area. 

5.2.1 Topographic Variables 

The topography variables (Figure 5.2) were derived from the elevation dataset using the 

Focal Statistics and Raster calculator tools from ArcGIS 10.2.2. The original DEM 

provided by the Office of Management and Budget (OGP) is a high-resolution elevation 

raster with a spatial resolution of five meters. 

 

 
Figure 5.2: Topographic Variables 

The elevation was derived from the DEM through a smoothing process. Figure 5.3 

illustrates smoothed elevation surfaces. In the study area, mountains are located in the 

middle area and elevation decreases when moving towards to the coastlines on the north 

and south. 
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Figure 5.3: Elevation Surface 

The steepness of the surface, or slope, is a common factor used to analyze 

archaeological sites patterns, as found by Kvamme (1988). The slope was calculated 

using the Slope tool in ArcGIS. This tool identifies the change of elevation over a 

horizontal distance. The output unit of measurements is in decimal degrees. Figure 5.4 

shows that the steepest areas were concentrated in the center of the study area where the 

highest elevation is concentrated.  

UPR-Graduate School of Planning, PR Planning Board, VITO Belgium, FugroEarth

Data Inc.
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Figure 5.4: Slope Surface 

The relief is a measurement of terrain roughness. It describes how abruptly terrain 

changes across the landscape. This factor is assumed to restrict human activities. The 

relief was calculated as elevation range of 100-meter radius using Focal Statistics tool in 

ArcGIS. Figure 5.5 shows the relief output, which is very similar to slope variations. 
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Figure 5.5: Relief Surface 

A shelter is defined as an area that can provide refuge from the natural elements 

(Heilen et al, 2012). The shelter variable was calculated by subtracting the local elevation 

from the mean elevation. The mean elevation was calculated using the Zonal Statistics 

tool to assign the mean elevation within 100 meters raster cell. The calculation of the 

shelter using raster calculator was based on the following formula (Kvamme, 1998): 

 

𝑆 =  𝑋 − 𝑥𝑖 
                                                                                                                                                                     

where 𝑆 represents the difference in elevation between the mean elevation of the 

neighborhood and the local elevation; 𝑋 represents the mean elevation; and 𝑥𝑖 is the local 

elevation. The negative output values were considered unsuitable locations for shelters 

while large positive values were considered suitable for shelters (Figure 5.6). 
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Figure 5.6: Suitability for Shelters 

The aspect indicates the exposure to sun illumination. In this project, areas facing the 

south were more suitable (Kvamme, 1988). First, the aspect was calculated using the 

Aspect tool. The value in the raster cell values represents the orientation of a location in 

azimuth, the direction measured to the north. 

One hundred eighty degrees were subtracted from the aspect. After obtaining the 

aspect raster, the aspect in relation with the south was calculated. This process yielded 

negative and positive values. The sign values were then eliminated by calculating the 

absolute values. The results were in a range from 0 to 180. The calculation in the Raster 

Calculator using the following map algebra:  

 

𝑆𝐴 =  |𝑥𝑖−180| 
 

where 𝑆𝐴 represents the deviation from the south; 𝑥𝑖 represents the local aspect; and 180 

represents the south direction. As the original aspect image had values of -1 representing 

flat areas, those values produced outputs of 181 and were then converted to zero. Figure 

5.7 shows the output of the aspect in relationship to the south. 
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Unsuitable for Shelters ¤
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Figure 5.7: Aspect in Relationship to the South 

5.2.2 Soils and Land Cover Factors 

To obtain land descriptions, two main datasets were used: soils and land cover image. 

The soils dataset has different descriptions for soil types. The project focused on the 

farmlands and the drainage descriptions. Table 5.1 describes the fields considered. 

 

Table 5.1: Soil Characteristics 

Field Label Description 

drclassdcd 

Drainage Class - 

Dominant 

condition 

Natural drainage condition of 

the soil refers to the frequency 

and duration of wet periods. 

Dominant drainage. 

farmlndcl Farm Class 

Identification of prime 

farmland, farmland of statewide 

importance, or farmland of local 

importance. 

 

UPR-Graduate School of Planning, PR Planning Board, VITO Belgium, FugroEarth

Data Inc.
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Figure 5.8 shows the soil variation by drainage and farmland in the study area. These 

included the different levels of drainage and different kinds of farmlands assigned by the 

USDA. The dataset was then converted to raster format using the Polygon to Raster tool 

in Arc Map. The “null data” in the vector layer was treated as “no data” in the raster. 

 

 
Figure 5.8: Soils Drainage and Farmlands 

The land cover data from 1991 (USDA, 2014) were included to study the 

archaeological sites. The raster data consisted of 28 different land cover types. These 

twenty-eight types were grouped into seven categories as described in Helmer and 

Kennaway (2007). The Reclassify tool in ArcGIS was used to classify the original image 

into seven groups (Figure 5.9). 
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Figure 5.9: Land Cover Data 

 The categorical data (soils and land cover) in vector format were converted into 

raster using Polygon to Raster tool. 

5.2.3 Social Factors 

This project used one social factor: distance to water resources. A cost surface was 

generated to represent how difficult it was to travel within the project area surface to 

access water resources. This cost surface was calculated using the natural logarithm of 

the mean slope in a 100 meter radius and the standard deviation of the elevation in a 100 

meter radius (Heilen et al., 2012).  

To avoid negative numbers in the result, a value of one was added to each of the 

variable values before the natural logarithm was calculated as shown below:  

 

𝐶𝑆 = 𝐿𝑛 (𝜎𝑥𝑖  + 1)  +  𝐿𝑛(𝑦
𝑖

+ 1) 

 

where CS represents the cost; 𝜎𝑥𝑖 represents the elevation standard deviation; and 𝑦
𝑖
 

represents the mean slope. The final product of the cost surface is shown in the Figure 

5.10. 

Categories                          Types of Land Cover

Forest, forest/shrub,

woodland and

shrubland—lowland

dry and dry/moist

Drought Deciduous Open Woodland/

Drought Deciduous Dense Woodland/Deciduous,

Evergreen Coastal and Mixed Forest or Shrubland

Non-forested and

wetland

Emergent Wetlands Including Seasonally Flooded

Pasture/Salt or Mud Flats/Tidally Flooded Evergreen

Dwarf-Shrubland and Forb Vege

Forest and

forest/shrub–sub...

and lower montane,

moist/wet/rain

Evergreen Forest on Serpentine/

Elfin, Sierra Palm, Transitional and Tall Cloud Forest

Agricultural land
Herbaceous Agriculture - Cultivated Lands/

Active Sun Coffee and Mixed Woody

Agriculture/Pasture, Hay or Inactive Agriculture (e.

Urban or built-up

land
High-Medium Density Urban/Low-Medium Density

Urban

Forest Wetland
Mangrove/Seaonally Flooded Savannahs

and Woodlands/Pterocarpus Swamp

Forest and

forest/shrub—low...

and submontane,

moist and moist/wet

Seasonal Evergreen and Semi-Deciduous

Forest on Karst/Seasonal Evergreen and Evergreen

Forest/Seasonal Evergreen Forest with Coc
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¤

Land Cover
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Figure 5.10: Cost Surface 

 The cost surface was used to calculate cost distance to water resources. The Cost 

Distance tool “calculates the least accumulative cost distance for each cell to the nearest 

source over a cost surface” (ArcGIS Resource Center, n/d). The water resources included 

rivers, creeks, and coast. Figure 5.11 shows the cost distance to rivers and creeks. The 

lines representing the rivers and creeks showed unexpected breaks in some areas. For 

purposes of this analysis, only rivers and creeks were extracted from the hydrology 

dataset. Thus, other types created some gasps on the datasets.  

0 5 102.5 Kilometers

Cost Units

High : 5.4768

Low : 0.0066
¤
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Figure 5.11: Cost Distance to Rivers and Creeks 

 The same cost surface was also calculated to represent the travel cost to the 

coastlines (Figure 5.12). 
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Figure 5.12: Cost Distance to Coastlines 

 Re-classifying Categorical Data 

The categorical data are nominal measurements such as the soil and land cover types. The 

categorical variables were then converted into binary values to be used in the LRM. This 

was accomplished using the Reclassifying tools in ArcGIS 10.2.2. The coding for the soil 

variables is shown in Table 5.2. 
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Table 5.2: Reclassification of Soil by Drainage and Farmlands 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The land cover variables were also reclassified into binary values. Since there were 

seven categories of land cover, seven binary raster layers were generated. The categorical 

variables were converted into raster format using the binary values: 0 or 1. A value of 0 

indicates the absence of the variable and 1 indicates the presence of the variable. 

 Associating Independent Variables to the Dependent Variable 

After creating the independent variables, each of these variables was stacked into a 

composite raster using the Composite Band tool. The process created an image that 

included the independent variables as different bands (Heilen et al, 2012). The Extract 

Multi Value Points tool was then used to assign the values to both sites and no-sites. This 

process output a table associating each site with independent variables. Sample of the 

table is shown in Table 5.3. 

 

Table 5.3: Dependent Variable with Topographic Factors 

 

Drainage 

Category Binary value 

Excessively drained 

1 

Well drained 

Moderately well drained 

Somewhat poorly drained  

0 

Poorly drained 

Very poorly drained 

None 

Farmlands 

Category Binary value 

All areas are prime farmland 

1 

Farmland of statewide importance 

Prime farmland if drained 

Prime farmland if irrigated 

Not prime farmland 0 

Site (1)  

No site (0) 

Elevation 

(meters) 

Aspect 

(degrees) 

Aspect South 

(degrees) 

Slope 

(degrees) 

Relief 

(meters) 

1 954.38 329.62 149.62 18.25 333.30 

0 849.31 88.28 91.71 8.41 99.80 

0 838.74 75.90 104.09 6.22 122.01 

0 835.50 251.01 71.01 4.90 115.98 

1 835.12 337.82 157.82 4.80 82.07 

1 833.50 112.33 67.66 4.76 93.98 

0 829.19 89.40 90.59 2.44 42.10 
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The first column represents the dependent variable with the following values: 1 

(sites) and 0 (no-sites). This is followed by all the independent variables in each column. 

The table was exported as a database file (DBF), which was used in the SAS for 

statistical modeling. 

 Identifying Significant Independent Variables 

After organizing all the dependent and independent variables in a single table, various 

statistical analyses were performed prior to building the LRM. These analyses included 

frequency examination and principal component analysis (PCA). This was followed by a 

significance test of the variables to evaluate how much a variable affected the likelihood 

of a location to be a site. After finishing the frequency examination, several LRMs were 

compared and the one with the best fit was kept. 

For the purposes of testing the analysis, a significance level of 5% was used. This 

was evaluated by running the LRM several times to calculate the significance of the 

variables. All variables that had significance levels of more than 5% were excluded from 

the last LRM. 

5.5.1 Topographic Variables 

It is obvious that topographic variables might be highly correlated among themselves as 

they were derived from the DEM. To solve this collinearity issue, a PCA was used to 

reduce redundancy within the independent variables. A PCA creates artificial variables 

by analyzing the variance and covariance among the independent variables. The PCA 

was conducted with the seven topographic variables that were stacked in an image. The 

PCA tool in ArcGIS was used to transform the seven bands into principal components. 

The output of the PCA tool also contained seven different components. The 

component whose eigenvalue was above 1 is normally recognized as important. In this 

study, eigenvalues were calculated based on the standard deviation (Table 5.4). Based on 

these results, only the first two components were kept, which contained more than 94% 

of variance of the original seven factors. 

 

Table 5.4: Variance and Eigen Values of the Principal Components 

Principal 

Component 

Standard 

Deviation Variance %Variance Eigenvalue 

1 
271.59 73761.12 0.7963 5.5744 

2 
111.71 12479.12 0.1347 0.9431 

3 
60.34 3640.91 0.0393 0.2751 

4 
51.62 2664.62 0.0287 0.2013 

5 
8.65 74.822 0.0008 0.0056 

6 1.58 2.4964 0.00002 0.0001 

7 0.72 0.5184 0.000005  0.00003 
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A scree plot of the eigenvalues is another common tool to determine the important 

components. Figure 5.13 shows that the first breaking point was at the second 

component. Thus, all the components after the second one were excluded in the following 

analyses. 

 

 
Figure 5.13: Scree Plot PCA Components 

A LRM was run for these two variables to evaluate their significance. The LRM 

showed that only the first component (PC1) was significant with a p<0.05. Therefore, the 

PC1 was kept in the final LRM. 

5.5.2 Soil and Land Cover Variables 

The frequency tables were created for the variables of soil and land cover against the 

dependent variable. The purpose of conducting this analysis was to examine the 

distribution of land covers and soil types among the sites and no-sites. If the difference 

between sites and no-sites in a certain category were minimal, the variables would not be 

significant and thus was excluded. However, when the distribution showed a difference 

between sites and no-sites, those variables were kept for the following analysis. 

The frequency chart in Figure 5.14 illustrates the percentages of sites and no-sites in 

the farmlands categories. It was observed that 32% of the no-sites fall in this category, as 

opposed to 11% of sites. This indicates that being primary farmland may significantly 

influence the likelihood of finding archaeological remains. 
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Figure 5.14: Frequency Charts of Farmlands Categories 

The same frequency process was followed to analyze the drainage characteristic of 

the soil. Figure 5.15 illustrates the frequencies of the soil drainage categories. On the 

excessively well drain areas, 21% of the sites fell in this category while only 10% of the 

no-sites fell in this category. 

 

 
Figure 5.15: Frequency Charts of Drainage Categories 

Further, there was a difference of 6% between the site and no-sites in the well-

drained category. In total, 87% of the sites were located on areas that are moderately well 
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drained, well-drained, or excessively well-drained; in contrast, 76% of the no-sites fall in 

these categories. 

A LRM was run separately to evaluate the significance of the farmlands and drainage 

characteristics. The results showed that the farmlands was significant (p<0.001). Thus, 

farmland was kept for the final logistic regression model. The same procedure of creating 

the frequency tables for each of the land cover categories was followed (Figure 5.16). 

 

 
Figure 5.16: Frequency Charts of Land Cover Categories 

The category that showed the greatest difference between sites and non-sites was 

Land Cover 2: “Forest and forest/shrub—lowland and sub montane, moist and moist/wet 

category.” (Helmer & Kennaway, 2007). This category contained 24% of the sites and 

12% of no-sites. To have a better idea of the relationship between the dependent variable 

and independent variable, a LRM was conducted for the Land Cover variables and only 

the Land Cover 2 turned out to be significant. 

5.5.3 Social Variables 

The social variables, cost to various water sources, were also analyzed for their 

importance using LRM. The results showed that both variables, cost distances to coast 

and to rivers and creeks, were significant (p<0.05). Therefore, both variables were kept 

for the final LRM. 

5.5.4 Logistic Regression Modeling 

The variables that were found to be significant in the preliminary analyses were used to 

build the LRM using SAS. The included independent variables were cost distance to 

rivers and creeks, cost distance to coast, farmlands, Land Cover 2 (Forest Moist), and the 

first principal component (PC1). Table 5.5 shows the regression results where “Estimate” 
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contains the regression coefficients for each independent variable. Model fitness and 

coefficients will be discussed in Chapter 6. 

 

Table 5.5: LRM Coefficients 

 

 Probability Surface Creation 

The probability surface to evaluate the likelihood of presence and no presence of the 

archaeological sites was created with the logistic coefficients. The probability surface 

was created using the following equation:  

𝑝(𝑦 = 1) =
1

1 + 𝑒−(𝛽0+∑ 𝛽𝑖𝑥𝑖   
𝑛
1 )  

 

 

where 𝑝(𝑦 = 1) represents the probability of finding a site (1), 𝑒 represents the 

exponential constants (2.71); 𝛽 represents the logistic coefficients; and 𝑥 represents the 

independent variables. 

The probability surface was calculated using the Raster Calculator tool in Model 

Builder. The logistic coefficients were assigned to the corresponding independent 

variables. The formula used in Raster Calculator was:  

 

1 / (1 + Exp ( - 1 * (-0.2829  + -0.00011 * "%Cost Distance to Rivers & Creeks%" + 

0.000010 * "%Cost Distance to Coast%" + -0.9809 * "%Farmlands%" + 0.7766* 

"%Land Cover 2%" + - 0.00038 * "%PC1%"))) 

Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square p-value 
Intercept 1 -0.2829 0.1660 2.9036 0.0884 

Cost Distance 

to Coast 
1 0.000010 5.166E-6 3.9052 0.0481 

Cost Distance 

to Rivers and 

Creeks 

1 -0.00011 0.000040 8.2329 0.0041 

Farmlands 1 -0.9809 0.1761 31.0168 <.0001 

Land cover 2 1 0.7766 0.2296 11.4378 0.0007 

PC1 1 -0.00038 0.000753 0.2589 0.6109 
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 Summary 

Chapter 5 described the process of creating the variables to be used for the LRM. Various 

group of variables, including topographic, land cover, soils, and social variables, were 

considered in this project. The categorical variables were prepared and transformed into 

dummy variables. After all the variables were calculated, each of their values was 

assigned to the dependent variables: sites and no sites. These values were then transferred 

to SAS to run the statistical analysis. PCA, frequency analysis, and LRM methods were 

used to evaluate the significance of the variables. Only the significant variables were used 

in the final model to generate the probability surface, which was derived using the 

logistic coefficients of the significant variables in raster calculator. 

to SAS to run the statistical analysis. PCA, frequency analysis, and LRM methods were 

used to evaluate the significance of the variables. Only the significant variables were used 

in the final model to generate the probability surface, which was derived using the 

logistic coefficients of the significant variables in raster calculator. 
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Chapter 6  – Results and Analysis 

Chapter 6 focuses on LRM fitness and the final probability surface. In addition, the 

validation process of the model and its potential to predict the probability of finding a site 

at a given location is also discussed. 

 Logistic Regression Model Fitness 

A logistic regression model (LRM) was run with the selected variables discussed in 

Chapter 5. This significance test showed that all variables were significant except for the 

first topographic component (PC1) of the topographic variables (Table 6.1). In spite of 

that, the variable was kept in the model for two reasons. First, topographic variables are 

recommended in the literature for this type of analysis. Second, the model fitness 

increases with this variable included, as elaborated below. 

 

Table 6.1: Logistic Regression Result 

 

Table 6.1 shows the coefficients output of the logistic regression. The logistic 

coefficients represent the log odds ratios, which represent how much one unit of this 

variable affects the odds of finding a site. A negative value indicates a negative 

relationship between the probability of finding a site (1) and the independent variable. On 

the other hand, a positive coefficient means the independent variable increases the chance 

of finding a site. 

Among the independent variables, it was observed that cost to rivers and creeks, 

farmlands, and PC1 had negative coefficients. Thus, these variables decreased the 

probability of finding a site. In contrast, cost to coast had a positive relationship, which 

meant that it improved the probability of finding a site. All coefficients were tested with 

the Wald statistics and only PC1 turned out to be insignificant (p>0.05). 

The Hosmer-Lemeshow (H-L) test was run to evaluate how well the model fit the 

data. This test is a goodness of fit test and compares the observed data to the model-

predicted values. The null-hypothesis in the H-L test is that there is no difference 

between observed and model-predicted values. Thus, a significant testing result is desired 

Parameter Estimate 

Standard 

Error 

Wald 

Chi-Square p-value 

Intercept -0.2872 0.1660 2.6437 0.0884 

Cost Distance to 

Rivers & Creeks 

-0.00011 0.000040 8.2329 0.0041 

Cost Distance to 

Coast 

0.000010 5.166E-6 3.9052 0.0481 

Farmlands -0.9809 0.1761 31.0168 <.0001 

Land Cover 2 0.7766 0.2296 11.4378 0.0007 
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as it means that there is no significant difference between the observed and model 

predicted values. 

The H-L of this model had a p-value of 0.27 when PC1 was included, suggesting a 

good fit of the model to the data; however, the H-L test turned to be significant when PC1 

was removed from the model (Table 6.2). In contrast, when the topographic variables 

were not included, the Chi-Square and p-value increased, which suggested a lack of 

fitness. Therefore, PC1 was kept in the final model. 

 

Table 6.2: H-L Test of the Final Model 

Hosmer and Lemeshow Fit Test 

Final Model with 

PC1  

Final Model 

without 

Topographic 

Chi-

Square 
P 

Chi-

Square 
p 

9.9101 0.2714 13.6582 0.0911 

 

A Likelihood Ratio test was also used to validate the model. This test compares the 

model to a base model that does not include any predictors to evaluate if the model of 

interest significantly differs from the base model. For this test, a significant result is 

desired as it shows the base model is significantly improved by including selected 

predictors. The likelihood ratio test yielded a p-value of 0.0001 with the chi-square value 

of 92.7 and the degree of freedom of 5. Thus, the model built in this study was valid. 

 Probability Surface 

Using the coefficients, the final probability surface was created as described in Chapter 5. 

Figure 6.1 shows the areas more likely to have precolonial archaeological sites, as well as 

areas with a low probability of such sites.  
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Figure 6.1: Probability Surface 

The probability surface suggested probability of finding archaeological remains 

varied in the study area from 0.07% to 81%. The probability surface was then classified 
to two classes—areas with high probability and low probability of archaeological sites— 

by using the most common probability threshold in the literature of 50% (Kvamme, 

Probabilities
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1990). In the study area, 44% of the total study area had probability values above 50%. In 

contrast, 56% of the total study area presented probabilities below 50% (Figure 6.2). 

 

 
Figure 6.2: Probability Surface with 50% Threshold 

Based on the probability surface, the areas that have higher probabilities to find sites 

are located in the center of the study area. Moving toward to the coast, the likelihood of 

finding an archaeological site decreases. The probability is used in archaeology as the 

archaeological sensitivity in the study area (Heilen et al., 2012). Thus, areas with higher 

probabilities are considered to be more sensitive and vice versa. 

 Model Validation 

To further validate the model, the observed site and no-site samples were compared to the 

predicted surface. A threshold of 0.5 was used to divide the probabilities into correctly 

predicted probability and incorrectly predicted probability. For example, if an 

archaeological site had a p-value of 0.60, it was considered as correctly predicted. On the 

other hand, if a no-site had a p-value of 0.60, it was incorrectly predicted. However, if a 

no-site had a probability of 0.35, it was correctly predicted. For this project, 68% of the 

Probabilities
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p > 0.50
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data were correctly predicted according to the classification table of the observed and 

predicted values (Table 6.3). 

Table 6.3: Predicted vs. Observed Values 

Probability 
Correctly 

Predicted 

Incorrectly 

Predicted 

Correctly 

predicted 
Percentages 

Threshold Sites 
No-

sites 
Sites 

No-

sites 
Total Correct  

0.5 105 378 58 169 483 68 

 

The results show that the model predicts better for the no-sites than the sites. This 

suggests that when the model predicts a no-site, the probability of being wrong is less. 

Thus, the model may be better used to locate less sensitive areas for development. 

 Summary 

The model with the five selected independent variables yielded reasonable fitness and 

was tested to be valid. With this model, overall 68% of the samples were correctly 

predicted. However, it seems that model works better for predicting no-sites than sites. 

This also indicates that other relevant variables might be missing in the model and future 

analyses will be required to enhance the prediction capability.  
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Chapter 7  – Conclusions and Future Work 

The predictive model for archaeology (PMA) applied in Puerto Rico showed valuable 

applications and information to evaluate archaeological sensitivity. By examining several 

variables and their relation to the dependent variable, the project team was able to 

calculate a probability surface. The model showed that it predicts better no-sites than the 

sites. This project generated a PMA to help Consejo para la Protección del Patrimonio de 

Arqueología Terrestre de Puerto Rico (CAT) focus their research and protection of the 

archaeological remains in a more convenient and efficient way. The PMA proved to be a 

great tool to evaluate archaeological sensitivity.  

The PMA was built using Spatial Analyst and Data Management tools from ArcGIS 

10.2.2. The principal component analysis (PCA) was run using ArcGIS as well; the 

Statistical Analysis System (SAS) was used to obtain the analyses required. Statistical 

analysis was applied to create the probability surface representing the probability of 

finding an archaeological site. Several statistical analyses were applied to identify the 

significance of the variables to be included in the logistic regression model (LRM). The 

final output was calculated using the Raster Calculator assigning the coefficients from the 

LRM to each of the selected variables. The product of this process was a probability 

surface. After creating the probability surface, a Hosmer-Lemeshow (H-L) test was 

applied to evaluate the predictions of the model. This test showed that the model 

correctly predicts 68% the total observations within the model. 

To finish this project, it is important to establish that it was intended to create a PMA 

in Puerto Rico for the first time from a regional perspective rather than to a certain sites 

or smaller areas. Therefore, it is expected to continue improving both the model that was 

established on this report and the data collected by the government agencies in Puerto 

Rico respectively. The LRM showed a valuable application to analyze different types of 

data, either continuous or categorical. Lastly, it was selected to create a LRM because it 

is one of the most common approaches to developing and conducting PMA because of its 

flexibility and ease to interpretation.  

An area of the model that could be improved is the quality of the data used in the 

model. Use of high quality and accurate datasets would improve the model and its 

accuracy. For example, the homogenization of data entry in the archaeological databases 

will be important for future work. This improvement could allow the analysis of pre-

Colonial history of Puerto Rico by its specific periods. 

The client’s database comprised data containing information about the artifacts 

found at the sites. Incorporation of this information in a PMA could provide a platform 

for detailed statistical analysis. As studied by Hodder and Orton (1976), databases of 

artifacts can reveal patterns inherent within the archaeological history, which in turn can 

reveal different settlement patterns and processes. This is accomplished by analyzing the 

frequency of certain artifacts found in sites and analyzing the location of the primary 

material used to manufacture the artifact, such as type of stone and wood. 

The model could also be improved by adding new variables. Other diachronic 

variables could be added to improve the model, as well as such as temperature and roads. 

This would provide a platform for analyzing and understanding the impact of 

urbanization processes and development on the archaeology of Puerto Rico. 
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Appendix A. Sample Code SAS 

This is a sample of the code used in SAS to run the statistical analysis.  

1 data main; 

2 inputs OBJECTID decision Elevation Aspect AspectSout Slope Shelter Relief CostSurfac 

Cost Distance to rivers and creeks Cost Distance to coast 

3 cards; /*variables values excluded*/ 

4 run; 

56 

/*Significance for categorical variables*/ 

7 proc logistic data=main (DROP=Elevation Aspect AspectSout Slope Shelter Relief Cost 

Distance to rivers and creeks Cost Distance to coast CostDistMa 

8 class Farmlands Land Cover 2/ param=ref; 

9 model decision=Farmlands Land Cover 2 / rsq lackfit ctable pprob = .5; 

10 run; 

11 

12 /*Significance for topographic variables*/ 

13 proc logistic data=main (DROP= Cost Distance to rivers and creeks PC1 Cost Distance to 

coast CostDistMa ForestRain Farmlands Erodible ForestDry 

14 model decision=Elevation Aspect AspectSout Slope Shelter Relief CostSurfac / 

selection=stepwise rsq lackfit ctable 

15 run; 

16 

17 /*Significance for social variables*/ 

18 proc logistic data=main (DROP= Elevation Aspect AspectSout Slope Shelter Relief 

CostSurfac ForestRain Farmlands 

19 model decision=Cost Distance to coast Cost Distance to rivers and creeks / 

selection=stepwise rsq lackfit ctable pprob 

20 run; 

21 

22 /*Last model with selected variables: PC1*/ 

23 proc logistic data=main (DROP=CostDistanRiversOnly Elevation Aspect AspectSout Slope 

Shelter Relief CostDistMa CostSurfac 

24 class Farmlands Land Cover 2; 

25 model decision=Cost Distance to coast Cost Distance to rivers and creeks Farmlands 

Land Cover 2 PC1 / rsq lackfit ctable pprob = .5; 

26 run; 

27 

28 /*Last model with Elevation*/ 

29 proc logistic data=main (DROP=CostDistanRiversOnly PC1 Aspect AspectSout Slope Shelter 

Relief CostDistMa 

30 model decision=Cost Distance to coast Cost Distance to rivers and creeks Farmlands 

Land Cover 2 Elevation / rsq lackfit ctable pprob = .5; 

31 run; 

32 

33 proc print data=main; 

34 run; 
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