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Abstract 

A Spatial Analysis of African Oil and Gas Infrastructure Security 

by 

Jesse Hamlin 

Many countries and governments around the world rely on the production of oil and 

gas resources. The high cost of the assets and infrastructure used to produce these 

resources makes them a prime target for terrorist attack and theft. As a result, the security 

of oil and gas infrastructure is becoming exceedingly important. Both governments and 

private companies are interested in protecting the infrastructure used to extract, transport, 

and refine these resources in many places, including Africa. Geographic information 

systems (GIS) has the ability to assist with mapping infrastructure and assets, performing 

spatial analysis concerning areas of high-risk or vulnerability, and creating web-mapping 

systems that allow users to view and upload information as they acquire it. The end goal 

is to contribute to the protection of the oil and gas industry, and government’s dependent 

on this industry, from imminent and future threats. 
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Chapter 1  – Introduction 

This project focused on the security aspect of oil and gas (OG) infrastructure in Africa. 

There have been many events in recent history where terrorist attacks or oil theft has 

taken place. In order to prevent these attacks in the future, a GIS solution was 

implemented. Several tasks were performed, including acquiring an initial spatial 

database of OG layers for the client, performing spatial analysis in order to determine 

high-risk areas vulnerable to attack, and constructing an online web-map. Tools in the 

web map enabled the client to use standard web mapping tools such as changing 

basemaps, measuring distances and areas, and drawing tools, as well as being able to 

upload their own spatial data. By being able to view, analyze, and update information 

through GIS, future attacks can be better predicted, examined, and responded to in greater 

detail.  

1.1 Client 

The client for this project was the Sierra Nevada Corporation (SNC). The point of contact 

at SNC was Jim Wickman, Director of Fusion and Transformation. SNC has been sub-

contracted by the United States Special Operations Command (SOCOM) to gather 

intelligence in Africa. Of particular interest to SOCOM is the mapping of existing oil and 

gas assets that might be vulnerable to attack; such as pipelines and refineries, as well as 

determining how to monitor those assets. The client was interested in a web mapping 

system that could be implemented to allow data to be added and integrated. The client 

identified two specific countries of interest in Africa: Algeria and Mozambique (Figure 1-

1). 
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Figure 1-1: Study area priorities as identified by the client. 

1.2 Problem Statement 

Oil & gas infrastructure security is becoming an increasingly important issue, especially 

on the continent of Africa. This problem can be attributed to a number of factors that 

revolve around terrorism and theft. In Algeria on January 16, 2013, the In Amenas 

hostage crisis took place in which a group of militia believed to be associated with Al 

Qaeda took more than 800 people hostage at the Tigantourine natural gas facility. At least 

39 foreign hostages were killed including three Americans (British Broadcasting 

Corporation, 2013). This is just one example of what governments in developed countries 

(such as the United States and those in Europe) are trying to prevent. Another is the theft 

and sabotage of crude oil in Nigeria by rebel groups. In this case, pipelines are illegally 

drilled into and oil is collected and sold on the black market to other countries and 

governments. Some estimates put the potential oil revenues lost to theft over the past two 

years in Nigeria at close to $11 billion dollars (Reuters, Nigeria Loses $10.9B to Oil 

Theft, 2013). Offshore oil rigs are at risk for pirate attack and ransom, with several 

reported cases taking place in Nigeria. GIS is a tool that has the ability to assist. The first 

step is by mapping out the existing infrastructure. It is difficult to prevent these types of 

events without knowing where the infrastructure is located. GIS and spatial analysis can 

assist by helping to predict where these attacks will occur in the future. This helps 
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contribute to a reduction in future attacks, as well as an improvement in response time 

once an attack or theft does take place. 

1.3 Proposed Solution 

1.3.1 Goals and Objectives 

There were three primary objectives for this project. The first was to perform limited data 

acquisition (50 hrs. of OG data) and create a standardized, normalized spatial 

geodatabase for the client. This database was the primary deliverable for the client. 

The second objective of the project was to use GIS to identify areas of high 

security risk to OG assets on the African continent, based on several factors relevant to 

security. An integrated risk index method was designed to follow an approach taken by 

Cova (1999). This approach used several variables to produce individual hazard and 

vulnerability maps, from which a final risk map was derived. This objective assisted the 

client in fulfilling their need of effectively protecting and securing existing assets. 

 The third objective was to create a web mapping system that allows the client to 

view data and retrieve information, and to use basic GIS tools in a web-mapping 

interface. The application needed to be accessible from mobile devices and desktop 

computers, and needed to allow the client to import future data. 

1.3.2 Scope 

The project was completed over a ten month period. Frequent meetings via Skype took 

place with the client. Deliverables included a geodatabase, a set of risk layers, and a web 

map with data upload capabilities. The client provided updates and communication with 

the contractor, as well as ensuring data was acquired from the data provider. The 

audience for this project consisted of several possible stakeholders and user groups, 

including Sierra Nevada Corporation (SNC) and the United States Special Operations 

Command (SOCOM) intelligence analysts and project managers, as well as subsidiary 

organizations such as US Africa Command and the US State Department. In addition, the 

application might be used by potential commercial subscribers in the OG, insurance, and 

supply chain logistics management industries (through SNC’s internally funded research 

and development concept of Analysis as a Service or AaaS). 

1.3.3 Methods 

Several steps were taken in the technical solution to this project. The first was the 

compiling of spatial data into a standardized Esri file geodatabase. The second 

component of the project was performing spatial analysis. Using an integrated risk model 

from Cova (1999) as a baseline, 20 variables relevant to OG infrastructure security (based 

on an independent literature review by the contractor) were assembled and assigned 

weights in Esri ArcGIS. This was used to produce three primary output maps: hazard, 

vulnerability, and overall risk. Finally, the creation of the web map was produced using 

the ArcGIS WebApp Builder and ArcGIS Online. 
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1.4 Audience 

This report was written for audiences involved in the OG industry. As such, the GIS 

terminology in this report is generalized into non-technical language. The client (Sierra 

Nevada Corporation) will be the primary audience. Components of the project also have 

the potential to be used in a service-based subscription to other companies in different 

industries (as per client). These include insurance, supply-chain logistics management, 

and OG industries. 

1.5 Overview of the Rest of this Report 

Chapter 2 focuses on previous work done in spatial risk assessment, pipeline security, 

and oil and gas infrastructure characteristics, through a clearly defined literature search 

review. Chapter 3 revolves around the actual solution design that was used to solve the 

client’s problem. Chapter 4 consists of a full section on database design. As a core 

element of GIS, data and data compilation are key to producing GIS deliverables. 

Chapter 5 examines the implementation phase of the project. In Chapter 6, the analysis 

and results of the project are described in detail. Chapter 7 describes the conclusions, as 

well as future work that could be conducted as an extension to this project. 
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Chapter 2  – Background and Literature Review 

There are two major reasons why oil and gas security (OG) is a major issue for 

governments and private companies. The first is the lucrative financial benefits the 

industry generates; the second is the damaging effect the destruction of OG assets can 

have on the owner by opposition (e.g., disgruntled employees or terrorist groups). Large 

amounts of money are required to create the infrastructure used to support the OG 

industry. OG systems are by nature very connected systems. If one component of the 

system is damaged, it affects many other parts of the system. GIS has an increasingly 

effective role in being able to assist with these types of issues. Johnston (2004) argued 

that “GIScience and tools are becoming especially effective at (1) reducing threats, (2) 

detecting threats, (3) reducing vulnerabilities to threats, and (4) improving responses to 

terrorism” (p. 997). The following sections will discuss three topics. First, how GIS is 

used to assess risk. Second, how GIS can be used to reduce and detect threats for pipeline 

infrastructure, one of the primary targets for attack. The last section will consist of a 

review of basic OG infrastructure security protective measures.  

2.1 Assessing Risk Using GIS 

Risk is often defined in geography as pertaining to some degree or level of uncertainty of 

a negative outcome occurring. The goal of risk assessment is to assign a value or score to 

a particular event. Cova (1999) states that GIS is gaining in favor in comparison with 

traditional methods of risk assessment. Several studies have used GIS to assess and 

model risk from a spatial perspective relevant to this project (Cova, 1999; Cutter, 2000; 

Greiving, 2006; Collins, 2009). One thing all of these studies had in common was the 

method with which they tackled risk assessment. Variables that contribute to risk were 

identified and then subsequently grouped into one of two categories: hazard and 

vulnerability. According to Alexander (1993), “hazard is a pre-disaster situation where 

some risk of disaster exists, principally because the human population has made itself 

vulnerable in some way” (p. 848). Examples of hazard in Cova’s (1999) model include 

technological hazard variables from the built environment such as the presence of toxic 

sites, nuclear facilities, and hazardous material routes, as well as natural hazard variables 

such as geological faults, vegetation, and topography.  

The second category is vulnerability, which are often associated with the human 

environment. These include characteristics such as population density, proximity to major 

roads, and social unrest or conflict in a region. In Alexander’s model, risk was viewed as 

a combination of hazard and vulnerability. He presented a basic definition relating hazard 

and vulnerability originally taken from the Office of the United Nations Disaster Relief 

Coordinator (UNDRO) (United Nations Disaster Relief Office, 1979) where risk is 

viewed as a combination of hazard and vulnerability (Equation 2.1). 

 

Risk = elements at risk * (hazard * vulnerability)  Equation 2.1 

 

All literature cited thus far maintain the same basic principle: risk is derived from some 

combination of hazard and vulnerability. A more detailed version of the equation breaks 

down each individual variable where:  
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Risk = R(H(Eh),V(Ev))    Equation 2.2 

 

H is a function of the elements of Eh; vulnerability is a function V of the vulnerability of 

elements Ev ; and risk is a function R of the results of the hazard and vulnerability 

functions (Cova, 1999). All hazard variables are tied to hazard and all vulnerability 

variables are tied to vulnerability in the calculation of an ultimate risk score for each. By 

determining these scores and assigning them to locations, a risk mapping solution can 

then be implemented. This involves using the hazard variables to produce both a hazard 

model and a hazard map. Vulnerability variables are then used to produce a vulnerability 

model and vulnerability map. When these two maps are combined, a risk model and final 

risk map can then be generated. 

 
Figure 2-1: An approach to modelling hazard, vulnerability, and risk. Adapted 

from Cova (1999). 

The 2006 Greiving study provided a more detailed framework for assessing risk by 

assigning particular weights to each of the variables based on a Delphi method (survey 

information provided to Greiving from industry professionals). The approach is known as 

an integrated risk assessment of multi-hazards. Hazard and vulnerability maps were 

produced, this time taking it one step further by describing ordinal classes of intensity in 
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the range of 1-5. Lastly, an integrated risk map using a combination of hazard and 

vulnerability potential was adapted from Greiving (2006) using the following matrix 

(Table 1). 

Table 1. Integrated risk value matrix 

Hazard 
Intensity↓ 

Degree of 
vulnerability→ 

1 2 3 4 5 

1 2 3 4 5 6 

2 3 4 5 6 7 

3 4 5 6 7 8 

4 5 6 7 8 9 

5 6 7 8 9 10 

 

One problem with this approach was that many of the values are clustered near 

the center (i.e. in the 4, 5, 6, and 7). This is due to the addition method used to calculate 

the risk value. In this method hazard and vulnerability are added together to produce risk 

values (Equation 2.3). 

 

Risk = Hazard + Vulnerability    Equation 2.3 

 

The problem with this methodology is that the output values closely follow the normal 

distribution. This has a clustering effect of values near the center of the risk scale. If risk 

and vulnerability are instead multiplied together, the resulting values are more dispersed. 

This allows for more efficient visualization and interpretation (Figure 2-2).  
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Figure 2-2: Histograms of integrated risk value 

Collins (2009) describes a similar spatial risk methodology. In this method, flood 

risk in the El Paso-Ciudad Juarez metropolis (USA/Mexico) was explored. Risk was 

presented as a combination of hazard and vulnerability, but the difference was that the 

reason for this policy was more clearly explained. In essence, there was a dependency 

between the two variables hazard and vulnerability. The presence of one without the 

other will yield negligible or zero risk.  

 

“A critical point is that even a high magnitude hazard event poses no 

risk when it occurs in the absence of vulnerable population. 

Conversely, a vulnerable population – such as one that lacks access to 

protective resources – experiences no risk if there is not a probability 

of a hazard event occurring in their presence” (Collins, 2009, p. 449). 

 

This is why the two factors hazard and vulnerability are multiplied together to 

produce a risk score. If one value is given a zero value, the final risk score returned will 

be zero. The methodologies described in Section 2.1 were the basis for the GIS-based risk 

model used in this report. 
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2.2 Pipeline Security Assessment 

One of the main types of infrastructure that can be targeted for oil theft and terrorist 

activities is pipeline infrastructure. The high cost and damaging consequences of an 

attack on a pipeline make these prime targets for militant groups. Thus, the security of 

pipelines is one of the primary facets of OG security that needs to be considered. 

Pipelines often span long distances, which makes them problematic and expensive to 

monitor.  

Roper and Dutta (2005) presented several GIS and remote sensing applications for 

pipeline security assessment. With the advance of modern computing technology and 

storage devices, the ability to capture new forms of data at a more rapid pace was 

feasible. Examples of new technologies/methods given in the study included satellite 

based monitoring, light detection and ranging (LIDAR), terrain analysis, monitoring 

using airborne vehicles, and thermal infrared imaging. In particular, LIDAR and thermal 

infrared remote sensing were of interest. It was discovered that LIDAR “provides rapid 

3-D data collection of long, linear objects such as pipeline corridors” (Tao, 2002, p. 2). 

This means that highly inaccessible areas can be flown via air transport and LIDAR 

points recorded for use and visualization within a GIS. Roper (2005) cites another case 

study: “In one study satellite imagery and target identification analysis is used to detect 

unauthorized intrusion onto a pipeline right-of-way in a remote area of Canada” (Roper 

& Dutta, November 2005, p. 2). LIDAR is particularly effective at capturing linear 

features because its sensors have a narrower swath width than other optical sensors. Not 

only are pipelines able to be detected, but unauthorized intrusions are also able to be 

distinguished. Innovative applications such as this can be applied to many different parts 

of the world, including the intended study areas in Mozambique and Algeria.  

Roper and Dutta go further to identify thermal imaging as useful for pipeline 

detection primarily because it offers the ability to distinguish pipelines at night, due to 

temperature differences between pipelines and the ground. This separates it from other 

optical sensors, which typically are only able to reveal useful information during the day 

with proper daylight, and with good weather (i.e., low cloud cover). Another application 

for thermal imaging discusses differences between buried versus above ground pipelines. 

This is important because underground infrastructure is much more difficult for militant 

groups and thieves to attack.  

Another application for GIS in pipeline security is in visualization and mapping. 

Visualizing and managing pipelines in GIS mapping systems can be very valuable in 

comparison with viewing information in tabular format. “The ability to visualize pipeline 

features has proven to be a powerful tool for decision-makers – saving valuable time and 

resources” (Clemonds & Isaacs, 2010, p. 1). Managing from a geographic viewpoint 

allows users a better way to assess assets and recognize possible dangers or hazards. One 

of the core functionalities of GIS is mapping, and thus the difficulty of implementing this 

type of solution in asset management is inherently low. 

2.3 Infrastructure Characteristics and Protective Measures 

In order to understand how GIS can most effectively assist with the problem of 

infrastructure security, one must get a sense of infrastructure characteristics and the 

attractiveness of individual targets for terrorist attack or theft. OG infrastructure is often 
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an easy target for terrorists and thieves because by nature it is spatially concentrated. This 

is especially true for assets such as refineries, oil wells, LNG terminals, and offshore oil 

platforms. The attacks by the retreating Iraqi government on Kuwaiti oil fields in the 

1991 Persian Gulf War, in which 700 oil wells were set ablaze (Hirschmann, 2005), is 

just one example. In terms of specific assets, Farrell (2004) suggests that three types of 

infrastructure are prime targets. The first is liquified natural gas (LNG) facilities. The 

high cost and time required to construct these facilities makes them attractive for militant 

groups to attack (Farrell, 2004). The explosive properties of natural gas also make LNG 

infrastructure (pipelines, terminals, facilities) a more attractive target than some oil-based 

infrastructure. The other two major asset classes vulnerable to attack are refineries and 

pipeline pumping stations. This is because these assets are usually of limited supply, and 

typically service large areas. An attack on a refinery or pipeline pumping station can 

affect entire networks of an OG system. Without a refinery to refine petroleum products 

or a pipeline to transport them to the facility, delays can arise. The destructive potential 

of these three asset classes must be considered when assessing areas vulnerable to 

security risk using GIS.  

Critical Infrastructure Protection (CIP) is a term that is used throughout the 

industry to describe preparation and response to incidents involving attacks on 

infrastructure. One of the primary focuses of CIP is to prevent any supply and/or pricing 

interruptions from taking place. “A sudden loss of production capacity because of 

terrorist attacks, or any other major damage to energy infrastructure, would bring about 

immediate shortages of supply, which in turn would cause prices to spike” (Rudner, 

2009, p. 777). Blackouts and oil embargos are also a consequence of infrastructure 

attacks (Farrell, 2004). A set of protective measures must be established in order to 

protect infrastructure from attack. Farrell describes several key recommendations for 

preventing or at least diminishing the destructive nature of a terrorist attack. The first is 

energy diversity. By having different types of energy (oil, natural gas, coal, wind, solar), 

a country’s infrastructure is much less vulnerable. The second key method for achieving 

reliable energy supply is storage and redundancy. If an organization has only a handful of 

facilities, they may be more at risk of catastrophic failure should an attack or theft take 

place. The next protective measure is that of exclusion zones. These are physical or 

administrative barriers or buffers (often called setbacks in the OG industry) located 

around key OG infrastructure. Examples of this can be found in the offshore OG industry. 

Secure (e.g. 500 meter) and cautionary (e.g. 15 nautical mile) zones around offshore OG 

platforms have been recommended in both Asian (Cordner, 2011) and Australian 

(Kashubsky & Morrisson, 2013) studies. In terms of onshore boundaries, militarized 

protection zones are currently being utilized by many countries in the world, including 

those in North Africa. For example, “Algeria is currently using militarized protection 

zones for its hydrocarbon assets, which are patrolled by aerial and ground forces and can 

only be entered with special permits” (Smith Stegen, 2012, p. 12).  

The last measure that needed to be understood was cyber-security. In this measure, 

OG facilities are at potential risk of blackout or damage from computer-based viruses that 

affect the facility’s computer networks. This measure is spatial because many computer 

viruses still need to be transmitted through on-site facilities. This approach is particularly 

noteworthy, because these types of attacks can be accomplished with limited financial or 
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technical resources. Considering the advancement of access to technology over the last 

decade, this method is likely to become more prominent in the future.  

2.4 Summary 

By looking at how GIS was currently used to assess risk, an integrated risk model was 

generated in order to assess risk from an OG infrastructure security context. Before 

looking at the types of infrastructure that are at risk, it was imperative to examine several 

ways in which infrastructure was currently defended. This included several methods such 

as diversity, storage and redundancy, exclusion zones, and the threat of cyber security. In 

order to protect assets and respond to threats efficiently, it was important to understand 

which types of infrastructure were at higher risk. Based on the research conducted, these 

types of infrastructure included large scale, high-cost assets such as LNG terminals, 

refineries, and pipelines. These were the types of GIS information that were useful for 

security experts to visualize, and would allow them to be able to predict where future 

attacks would occur. The next section will describe the project requirements and system 

design that were acquired and integrated into a solution for the client.
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Chapter 3  – Systems Analysis and Design 

The following chapter will discuss the overall system design for the project. Section 3.1 

discusses the problem statement for the client. Section 3.2 discusses the requirements of 

the client. Section 3.3 goes into detail on the actual design components, and Section 3.4 

discusses the project plan that was devised for the project. 

3.1 Problem Statement 

Many people have lost their lives over the last few decades due to OG infrastructure 

attacks. Several OG companies such as Norway’s Statoil and the United Kingdom’s 

British Petroleum Group have simply decided to cease business in countries such as 

Algeria where attacks are common (Reuters, 2014). This can potentially lead to both 

domestic and foreign job losses, as well as a loss in economic benefits for the host 

country. Terrorist attacks and theft on OG infrastructure are becoming increasingly 

important issues on the continent of Africa. The client (Sierra Nevada Corporation) and 

subcontractor (SOCOM) are interested in protecting existing infrastructure, predicting 

where incidents will occur in the future, and decreasing response times once an incident 

does take place.  

3.2 Requirements Analysis 

Client requirements were separated into two separate industry standard classes: functional 

and non-functional requirements. Functional requirements describe behavior 

requirements of the solution, whereas non-functional requirements pertain to any 

performance-related, technological, or software requirements that were required to 

produce the deliverables.  

The first functional requirement for the client was to acquire several oil and gas 

datasets from different vendors. The second requirement was to deliver a standardized, 

normalized geodatabase consisting of relevant oil and gas layers such as pipelines, oil 

refineries, natural gas facilities, and oil and gas wells. The next requirement was to 

deliver several risk layers pertaining to oil and gas infrastructure security risk. These 

were derived from a standard risk formula methodology adapted from Cova (1999). The 

client also required a visualization tool to be able to view all the previous information in a 

standard web-mapping interface. As part of the web map, the client also required 

standard web mapping tools such as the ability to pan, zoom, and select individual layers 

for additional information. The ability to turn on different basemaps, create bookmarks, 

and perform standard measurements and select locations was also created for the client. 

Table 2 lists the functional requirements necessary to produce the deliverables for the 

client. 
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Table 2. Project functional requirements 

Functional 

Requirements 

Description 

Data acquisition The system included a detailed OG infrastructure dataset 

(pipelines, wells, facilities) acquired from a reputable 

vendor  

Geodatabase The system will produced a standardized, normalized OG 

database 

Risk Formula The system’s risk layer outputs will be based on a standard 

spatial risk formula: Risk = R(H(Eh), V(Ev)) 

Risk area layers Low and high detail risk layers will be produced displaying 

areas of high and low security risk 

Visualization System shall allow user(s) to view OG mapping data in an 

online web mapping interface 

User experience System shall allow user(s) to pan, zoom, and select 

individual layers and pull up attribute information 

There were six primary non-functional requirements for the project. The first was 

the use of the ArcGIS Spatial Analyst extension. This software was necessary to create 

the risk layers for the project. ArcGIS Online (AGOL) and the ArcGIS Web AppBuilder 

Beta 1 (WAB) were also required to produce the web application for the client. AGOL 

was used to create and store the data and web map, as well as provide login credentials. 

WAB was used to create the application itself, and create and customize the individual 

widgets, as well as style the application to meet the clients needs. The next non-

functional requirement was the use of ArcGIS 10.2 software. This was used to run basic 

geo-processing tools such as buffers, clips, merges, dissolves, and others, which were 

required for data pre-processing for both the geodatabase and the risk layers. The next 

requirement was to produce help documentation for the client on how to upgrade to the 

full version of WAB and AGOL once the trial organizational account expires and the 

contractor leaves the project. The last requirement was for the application to allow the 

client to upload its own shapefiles. Detailed information can be found below (Table 3).  
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Table 3. Project non-functional requirements 

Non-Functional Requirements Description 

ArcGIS Spatial Analyst  The risk map outputs were created by 

converting from Vector to Raster and using 

Raster Calculator 

ArcGIS Online Web Map and Feature 

Services 

The system utilizes AGOL basemap and 

feature services to populate the web 

mapping application with spatial data 

Web AppBuilder The system was created with custom tools 

and layout  

Data Upload The system shall allow users with 

administrative permissions ability to 

upload individual OG shapefiles under 

200mb in under 60 seconds 

 

3.3 System Design 

A system design was created to meet the needs of the client. This consisted of several 

components. The first was the compilation of several datasets from various sources into a 

standardized Esri file geodatabase. Spatial analysis could then be run using a combination 

of ArcGIS Spatial Analyst tools and the Cova (1999) risk methodology. This information 

was then pushed up to the cloud, and imported into a web mapping application using 

ArcGIS Web AppBuilder and ArcGIS Online. The client is then able to view and import 

data (Figure 3-1).  
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Figure 3-1: System architecture and components. 

Data were separated into four major groups: 

 Basemap and administrative layers 

 Detailed infrastructure layers 

 Low detail infrastructure 

 Conflict data (for verification of risk model) 

  

Once this information was assembled, data transformation, conversion, and re-projection 

were performed. A standardized, normalized Esri ArcGIS geodatabase was produced. 

This geodatabase, along with the risk theory model explained in Chapter 2, was used as 

the engine to drive the spatial analysis. A 19 variable risk model was used to produce 

several output layers and maps highlighting areas of high hazard, high vulnerability, and 

high risk. These were imported and stylized into an AGOL organizational account web-

map. From here, other OG infrastructure layers were imported and stylized accordingly. 

Esri’s Web AppBuilder was then used to pull the existing web map and its data into a 

customized interface suitable for client viewing. The client will be able to import its own 

data by logging into AGOL (credentials were provided to specific individuals) and 

uploading a variety of file formats (e.g., zipped shapefiles, excel, feature classes, etc.). 

3.4 Project Plan 

In order to produce an effective solution for the client, several project phases were 

completed. This high-level workflow is shown in sequential order (Figure 3-2). 
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Figure 3-2: Basic system workflow. 

The first step was to identify several data vendors and request pricing information for 

different datasets. The information was presented to the client in a specific format (free 

vs. non-free datasets in an excel spreadsheet). The contractor and client then came to an 

agreement on a preferred data vendor. This vendor was contacted and payment was 

scheduled. After the data acquisition phase, the data translation and compilation phases 

took place. Microsoft Excel and ArcGIS were used to clean and assemble the data into a 

standardized Esri ArcGIS Geodatabase for the client. At this time, spatial risk analysis 

research and subsequent analysis took place (the initial data purchased for the project 

arrived on May 20, 2014). After this, spatial analysis was re-run and outputs were 

generated. After creating a standard web-mapping interface, the final product import was 

able to take place. Training and presentation to the client occurred soon after.  

A project plan was devised in late December, 2013, to identify specific project 

phases and tasks. Resources and time were allocated to each task of the project in hopes 

that the proposed plan would follow closely with reality (Table 4).  
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Table 4. Proposed detailed project schedule from December 2013 

Task Name Duration Start Finish 

1 Phase #1 - Geodatabase Creation 46 days 12/1/2013 1/31/2014 

1.1. Source Data 10 days 12/2/2013 12/13/2013 

1.2. XMAS Holidays - Workload Reduced 14 days 12/16/2013 1/2/2014 

1.3. Contact Data Providers 3 days 1/3/2014 1/7/2014 

1.4. Sort Data into 2 Classes - Free vs Non Free 1 days 1/8/2014 1/8/2014 

1.5. Client Approval and Sign Off 1 days 1/9/2014 1/9/2014 

1.6. Acquire Data 2 days 1/10/2014 1/13/2014 

1.7. Data Standardization 8 days 1/14/2014 1/23/2014 

1.8. Massage Data into ESRI Petroleum Data 2 days 1/24/2014 1/27/2014 

1.9. Clean/Scrub Data 3 days 1/28/2014 1/30/2014 

1.10. Client Approval and Sign off 1 days 1/31/2014 1/31/2014 

2 Phase #2 - Identify High Risk Areas 42 days 2/1/2014 3/31/2014 

2.1. Identify Possible Data Sources from Phase1 3 days 2/3/2014 2/5/2014 

2.2. Contact Client Regarding Criteria 3 days 2/6/2014 2/10/2014 

2.3. Determine Appropriate Spatial Method 5 days 2/11/2014 2/17/2014 

2.4. Perform Spatial Analysis and Create Output 10 days 2/18/2014 3/3/2014 

2.5. Create Output Layers 9 days 3/4/2014 3/14/2014 

2.6. Import and Theme Layers in AGOL 5 days 3/17/2014 3/21/2014 

2.7. Client Approval and Sign-Off 1 days 3/24/2014 3/24/2014 

2.8. Buffer Window 5 days 3/25/2014 3/31/2014 

3 Phase#3 - Web Map w Data Uploading 66 days 4/1/2014 7/1/2014 

3.1. Determine Appropriate Viewer 4 days 4/1/2014 4/4/2014 

3.2. Build/Import Widgets 15 days 4/7/2014 4/25/2014 

3.3. Spring Holiday Break 21 days 4/28/2014 5/26/2014 

3.4. Develop QA/QC Prior to Testing 4 days 5/27/2014 5/30/2014 

3.5. Feedback Webinar 1 days 6/2/2014 6/2/2014 

3.6. General Client Testing at Clients HQ 1 days 6/3/2014 6/3/2014 

3.7. Data Upload Testing at Clients HQ 2 days 6/4/2014 6/5/2014 

3.8. Training Webinar 2 days 6/6/2014 6/9/2014 

3.9. Client Approval and Sign-Off 1 days 6/10/2014 6/10/2014 

3.10. Hand Over AGOL Admin Rights 2 days 6/11/2014 6/12/2014 

3.11. Produce Training Doc for Client 2 days 6/13/2014 6/16/2014 

3.12. Buffer Window 10 days 6/17/2014 6/30/2014 

 

 Over the course of the project, the timeline changed significantly. This mostly 

revolved around a delay in data acquisition. Several steps were taken to prevent this issue 

from causing serious harm to the project schedule. The first was a mitigation plan, which 
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entailed beginning the data acquisition process early on in the project. This helped 

provide more time for acquisition to take place when delays did occur. The second was 

identifying a trigger point at which a contingency plan would take place. In this case, if 

data were not acquired by February 28, 2014, the contingency plan was utilized. This 

meant that additional free data would be acquired and imported into a geodatabase for 

processing. This process was implemented on March 1, 2014, in response to unexpected 

delays in acquisition of the proposed dataset from Deloitte. Data were acquired from 

several sources and compiled into a geodatabase for use in modelling risk. Other than this 

setback, the timeline fell according to plan. A client needs assessment was conducted 

throughout the lifecycle of the project. By May 20, 2014, data acquisition of both the 

contingency and original datasets was completed. The identification of high-risk areas 

was completed by July 15, 2014. The completion and hosting of the web map on 

University of Redlands servers was concluded June 1, 2014 (~3 months allocated). It is 

important to note that no data were created or digitized. This costly and exhaustive 

process was not the focus of this project. Both the initial and revised timelines associated 

with the project are included below (Figure 3-3). 

 

 
Figure 3-3: Initial and revised timeline. 
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3.5 Summary 

This section went into detail on the system analysis and design component of the project. 

Identifying functional and non-functional requirements, scheduling, workflow, and 

system design were just some of the factors discussed. Several lessons were learned 

regarding timeline and schedule. The first was that data acquisition can often be a lengthy 

process. This was dealt with by implementing mitigation and contingency plans that 

prevent this issue from affecting the overall success of the project. Acquiring independent 

datasets early in the project lifecycle also helps. It was the application of these strategies 

that ensured this project was completed on time and on budget, and at the same time 

ensuring the client’s requirements were met. 
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Chapter 4  – Database Design 

To perform reliable GIS analysis, a solid database foundation is required. Several 

components contribute to a solid foundation. The first is a sound conceptual model for 

the project, which is discussed in Section 4.1. Section 4.2 discusses the logical model. 

Section 4.3 looks at sources for the data used in the project. Section 4.4 discusses data 

collection methods. Section 4.5 goes into detail on any data scrubbing and loading that 

took place prior to analysis.  

4.1 Conceptual Data Model 

There are many factors that can determine the vulnerability of oil & gas infrastructure to 

attack/theft. Many of these are very difficult to capture in a GIS database (for example 

socio-political and economic variables such as government policies or economic ties). 

Others lend themselves well to GIS analysis including existing location of pipelines, 

refineries, and wells. Nineteen variables were captured in the conceptual data model for 

this project. These variables were split into three major groups. The first were natural 

hazard layers. These contain information regarding the natural environment such as the 

proximity to geological areas and the location of existing offshore and onshore OG 

deposits. The second group was technological hazard layers. These consist of existing 

infrastructure from the built environment such as pipelines, wells, refineries, LNG 

terminals, and other facilities. These two groups comprised the hazard layers on which an 

associate risk model was based. The third group of layers captured in the database were 

vulnerability layers. These were associated with human influence. Variables such as 

proximity to urban areas, roads, and previous history of OG infrastructure attacks were 

modeled. These variables required some processing in order to be modeled correctly in 

the database. Once this process occurred, a vulnerability model was produced. A 

subsequent risk model, vulnerability map, hazard map, and risk map were derived from 

these datasets. Figure 4-1 illustrates the entities and relationships described above. 
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Figure 4-1: Conceptual data model. 

4.2 Logical Data Model 

There were several datasets used in the creation of a logical data model. The 

administration feature dataset contained feature classes important for reference, as well as 

inputs used to generate the risk output maps. The OG conflict feature dataset contained 

several point files useful in the verification process of the model. The exploration and 

production feature dataset contained layers relevant to that industry. Similar for the 

infrastructure feature dataset. The population and transportation feature dataset also 

contained layers useful as inputs used to generate the risk output maps. The Deloitte data 

feature dataset contained highly detailed and accurate layers obtained from Deloitte 

Group via purchase. These layers were for specific areas in Southern Mozambique and 

Northern Algeria because the cost for the entire country of Algeria and Mozambique was 

too great for the client. These layers were also useful for verification purposes by running 

the existing model on more detailed, accurate data. Lastly, the raster datasets were 

primarily the outputs generated by the previously discussed feature datasets. Among the 

features not listed in Figure 4-2 for visualization reasons, a large number of temporary 

layers were generated in two separate feature datasets called Analysis and Detailed 

Analysis. These stored provisional layers such as results from buffers, clips, merges, and 

dissolves that were necessary to derive the final output maps. The Analysis feature 

dataset stored the temporary layers from the low-scale risk model outputs generated for 

the continent of Africa, and the Analysis Detail feature dataset stored the outputs 

generated for the detailed analysis of risk performed for the countries of Mozambique 
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and Algeria. Figure 4-2 illustrates the logical data model for the key datasets used in the 

project. 

 
Figure 4-2: Logical data model. 

4.3 Data Sources 

The data for this project came from a variety of sources. There were four primary data 

types acquired. The first were basemap and administrative layers. The basemaps for this 

project were pulled from ArcGIS Online (AGOL). The user has the ability to select 

different basemaps (e.g. satellite, roads, etc.) hosted by AGOL. Administrative layers 

(e.g. continents, countries, major roads) were obtained from Esri’s 2013 data that comes 

with ArcGIS 10.2. The second class of data is low-detail infrastructure data, primarily 

useful for continental or individual country level analysis. These data were obtained from 

several free sources online including Europetrole, The Oil & Gas Journal, and the 

National Geospatial Intelligence Agency. The third class of data was highly detailed 

infrastructure data purchased from Deloitte Group on May 20, 2014, useful for individual 

country or state/provincial level analysis. This information could be considered more 

reliable because in many cases it is more accurate and is updated monthly. It also 

contains proper metadata and attribute information. The last type of data was conflict 

data. This information contained conflict locations in Africa for several pre-defined 

periods. This information was acquired from three sources and was filtered to include 

only OG data on the continent of Africa. More information on this process can be found 

in Section 4.5. The first was the Global Terrorism Database (GTD). This contains 
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information on terrorist attacks from 2006-2013. The second was the Social Conflict in 

Africa Database (SCAD). This contains information on social conflicts from 1992-2012. 

The last was the Armed Conflict Location and Event Data Project (ACLED). This 

contains information on political violence in developing states from 2013-2014. Table 4 

illustrates the Master Data List used for the project.  

Table 5. Master data list 

ID Name File 

Type 

Sourc

e 

Link Formatt

ing/Scr

ubbing 

Require

d? 

Vintage 

1 AGOL 

Basemap 

Map 

Service 

Esri 

AGOL 

http://www.esri.com/

software/arcgis/arcgis

online 

No 2014 

2 Esri 

Administrative 

Layers 

(continents, 

countries, 

roads) 

GDB 

feature 

classes 

Esri Esri 10.2 download Yes 2011 

and 

2012 

3 Crude Oil 

Refineries 

Shapefile Harvar

d 

World 

Map 

http://worldmap.harv

ard.edu/maps/oilandg

asmap 

Yes 2006 

4 Liquid Natural 

Gas Terminals 

Shapefile EuroP

etrole 

http://www.euro-

petrole.com/ac_01_in

dex.php 

Yes N/A 

5 Oil Pipelines Shapefile Harvar

d 

World 

Map 

http://worldmap.harv

ard.edu/maps/oilandg

asmap 

Yes N/A 

6 Gas Pipelines Shapefile Harvar

d 

World 

Map 

& 

ENTS

OG 

http://worldmap.harv

ard.edu/maps/oilandg

asmap 

 

http://www.entsog.eu

/ 

Yes N/A 

7 Oil & Gas 

Pipelines 

Shapefile NGA 

(Form

erly 

NIMA

) 

http://egsc.usgs.gov/n

imamaps/ 

Yes N/A 

http://www.euro-petrole.com/ac_01_index.php
http://www.euro-petrole.com/ac_01_index.php
http://www.euro-petrole.com/ac_01_index.php
http://worldmap.harvard.edu/maps/oilandgasmap
http://worldmap.harvard.edu/maps/oilandgasmap
http://worldmap.harvard.edu/maps/oilandgasmap
http://worldmap.harvard.edu/maps/oilandgasmaphttp:/www.entsog.eu/
http://worldmap.harvard.edu/maps/oilandgasmaphttp:/www.entsog.eu/
http://worldmap.harvard.edu/maps/oilandgasmaphttp:/www.entsog.eu/
http://worldmap.harvard.edu/maps/oilandgasmaphttp:/www.entsog.eu/
http://worldmap.harvard.edu/maps/oilandgasmaphttp:/www.entsog.eu/
http://worldmap.harvard.edu/maps/oilandgasmaphttp:/www.entsog.eu/


25 

8 Oilfields Shapefile NGA 

(Form

erly 

NIMA

) 

http://egsc.usgs.gov/n

imamaps/ 

Yes 1998 

9 Offshore & 

Onshore 

Deposits 

Shapefile PRIO 

Journa

l of 

Peace 

Resear

ch 

http://www.prio.org/

Data/Geographical-

and-Resource-

Datasets/Petroleum-

Dataset/Petroleum-

Dataset-v-12/ 

Yes 2007 

10 Algeria 

Hydrocarbon 

Map 

GeoTIFF Harvar

d 

World 

Map 

worldmap.harvard.ed

u/maps/oilandgasmap

pipelin 

No N/A 

11 North Algeria 

Facilities, 

Pipelines, 

Wells (at cost) 

Shapefile Deloitt

e 

Group 

http://www.psg.deloit

te.com/productspetro

view.asp 

No May 

2014 

12 South 

Mozambique 

Facilities, 

Pipelines, 

Wells (at cost) 

Shapefile Deloitt

e 

Group 

http://www.psg.deloit

te.com/productspetro

view.asp 

No May 

2014 

13 2006-2012 

Terrorist 

attacks GTD 

.dbf Global 

Terrori

sm 

Databa

se 

http://www.start.umd.

edu/gtd/contact/ 

Yes 2014 

14 2013-2014 

Political 

Violence 

ACLED 

.dbf Armed 

Confli

ct & 

Locati

on 

Event 

DB 

http://www.acleddata.

com/data/ 

Yes 2014 

15 1990-2012 

Social Conflict 

in Africa DB 

SCAD 

.dbf Social 

Confli

ct in 

Africa 

DB 

https://www.straussce

nter.org/scad.html 

Yes 2014 

4.4 Data Collection Methods 

One of the primary goals of this project was data collection. After determining the client 

had little spatial data available, a decision was made to start assembling information from 

http://egsc.usgs.gov/nimamaps/
http://egsc.usgs.gov/nimamaps/
https://www.strausscenter.org/scad.html
https://www.strausscenter.org/scad.html
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a variety of sources. These sources were categorized into two main groups: free and for 

sale. After discovering and downloading all possible free datasets, maps were delivered 

to the client and a discussion took place in January 2014 regarding these maps. During 

this meeting, the client and contractor agreed that the existing data were not sufficient for 

the client’s requirements. They were of low detail and in many cases incomplete. The 

data also were not current and missing attribute and metadata information. The client and 

contractor agreed that a budget would need to be incorporated for data acquisition. The 

contractor approached several OG data vendors, assembled pricing information, and 

presented the list of potential vendors to the client. The costs for data ranged from 

$5,000-$25,000 USD for detailed information for single countries, and up to $300,000 

USD for regions of Africa, for example Sub-Saharan Africa. Upon review of the data 

sources presented, the client and contractor agreed to use the client’s pre-specified budget 

for this project to select the winning quote from Deloitte Consulting Group out of the 

United Kingdom. The dataset purchased consisted of shapefiles for pre-selected regions 

of Algeria and Mozambique. Data included both on and offshore OG infrastructure, such 

as wells, pipelines, and facilities data including refineries and LNG terminals (Figure 4-

3). 
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Figure 4-3: Pipeline, well, and facilities data acquired from Deloitte Group. 

These features were selected because they were the most frequently targeted in Africa for 

oil theft and terrorist attack. Approximately 40 hours were spent on data acquisition.  

Prior to implementation, the features from the conceptual model had to be 

transferred into a logical data model. This consisted of several tasks. The first was the 

download of each individual dataset and conversion into shapefile format. From here, an 

ArcGIS file Geodatabase (Africa_OG.gdb) was designed that would contain several 

feature datasets. Within each feature dataset, relevant layers were re-projected into the 
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WGS84 coordinate system. After this, each dataset was converted and imported into 

feature class format. These datasets were the basis for the primary raster outputs of the 

model (hazardMap, vulnerabilityMap, and riskMap) which were stored in the database 

and not in any particular feature dataset. A separate raster basemap for Algeria displaying 

detailed OG information was also included with the other rasters. 

4.5 Data Scrubbing and Loading 

Three primary software packages were used to scrub and load the data: Esri ArcMap, Esri 

ArcCatalog, and Microsoft Excel. Several steps were taken in the creation of the Esri 

Geodatabase for the client. The first was to create the geodatabase (Africa_OG.gdb) in 

ArcCatalog. Specific feature datasets were then created to store each individual feature 

class. Eight primary feature datasets were created: 

 

 Administration, for administrative layers such as countries and continents; 

 Analysis, for all analysis work; 

 Conflicts, conflict point data extracted from MS excel database files and 

imported as feature classes into the geodatabase; 

 Electrical, the client was moderately interested in electrical information as 

well as OG; 

 ExplorationProduction, for exploration information such as existing wells, 

deposits, OG basins, and other upstream OG data; 

 Infrastructure, the primary feature dataset for this project, containing 

midstream and downstream OG data such as refineries, LNG terminals, 

pipelines, and other facilities; 

 Population, containing 2010 populated areas; 

 Transportation, containing 2011 road centerlines; and 

 Raster with information such as the Algeria Hydrocarbons Map and outputs 

from the risk model (hazardMap, vulnerabilityMap, riskMap) 

 

All datasets were re-projected into the WGS84 coordinate system, which allowed for 

standardization among data. All individual feature layers were imported into their 

corresponding dataset feature dataset. This coordinate system was chosen because it is a 

standard global coordinate system suitable for performing large scale analysis. It is also 

accepted by ArcGIS Online, which would be required at future stages of the project. 

After this, a feature class of the continent of Africa was extracted using the Selection tool 

in ArcMap. For this new feature class, all subsequent data layers were clipped using the 

Clip tool to the boundary of Africa, the intended study area. Subsequently, each 

individual feature class was “scrubbed.” This entailed ensuring all fields had legible field 

names and attribute information. Any redundant or irrelevant fields were deleted. The 

LNG terminal data from Europetrole had attribute data in French. This was translated to 

English prior to import into the geodatabase. All metadata and source information for 

each layer was inputted manually. This will allow users to locate the most recent copy of 

the data for future projects. 
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4.6 Summary 

There are many factors that come into play when attempting to predict where future OG 

infrastructure attacks may occur. Many of these factors are difficult to model in a GIS. 

However, several lend themselves well to GIS mapping. This project consumed close to 

19 GIS layers that were stored in a geodatabase. This chapter discussed the database 

design used for the project. It included components on the conceptual and logical data 

models implemented, as well as sections on data sources, collection methods, and 

scrubbing/loading the data into an Esri geodatabase. Chapter 5 will discuss how this 

database was utilized to implement a GIS solution for the client. 
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Chapter 5  – Implementation 

The implementation phase of this project consisted of three components. The first was the 

spatial analysis model that identified areas of high and low risk. Several ArcMap tools 

were used in conjunction with the ArcMap Spatial Analyst tools in order to produce 

hazard, vulnerability, and risk maps. The second component was the acquisition and 

translation of verification data used to determine the accuracy of the model. This was 

completed using keyword searches in Microsoft Excel to first filter the data, and by using 

ArcMap’s Extract Values to Points tool to determine the accuracy of the model. The third 

component was the creation of the web mapping application. This was constructed using 

an ArcGIS Online organizational account with the beta version of Esri Web AppBuilder, 

and was hosted on the University of Redlands public webserver.  

5.1 Spatial Analysis of Risk 

A theoretical model and formula were required in order to identify high and low risk 

areas. Cova’s (1999) risk model was selected. In this model, risk is a combination of all 

elements of hazard and vulnerability. This equation is found in its most basic form below 

(Equation 5.1).  

 
Risk = R(H(Eh),V(Ev))    Equation 5.1 

 

In this equation, hazard is a function H of the hazard of elements of Eh; vulnerability is a 

function V of the vulnerability of elements Ev ; and risk is a function R of the results of 

the hazard and vulnerability functions (Cova, 1999). All variables were directly or 

indirectly captured in ArcMap 10.2 using spatial datasets acquired from various data 

providers. In order to produce the hazard model, exploration and production (EP) and 

infrastructure layers were utilized. Maps displaying these data for the continent of Africa 

are found below (Figures 5-1 and 5-2).  
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Figure 5-1: EP data used in the risk model to produce the Hazard variable.  
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Figure 5-2: Data used in the risk model to produce the Hazard variable.  

A buffer for each individual layer (from 10-50 kilometers) within the exploration and 

production and infrastructure datasets was produced using the Buffer tool. The proximity 

to coast layer required the use of the Multi-Part to Single-Part tool in order to prepare the 

data for manual selection. After this, each layer was merged into one layer using the 

Merge tool and dissolved using the Dissolve tool. Merged infrastructure and EP 

information are shown below in black, and the final setbacks are displayed in orange 

(Figure 5-3). 
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Figure 5-3: Buffers performed on existing EP/Infrastructure data.  

The Multiple-Ring Buffer tool was used on these setbacks at intervals of 50, 100, 150, 

and 200, and 250 km respectively. This transformed the setbacks from non-contiguous 

vector information to a semi-continuous vector surface. This was a requirement in the 

construction of a raster surface. After generating the multi-ring buffers, the Multi-Part to 

Single-Part tool was used to split the data up into separate geometries, from which the 

Select tool was used to assign integer values of 1-5 to each individual polygon using the 

Add Field tool. The Clip tool was then used to clip the extent of the setbacks to the Africa 

continent boundary. Figure 5-4 illustrates red areas that were considered high risk for 

hazard, because they are found in close proximity to the inputs (in black). Lighter red or 

white areas were considered low risk.  
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Figure 5-4: Polygon buffers surrounding existing EP/infrastructure data. 

The Polygon to Raster tool was then utilized to create a continuous raster surface from 

which additional analysis could be performed. The risk field was used to transform the 

polygons to raster values from 1 to 5. A cell size of 0.01 decimal degrees was selected 

(Figure 5-5).  
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Figure 5-5: Conversion from polygon to raster. 

The last step was to add an additional risk category for null values. This allowed for risk 

value to be assigned to the entire continent of Africa and was required to yield significant 

results. If null values or holes are present in the data, when hazard is multiplied by 

vulnerability, null or zero values will result. As such, the hazard raster was reclassified to 

include a sixth value for risk (Figure 5-6). The purple areas are the 6th class, which were 

assigned a low hazard equal to one. Each additional hazard class was reclassified up one 

value. 
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Figure 5-6: Reclassification of 5 class hazard raster to 6 classes 

A generalized workflow describing the process for creating the hazard map is shown 

below (Figure 5-7).  
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Figure 5-7: Workflow showing process used to create the hazard map 

The next step was to conduct the geographic analyses required for vulnerability. This 

involved using several variables from the human environment for inputs such as 

proximity to major population centers, proximity to major roads, and historical social 

conflict events. A 2010 urban areas layer and 2011 major roads layer were used as inputs 

(Figure 5-8). In addition, three separate conflict databases were acquired that identify 

social conflict and terrorist activity (Figure 5-9). The first is the Global Terrorism 

Database (GTD) from the period of 2006 to 2012. This project is an open-source database 

at the University of Maryland that includes information on terrorist events around the 

world. The second is the Armed Conflict and Location Event Database (ACLED) from 

2014. This project is a comprehensive public collection of political violence data for 
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developing states. The last is the Social Conflict in Africa Database (SCAD) from 1992-

2012. This project is administered by the Robert R. Strauss center for international 

security and law at the University of Texas at Austin. It includes protests, riots, strikes, 

inter-communal conflict and government violence against civilians. In total there are 

16,056 records.  

 
Figure 5-8: Datasets used in the risk model to produce vulnerability  
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Figure 5-9: Datasets used in the risk model to produce vulnerability  

Many of the same GIS operations used to produce the hazard map, such as buffers, clips, 

merges, and dissolves were also used to produce the vulnerability map (see Chapter 6). 

Buffers on populated areas and major highways were conducted. A spatial join was used 

on the conflict data in conjunction with the Count tool to produce a new layer called the 

Top 10 for social unrest (Figure 5-10). The countries highlighted in pink and red have 

had the most occurrences of terrorist attacks and conflicts from 1992-2014. A table in the 

bottom right shows these top 10 countries organized by number of attacks/conflict 

(Figure 5-10).  
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Figure 5-10: The Top 10 countries for terrorist attacks and social unrest 

The next step was to take the existing conflict information and filter it into attacks/theft 

on oil and gas infrastructure using multiple keyword searches (see Section 5.2). The 

resulting .xls file was imported into ArcMap 10.2 displaying oil and gas attacks from 

1992 to 2012. Using a visual inspection, a new layer was derived from this information 

called the “Top 7” oil and gas infrastructure incident countries. These countries were also 

selected because of high numbers of oil and gas infrastructure attacks/theft both on and 

offshore (Table 6). Somalia was included in the “Top 7” because of its high levels of 

social unrest, public unrest, and its recent discovery of proven natural gas reserves 

(Central Intelligence Agency). Sudan was included in the “Top 7” because of its high 

levels of social unrest and presence of existing oil and gas infrastructure and deposits.  
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Table 6. Raw count of numbers of events located within each country 

Country Infrastructure 

attack/theft events 

Nigeria 85 

Egypt 17 

Algeria 13 

Libya 9 

South Sudan 4 

Sudan 3 
Somalia 3 

Angola 2 

Ethiopia 1 

Togo 1 

Tunisia 1 

South Africa 1 

Gabon 1 

Congo 1 

Ghana 1 

Guinea 1 

Democratic Republic of Congo 1 

 

The top 7 countries were exported into a new geodatabase feature class. Adjacency was 

the next geographic variable to be modeled. Using a Euclidian distance setback of 350 

km, adjacent areas were buffered and a new feature class was created (Figure 5-11). This 

distance was chosen because it accounts for the large discrepancy in size between many 

of the countries on the continent of Africa. It allows countries such as Togo, Ghana, and 

Benin to be included, while at the same time allowing for the Northeast portion of the 

Democratic Republic of Congo to be included. Both the Top 7 and adjacent areas were 

given relevant weights based on their proximity to conflict occurrences. Purple points are 

oil and gas infrastructure attacks from 1992 to 2014, yellow areas are countries where 

attacks are common, and green polygons are areas physically adjacent to those countries.  
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Figure 5-11:  High-risk OG target countries and their adjacent areas 

After Buffer, Merge, Clip, Dissolve, and Multiple-Ring Buffer tools were run, a polygon 

output was generated representing vulnerability. In order to speed up the processing time 

for the Polygon to Raster tool (0.01 decimal degrees cell size), the Smooth tool was used 

to generalize the geometries for the polygon. A polygon vulnerability map was generated 

in which dark red areas represent high vulnerability, while light pink and white areas 

represent low vulnerability. Populated areas and major highway infrastructure are shown 

in black (Figure 5-12).  
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Figure 5-12: Polygon buffers surrounding populated areas and major highways 

The Sort tool was used to sort the polygon values from lowest to highest. The Polygon to 

Raster tool was then used to convert the polygons to raster values from 1-5. The 

Reclassify tool was then used to add an additional raster value in order to fill in the holes 

in the raster, in the same process used in the creation of the hazard map (see Figure 5-6). 

A generalized workflow showing the operations used to create the vulnerability map can 

be found below (Figure 5-13).  
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Figure 5-13: Workflow showing process used to create the vulnerability map  

 The last major step took the raster for vulnerability and raster for hazard and 

multiplied them together using the Raster Calculator tool from the ArcGIS Spatial 

Analyst toolbar and map algebra (Figure 5-14).  
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Figure 5-14: Map algebra using the Raster Calculator tool 

A manual classification scheme was applied to the result. The output will be discussed in 

Chapter 6. A workflow of the process described throughout Section 5.1 can be found in 

Appendix A.  

5.2 Risk Model Verification 

In order to better understand the spatial risk analysis model created, the results needed to 

be quantified. There were two primary steps in this process. Comparing the model 

accuracy to a set of completely independent OG infrastructure attacks was the most 

important one. In order to perform this step, data needed to be acquired and filtered. An 

Excel spreadsheet was acquired from the Armed Conflict Location and Event Data 

Project (ACLED) which contained a list of global conflict events from 1997 to 2012. 

Data were filtered to include only conflicts on the continent of Africa. In the same way, a 

keyword search was performed on the comments field to filter the conflicts to include 

only OG attack/theft events. The search was structured to contain the following 

keywords: 

 

 Oil 

 Gas 

 Pipeline 

 Petroleum 

 LNG 

 Energy 

 

The results were inspected to ensure no duplicate records were present. Events that were 

of little importance to the project (e.g., protests outside of facilities for better working 

conditions) were removed. The final database consisted of 153 OG infrastructure attack 
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events (1997 to 2012) The original database is found along with an example keyword 

search for “oil” (Figure 5-15).  

 
Figure 5-15: “Oil” keyword filter on ACLED (1997-2012) conflict 

 Once the accurate locations of previous OG infrastructure attacks were included 

in the geodatabase, the accuracy of the model could be quantified. The point locations 

were overlaid over the final risk raster. The Extract Values to Points tool was used to 

extract the values of the raster into the point locations. The next step in the accuracy 

assessment was to account for the spatial phenomenon known as complete spatial 

randomness (CSR). This assumes that among a given number of points, an unspecified 

number will occur in a specified area due to randomness. So as to account for this 

phenomenon, the Create Random Points tool was used to create 128 random points on the 

continent of Africa. This was the same number of points that the true locations of oil and 

gas events contained (Figure 5-16). The results of this technique and a full accuracy 

assessment will be discussed in Chapter 6.  
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Figure 5-16:  Random points and historical oil & gas conflict information 

5.3 Web Mapping Application 

An interface was required for the client to be able to view the spatial data that were 

acquired and created. Using a combination of an organizational ArcGIS Online (AGOL) 

account, University of Redlands (UR) publicly accessible webservers, and ArcGIS Web 

AppBuilder (WAB), a customizable interface was designed to meet the needs of the 

client. This system was published and handed off to the client on June 15, 2014. 

 The first step was to acquire the skills necessary to operate AGOL and WAB. 

These were acquired in early 2014 during instructor-led trainings by Esri staff. Once this 

knowledge was acquired, the beta version of WAB was downloaded and installed on a 

local machine from the Esri Beta Community website. The next step was to download the 
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software node.js. This program is a platform built on Google Chrome’s runtime for 

building applications. Once node.js was installed to the same directory as the WAB and 

run using the command line prompt (using the command node server.js) in Windows 8 

(Figure 5-17), authoring of digital map content was able to take place.  

 

 
Figure 5-17: Initializing node.js using the Windows command prompt 

 In order to create a custom web application using WAB, map content first needed 

to be published using AGOL. An organizational AGOL account was required in order to 

publish feature services for each required layer. All relevant layers were exported out of 

ArcGIS 10.2 as shapefiles, zipped up, re-projected to WGS 1984 Web Mercator 

Auxilliary Sphere, and then published as feature services using the University of 

Redlands organizational account (Figure 5-18). 

 
Figure 5-18: University of Redlands AGOL organizational account 

A web map was created to store each layer, then each layer was themed, scaled, and 

configured for pop-ups (Figure 5-19).  
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Figure 5-19: AGOL web map containing all relevant OG data for the project 

The next steps performed were the creation and authoring of the web application 

using the WAB. This required running the WAB on a local machine. A new application 

— Africa Oil & Gas Infrastructure Security (SNC) — was then created. Within the 

application author, an interface customized to meet the needs of the client was 

constructed. This included selecting a sufficient theme, creating custom widgets such as 

bookmarks, measuring tools, a basemap selection tool from AGOL, and others. A title 

and client logo were also uploaded to match the application theme selected. WAB 

mapping content was pulled from a single file format, the AGOL web map. The Africa 

Oil & Gas Infrastructure web map created in AGOL was imported. The web mapping 

application was now complete.  

The next step was to host this web application publicly using University of 

Redlands public webservers. This involved the creation of a public webserver by the 

Information Technology Services (ITS) group at the University of Redlands MS GIS 

program. Once this webserver was created, the code (.JSON, JavaScript, and HTML 

files) from the WAB were exported from the application and placed on the public web 

server (Figure 5-20). 
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Figure 5-20: Web application code export using ArcGIS Web AppBuilder Beta 

Once the code was moved to the public webserver, the folder where the code was placed 

needed to be registered with Internet Information Services (IIS) in order for WAB to 

access the code from the server. This was completed by University of Redlands IT staff. 

The web application was now available for access outside of the University of Redlands 

campus IT network.  

The next phase consisted of testing to make sure the application was fully 

accessible and all the features worked properly. The client confirmed they were able to 

access the application and all components were working on May 21, 2014. In an attempt 

to perform additional testing, the contractor confirmed that all widgets were working both 

in and outside the UR network. The next step was to test the application on mobile 

devices. Three separate devices were chosen: Apple iPad 3, the Samsung Galaxy S4, and 

the Apple iPhone 4s. All three applications were able to access the web application 

successfully. Performance will be discussed in Chapter 6.  

5.4 Summary 

After the data collection, three primary phases of implementation were completed. The 

first was the gathering of information regarding spatial analysis of risk. Once a theoretical 

model was chosen from established literature, a spatial analysis risk assessment for OG 

infrastructure security in Africa was performed. The second component of 

implementation was the verification of the existing risk model using independent OG 

conflict information. The last component of implementation was the creation and hosting 

of the web mapping application for the client. Chapter 6 will discuss the results of the 

analysis performed above, as well as describe the web mapping application in more 

detail.  
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Chapter 6  – Results and Analysis 

Section 6.1 discusses the results of the OG infrastructure risk analysis that was performed 

at the Africa continent level. It also discusses accuracy verification of the analysis that 

was performed by using a quantitative measure: percent correctly classified. A detailed 

analysis of OG infrastructure risk for the countries of Algeria and Mozambique is 

discussed in Section 6.2. Section 6.3 examines the web mapping application that was 

constructed for the client.  

6.1 Results and Verification 

6.1.1 Results 

One of the deliverables for the client was an analysis of OG infrastructure attack and theft 

risk. This analysis was conducted with the intention to predict the risk of intentional 

attacks. Natural accidents (e.g., earthquakes at refineries, oil platform lightning strikes) 

and technological accidents (e.g., BP deep water horizon oil spill in Galveston, Texas, 

Exxon Valdez oil spill in Alaska) were not predicted using this model. Examples of 

intentional attacks that can be predicted using this model include refinery and pipeline 

attacks, oil tanker hijackings, and natural gas facility hostage crises. Burgherr (2010) 

provides some cases below which were adapted by the author for this report (Figure 6-1).  

 
Figure 6-1: Oil and gas infrastructure attacks 
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In order to produce results identifying areas of low and high risk, a formula was used. 

Hazard and vulnerability, which have been discussed at length in previous chapters, were 

multiplied together to generate an output map for risk with values ranging from 1 to 25 

(Figure 6-2).  

 

 
Figure 6-2: Risk map generation  

The first result was the creation of the hazard map. This incorporated variables from the 

physical environment, such as proximity to geological basins or proximity to existing OG 

deposits, and built environment (e.g., proximity to pipelines) in order to produce the 

following result (Figure 6-3). This map displayed several trends. The first was that 

proximity to geological basins, deposit areas, and OG infrastructure were assigned high 

hazard. Areas that were not in close proximity to these features were assigned low 

hazard. Countries with large amounts of existing OG infrastructure and existing 

geological oil and gas basins, such as Algeria, Libya, Nigeria, and Egypt, had large 

amounts of high-hazard areas. Countries in the interior with no access to geological oil 

and gas basins, with little OG infrastructure such as the Congo, Botswana, and Mali, had 

large areas of low hazard areas (Figure 6-3). This information was consistent with the 

values expected prior to GIS analysis.  
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Figure 6-3: Hazard map  

 The second analysis result was the vulnerability map. This was generated from 

variables pertaining mostly to human-related elements, such as proximity to urban areas 

and major highways, presence of terror groups and social conflicts in the region, and 

adjacency. For this particular result, countries with high levels of infrastructure and 

population most often corresponded positively with higher vulnerability. Examples of 

countries with high vulnerability include South Africa, Nigeria, Algeria, Libya, and 

Egypt. Relatively uninhabited areas, such as those countries located within the Sahara 

Desert − Chad, Niger, Mali, and Mauritania − contained low levels of vulnerability 

(Figure 6-4).  
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Figure 6-4: Vulnerability map   

After both hazard and vulnerability were calculated, an intermediary risk map was 

produced. By using the multiplication method (See Figure 6-2) performed using the raster 

calculator, a raster was produced for overall OG infrastructure security risk on a scale of 

1-36 using the natural breaks classification scheme (Figure 6-5).  
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Figure 6-5: Intermediary risk map   

A manual classification scheme was applied to the data, and the data were manually 

grouped into classes from 1-6. The classification helped emphasize high values to help 

identify high risk areas more efficiently (Figure 6-6). Classification breaks were set 

manually in order to emphasize class 32-36 (Very High) and also be able to see variations 

in the remaining five classes.  
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Figure 6-6: Final Risk map   

There are several interesting observations one can understand from the result. The first is 

that the countries of Algeria, Libya, Egypt, Sudan, and Nigeria are the countries which 

have the most cumulative risk. There are two ways to interpret this. The first is through a 

visual inspection (Figure 6-7).  
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Figure 6-7: High risk countries  

The second is to quantify the amount of high risk areas per country, in other words the 

amount of area  for the very high risk class from 32-36. This was performed using the 

Tabulate Areas tool. After the area was calculated, this number was normalized based on 

country size to produce the following result (Figure 6-8). The top 5 countries for risk are 

The Gambia, Tunisia, Guinea Sassau, Senegal, and Morocco. There is an issues with this 

method because smaller countries may be more vulnerable to risk spillover from other 

large countries when analysis is performed at a low scale. The client is interested in 

identifying large countries for overall risk.  
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Figure 6-8: Top countries for risk quantified using the Tabulate Areas tool  

As a solution to this problem, the total amount of risk per country was calculated without 

normalization (in hundreds of square kilometers, e.g. 60.98 = 600,980 square kilometers). 

The resulting table shows that the top 5 countries for risk are Algeria, Libya, Sudan, 

Egypt, and Nigeria (Figure 6-9) in terms of total area. This information matches the 

results from the visual inspection.  
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Figure 6-9: Top countries for risk quantified using the Tabulate Areas tool  

The second observation is that countries with both high levels of hazard and 

vulnerability (e.g. Algeria, Libya, Egypt, Sudan, Nigeria) have the highest levels of 

overall risk. This is because the model used a multiplication method. For example, the 

country of South Africa has some of the highest levels of vulnerability on the continent 

(see Figure 6-4). However, the country has an average to low level of hazard because the 

country has relatively little OG infrastructure (see Figure 6-3). As such, the overall level 

of risk is quite low in comparison with countries that have high levels of both risk and 

vulnerability (e.g., Algeria, Libya, Nigeria). It is worth noting that just because a country 

does not have OG infrastructure, it does not mean that it will certainly have low levels of 

risk. For example, Somalia currently has low levels of OG infrastructure. One of the 

reasons for this is that the existence of oil and gas reserves in Somalia have not been fully 

assessed, only estimated (Central Intelligence Agency, n.d.). Currently the risk model 

suggests that Somalia has moderate levels of risk, even though no infrastructure is 

present. This illustrates that the model is not completely dependent on the existence of 

OG infrastructure. If oil in Somalia is discovered and infrastructure is built, this risk level 

would most certainly go up. An estimate would be as much or possibly even more than 

the current high-risk countries of Algeria, Libya, Egypt, Nigeria, and Sudan. This is 

because Somalia has very high levels of social conflict (see Figure 5-10) and a high 

presence of terror groups in comparison with other countries.  
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6.1.2 Verification 

To understand how accurate the risk model was, verification was necessary. This was 

conducted in two ways. The first was through a visual data inspection. A completely 

independent set of OG infrastructure attack point data were overlaid on the final risk 

model (Figure 6-10). The source of the data was the Armed Conflict Location and Event 

Database (ACLED) from 1997-2012. The points in yellow correspond with the top 

classes of the risk map shown in dark red. Many of the points are located within areas 

with high levels of risk, such as Algeria, Libya, Sudan, Egypt, and Nigeria (Figure 6-10). 

The second method was through quantifying the accuracy of the model. This was done 

using the percent correctly classified method, a technique commonly used in remote 

sensing classification assessment. In this technique the number of true locations that were 

classified correctly are divided by the total amount of true locations and multiplied by 

100, yielding the percent of locations that were correctly classified. Using the Extract 

Values to Points tool in ArcMap 10.2, the pixel values from the risk raster were extracted 

to each individual point. The result showed that 94.5% of the points (shown in yellow) 

fall within the top two classes (32-36 very high and 27-31 high) of the raster. 89% of the 

values fall within the top class (32-36 very high). More details can be found below 

(Figure 6-10).  
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Figure 6-10: Verification using an independent point dataset  

An additional method was employed to account for the factor known as complete spatial 

randomness (CSR). This assumes that among a given number of points, an unspecified 

number will occur in a specified area due to randomness. In order to test for this, 128 

randomly sampled points were overlaid on the risk raster (Figure 6-11).  
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Figure 6-11: Random points and historical oil and gas conflict information  

The values from the raster were then extracted to the 128 random points using the Extract 

Values to Points tool in ArcGIS 10.2. Thirty-seven points, or approximately 28.9% of the 

values fell within the top 2 classes for risk (5 – Very High and 4 – High) (Figure 6-12).  
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Figure 6-12: Points occurring in top 2 risk classes due to space randomness  

Approximately 28.9% or 37 of the points occurred in the top 2 classes for risk due to 

CSR. By subtracting this number (37) from the original number of classified points (121), 

CSR was accounted for and the final model accuracy was determined to be 65.6% or 84 

points correctly classified (Figure 6-13). This means the model is 65.6% accurate after 

accounting for spatial randomness.  
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Figure 6-13:  Model accuracy when accounting for CSR 

6.2 Country Level Analysis 

A final step in verifying the accuracy of the model was to run the analysis at a more 

detailed level. Detailed data were purchased from Deloitte Group for Northern Algeria 

and Southern Mozambique. These data were not only more detailed, but more current 

(the data was updated in May 2014). The data included exploration and appraisal wells 

(completed), development wells (completed), other facilities, refineries, LNG terminals, 

oil pipelines, and natural gas pipelines. Each of these datasets represents facilities and 

infrastructure that are actively running/performing. No abandoned infrastructure 
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information was included. Maps of the datasets are shown below (Figure 6-14).

 

 
Figure 6-14: Detailed datasets for Northern Algeria and Southern Mozambique  
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The same risk analysis that was run at the continental level for Africa was run on the 

detailed infrastructure data for Algeria and Mozambique with the same buffer distances. 

The same manual classification scheme that was used for the continental risk maps was 

used for the detailed risk maps (Figure 6-15).  
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Figure 6-15: Final risk maps for Northern Algeria and Southern Mozambique  
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Next, a verification using percent correctly classified was conducted, similar to the 

one performed on the continental risk maps. One hundred percent of the total points (7) 

fell within the top class for risk: 32-36 (Very High). This means that when the previous 

risk methodology was applied to more detailed, current data, similar results were 

observed. This lends credibility to the model used at the Africa continent level. A map of 

the risk verification is shown below (Figure 6-16).  

 
Figure 6-16: Verification for detailed data  

6.3 Web Mapping Application 

A web-based mapping system was an easy way for the client to access both the input data 

and output results. Since the client had little GIS knowledge, a user friendly, aesthetically 

pleasing interface was designed with several basic tools. This application is accessible to 

anyone with proper credentials and an internet connection, and is secure, reliable, and 

accessible on most mobile devices. The application is also easily customizable, since it is 

built using the ArcGIS Web AppBuilder (WAB) as opposed to other traditional methods 

of web application development such as ArcGIS API’s for Javascript, Flex, and 

Silverlight. The WAB requires less time than traditional methods because the coding 

aspect is removed from the process. It is worth noting that the WAB is extendible. This 

means that the existing code can be modified and added to if necessary. Such work was 

not required by the client for this project. In the event that the client decides they would 

like to change the interface, widgets, or layers, this is possible with little to no coding. 
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The WAB interface is shown below (Figure 6-17), which includes examples of the 

possible customizable widgets that are able to be quickly and easily configured.  

 

 
Figure 6-17: Web AppBuilder pre-loaded widget options 

Figure 6-18 illustrates a working version of the application. This contains a display of the 

overall design, several layers, and a pop up for an OG event from November 8, 2011, in 

which an Egyptian pipeline was attacked by an unidentified armed group.  

 
Figure 6-18: Screenshot of web application  

In terms of individual widgets, the client’s only requirement was to be able to view the 

data and bring up information via pop-ups for different layers. However, several widgets 

were built into the application for convenience purposes. These included widgets for 
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tools such as the ability to zoom, perform measurements, bookmarks, coordinates, 

zooming to one’s current location, and retrieving different basemaps. The first set of tools 

that will be discussed are regarding access and aesthetics. An Esri global account was 

required to access the application. A corporate logo and link to the client’s corporate 

website were included. An appropriate theme was chosen. The WAB contains options for 

adding and selecting all of these without any programming (Figure 6-19).  

 

 
Figure 6-19: Access and aesthetics tools of the web mapping application  

The next set of tools are navigation and basic tools widgets. This includes tools such as a 

geocoder, directions, drawing, basemaps, zooming, home, current GPS location, and 

coordinates. The geocoder allows the user to select a location on the earth’s surface using 

common place names, similar to common web mapping websites such as Google Maps. 

This allows the client to zoom to particular locations on the African continent. The 

directions widget allows the user to enter start and end place names which then creates a 

drive time and distance, also similar to Google Maps. The drawing widget allows the 

client to create simple mark-ups on the existing maps for illustration purposes. The 

basemaps allow the client to change different ArcGIS Online basemaps and display 

satellite and terrain information. The zoom, home, and my location widgets are standard 

tools that allow the user to zoom, set the map extent to the continent of Africa 

(configured by the author), and determine current location. The coordinates widget 

display coordinates of the current map extent in decimal degrees or degrees minutes 

seconds. All of these widgets were designed using the pre-loaded templates included with 

the WAB (Figure 6-20).  
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Figure 6-20: Navigation and basic tools of the web mapping application  

The last set of widgets were layer and bookmarks tools. This included standard legend, 

layer, measurement, and bookmarks tools. These allowed the client to turn on and off 

different layers, change draw order, compute areas (in acres, square miles, square meters, 

and hectares) and distances (in miles, kilometers, meters, feet, and yards), and create their 

own map extent boomarks from which they could zoom to and save for future reference. 

All of these widgets were created and configured using standard templates included with 

the WAB (Figure 6-21).  

 
Figure 6-21: Layer and bookmark tools of the web mapping application  
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The web mapping application is also viewable on most mobile devices, including Apple 

iOS and Android devices. Devices tested for this project included the iPad 3, iPhone 4s, 

and Samsung Galaxy S4, which were all able to successfully access the application. 

However, there were minor performance issues with all three devices, which included 

application responsiveness and interface layout. This was to be expected, because the 

application is a URL-based web mapping application, it is not built to provide an ideal 

user experience for mobile devices. In order for this to take place, a native application 

would need to be designed for the specific operating system and uploaded as an app to 

the iTunes (iOS) or Google Play (Android) store. This would require large amounts of 

custom coding in languages not familiar to the contractor (i.e., Objective C for iOS or 

Java for Android). For this reason, the web mapping application should be accessed 

primarily by non-mobile applications.  

6.4 Summary 

In conclusion, the creation of a geographic database will be useful for the client. Prior to 

this project, the client had little to no spatial information available. In addition, using the 

risk analysis created for the project, the client now has another source in which to 

understand better where attacks are occurring and where vulnerabilities are present. 

According to the risk analysis, these include countries such as Nigeria, Algeria, Libya, 

Egypt, Somalia, and Sudan. An area for future improvement could be to acquire more 

detailed, current data for larger geographic areas. In terms of the web mapping 

application, the client is now able to access, view, and upload information. This will 

allow them to understand where infrastructure is located, but also where threats are most 

often present.  
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Chapter 7  – Conclusions and Future Work 

7.1 Conclusions 

The main requirements for this project were to assemble a spatial database for the client, 

perform geospatial analysis concerning high and low risk areas, and to present all of this 

information to the client in a single interface. All requirements for this project were met 

and the client was satisfied. Spatial information was researched and acquired through 

various means including free data and data purchased by the client. A spatial database 

was then assembled using this information and standardized, and then provided to the 

client for future work. Research was conducted on spatial risk methods and a selected 

literature was chosen. From here, spatial analysis was conducted at two different levels: 

low scale continental analysis for Africa, and also detailed analysis for the countries of 

Algeria and Mozambique. Verification of this analysis also took place via three different 

methods. Three output layers were generated for the client pertaining to high and low risk 

areas for OG infrastructure attack and theft. A web mapping application was then 

constructed, designed, and tested to meet the client’s needs. This included not only the 

abilities to view and upload datasets, but also to use common web mapping tools such as 

panning, zooming, basemaps, measurements, bookmarks, and other tools. The application 

was also accessible by various mobile devices. All functional and non-functional 

requirements were met.  

When looking at the risk assessment component of the project, the OG 

infrastructure risk model yielded some interesting results. The highest rate of risk occur 

in countries where both infrastructure (hazard) and human variables (vulnerability) are 

present. In other words, both hazard and vulnerability must be present in order for risk to 

be severe. This is due to the multiplication methods used. This is one of the main reasons 

why countries that not only have large amounts of OG infrastructure, but also have 

human vulnerabilities (e.g., presence of terror networks, large amounts of social unrest, 

high populations and advanced road networks), will exhibit the largest amount of OG 

infrastructure risk. This is true for countries such as Nigeria, Egypt, and to a lesser extent 

for Algeria and Libya. However, just because a country does not have existing 

infrastructure or resources (e.g., Somalia), does not mean there will necessarily be an 

absence of risk. In Somalia’s case, risk still exists because there is always the possibility 

that oil and gas reserves will be discovered and subsequent infrastructure will be 

constructed. This is because Somalia has high levels of social unrest and the presence of 

terror groups. Similarly, South Africa has high levels of risk because of its advanced road 

infrastructure and high population. All of these variables were used as inputs in the risk 

model.  

In terms of improvements, more detailed, accurate, current data for larger areas 

would be useful. The detailed data acquired could be considered more accurate and was 

definitely more current, the spatial extent of the data was small. The free data acquired 

was for a much larger extent, but the accuracy, validity, and currency of the data were 

questionable. This is because the data came from multiple unaudited sources. 

Unfortunately this was a requirement for the project as data is difficult to acquire for the 



76 

African continent. The more detailed and accurate the inputs are for a spatial risk model 

like this one, the more likely the outputs are to be accurate.  

7.2 Future Work 

There are several opportunities for future extensions to this project, given additional time 

and resources. The first addition to this project could be the ability to monitor OG 

infrastructure and assets. One of the ways this is possible is with Really Simple 

Syndication (RSS) and GeoRSS feeds. RSS feeds offer real-time internet feeds to 

regularly published information, such as news feeds and blog entries. GeoRSS feeds are 

RSS feeds that are georeferenced or spatially enabled. This allows mapping applications 

to publish the locations of these feeds in real time. As of June 28, 2014, ArcGIS Online 

supports the addition of GeoRSS feeds through a simple online link. One problem is that 

GeoRSS feeds for the topic area of this report were difficult to find. Another option 

would be to find a suitable RSS feed, available in many places on the web, and write a 

program that queries, retrieves, and converts commonplace names to coordinate 

information, for example geocoding. 

Another possible add-on to this project could be to create a native application for 

mobile devices. Currently the application is accessible by mobile devices; however, the 

performance is slow because the ArcGIS WebApp Builder was not constructed explicitly 

for mobile devices. Through the creation of a native application for Apple iOS (C Sharp) 

or Android (Java), a better user experience on mobile devices would be possible. This 

would not only allow the information to be viewed in the office, but also in the field and 

on the road if necessary.  

Additional future work could be to create a tool in either ArcGIS Model Builder or 

using a python script. This tool would allow the user to run the risk model and adjust 

weights for each of the individual variables. This would permit users to re-run the risk 

analysis using different or updated datasets and adjust the weights. This would let the 

client run quick analyses on the fly. It would also allow the user quick options for 

tackling the issue of spatial dependency. The nature of geographic data for several of the 

variables used in this model is that some variables may be directly or indirectly 

influencing others. An example is that in most parts of the world, the presence of urban 

areas is often found in near proximity to the presence of major highways (two of the 

variables used in the risk model). By having the option of being able to adjust weights for 

each of the variables on the fly, the user may get a better sense of which variables are 

truly dependent on each other and which are not.  

 Another addition is to build a more suitable uploader widget for the web mapping 

application. Currently, the WAB does not contain an uploading widget. Instead, the client 

has to sign into AGOL and upload and configure spatial datasets from there. It would be 

useful for the client to be able to upload this information from the web mapping 

application itself. Possible options for this would be to create a geoprocessing tool using 

ArcGIS Server and WAB and publish it as a widget, or to modify the existing web 

mapping application JavaScript and Dojo code.  

 The last addition would be to obtain higher quality detailed data. The data 

purchased is missing information on pipeline size.  Larger pipelines would in theory be 

more attractive for potential attackers to target. Also, the dataset is missing information 

on whether pipelines are above or below ground. This would be useful because an above 
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ground pipeline is in theory a more attractive target than an underground pipeline, 

because it is difficult to locate underground pipelines and requires additional work to do 

so. Lastly, the spatial accuracy of the information is somewhat in question. For example, 

pipelines do not connect directly to facilities, instead running through or near them. 

Higher quality data would contribute to a more reliable analysis.  

7.3 Summary  

It was the goal of the author to explain the process behind this project. Mapping existing 

OG infrastructure, determining areas of high security risk, and visualizing the 

information were the major goals of the project. All goals were accomplished and several 

opportunities for future improvement were identified. 
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Appendix A. Risk Analysis Workflow 

 

Figure A-1: Overall risk analysis workflow  
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