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ABSTRACT 

 

 

 

 

Using GIS to Predict Corn Yields in Colombia 

 

 

by 

Manuel Francisco Lemos 

 

Crop yield prediction can play an important role in developing the agriculture sector in 

Colombia. Remote sensing and GIS have proven to be an effective mechanism for this 

purpose in developed economies. This project created a proof-of-concept application for 

the Colombian Ministry of Agriculture and other related governmental institutions. The 

project used existing methodologies including the classification of satellite imagery, 

interpolation of climate data into continuous surfaces, the extraction of Normalized 

Difference Vegetation Index, and the computation of multiple linear regressions. ESRI 

ArcGIS provided the interface, software, tools and functions to build the application, and 

to integrate and automate the application‟s functionalities. 

Cloud coverage in the imagery and the lack of specialized data affected the accuracy of 

the crop yields estimates. Nevertheless, the application predicts corn yields with an 

estimated accuracy of 71% when cloud coverage is minimal. The application can use 

both Landsat and Spot preprocessed images, and in less than six minutes yield predictions 

for areas inside Cordoba, a major corn producing state in Colombia. 
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1. Introduction 

Increasing agricultural yields in Colombia requires implementing better technologies. 

Geographic Information Systems (GIS) proved to be a valuable investment in agro-

production in other developing countries, but in Colombia lack of awareness of the 

potential benefits of GIS and the limited political involvement is delaying progress. The 

objectives of Procalculo Prosis, the Environmental Systems Research Institute (ESRI) 

distributor in Colombia, include closing that gap.  From a business/academic approach, 

this project used ESRI ArcGIS software to build a proof-of-concept GIS application 

focused on showing GIS advantages to the diverse Colombian agriculture industry (see 

Figure 1-1).  

 

Figure 1-1 - Colombian farming landscape (Author) 

This chapter expands on the problem encountered, the vision and sales strategy proposed 

by Procalculo Prosis, the GIS advantages for decision-makers, the needs and customs of 

the Colombian agriculture sector, and the proposed solution for the problem. 

1.1. Problem Statement 

After reviewing the statistics prepared by the Colombian Ministry of Agriculture 

(Ministerio de Agricultura, 2004), it is easy to see the importance of the agricultural 

sector to Colombia‟s economy. Agricultural activities in the country provide income for 

27% of the national population, offer 23% of national employment, and contribute 14% 
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of the gross national production. It is a key economic sector which, however, lags 

socially; 43% of the rural population lives in poverty. Although the economic 

participation of the agricultural sector is one of the highest compared to other Latin-

American countries, poverty and poor adoption of technology severely hinders the rural 

sector‟s global competitiveness.  

The Colombian government stated that the main justifications for implementing better 

technologies are to transform Colombian agriculture to be globally competitive, and to 

strengthen the agriculture as an element that contributes to the weakening of the drug 

traffic and terrorism in the country (Ministerio de Agricultura, 2004). 

1.1.1. Economic Considerations 

Colombia is the number one producer of coca plants in the world. The fact that the 

country is fighting a war against drug production is widely known. The associated risk, 

not equally well known, is that farmers may switch to illegal farming if the legal crops 

cannot sustain farming as a long-term business. The economic incentive of growing illicit 

crops expands illegal agriculture and fuels the armed conflict. The country needs to 

support farmers who produce legal crops.  

A forthcoming foreign trade agreement with the United States amplifies the complexity 

of the situation. This trade agreement is important in developing the Colombian economy 

and generating mutual benefits to both countries. However, its effect on non-competitive 

products, such as corn and soy, will be devastating due to dumping practices and low 

internal fixed prices. The only alternative is to make agricultural business more 

competitive. This requires investments within the sector to compensate for the weather 

advantages and the subsidies common in other countries (Ministerio de Agricultura, 

2004). 

Attracting foreign investment to Colombia‟s agriculture, where the laws of supply and 

demand fuel the volatility of agricultural products‟ prices, requires tools that help assure 

revenue to the investors. Crop yield models may help mitigate the uncertainty in a 

business where weather and natural calamities play a crucial role in determining the food 

chain supply. Specifically in Colombia, where extreme weather affects the country at 

least once a year, the need for tools such as prediction models and management systems 

becomes obvious.  

1.2. Client 

Procalculo Prosis S.A. (2007) is a Colombian company, founded in 1968 to implement 

Information Technologies (IT) in the country. In 1988, Procalculo Prosis initiated the 

distribution of ESRI products in Colombia and, in 2000, won Leica-Erdas exclusive 

distribution. During the last twenty years, the core business of Procalculo Prosis S.A. has 

been to distribute, develop, integrate, deploy, train, support and customize GIS in all 

related fields, applications, and systems in Colombia. The focus on GIS permitted 

Procalculo Prosis to win the contract to provide GIS software and services to the Instituto 

Geográfico Agustín Codazzi (IGAC, for the Spanish Acronym of Colombian National 

Geographic Entity). IGAC is the Colombian government producer of geographic data; it 

defined the national standards for GIS and began to use ESRI technologies as its main 

GIS technologic platform. Based on this success, Procalculo Prosis has continued to grow 



 3 

its market share in the government to become the leading vendor in the country 

(Procalculo Prosis S.A., 2006). 

Market analysis, marketing, person-to-person service, pre-sales attention, long-term 

relationship management, and the search for quality all fuel the sales process and, 

consequently, the success of the company. As the GIS market leader, Procalculo Prosis 

strategic sales focus concentrates on the government sector and large companies. 

Supporting key customers to achieve a competitive advantage or a strategic goal using 

GIS is the main pillar of Procalculo Prosis‟ commercial strategy (Procalculo Prosis S.A., 

2006). These customers serve as pioneers and they often motivate other customers to 

adopt GIS technologies.  

Procalculo Prosis often develops business relationships, first by demonstrating the 

advantages of GIS to a prospective customer‟s IT staff. IT staff normally embrace the 

technical benefits of GIS, but achieving the same involvement level in the decision-

making employees can take months and requires frequent assistance by technical 

presentations, demonstrations, return over investment (ROI) analyses, and other pre-sales 

support. The ultimate goal is to demonstrate that GIS is an important tool that will 

support the decision-making process in the organization.  

Customer‟s internal GIS dissemination and the required sales process may take months or 

even years. Keeping Procalculo Prosis‟ leading market position requires not only resilient 

dedication, but also deep understanding of both the market and the customer‟s needs. 

Promoting the development of projects like this one, which helps new customers  

maximize their ROI, is part of the ongoing effort to satisfy customers (Procalculo Prosis 

S.A., 2006). 

1.3. Needs Analysis 

By 2006, GIS applications developed in Colombia had successfully reached many key 

economic sectors, including petroleum, utilities, land management, environment, and 

education (Procalculo Prosis S.A., 2006). Compared to similar countries, the deployment 

of geographic information technologies in Colombia is satisfactory. Still, Colombia‟s 

circumstances and needs offer a wide spectrum for new and creative GIS 

implementations. Specifically, the agricultural sector at central government level has 

been particularly difficult to reach with GIS because of the low level of GIS awareness 

within almost every important agriculture organization. Some large private agro-

producers use GIS for day-to-day operations, but in general, the country is overdue to 

take advantage of the full potential of GIS to create significant opportunities to 

implement GIS in Colombia. The agriculture sector has faced ongoing problems and 

government institutions have implemented policies with questionable success. However, 

the tools required to control, analyze, and promote these policies are still slowly deployed 

when compared to developed countries. Procalculo Prosis expects to help by bringing 

GIS to key government agriculture customers. 

1.3.1. Key Government Agriculture Customers 

Since 1979, the Bolsa Nacional Agropecuaria (BNA, for the Spanish acronym of 

Colombian Agricultural Exchange Board) has developed and maintained a derivatives 

market of agricultural products and services. Its main shareholders are: the Ministry of 
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Agriculture (38.06%); the domestic private sector (59.14%); and the foreign private 

sector (2.8%) (Bolsa Nacional Agropecuaria, 2007). One of BNA´s goals is to assure, 

through derivatives financial instruments, stable prices for both producers and customers. 

Moreover, supply estimation should be a key component of the BNA functions. 

The Colombian Ministry of Agriculture is the government entity responsible for 

formulating, coordinating, and evaluating the policies that promote the sustained 

development of agriculture in Colombia (Ministerio de Agricultura, 2004). However, the 

Ministry needs better methods to estimate production, and to prevent and measure the 

impact of natural phenomena, such as El Niño and La Niña. The Ministry of Agriculture 

also needs a prediction model to fulfill its goal of assessing the effectiveness of its 

strategies, attracting foreign investment in the industry, and measuring the impact of 

natural phenomena. 

1.4. Justification 

Researchers developed many links between GIS and agriculture thirty years ago. This 

relationship covers a wide set of fields and applications. Andersen, Pandya-Lorch, and 

Rosegrant (1999) affirmed that increasing agricultural productivity is the most common 

global need associated with the small-scale farmers. The use of IT, biotechnology, and 

precision farming can help small farmers improve price stability, access finance and 

markets, obtain technical assistance in quality improvement and diversification, and 

improve organizational strength. Colombia should be no exception; small-scale farmers 

(the average size of an individual farm in Colombia is around two hectares) account for 

40% of the country‟s agro-production. 

Longley et al. (2005) stated that GIS could benefit investigation and management by  

storing enormous amounts of data, integrating the data from different sources, recording 

the events and processes, supporting the control and evaluation of strategies and policies, 

and effectively communicating results and useful information to farmers. Specifically in 

agriculture, a GIS supports the government decision-making and controlling processes. 

Syam & Jusoff (1999), Bouman (1995) and Pinter et al. (2003) listed some supported 

topics, such as enforcement of production quotas, restructuring of farm systems, subsidies 

allocation, crop area assessment and monitoring, disaster management/prevention, 

creation of data inventories such as land uses and soil characteristics, weather prediction, 

crop insurance, monitoring crop rotation techniques, and projecting soil loss from 

individual farms to country level. 

Inside the wide agriculture management field, many authors agreed that yield forecasting 

at regional scales is critical to regional, national, and worldwide economies (Aronoff, 

2005; Bouman, 1995; Hayes, O‟Rourke, Terjung, & Todhunter, 1982) mainly because it  

allows decision-makers to control food management processes and evaluate and improve 

farming strategies (Yang & Anderson, 2000). Underdeveloped countries are especially 

susceptible because of their increased economic dependence on agriculture and the 

socioeconomic impact of food shortages.   

Syam & Jusoff (1999) considered agriculture a changing phenomenon governed by the 

complicated interaction of a crop with the environment. Based on this idea, they proposed 

integrating remote sensing, crop phenology, and weather properties into a GIS, which 
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could support operational applications. In addition, they justified the use of GIS and 

remote sensing technologies to obtain accurate results in the dynamic field of agriculture. 

They compared different projects‟ costs using GIS and remote sensing technology against 

conventional cost and concluded that an increase in the number of projects based on these 

technologies maximize the benefits. They stated that the four benefits of implementing 

GIS are: scientific, technological, methodological, and economic. For example, finding 

new facts is scientific, increasing the work productivity is technological, increasing the 

accuracy is methodological, and reducing the costs is economic. As a conclusion, they 

highlighted the fact that satellite images provide the most beneficial method of acquiring 

data.  

1.5. Crop and Study Area 

This section initially explores the criteria used to select corn as the objective crop, and 

Cordoba as the area of study. This selection was a necessary step to define the acceptable 

scale (state), minimize the amount of data required, and reduce the time needed to 

execute the models in the prototype. Secondly, the section presents crop characteristics 

and a small socio-economic description of the study area.   

1.5.1. Selection Criteria 

Crop selection took into account the size of the area planted to increase the probability of 

data acquisition. This step also considered the existence of extended local crop research 

to validate the results, and the crop‟s economic importance to assure a high impact in the 

client‟s customers. According to the Colombian Ministry of Agriculture (Ministerio de 

Agricultura, 2004), corn planted lands (14.35%) are second only to coffee (20.8%) in 

Colombia. In addition, corn is the second most traded commodity (after rice) in the BNA 

(Bolsa Nacional Agropecuaria BNA, 2007). Coffee was excluded from this analysis, 

because the Federación Nacional de Cafeteros de Colombia (Colombian National 

Federation of Coffee Growers), a special institution concerned with coffee development, 

commercialization, and management, is already using GIS technologies. 

The selection of the state of Cordoba as the area of study (AOS) was based on corn 

production statistics. Cordoba has more land planted with corn than any other state in the 

country. In addition, this study area has an acceptable availability of cloud-free imagery 

and ancillary data compared to the rest of the country. Furthermore, the state‟s social 

needs are interesting for the customers.  

1.5.2. Corn Production in Colombia 

Colombian corn production is classified into two types: traditionally-cropped and 

technically-cropped. Traditionally-cropped production refers to planted areas smaller 

than five hectares. Technically-cropped refers to the crop system in areas greater than 

five hectares. In general, technically-cropped areas cover plain terrains, use improved 

seeds, and mechanized systems for terrain preparation, crop, and fertilization. Eighty five 

percent of the country‟s planted area is traditionally-cropped thus creating employment 

for 190,000 families (Ministerio de Agricultura, Departamento Administrativo Nacional 

de Estadistica, Federacion Nacional de Arroceros Fedearroz, & Usocoello, 2001). 
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Corn grain characteristics divide Colombian corn into twenty varieties: nine with white 

grain and eleven with yellow grain, with different leaf colors. Humans consume mainly 

the white grain varieties, while the yellow grain is used primarily as animal food. The 

number of varieties allows corn to be grown in a wide range of ecological conditions. In 

general the ideal conditions for corn plants are a temperature range of 13 to 29 degrees 

Celsius, annual rainfall between 2,900 and 6,000 mm, altitude from 0 to 3500 meters, and 

soils with “medium textures, granular structure, loose, fertile, with good drainage, and a 

ph between 5.5 and 7.0” (Ministerio de Agricultura et al., 2001). Figure 1-2 illustrates the 

general corn phenology.  

 

Figure 1-2 - General corn phenology (Adapted from Ministerio de Agricultura et al., 2001) 

Servilla & Towner (2000) affirmed that crop selection relies on the identification of the 

best crop varieties‟ performances for a given region‟s climate. Because of the wide-

ranging climate regions in Colombia, a farmer may plant different corn varieties over the 

course of the year. Different corn varieties have different leaf colors, time need for 

maturing (from two to eleven months), planting schedules, and other phenological 

characteristics. Consequently, the lack of a known corn planting/harvesting calendar 

complicates corn yield predictions using remote sensing, because the spectral signature 

required for classification is different at every stage and many crops share similar 

signatures during different phenological stages (United Nations, 2006). In the Cordoba‟s 

hot climate, farmers generally plant corn twice a year, between April and May, and again 

between August and September (see Figure 1-3), but their calendars are not consistent 

because of the differences in corn types and seeds, as well as various market factors. 
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Figure 1-3 - Corn planting and harvesting percentages calendar in Colombian hot climates 

(Ministerio de Agricultura et al., 2001) 

Finally, corn productivity in Colombia averages 5.5 tons/hectare, compared to an average 

of eight tons/hectare in the United States (Ministerio de Agricultura, 2004). Moreover, 

seeds and fertilizers increase production costs in Colombia by approximately 50%. With 

the approval of the foreign trade agreement between the two countries, the Colombian 

market is expected to receive an additional 1.5 million tons of corn from the United 

States, reducing local corn price by 10% (Ministerio de Agricultura, 2004; Ministerio de 

Agricultura & IICA, 2006). 

1.5.3. Area of Study (AOS) Selection 

Cordoba is a coastal state in northwestern Colombia, located between 7° 22‟ and 9° 26‟ 

north latitude, and between 74° 47‟ and 76° 30‟ west longitude (See Figure 1-4). The 

state is divided into twenty-eight administrative municipalities, one of which, Monteria, 

is the state capital. The climate is generally tropical, hot, and rainy. The area of Cordoba 

is about 2,500,000 hectares. These characteristics are ideal for the development of 

pastures, extensive cattle farming, and highly commercial but transitory agricultural 

products, such as cotton or corn. 
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Figure 1-4 - Cordoba location in Colombia, South America 

The Colombian Ministry of Agriculture collects and publishes corn production figures for 

Colombia (Ministerio de Agricultura, 2007). In 2005, Cordoba had the greatest area 

planted in corn (68,739 hectares), as well as the greatest total yield (212,417 tons). 

However, the Valle del Cauca state had a higher yield per planted hectare (5.05 tons 

versus Cordoba 3.09); this is likely the result of better soils, as well as the use of  more 

efficient technical cropping systems (Viloria de la Hoz, 2004) (see Figure 1-5). 
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Figure 1-5 - Corn production in Cordoba, 2005 

In contrast, Viloria de la Hoz (2004) describes the social situation in Cordoba as similar 

to the rest of the country (see Section 1.1). Cordoba has a population of 1,380,000 

inhabitants, growing at a rate near 2.1% annually, with 50% of the population living in 

rural areas. The state is one of the poorest, with 30% of the population considered by the 

government to be “poor” and an additional 35% living in “miserable conditions” 
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(collectively, 65% of the population living below the government designated “line of 

poverty”). This situation illustrates the great need for agriculture investment and 

development required within Cordoba. 

1.6. Proposed Solution 

Predictions can be used to test scientific understanding, but in this project the objective of 

the prediction was “to serve a decision making process” (Sarewitz et al., 2000). GIS are 

powerful decision-making tools that can measure and communicate many of the 

customers‟ possible activities. In consequence, the proposed solution was a GIS 

prototype, which estimates corn crop yield in the Colombian state of Cordoba. The 

prototype uses information from remote sensing imagery to identify cultivated areas, and 

includes a linear regression model, which estimates yields based on temperature, rainfall, 

and vegetation health.  

For this prototype, the non-functional requirements were: single-user, reliability, 

performance (image display and processing times), ease of use, and portability (stand-

alone). The area of study and product data used was representative of customers‟ needs. 

The technology required for this GIS was not new or particularly complex. Off-the-shelf 

software, such as ESRI ArcGIS and Erdas Imagine, provided sufficient functionality to 

construct the prototype and to integrate processes such as data preparation, spatial 

information storage, imagery classification, and modeling. The application did not 

require additional programming.  

1.6.1. Functional Specifications 

Four categories classified the functional specifications. The categories were: application, 

presentation, data storage, and data access. 

1.6.1.1. Application Requirements 

 Import, prepare, compose, interpret, and classify unprocessed imagery 

 Create and store classification parameters (detailed training sites and schemes) 

 Use training sites to classify image pixels into specific planted areas (by product) 

and produce accuracy statistics for the image classified 

 Read different data formats and organize the information in a geographic database 

 Retrieve the data from the geodatabase  

 Combine data 

 Compress the data 

 Provide analysis tools to validate and understand the data 

 Provide a tool to build the crop yield estimation model 

 Run the model that estimates crop yield based on rainfall, temperature and 

vegetation health 

 Produce reports that helps the decision-making process 

 Integrate both vector and raster data 
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1.6.1.2. Presentation Requirements 

 Provide the interface to permit the user to analyze, modify, classify, and change 

the data and parameters of the model  

 Receive estimation parameters directly from the user 

 Display/print a report that includes a map of the area of interest, a parameter/data 

summary, and accuracy estimative 

1.6.1.3. Data Storage 

 Store data in raster and vector forms 

 Store the parameters/results of and estimation 

 Store the related metadata 

1.6.1.4. Data Access 

 Retrieve relevant information for an area of interest based on the metadata or 

attributes 

 Easily modify the information 

 Create and delete data 
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2. Background and Literature Review 

This chapter describes how the statistical methods, field procedures, and technologies 

required for the project‟s implementation have been developed and extensively used by 

others. This chapter also justifies the prototype‟s use of those methods, procedures, and 

technologies in Colombia, where extreme circumstances such as poor data availability 

and high levels of cloud coverage reduce potential accuracy. Four sections outline this 

chapter. The first section explores crop yield prediction. The second section focuses on 

GIS and remote sensing prediction alternatives. The third section presents the most 

relevant experiences using GIS and remote sensing around the world. The last section 

presents alternatives to understanding and measuring accuracy, data availability, and 

cloud coverage. However, this background does not consider other human and economic 

factors that could influence crop yield predictions, such as GIS specialist skills, 

institutional collaboration, or budget restrictions. 

2.1. Crop Yield Prediction  

Bouman (1995) defined yield prediction as the estimation of what the yield of a given 

crop will be. Crop prediction models seek to simulate crop development based on 

physical, chemical, and physiological processes.  Sarewitz, Pielke, & Byerly (2000) 

stated that increased computer power and extensive new data about the environment 

might dramatically improve prediction analysis. Crop yield estimations rely on various 

methods ranging from expert knowledge (non-parametric), crop-growth simulation 

models, trend analysis, regression analysis, and statistical models. 

Since Bleasdale & Nelder (1960) first estimated the explicit relationship between areas 

planted and crop yield, many researchers have added other parameters to agricultural 

prediction. Watson‟s study (1963), as cited in Prasad, Chai, Singh, & Kafatos (2006), 

explained the relationships between weather variables and crop development. The study 

of Gallaguer and Biscoe (1978), as cited in Bouman (1995), presented one of the most 

common prediction models. Known as the „light interception‟ model, it produces a good 

indicator of potential yield by considering solar radiation, light use efficiency, and 

fraction light interception, which is a function of Leaf Area Index; the ratio of one-half 

the total area of leaves to the total surface area containing that vegetation (Steffen, 2007).  

Regression analysis is a powerful method to extract relationships from data and easily 

adapts to additional, new, or more accurate data (Rogerson, 2006). Consequently, it can 

be used to help solve crop prediction problems. For example, the World Meteorological 

Organization (1982) used it to summarize the relationships between climate factors such 

as solar radiation, temperature, rainfall and crop yields. Nualchawee‟s study (1984), as 

cited in Syam & Jusoff (1999), related yields to agronomic variables such as maturity, 

density, vigor, etc. The study of Garcia-Paredes, Olson, and Lang (2000), as cited in 

Prasad et al. (2006), added soil type as a predictor variable. 

Other more complex models consider additional variables such as phenology, “the study 

of vegetation dynamics in terms of climatically-driven changes that take place over a 

growing season” (Steffen, 2007), as well as photosynthesis processes, respiration, soil 

erosion, and productivity to achieve better accuracy (Bouman, 1995). Some examples of 
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those models are: Water Response model, EPIC, CERES and CROP-GRO (based on the 

DSSAT system), WOFOST, SIMTAG, ARCWHEAT, and SUCROS (Bouman, 1995). 

2.2. GIS and Remote Sensing Based Crop Yield Prediction Models 

GIS can handle and analyze data from different scales, sources, intents, coordinate 

systems, or formats (Longley et al., 2005). Similarly, in agriculture, GIS has proven to be 

useful to create homogeneous land units where parameters such as weather, soil 

properties, and agricultural strategies can be simplified and considered uniform inside 

specified area (Bouman, 1995).  Logically, models and GIS converged. The models 

proved to be useful in predicting crop yields in different scales and planet locations, and 

GIS easily integrated different fields under one common term: geographic location. 

Various cultural motives and technical requirements influenced the integration of models 

with GIS and remote sensing techniques. Heath‟s study (1990), as cited in Bouman 

(1995), enumerated among the cultural motives the lack of consistency between regions 

and countries, human subjective appreciation, and off-time. Heath included among the 

technical requirements the reduction of uncertainty and the conclusion that multi-spectral 

imagery data could effectively be used to estimate planted area.  

On the other hand, remote sensing has been effective in monitoring crop-growing 

conditions and estimating crop yields since the 1970s. Yield estimation uses remotely 

sensed data in different but complementary ways. It derives parameters that are directly 

related to yield, such as area (Maas, 1988). It has been used to estimate biometric 

parameters, such as the Normalized Difference Vegetation Index (NDVI), which are 

incorporated as other model variables to improve accuracy (Sadler & Russell, 1995; 

Syam & Jusoff, 1999). Today, an obvious solution to crop yield estimation is calculating 

cultivated areas from satellite imagery analysis. 

It is possible to estimate differences in regional crop production using Landsat MSS 

imagery (Badhwar, 1984; Bauer, Cipra, Anuta, & Etheridge, 1979; Williams, 1990). The 

study of Colwell et al. (1977), as cited in Yang & Anderson (2000), found and specified 

the direct correlation between Landsat imagery and crop yields using traditional sampling 

techniques. Wiegand, Richardson, & Kanemanesu‟ study (1979), as cited in Pinter et al. 

(2003), related Leaf Area Index measurements of winter wheat to a normalized 

vegetation index derived from Landsat MSS data. The studies of Tucker et al. (1980) and 

Wiegand & Richardson (1984), as cited in Pinter et al. (2003), found, using linear 

regressions, that grain yields relate significantly to the red and near-infrared bands data, 

nine spectral measures, five vegetation indices, and three individual bands from Landsat 

MSS data. The study of Hayes et al. (1982), as cited in Prasad et al. (2006), presented a 

crop yield model highly dependent on NDVI. Wiegand & Richardson‟ study (1984), as 

cited in Pinter et al. (2003), defined the equations for relating spectral observations to 

crop growth and yields. Bouman‟s study (1992), as cited in Bouman (1995), improved 

the accuracy of  SUCROS crop models with remote sensed data. The study of Moulin, A. 

Bondeau, and R. Delécolle (1998), as cited in Pinter et al. (2003), combined satellite 

imagery and crop-growth models. 

Although special considerations like scale phenomena, spatial correlations, or error 

normalization influence how regression analysis and geographic sciences complement 

each other (Rogerson, 2006), regression analysis methods helped to prove the 
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relationships between remotely sensed imagery and crop yields. The study of Tucker et 

al. (1980), as cited in Pinter et al. (2003), established that 64% of the grain yield 

variability could be explained by the variations of remotely sensed imagery. The study of 

Murthy et al. (1995), as cited in Syam & Jusoff (1999), concluded that the correlation 

existing between yield and NDVI depends on the phenological stage of the crop. Hence, 

the relationship depends on the date of the image taken. The study of Garcia-Paredes, 

Olson, and Lang (2000), as cited in Prasad et al. (2006), explained corn and soybean 

productivity using multiple linear regression (MLR) on soil classification data. Shanahan 

et al. (2001) used vegetation indices and showed that the best growth stage to estimate 

corn yields is midway through the grain fill period, with residual sum of squares (R
2
) near 

0.80.  

Servilla & Towner (2000) described how historic weather information could define crop 

selection and development. Prasad et al. (2006) predicted corn and soybean yields using a 

non-spatial linear regression method with breakpoints. They used NDVI, soil moisture, 

surface temperature, and rainfall as the predecessor variables required to obtain predicted 

values. They assessed the accuracy comparing the predicted yields against observed 

yields with residual sum of squares (R
2
) greater than 0.78. 

2.2.1. NDVI 

As observed in the last section, many researchers found a correlation between NDVI and 

crop yields. NDVI is the most widely used vegetation index (Towson University, 2007). 

Vegetation indices are the product of transforming raw image data into an entirely new 

image by calculating an algorithm. The algorithms highlight relationships among 

multiple bands of multi-spectral imagery. 

Like most other vegetation indices, NDVI is a measure of vegetation health or 

“greenness” (USGS, 2007). The chlorophyll in leafy green vegetation and the density of 

green vegetation on the surface affect the absorption of  visible light, especially red light, 

and the reflection of near-infrared energy. Consequently, NDVI derives from the ratio of 

the difference to the sum between measured reflectivity in the red and near-infrared 

portions of the electromagnetic spectrum. This ratio maximizes the contrast between 

vegetation and soil and compensates external effects like sunshine. “Healthy vegetation 

will have a high NDVI value. Bare soil and rock reflect similar levels of near-infrared, 

red, and so will have NDVI values near zero. Clouds, water, and snow are the opposite of 

vegetation in that they reflect more visible energy than infrared energy, and so they yield 

negative NDVI values” (USGS, 2007). 

 

“NDVI equation produces values in the range of -1.0 to 1.0, where vegetated areas will 

typically have values greater than zero and negative values indicate non-vegetated 

surface features such as water, barren, ice, snow, or clouds.”  (Towson University, 2007) 

2.3. GIS Based Crop Prediction Systems 

Given the objectives of this project, it was relevant to explore some of the crop prediction 

systems that agriculture policy-makers have deployed around the world. This section 
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presents state-of-the-art systems, the systems created by underdeveloped countries, and a 

similar application used in Colombia. 

2.3.1. Developed Countries 

The research mentioned earlier in this chapter sustained the development of prediction 

systems to solve national crop yield predictions needs. Monitoring Agriculture with 

Remote Sensing (MARS) is the program of the European Union Joint Research Centre 

for the improvement of agricultural statistics (Bouman, 1995; Hanuschak & Delince, 

2004). The National Agriculture Statistics Service (NASS) program was developed by 

the United States Department of Agriculture (USDA) (Allen, Hanuschak, & Craig, 2002; 

Yang & Anderson, 2000). Canada established the Crop Condition Assessment Program 

of Statistics (CCAP) (Aronoff, 2005). These three programs were among the first to 

develop applied crop growth modeling based on remote sensing.  

In their executive summary, Hanuschak & Delince (2004) described the three main 

applications of remote sensing inside NASS. The first application had used Landsat 

imagery since 1978 as samples in the agricultural estimation statistics, with complete 

coverage in the United States. Crop acreage estimation is the main application of NASS. 

The second application uses satellite imagery to improve the statistical precision of crop 

acreage indicators in some states. The third application is the formation of a public-use 

GIS data file called the Cropland Data Layer.  

“The Cropland Data Layer is the crop specific categorization of the best available 

set of Landsat (30 meter resolution) digital imagery for the crop(s) season of 

interest. Users have recently used the Cropland Data Layer to aid in watershed 

monitoring, soils utilization analysis, agribusiness planning, crop rotation 

practices analysis, animal habitat monitoring, prairie water pothole monitoring, 

and in the remote sensing/GIS value added industry.” (Hanuschak & Delince, 

2004) 

Reichert & Caissy (2002) described how CCAP has employed the Advanced Very High 

Resolution Radiometer (AVHRR) sensor for vegetation to forecast crop yields and land 

conditions since 1989. Its forecasts predict, within an accuracy of 5.6%, the statistics 

produced two months later from field reports; CCAP found significant discrepancies only 

in years with extreme weather conditions. An important aspect of this project is the 

methodology developed to remove clouds. The CCAP uses seven-day composed NDVI 

images; if any additional cloud pixel is present, the system automatically removes it from 

the analysis. In addition, the system is the perfect example of seamless integration of 

remote sensing imagery and GIS software. The customization allows CCAP to 

automatically prepare and distribute reports that include graphs, maps, and comparison 

charts, and to run individual analyses over the Internet. Specifically, reports that include a 

comparison chart against a 15-year average plotting NDVI (Aronoff, 2005). 

2.3.2. Developing Countries 

Syam & Jusoff (1999) summarized how Malaysia, a country highly dependent on its 

agriculture, started the National Resource and Environment Management program 

(NAREM) in 1996. The program‟s objective is to operate a GIS that supports and 

integrates national resource planning by collecting, classifying, storing, and retrieving 
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natural resource data. The Malaysian program proved that despite vast cloud coverage 

and thick rain, the system is helpful in planning and controlling agricultural development. 

The MARS FOOD program, developed by the Joint Research Centre of the European 

Commission, supports Eastern African countries (Rojas, Delince, & Leo, 2006), 

assessing countrywide yield prospects for maize and sorghum by analyzing two indexes: 

NDVI and Water Requirement Satisfaction Index, which is tightly linked to rainfalls. The 

same program is helping Argentina, Bolivia, Brazil, Chile, Paraguay, and Uruguay 

develop similar programs, and share their experiences (Grilli, Ravelo, Santa, & 

Zanvettor, 2006; Ravelo, Casa, Ovando, & Planchuelo, 2006; Ravelo, Rojas, Negre, 

Cherlet, & Planchuelo, 2002). 

Brazil is a pioneer in Latin America with its Geosafra program (Conpanhia Nacional de 

Abastecimineto CONAB, 2007). The program, promoted in 2004 by the Brazilian 

Ministry of Agriculture, Agribusiness, and Supply, seeks to complement the Brazilian 

Information System for Agro-Business (SIGA Brazil) with more precise prediction data. 

The program uses Landsat and Ciber-2 imagery to quantify the cultivated area.  The 

system estimates yields from a combination of area and meteorological information 

captured by the National Oceanic and Atmospheric Administration (NOAA) satellites. 

One key objective is to distribute farming information to producers so they can make 

better decisions about what and when to farm. 

All these programs developed a GIS with additional functionalities that help to analyze 

the information available, and to generate reasonably accurate crop yield estimation. 

With international help and political commitment, the programs overcame the cost of 

satellite imagery, the unpredictability of weather, and the extent of cloud coverage.  

2.3.3. Colombian GIS Crop Prediction Systems 

The United Nations Office of Drugs and Crime´s Global Illicit Crop Monitoring Program 

is the only operational GIS crop yield prediction system in Colombia (United Nations, 

2006). Since 1999, they have produced annual reports that estimate the coca cultivation 

areas and production. The objectives of the program are to define the methodologies for 

data collection and to monitor and communicate the extent of illicit crop in seven 

countries, including Colombia. In collaboration with the Colombian government during 

2003, they established SIMCI II, an expansion program. SIMCI II provides GIS tools to 

monitor problems associated with illicit crops: deforestation, environment conservation, 

natural parks control, and indigenous territories protection (United Nations, 2006).   

Classification of remote sensing imagery from Landsat, Aster, and Spot supports the 

methodologies established by the program to accomplish these goals.  The Institute of 

Natural Resources and Applied Life Sciences of the University of Natural Resources and 

Applied Life Sciences in Vienna, Austria, concluded, after a technical evaluation, that the 

methodology is appropriate (United Nations, 2006). The methodology  includes eight 

steps: identification and acquisition of satellite images, spatial information database 

development, image preprocessing, digital land cover classification of land use and 

vegetation, visual interpretation of coca fields (based on user experience), verification 

flights, accuracy assessment, and corrections (spraying, cloud cover and gaps, difference 

in acquisition dates).  
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The program developed an additional methodology to improve the accuracy of the 

estimation between areas, yields, and production. A multistage stratified area frame 

probability sampling divided the country into seven regions. The system automatically 

chooses primary sampling units based on a probability derived from the extent of coca 

cultivation areas in 2003 (United Nations, 2006). 

2.4. Accuracy 

In general, a correlation is the “identification of specific environmental conditions that 

are statistically significant precursors of a particular type of event” (Sarewitz et al., 

2000). Correlated predictors are an important part of any prediction.  However, 

correlations based on the past do not guarantee that any given model will represent the 

future because data contain errors, and natural systems are a constantly changing process. 

The choice of relying on predictions as part of a decision-making process consumes 

resources and involves human oversight. That choice also requires accepting and 

measuring the irreducible prediction‟s uncertainty. Accuracy is the best criterion to 

validate and justify predictions. It is defined as “the correlation between that which is 

predicted and that which actually occurs” (Sarewitz et al., 2000). Lack of accuracy will 

generate two kinds of errors: false alarms or surprises. Normally, any step taken to reduce 

one kind of error will increase the other (Stewart, 2000) but in any case, it is possible to 

measure it. Error measurement in parametric prediction commonly relies on 

mathematical operations; for example, the sum of squared errors can be used to measure 

a model‟s accuracy or prediction closeness to reality. Sarewitz et al. (2000) state that a 

simple comparison of the prediction against the result is not enough to accept the 

prediction.  Consequently, it is necessary to compare parametric results from other 

simpler or non-parametric predictions. 

Gommes (2003) presented an extended list of errors affecting decisions based on 

parametric predictions. The list showed common errors in observation, processing 

(analysis, transmission and transcription), data bias, scale, parameter selection, 

simulation, lack of relevant factors, trend assumptions, decision-making assumptions, and 

conflicts between different forecasts. He proposed validating the use of non-parametric 

predictions, especially in under-developed countries. 
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3. Data  

Data acquisition was a key task of the project. Similar projects, referenced in Chapter 2, 

pointed out data acquisition as a critical phase, as well as the importance of data quality. 

Data properties, such as precision, scale, or source trustworthiness relate to quality in GIS 

terms. One of the first risks identified for this project was data availability and assessing 

its associated quality. Although Procalculo Prosis and the Colombian Ministry of 

Agriculture supplied data for this project, on many occasions it was often necessary to 

validate, replace, or process the data. Those additional steps assured an acceptable degree 

of accuracy in the application.  

This chapter presents the four classes of data used: remotely sensed imagery; crop yields 

statistics for Colombia and Cordoba; weather data incorporated to predict the future corn 

yields; and ancillary data from the area of study. 

3.1. Remotely Sensed Imagery 

Imagery was an important source of data for this project and replaced costly observation. 

Frequent cloud coverage over the Colombian territory increases the complexity of 

capturing, acquiring, and selecting appropriate imagery (United Nations, 2006). Only a 

small percentage of the commercially available images covering Cordoba had less than 

50% cloud coverage. Additionally, during rainy seasons the chance to acquire useful 

images is severely limited. 

Czajkowski & Grunwald (2000) considered that understanding the satellite factors is 

important before any classification effort. The factors included when selecting the 

appropriate satellite platforms are: fine spatial resolution (less than 30 meters pixel for 

classification), regional swath areas, monthly temporal resolution (15 to 30 days re-visit 

times), and wide multi-spectral resolutions. The selected satellite‟s sensors were: the 

Moderate Resolution Imaging Spectroradiometer (MODIS) in the Terra satellite, the 

Enhanced Thematic Mapper Plus (ETM+) in Landsat 7, and the High Resolution 

Geometric (HRG) in Spot 5 (see Figure 3-1). This subsection introduces the satellite 

platforms selected and the imagery datasets used in the project.  
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Figure 3-1 - Terra, Landsat, and Spot images over the study area 

Although Procalculo Prosis, distributor of Landsat, Spot, Ikonos, Digital Globe, and 

Aster provided the imagery, the project required additional sources to increase temporal 

image availability, correct quality issues, and improve resolution. Temporal coverage is 

especially helpful to classify transitional crops such as corn and reduce the effect of 

cloudy conditions. The same images from different sources allowed comparisons to 

verify an image‟s correctness, and more detail helped the image‟s interpreter to mitigate 

the lack of field data. 

3.1.1. Landsat  

Landsat is a satellite program from the United States, which first launched Landsat 1 in 

1972. Currently there are two operational Landsat satellites (Landsat 5 and 7). Both orbit 

the Earth at an altitude of 705 km in a sun-synchronous polar orbit of 16 days. ETM+ 

collects information in seven spectral bands (30m x 30m pixel) and one panchromatic 

band (15m x15m pixel) covering a constant 185km x 185km area (Belgian Science 

CORDOBA
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Policy - EOEdu, 2007). The Landsat program has an extensive database, both spatially 

and temporally. Different disciplines, including cartography, geology, geophysics, 

archeology, hydrology, agriculture, land use, environment, conservation, and 

oceanography have benefited from its multispectral images.  Specifically, Bauer et al. 

(1979) and Badhwar (1984) used Landsat imagery to identify crops successfully. 

Landsat imagery is the main source of historic imagery in the area of study. The path and 

row numbers of the images used were, respectively, between 9 and 10, and between 53 

and 55 (see Figure 3-2A). Forty ortho-rectified Landsat images are available from 1985 

to 2002. NASA (2007) provided twenty-one recent Landsat images through the 

University of Maryland Global Land Cover Facility. However, this imagery has degraded 

quality since May 2003, when the Scan Line Corrector failed. Gaps appear at the images‟ 

sides because of this “SLC-Off” malfunction in the Landsat 7 ETM+ instrument 

(University of Maryland, 2007b). 

  

Figure 3-2 - Landsat (A) and Spot (B) scene grids over Cordoba, Colombia 

3.1.2. Spot 

Spot is the France-Belgium-Sweden partnership satellite program. Their satellite 

constellation currently has four operational satellites, allowing excellent daily coverage 

of almost the entire planet, and improved stereoscopic scenes. Launched in 2002, Spot 5 

orbits sun-synchronously at an altitude of 832 kilometers with a temporal resolution of 

twenty-six days. Two High Resolution Geometric (HRG) sensors provide resolutions up 

to 2.5m x 2.5 m pixel (panchromatic) or 10m x 10 m (multispectral) in 60km swath 

images (Belgian Science Policy - EOEdu, 2007). Spot claims that because of the high 

number of sensors and bands, Spot´s satellite imagery works in many applications 

including “mapping, cadastral surveying, security, defense, farming, forestry, fisheries, 

land management, planning, telecoms, geology, and risk mitigation” (Spot Image, 2007). 

Figure 3-2B depicts the Spot scene grid. Some quadrants are not displayed because Spot 

identified them as having nearly 100% cloud coverage. Only two images with less than 

50% cloud coverage were available. One image covers grid 641-331 and the other 640-
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333; acquisition dates were December 18, 2006 and August 20, 2006 respectively. The 

remaining images indicated in Figure 3-2B have more than 50% cloud coverage. 

3.1.3. Terra 

Terra was launched on December 18, 1999 (NASA, 2006). The satellite has a built-in 

MODIS instrument, which captures 12-bit images in 36 spectral bands. The first two 

bands have a nominal resolution of 250 m, with the next 5 bands at 500 m, and the 

remaining 29 bands at 1 km. Terra orbits the Earth at 705 km, achieving a 2,330-km 

swath. Together with Aqua, its twin, they provide global coverage on a daily basis. 

As observed in Subsection 2.2.1, the NDVI is a good indicator of vegetation health, one 

of the proposed predictor variables in the regression model. In theory, Landsat images 

had the required bands to generate the NDVI. However, in practice, they were extremely 

difficult to use because of the multiple differences in dates, the malfunction in the SLC, 

and the intense cloud coverage in the area of study. Different data were required. After 

evaluation, it was decided that the MODIS instrument in NASA‟s Terra satellite provides 

the necessary data to calculate NDVI values. NASA (2007) provided the MODIS 

product: 500m, 32-Day Global Composite images covering South America from years 

2001 to 2005. The project required only red and near-infrared bands. This product uses 

multiple MODIS images from 32 days to remove cloud pixels. MODIS continental 

subsets are available in single band GeoTIFF files. Available bands are one to seven (red, 

NIR, green, blue, and three infrared bands), with an estimated average size per band of 

800MB. This project required only red and near-infrared images of South America dated 

in the month of August.  

3.1.4. Other Imagery Sources 

Additional imagery sources that were considered included the Geoeye Foundation and 

NASA. Geoeye (2007) offered Ikonos imagery (1m panchromatic) and Orbview 3 

imagery (1m panchromatic and 4m multispectral).  The image search application required 

defining the AOS and the search parameters, such as cloud coverage less than 50%, 

acquisition dates since 2001, and angles from 0 to 90. Only Ikonos‟ panchromatic images 

were available and they were not useful for classification purposes. One image helped to 

identify land features; it was acquired directly by Procalculo Prosis from Geoeye. 

NASA (2005) offered Aster imagery through its Terralook online application. Although 

the download process was simple and fast, the notes for the Colombian dataset showed 

that the Landsat images in the file were older than year 2001, and that the Aster files did 

not have the spectral resolution required to identify crops. The European Commission 

Joint Research Center (2007) offered a digital atlas, but it did not have any additional 

imagery. 

3.1.5. Spectral Bands Selection 

Two groups of researchers differed in opinion when recommending which bands to use. 

Turker & Arikan (2005) proposed to use all Landsat bands, including the panchromatic 

for additional detail, while Maxwell, Nuckols, Ward, & Hoffer (2004) used only Landsat 

bands 2 and 4. The project used all available bands in Landsat and Spot imagery and 

bands 1 and 2 in MODIS imagery. Every band detects different aspects on the Earth‟s 
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surface. Table 3-1 compares the bands‟ descriptions, number, and spectral ranges, among 

Landsat 7, Spot 5, and MODIS imagery. 

Table 3-1 - Spectral band comparison among Landsat 7, Spot 5, and Terra  

  

Multispectral images offer better accuracy for crop identification (Turker & Arikan, 

2005). Because a single multi-spectral image cannot differentiate between some crops, it 

might be necessary to include a multi-temporal image approach to identify crop types, as 

those can detect seasonal variation characteristics of each crop. A multi-temporal image 

consists of the different date images and bands stacked into one single image with more 

than 30 bands. In order to keep size and processing efforts manageable, it is necessary to 

eliminate bands when using multi-temporal images.  The use of multi-temporal images 

requires a principal components analysis to identify which bands to use (Czajkowski & 

Grunwald, 2000). However, it was not the case with this prototype, given the lack of 

imagery within the same cropping cycle.  

3.2. Crop Yield Statistics 

The Colombian Ministry of Agriculture provided crop production data for the country. 

Agronet is the ministry portal for statistics, analysis, and a national agricultural survey. 

Detail/Uses Satellite Band Spectral 

range  (µm)

Blue-green light (scattered by atmosphere)

Detects particles suspended in water

Ground/ Plant differentiation

Landsat 7

Spot 5

Terra

1

3

0,45-0,515

0,45- 0,47

Green light

Vegetation

Landsat 7

Spot 5

Terra

2

1

4

0,525-0,605

0,50-0,59

0,54-0,56

Red Light

Plant species differentiation

Landsat 7

Spot 5

Terra

3

2

1

0,63-0,69

0,62-0,67

0,61-0,68

Near infrared

Detects biomass

Radiation from leafy vegetation in which chlorophyll 

reflects much of the NIR

Landsat 7

Spot 5

Terra

4

3

2

0,75-0,90

0,79-0,89

0,84-0,87

Middle Infrared

Variations in moisture content (Plant/soil)

Snow/Cloud differentiation

Landsat 7

Spot 5

Terra

5

SWIR

6

1,55-1,75

1,58-1,75

1,62-1,65

Thermal

Measures temperature

Soil/Plant/Mineral research

Landsat 7

Spot 5

Terra

6

5

10,4-12,5

1,23-1,25

Middle Infrared

Lithology. Moisture in leafy vegetation

Crop productivity and vegetation areas under stress

Landsat 7

Spot 5

Terra

7

7

2,09-2,35

2,1-2,15

Panchromatic

Smaller objects identification

Accurate land maps

Increased band differentiation

Landsat 7

Spot 5

Terra

PAN

PAN

0,50-0,90

0,51-0,73

Data sources: Belgian Science Policy - EOEdu, 2007; Towson University, 2007; 

University of Maryland, 2007
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(Ministerio de Agricultura, 2007). It provides electronic access to yield estimates by 

state, product, and year. Estimates of traditionally cropped corn yields and cultivated 

areas in Cordoba were available for the years from 1987 to 2005 (see Figure 3-3). Figure 

3-4 shows a comparison between the two cropping methods. The dataset contains planted 

hectares, tons harvested, and yield per hectare. For comparison, in the United States the 

same information is available since 1866.   

 

 

Figure 3-3 - Corn production in Cordoba (1987 -2005) Traditionally cropped (A) Technically 

cropped (B) 
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Figure 3-4 - Comparison between traditionally and technically cropped corn in Cordoba (1987-2005) 

3.3. Weather Data 

The Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM for the 

Spanish acronym of Colombian National Institute for Hydrology, Meteorology, and 

Environmental Sciences) offers a paid service which provides an historic dataset by 

weather station and weather variable (IDEAM, 2007b). Two timeframes were available at 

different costs: USD$10 for daily readings per year, and USD$15 for all the monthly 

average readings since 1988.  Although daily information might improve accuracy, it was 

unnecessary because NDVI and production data were available only on a monthly basis.  

Inside the AOS, 241 weather stations were available (IDEAM, 2007a). To reduce the 

costs, Procalculo Prosis provided data for twenty-five stations, which extends beyond 

Cordoba boundaries to reduce edge effects. 

The variables acquired from IDEAM were precipitation and temperature. The rainfall 

monthly average readings‟ units were millimeters, and temperature readings were in 

Celsius degrees. Each dataset included a year-by-month text matrices and the respective 

station‟s description (headings in Figure 3-5). In addition, the matrix contained metadata 

about each reading (Columns marked with * in Figure 3-5).  
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Figure 3-5 - Original weather reading tables by station (IDEAM, 2007b)  

Excel pivot tables organized the weather information into a table of stations by month-

year (see Table 3-2).  In addition, the process included saving the metadata, in a different 

Excel file for its future use in accuracy assessment. 

Table 3-2 - Processed weather stations’ readings 

 

Initially a weather readings table was joined to the weather stations point features. 

However, final organization changed because the “Add Join” tool did not work inside the 

ArcGIS Model Builder. The final weather station dataset integrated all rainfall and 

temperature readings by month in a single table. 

3.4. Ancillary Data 

Procalculo Prosis obtained additional features from the Colombian Geographic Entity 

(IGAC). ESRI Coverage Interchange files (e00) stored the features including: main roads; 

StationID Name Latitude Longitude Altitude 

(m)

Type State Date 

Installed

Rainfall 

(mm) 1988-

01

Rainfall 

(mm) 1988-

02

Rainfall 

(mm) 1988-

03

1308503 San Bernardo del Viento 9.3667 -75.9500 22 CO Cordoba Nov-64 0 0.1 0

1111502 Canas Gordas 6.7333 -76.0333 1200 CO Antioquia Jul-73 23.1 67 69.4

1308502 Lorica 9.2667 -75.8167 30 CO Cordoba Jun-64 0 0 0

1307501 Chima 9.1500 -75.6167 20 CO Cordoba Oct-73 7.9 4.5 31.2

1204502 Cristo Rey 9.0667 -76.2333 15 CO Cordoba Oct-73 0 4.9 0

1307503 Turipana 8.8500 -75.8167 20 AM Cordoba May-60 0 1.5 0

1308504 Los Garzones 8.8167 -75.8500 20 SS Cordoba Jun-74 6.5 16.9 29.1

1307505 Univ Cordoba 8.8000 -75.8667 15 AM Cordoba Jun-79 0 19.3 6.3

2502517 Colomboy 8.7500 -75.5000 125 CO Cordoba Oct-73 0 1.2 52

1305503 Galan 8.6667 -75.9833 30 CO Cordoba Jun-79 0 8.3 0.2

1306502 Maracayo 8.4167 -75.8833 25 CO Cordoba May-79 0 15.4 0

2502515 Ayapel 8.3167 -75.1333 22 CO Cordoba Aug-67 0 7.8 0

2501501 Centro Alegre 8.1667 -75.6667 170 CO Cordoba Dec-73 0 6.8 93.8

1301504 Represa Urra 7.8833 -76.2500 300 CP Cordoba Nov-04

2502531 Puerta roja 9.3300 -75.3833 160 ME Sucre Dec-84

2502527 Univ Sucre 9.2000 -75.3833 160 AM Sucre Sep-83

2502518 San Benito Abad 8.9333 -75.0333 20 CO Sucre Nov-73 0 5 0

2502524 Majagual 8.5333 -74.6167 20 CP Sucre Nov-74 0 9.2 0

1308501 Doctrina la 9.3000 -75.9000 20 CP Cordoba Jan-68

2502516 Hacienda Cuba 8.0000 -75.4167 50 CO Cordoba Apr-73 2.6 5.8 0

1204501 Arboletes 8.8500 -76.4167 4 CP Antioquia Mar-72 0 4.7 14.5

1201509 La Palmera 7.5000 -76.6000 58 CO Antioquia Mar-91

1201502 Uniban 7.8333 -76.6667 23 AM Antioquia Aug-77 9.1 77.1 1.5

2625504 Cacacoteras 7.9833 -75.1167 55 CP Antioquia Aug-68 1.2 21.8 0.9
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roads; non-paved main roads; dirt roads; hydrography; towns; state capitals; and  

municipal divisions; individual raster files store the Digital Elevation Model (DEM) and 

soil use raster. These datasets served two purposes: they provided the end-user with 

known base map features, and their use improved accuracy by helping with crop 

identification (Kontoes, Wilkinson, Burrill, Goffredo, & Mégier, 1993). 
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4. Methodology 

This chapter describes the processes required to transform the data. The project had three 

tasks. The first task was building a spatial information database. The second task was 

compiling, classifying, and interpolating the imagery. The last task was formulating and 

running a multiple regression analysis. 

4.1. Spatial Information Database 

Czajkowski & Grunwald (2000) considered assembling GIS data layers as the first task in 

their project. Kontoes et al. (1993) encountered problems with the time-consuming 

processes needed to integrate data from different sources. Fortunately, the modern 

versions of ESRI ArcGIS address the integration problem using geodatabases. In 

addition, the geodatabase format improves data processes such as storage, retrieval, 

display, and update (ESRI, 2007a, 2007b).  Design was the first step to build the file 

geodatabase, which contains the data and models for this prototype.  Editing the metadata 

was the next step, followed by defining an area of interest and populating the 

geodatabase. 

4.1.1. Database Design 

The project prototype required only a few data layers, helping to keep the design simple. 

The Mip.gdb, the project ArcGIS file geodatabase, stores raster images, vector data, and 

prediction tools. The Mipscratch.gdb, an ArcGIS file geodatabase, keeps the results of all 

the processes and analysis used during the project, without affecting the Mip.gdb design 

or the original data.  

Imagery is at the core of the database and is stored as raster datasets: Landsat, Spot, DEM 

and SoilUse. A geodatabase Toolbox stores the models to process the data. Some entities, 

relationships, and fields in the ArcGIS model for agriculture (ESRI, 2003) served as a 

template for organizing ancillary data (see Figure 4-1).  
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Figure 4-1 - An ArcGIS Model for Agriculture – Draft (Adapted from ESRI, 2003) 

The main feature datasets, derived from the template, are Cadastre, Production, and Base 

Map. The Cadastre feature dataset stores the administrative divisions: country, state, 

municipality, and populated areas. The Production feature dataset stores the Production 

Area and Yield Area polygons. The Base Map feature dataset stores hydrography and 

roads features classes. Mip.gdb stores the Commodity and Area Yield tables, as well as 

the Weather Stations feature class, which contains the rainfall and temperature 

information. The roads and populated areas feature classes use subtypes for organization 

and display purposes.  

4.1.2. Metadata Edition 

ArcCatalog provided the tools for editing, loading, or copying the metadata. FGDC ESRI 

style sheet is the format used for presenting and updating the metadata. Every layer 

loaded into the Mip.gdb database has its respective metadata. For example, raster data 

have an accompanying xml metadata file and other data sources provided the additional 

metadata information on their webpage. 

4.1.3. Spatial Frame Definition 

Achieving a small geodatabase size and increased performance required reducing the 

dataset‟s spatial frame from the countrywide size to area of study size. Section 1.5.3 

describes the process of selecting Cordoba as the AOS. A 50km buffer around the 

Cordoba boundary was used to eliminate the spatial inconsistencies that could appear 

near the AOS boundaries.  

The Subset function in Erdas clipped all of the acquired images using the minimum 

bounding rectangle around the AOS. The Stack function not only stacked Landsat and 

PRODUCTION
Area of Interest (AOI)
Selected AOI

CADASTRE
Country
State
Municipality
• Populated Areas

BASEMAP
Hydrography
―Hydrography
―Roads

AGRIBUSINESS
•Weather Stations
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Terra imagery layers, but also had the option to subset the image at the same time (using 

AOS.aoi file into the AOI menu), reducing processing time; however, one more 

subsetting was required to delete the background. Executing a stacking process for 

Landsat SLR-off imagery created unusable images if the option to include the zero value 

in the stacking process was on.  

The use of a smaller Area of Interest (AOI) avoids problems with multiple image 

spanning. Moreover, an AOI allows clipping other datasets and reducing their space 

requirements. Additional benefits of using the AOI are not only the improvement in the 

prototype stability and overall performance, but also that it allows the user to define or 

select different areas for the prediction.  

Czajkowski & Grunwald (2000) recommended, as part of a preprocessing effort, to 

classify the clouds and remove images with more than 30% cloud coverage, in order to 

assure that images are geographically and atmospherically corrected, and that images 

have a small spatial error. Following this recommendation eliminated 47 Landsat images. 

Consequently, it was not possible to follow their last recommendation of including 

images from the complete growing season.  

Although the prototype runs based on any polygon inside the AOS, it includes two 

predefined AOIs near the Cordoba capital, Monteria. Among the 40 Landsat images, the 

one in row 10 path 54 taken on February 2, 2001 (Test Image One) is the most recent and 

the least cloud-covered Landsat image (See Figure 4-2).  
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Figure 4-2 - Test Image One, Landsat 

A multitemporal image was ideal for the classification process, but the cloud coverage of 

the available images from August 2000 to August 2001 is 70% or more (NASA, 2007). 

Figure 4-3 shows a Spot Image taken in grid 640-333 on August 20, 2006 (Test Image 

Two). The best time for prediction is before the main harvesting season, in August and 

September. Therefore, Test Image Two was the appropriate image to use; it was recent, 

had more resolution than a Landsat 7 image, and it overlapped with Test Image One. In 

addition, both images selected did not need additional corrections because they are 

geometrically and atmospherically corrected. 
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Figure 4-3 - Test Image Two, Spot 

The Production Area feature class stores the AOI polygons, which match the extent of 

image to analyze. The AOI feature class contains two predefined polygons (AOIs). The 

fields of the AOI feature class are YieldID, Commodity, Yield Quantity and Yield Unit. 

The user can create new AOI polygons using ArcMap‟s editing functions.  

4.1.4. Raster Data Population 

Imagery.gdb was a temporal file geodatabase. It contained unprocessed original raster 

files and prevented the corruption of large files. Corruption occurred frequently at the 

beginning of the project when working with rasters of countrywide size. The first option 

proposed to organize the imagery was to use raster catalogs to store imagery by provider, 

image name, grid code, and date, and grid tables to identify the images. Although this 

solution could have helped to select the images by date and area thus improving 

performance, it was unnecessary for this prototype because there were not enough quality 

images in different path/row at the same month/year that could be mosaiced and clipped 

into grids. Landsat and MODIS images were available in files by layer, requiring a 

stacking process before or during population of Imagery.gdb.  

The DEM was provided in an unfamiliar MapInfo GRID format; with help from Nathan 

Strout it was converted into a usable file geodatabase format. Consequently, initial 
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metadata files were not readable by ArcGIS. Although the DEM appeared to be in the 

UTM 18N reference system, the raster displayed was incorrectly referenced. After 

reprojecting using the soil use layer‟s reference system, the result remained 

unsatisfactory. Another alternative was to georeference the raster, aligning it with 

Colombia‟s boundary, but the registration accuracy was degraded significantly. The fact 

that ArcGIS displayed the map units in meters when they should be in degrees hinted at 

the solution: redefining the DEM layer‟s reference system to the geographic reference 

GCS_WGS_1984 from the projected UTM 18N system. It worked. The DEM then 

matched the country topography and other base map features such as rivers and lakes.  

The Soil Use dataset format was GeoTIFF.  The raster had 13 values described in Spanish 

(see Table 4-1). Once imported into the database, the raster had 8-bit pixel depth or 255 

values. The value description was translated and typed as a new field in the raster file 

called Use Description. Although a color map could be especially useful for 

standardizing the display of this dataset, the functionalities to create or modify a color 

map were not available in ArcGIS. The alternative was using a Unique Value displaying 

method. 

Table 4-1 - Soil use raster values and description 

 

ArcCatalog functionalities assisted in the completion of the tasks. The New function 

allowed the creation of raster datasets, while the Load Data function incorporated an 

original raster file into the dataset. Load Data must have the Ignore Background Value 

filled to prevent black areas from displaying in the resulting images. Because the 

prototype geodatabase requires smaller files focused on the area of study, the Clip tool 

(Data Management) in ArcToolbox created two subsets from DEM and Soil Use datasets, 

using the AOS extent.  The same function allowed the creation of two AOI rasters from 

the most cloud- free areas of Test Image One and Two. Mip.gdb stores the resulting 

smaller rasters.  

4.1.5. Vector Data Population 

As discussed in Section 3.4, the vector data used in this project was acquired in ESRI 

coverage format. ESRI (2006) ArcGIS Help files provided the instructions for 

Value Description in 

Spanish

Description in 

English

1 Mar Sea

2 Vias Roads

3 Agua Water bodies

4 Urbano Urban

5 Glaciar Glacial

6 Paramo Moor

7 Cultivos Croplands

8 Bosque Forest

9 Rastrojo Stubble

10 Pastos Pastures

11 ND ND (Not defined)

12 Escasa vegetacion Scarce vegetation

13 Abierto Rock/Bare soil

Other values ND (Not defined)
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configuring ArcCatalog to view and export Interchange files (e00) into a geodatabase. 

After conversion, Vectors.gdb was the file geodatabase, which stored the converted 

feature classes, but not the annotation layers. The Clip tool (Analysis) created geographic 

subsets of all these features using a 50km buffer around Cordoba‟s boundary. Roads 

feature is the result of appending Main Roads, Unpaved Main Roads, Roads, and Dirt 

Roads feature classes, while Populated Areas joins Towns and State Capital feature 

classes. The Dissolve tool, using the Create Multiparts parameter unchecked, created the 

Countries and States feature classes with the Municipalities feature class serving as the 

input. After their creation, both Roads and Populated Areas required the creation of 

subtypes for better organization and display. The process had three steps: creating a new 

short integer Class field in each feature class; calculating the values from the Simbolo 

field; and, creating the subtypes in the properties menu. Table 4-2 details the created 

subtypes. Copying to the Mip.gdb geodatabase and translating the feature classes‟ names 

from Spanish were the final steps.  

Table 4-2 - Subtypes for Roads and Populated Areas feature classes 

 

4.1.6. Weather Data Population 

The objective of this process was to incorporate weather station location data and weather 

readings, described in Section 3.3, into the geodatabase. Initially, the weather variable 

(temperature or rainfall) was a field in the table, identifying the variable each station 

captures, but the table was organized by station including rainfall and temperature 

readings in independent columns by month and year. The Export to Feature Class tool 

required adding an initial letter to each reading field‟s label because if the field starts with 

numbers, the field name is changed. The letter R denotes rainfall readings by month/year, 

while the letter T means that the field is a temperature reading; for example, T200704 is 

the temperature reading from April 2007. The Month part is always indicated with two 

digits. 

The exporting process repeatedly failed for several reasons: Excel 2007 files were not 

compatible with ArcGIS 9.2; changes in the Excel table did not update on ArcGIS 

consistently; and the weather station table had to have the same order as the weather 

readings table for linking. However, once the table was in the right organization, it 

transformed easily into a point feature class using the Add XY Data function in ArcGIS. 

This function displayed the points seamlessly inside the AOS, but the location provided 

was accurate only to the nearest minute. IDEAM provided improved accuracy in its 

webpage station‟s viewer (IDEAM, 2007a). A simple location comparison between the 

webpage and the file revealed that coordinates in the file were incorrect. After improving 

the precision of the coordinates, the station locations‟ accuracies improved as shown in 

Figure 4-4. With the more accurate locations, the Export Data to Geodatabase (single) 

Roads Populated Areas

0 Undefined 0 Undefined

1 Dirt Road 1 State Capital

2 Road 2 Town

3 Main Road

4 Unpaved Main Road
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tool exported the geographically displayed station data into Weather Stations as a new 

feature class inside the Mip.gdb geodatabase.   

 

Figure 4-4 - January 1988 temperature interpolations using original locations in black (A) and 

corrected locations in red (B) 

4.2. Imagery Processing 

In this section, unsupervised classification and supervised classification, based on 

ancillary data, identified areas planted with corn. Arithmetic operations between the 

infrared and red bands obtained the NDVI. Interpolation between weather stations‟ 

readings then created temperature and rainfall surfaces. 

4.2.1. Image Classification 

Silapathong & Blasco (1992) considered remote sensing the most cost-effective method 

of gathering information about croplands. Image classification helps produce valuable 

information from remote sensed imagery. Three related applications are: crop 

identification, planted area measurement, and analysis of crop condition. For example, 

the United Nations (2006) did not use these classification methodologies to detect 

specific crop cultivated areas, but rather to implement a broad study of land cover. 

For this purpose, United Nations (2006) developed a broad eight-step classification 

methodology. The first step is the identification and acquisition of satellite images; 

Section 3.1 explains the images acquired for this project. The second step is the creation 

of a spatial information database; subsections 4.1.4, 4.1.5 and 4.1.6 cover this topic. The 
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third step is image preprocessing, which includes Czajkowski & Grunwald´s (2000) 

recommendations (see Subsection 4.1.3 and 4.2.1.1). Subsection 4.2.1.1 describes 

unsupervised classification. The next three steps are visual interpretation, verification 

flights, and accuracy assessment; a supervised classification replaced all of them (see 

Subsection 4.2.1.2). Section 6.1 addresses corrections as a possible final step. 

4.2.1.1. Unsupervised Classification 

In general, the two traditional methods used to classify imagery are unsupervised and 

supervised (Aronoff, 2005; Leica Geosystems, 2005a, 2005b; Towson University, 2007). 

In an unsupervised classification, the analyst defines only the number of classes expected, 

and the image processing software creates that number of classes based on the properties 

of the pixels. This method is reliable, repeatable, acceptably accurate, and is especially 

useful when no ground truth is available.  

An initial task for unsupervised classification inside the project was to identify cloud 

covered areas on the images (see Subsection 4.1.3). Cloud coverage less than 30% was 

the threshold used to choose which images are suitable for the prototype. The Erdas 

Imagine unsupervised classification tool classified three classes using nine bands on 

Landsat images and bands one, two and three in the Spot images, iterating six times, with 

a convergence threshold of 0.95. The results showed class one as clouds, class two as 

surface, and class three as water and cloud shadows (see Figure 4-5). The image statistics 

indicated that class one comprised 22.90% of Test Image One and 8.4% of Test Image 

Two.  

 

Figure 4-5 - Classification of Test Image One identifying clouds in the AOI 

However, the main objective was deducing ground truth for the supervised classification, 

such as digital land cover classification, a vegetation index, or isolating areas used for 

agriculture from those not used. Increasing the number of classes allowed identification 

of land cover and testing for the appropriate number of classes. Only Test Image One and 

Test Image Two required this detailed unsupervised classification. Test Image One is a 

Landsat image with nine bands; while Test Image Two has three. At the beginning of the 

project, band one and band two in the Test Image One, provided by Procalculo Prosis, 
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were identical; the image had apparently been corrupted. Band one, downloaded from 

NASA (2007), replaced the original band one. After repeating the stacking, subsetting, 

and geodatabase loading process, this replacement had a small positive effect in the 

classification because the classes showed a better separability index.  

Section 3.1.5 explains why all the bands were useful for classifying. Some classification 

tests in Test Image One, with different bands combinations led to similar results. Tests 

were with three bands (four, three and two); six bands (one thru five, and seven); seven 

bands (all except two thermal bands); and all nine bands. Different classifications of Test 

Image Two with 15, 20 and 25 classes searched for an appropriate level of distinctness 

and compactness. ESRI (2007c) recommended the use of the “Dendrogram” or “Class 

Probability” Tools to identify which classes should be merged or deleted to eliminate 

overlapping classes (see Figure 4-6). After this process, the final number of classes 

chosen was 16. 

 

Figure 4-6 - Three different classifications of Test Image Two for 15, 20 and 25 classes 
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After the tests, the classification parameters for the Erdas Imagine unsupervised 

classification tool were: a maximum of 24 iterations, a Convergence Threshold of 0.995, 

and the Classify Zeros option unchecked. In ArcGIS, the ISO Cluster Tool, combined 

with the Maximum Likelihood Classification Tool, replaced the Unsupervised 

Classification Tool in Erdas, but it took three times longer. The ISO Cluster parameters 

were: 24 iterations, minimum class size of 2000, and sample interval of ten. The 

Maximum Likelihood Classification parameters were: reject fraction of 0.005, and 

EQUAL a priori probability weighting. 

4.2.1.2. Supervised Classification 

In a supervised classification, the analyst determines the classes and creates training 

areas. The image processing software then compares the spectral signature of the training 

areas against every other pixel in the image. A spectral signature refers to “a 

characteristic set of reflectances over the electromagnetic spectrum” (USGS, 2007). The 

methodology used is similar to that used by the Office for Drugs and Crime project that 

“performed a supervised classification, where training areas represent the features to be 

mapped in advance and class signatures are calculated. Each pixel is then assigned to a 

land cover class” using the maximum likelihood algorithm (United Nations, 2006). 

Czajkowski & Grunwald (2000) , Doraiswamy, (1997), Leica Geosystems (2005a, 

2005b), and ESRI (2007c) provided classification technical procedures.  

The maximum likelihood algorithm assumes that the distribution of a class sample is 

normal and assigns cells to a class based on the highest probability of being a member. Its 

wide use in similar applications and the proven functionality in both ESRI ArcGIS and 

Erdas Imagine are the two main reasons for using this algorithm.  Although supervised 

classification is not a difficult process, it requires ground truth to be accurate. However, 

field and production data were not available for this project, as explained in Chapter 3. 

For this reason, this procedure required additional effort to produce signature files from 

ancillary data and analysis. Erdas Signature Editor was the tool used to create and 

analyze the spectral signature file for Test Image One (see Figure 4-7).  
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Figure 4-7 - Erdas Imagine Signature Editor of Test Image One  

After a lengthy review and interpretation process using ancillary data described in 

Section 1.5, it was possible to define or identify the classes, and to assign corn to one of 

them. High-resolution imagery (Ikonos) has enough detail to determine field differences 

and special features, such as cattle, small roads, or trees. When combined with the 

unsupervised classification results, the DEM and land use layers allowed the analyst to 

visualize different types of agricultural fields.  Figure 4-8 shows an example of the five 

geo-linked Erdas viewer screens used for this step. The screens were Test Image Two, 

Test Image Two unsupervised classification (with class editor), Ikonos image, Test Image 

One unsupervised classification (with class editor), and Test Image One.  

 

Figure 4-8 - Windows arrangement required for simulating ground truth from ancillary data 

Following the ESRI (2007c) recommendations, the final number of training classes were 

16 (see Subsection 4.2.1.1). The classes were: sea, clouds; water, primary forest, 

secondary forest, crops (corn and three more), grasslands (three types), bare soil, sand, 

clouds, and dense clouds. The Erdas Imagine Supervised Classification tool produced a 

classified raster based on the signature file and an input image with the same number of 

bands. A similar process took place in ArcGIS for Test Image Two: digitizing 
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representative polygons for each class and giving each polygon an integer class ID, using 

the Create Signatures tool, and using the Maximum Likelihood Classification tool. 

Although Erdas Imagine performance and functionality were better than ArcGIS, ArcGIS 

not only offered the same basic functionality but provided additional tools. For example, 

it has tools such as Filter and Aggregate for reducing the speckle (the latter one reduces 

the resolution); a tool for converting the raster into polygons (Raster to Polygon); and 

tools for merging the polygons like Eliminate and Dissolve. 

4.2.2. NDVI Calculation 

Subsection 2.2.1 explains the strong relationship between NDVI and yield estimation as 

well as the logic behind the index formula. NDVI may be derived from satellites that 

have sensors to measure the red and near-infrared spectral bands (see Table 4-3). Both 

Test Images have those two bands and consequently the model can use simple raster 

algebra to calculate NDVI on them.  A different need was creating an historic series of 

NDVI values inside the AOS. The regression analysis required the NDVI series to create 

the mathematical equation that predicts the yield. A complete, ten-year series of images 

taken just before the August to September harvesting season was recommended for 

NDVI calculation. 

Table 4-3 - Band’s names for NDVI calculation from different sensors  

 

Although the project already had Landsat Imagery available, the imagery presented 

various problems: the dates of capture were not consistent, cloud coverage obscured the 

vegetation below, and quality was uneven. There were not enough Landsat images with 

light cloud coverage, during the ideal time of the year, and with the required quality 

(SLC-Off malfunction). A second option was to utilize the widely used AVHRR imagery 

from NOAA meteorological satellites. However, it was not freely available and the 

resolution is 1km, at best (Towson University, 2007). Finally, a GLCF product offered a 

cloud free option: the MODIS, 500m, 32 days composites (see Subsection 3.1.3). 

Different NDVI from different satellites are consistent (Buheaosie, Tsuchiya, Kaneko, & 

Sung, 2003). 

The ArcGIS Clip tool trimmed the bands and created significantly smaller files covering 

the AOS. The ArcCatalog Load Data function created a single raster dataset with ten 

bands (two bands per year for five years).  Although the image had geographic 

references, it needed a georeference procedure to adjust the image to the AOS. The first 

procedure was to move the image using the Shift tool, but some features appeared 

displaced from their original location. The ArcGIS Georeferencing Toolbar provided the 

mechanism to adjust image to the state boundary. 

The Math tools (Sum, Minus, Divide and Multiply) in the ArcGIS Spatial Analyst 

extension calculated the NDVI for the years 2001 to 2005. Initially it did not work 

because the temporary directory  pathname was too long, but changing the file path in the 

Program Sensor Red Band Near-Infrared Band

Landsat ETM+, TM Band 3 Band 4

Spot HRG Band 2 Band 3

NOOA AVHRR Channel 1 Channel 2

Terra - Aqua MODIS Band 2 Band 1
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Spatial Analyst settings solved the problem. The math operations worked in part because 

the resulting NDVI had integer values of -1, 0, 1. Math tools created a raster with integer 

values because the original rasters have integer values; mathematical operations in 

ArcGIS should create raster with float values only if at least one of the rasters has float 

values. The solution was to convert the numerator (Near-infrared band + red band) into a 

floating-point value raster with the Float tool. The prototype used an ArcGIS Model to 

automate the execution of this operation (see Section 5.4). The regression analysis used 

the average value on the resulting image for each year (see Section 4.3).   

4.2.3. Interpolation 

A weather station captures temperature and rainfall readings on a given point over the 

Earth‟s surface. Consequently, the spatial representations of weather stations are points. 

However, it is not possible to have weather stations everywhere. Using Tobler‟s First 

Law of Geography and Spatial Autocorrelation, an interpolator creates the required 

surface representation based on sample points and their relative distances and weights 

(ESRI, 2007c). The reduced number of weather stations in the AOS and the $500 budget 

limited this project‟s sample to 25 stations (see Section 3.3). This provided enough detail 

to capture important weather behaviors that extend beyond the AOS (see Figure 4-9). 

Gommes (2003) supported that a limited number of weather stations (25 per country, 245 

over neighboring countries) provide enough information to create regional rasters and 

statistics. 
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Figure 4-9 - Weather stations location extending beyond Cordoba boundary 

The next step was to determine which interpolator to use and its parameters. Because of 

the sparse sampling density, only the Inverse Distance Weighting (IDW) and Spline 

interpolators were considered. IDW averages values of samples near the cell, on the 

assumption that the data are spatially correlated. This interpolator estimates a value at a 

given point as the weighted average of the values of the known points, using the inverse 

of the distance as the weight factor. The spline interpolators create smooth surfaces that 

pass through the sample points. The spline method “is best suited for gently varying 

surfaces” (ESRI, 2007c). Temperature and rainfall surfaces vary locally and smoothly. 

Weather variables typically exhibit a significant spatial correlation.  Both interpolators 

were deemed potentially suitable for the prediction model. Parameters selected for the 

IDW interpolation were Power = 2 (Controls the relative importance of distance) and a 

Search Radius Variable (the other option is a fixed distance around the point) for twelve 
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points (number of sample points used by the interpolator). Spline types tested were 

Tension (adjusts the sensibility of the interpolator to the modeled parameter) and 

Regularized (yields a smooth surface). Parameters for the Spline interpolators were 

Weight = .1 (determines how smooth the curvature is by determining the weight of the 

third derivatives in the curvature equation in Regularized type or the weight of the 

tension in the Tension type) and Number of points = 12 (number of sample points used 

by the interpolator) (ESRI, 2006). 

By default, both interpolators transformed null data (<NULL>) to zero, creating 

erroneous anomalies in the resulting surface (see Figure 4-10). The possible solutions 

included checking that null data were effectively being imported as null data (presented 

in raster datasets as <nodata>), revising Spatial Analyst and ArcGIS Environment 

settings, comparing the results from the Geostatistical Wizard and installing ArcGIS 

Desktop service packs. The alternatives did not lead to determining the cause of the 

problem, but instead to the implementation of an alternative method that first selected by 

attributes (IS NOT NULL condition), and then exported the layer as a new feature 

preventing the interpolator from failing and showing the message “feature class does not 

exist”.  

 

Figure 4-10 - IDW interpolation of temperature data including null values (A) and removing null 

values (B) 

Viloria de la Hoz (2004) recommended a method to test the surface, first removing a 

sample point before creating the surface, then testing how the interpolator predicts the 

removed sample value. Then, this procedure, known as jackknifing, removes and tests a 

different station. The process repeats with a different station until all the stations, in both 

variables have been evaluated using the three interpolators. The Extract Values to Points 

tool read the raster for the exact values at the removed stations points. The jackknifing 
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test revealed that IDW estimated weather values more accurately than either of the 

Spline-based interpolators (see Table 4-4 and Table 4-5).  

Table 4-4 - Summary of rainfall estimation errors by interpolant (best result highlighted) 

 

Table 4-5 - Summary of temperature estimation errors by interpolant (best result highlighted) 

 

4.3. Multiple Linear Regression (MLR) Analysis 

Priya & Shibasaki (2001) considered the selection of the model as an important step that 

should consider the objectives of the project, data requirements, broad usage, and realistic 

accuracy levels. The project required a moderately accurate prediction model to fulfill its 

objectives. Broad use, discretional data requirements, and accuracy dependent of the 

number of samples are the characteristics of a MLR model (see Section 2.1). Section 2.2 

Estimation 

with station 

removed

Squared 

error of 

estimation

Estimation 

with station 

removed

Squared error 

of estimation

Estimation 

with station 

removed

Squared error 

of estimation

1111502 119.90        314.88        38,017        1,077.22     916,462        690.09        325,117        

1204502 220.80        283.18        3,891          263.06        1,786            331.96        12,357          

1307503 211.20        270.32        3,495          287.11        5,762            186.16        627               

1307505 269.60        219.92        2,468          209.02        3,670            208.93        3,681            

2502517 389.40        250.09        19,407        71.63          100,978        157.88        53,602          

1305503 223.60        262.18        1,488          373.92        22,596          305.08        6,639            

2502515 376.60        423.39        2,189          648.04        73,680          536.61        25,603          

2501501 252.20        390.91        19,240        389.88        18,956          401.12        22,177          

2502531 170.20        170.50        0                 90.99          6,274            96.70          5,402            

2502527 144.40        198.16        2,890          112.30        1,030            141.85        7                   

2502518 105.10        280.12        30,632        301.85        38,711          242.23        18,805          

2502516 500.50        401.58        9,785          438.60        3,832            473.28        741               

1204501 358.60        230.59        16,387        232.54        15,891          188.00        29,104          

1201509 260.00        184.60        5,685          52.78          42,940          78.77          32,844          

1201502 103.60        282.99        32,181        257.52        23,691          232.01        16,489          

2625504 687.00        373.34        98,383        541.82        21,077          508.08        32,012          

Total squared error 286,140      1,297,336     585,206        

Spline Regularized Spline TensionIDWStation ID Actual 

Value (mm)

Estimation 

with station 

removed

Squared 

error of 

estimation

Estimation 

with station 

removed

Squared error 

of estimation

Estimation 

with station 

removed

Squared error 

of estimation

1111502 21.80          25.15          11               (5.84)           764               10.48          128               

1204502 27.30          26.76          0                 29.05          3                   28.06          1                   

1307503 28.70          27.37          2                 27.56          1                   27.62          1                   

1307505 27.80          28.22          0                 28.65          1                   28.58          1                   

2502517 27.40          25.23          5                 37.69          106               33.32          35                 

1305503 27.90          27.93          0                 26.21          3                   27.15          1                   

2502515 27.30          18.83          72               9.23            327               11.73          242               

2501501 28.10          27.46          0                 27.10          1                   27.03          1                   

2502527 27.90          17.77          103             31.16          11                 28.92          1                   

2502518 28.60          22.31          40               27.47          1                   27.76          1                   

2502516 27.00          19.20          61               14.23          163               14.03          168               

1204501 27.50          26.93          0                 26.47          1                   27.10          0                   

1201509 27.70          26.19          2                 28.83          1                   27.63          0                   

1201502 27.20          26.74          0                 28.04          1                   27.81          0                   

Total squared error 296             1,383            580               

Station ID Actual 

Value (C)

IDW Spline Regularized Spline Tension
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describes the regression analysis model based on rainfall, temperature, soil moisture and 

NDVI used by Prasad et al. (2006). 

Using Excel´s Statistical tools, the regression analysis validated and estimated the 

relationships between the three historic independent variables: NDVI, rainfall, and 

temperature; and the dependent variable: Cordoba‟s corn yield rate. Section 4.2.2 

describes the NDVI series creation. Averaging the Cordoba weather station readings for 

each cropping season created the historic series year average of temperature and rainfall. 

Traditionally cropped corn yield rate (tons/hectare) was the response variable. Table 4-6 

shows the original data used in the linear regression. Table 4-7 shows the results of a 

MLR of corn yield rate on rainfall, temperature, and NDVI between 2001 and 2005.  

Table 4-6 - Data used in multiple regression analysis 

   

Traditional croppped corn Predecessors

Year Area 

(hectares)

Yield 

(tons)

Yield Rate 

(tons / 

hectare)

Rainfall 

(mm)

Temp 

(°C)

NDVI

1988 44,800      61,600     1.3750 155.56 27.57

1989 55,900      80,500     1.4401 132.51 27.47

1990 63,000      85,900     1.3635 107.23 27.78

1991 71,000      101,500   1.4296 127.51 27.82

1992 67,470      97,105     1.4392 137.27 27.78

1993 65,190      100,829   1.5467 120.96 27.86

1994 60,721      92,143     1.5175 119.23 27.73

1995 46,747      72,622     1.5535 95.01 27.66

1996 43,521      75,112     1.7259 96.23 27.34

1997 43,268      72,594     1.6778 93.93 28.24

1998 37,370      58,449     1.5641 160.33 28.28

1999 44,678      79,606     1.7818 115.37 27.90

2000 33,473      68,713     2.0528 122.25 27.59

2001 40,178      74,660     1.8582 101.85 27.98 0.7328

2002 38,784      73,739     1.9013 79.14 28.32 0.7532

2003 36,060      66,009     1.8306 155.61 27.85 0.7472

2004 32,000      59,553     1.8610 127.10 27.77 0.7222

2005 32,125      56,611     1.7622 197.22 27.83 0.6580

2006 117.42 27.73

Note: Area and Yield obtained from Ministerio de Agricultura (2007).
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Table 4-7 - Results of a MLR of yield rate on rainfall, temperature and NDVI (2001-2005) 

 

Table 4-7 shows the Excel MLR output tables, the Analysis of Variance table (ANOVA) 

and the coefficients table. The ANOVA table has five columns: degrees of freedom, sums 

of squares, mean square, the f-test and its significance. Degrees of freedom (df) represent 

the number of observations available for estimating other variable. Sums of squares (SS) 

represent how disperse are the observations. The mean square (MS) is a standardized 

measure of dispersion based on the sum of squares and the degrees of freedom. The f-test 

(F) and its significance (Sig F) indicate whether the variance of the observations behaves 

as a normal distribution.  

The coefficients table shows the results of the MLR in terms of the numeric relationships 

between the predecessor variables and the phenomenon being predicted. In this case, the 

table shows that yield rate starts at 15.9767 tons per hectare and decreases 0.0036 for 

each mm of rainfall, decreases 0.3513 for each degree Celsius and decreases 3.6554 for 

NDVI values of one. The negative coefficients were the result of the data values used on 

the MLR, and were not interpreted as erroneous. For example, Prasad et al. (2006) found 

negative rainfall coefficients for corn yields; and negative rainfall, temperature and NDVI 

coefficients for soybean yields. The coherence of these coefficients can be tested using 

the standardized error (SE) and the t-test (t Stat), but in this case the small number of 

observations generates a meaningless value. 

A recognized accuracy indicator of the MLR is R Square (also written as R
2
). The basic 

MLR procedures are running the MLR and evaluating R
2
. Although a MLR based on 

only five data points tends to show the R
2
 value near one, it is less significant. Rogerson 

(2006) presents two alternatives to this issue: removing the NDVI series (see Table 4-8), 

or estimating NDVI values for the other years based on rainfall and temperature (see 

Table 4-9). 

Regression Statistics

Multiple R 0.9821

R
2

0.9645

Adjusted R
2

0.8582

Standard Error 0.0194

Observations 5

ANOVA

df SS MS F Sig F

Regression 3 0.01026 0.00342 9.06709 0.23833

Residual 1 0.00038 0.00038

Total 4 0.01064

Coeff SE t Stat P-value

Intercept 15.9767 27.5284 0.5804 0.6652

Rainfall -0.0036 0.0062 -0.5761 0.6673

Temperature -0.3513 0.9274 -0.3788 0.7695

NDVI -3.6554 5.9039 -0.6191 0.6471



 48 

Table 4-8 - Results of a MLR of yield rate on rainfall and temperature (1988 -2005) 

 

  

Table 4-9 - Results of a MLR of NDVI on rainfall and temperature (2001-2005) 

 

Regression Statistics

Multiple R 0.2454

R
2

0.0602

Adjusted R
2

-0.0651

Standard Error 0.2127

Observations 18

ANOVA

df SS MS F Sig F

Regression 2 0.04347 0.02173 0.48044 0.62771

Residual 15 0.67859 0.04524

Total 17 0.72206

Coeff SE t Stat P-value

Intercept -2.5915 5.5145 -0.4699 0.6452

Rainfall -0.0009 0.0018 -0.4884 0.6324

Temperature 0.1563 0.1972 0.7928 0.4403

Regression Statistics

Multiple R 0.7941

R
2

0.6306

Adjusted R
2

0.2613

Standard Error 0.0328

Observations 5

ANOVA

df SS MS F Sig F

Regression 2 0.00367 0.00183 1.70733 0.36937

Residual 2 0.00215 0.00107

Total 4 0.00581

Coeff SE t Stat P-value

Intercept 1.5281 3.1150 0.4906 0.6723

Rainfall -0.0007 0.0005 -1.4118 0.2935

Temperature -0.0253 0.1096 -0.2310 0.8388
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The R
2
 was significantly better in the second alternative. The resulting coefficients of the 

MLR of NDVI on Rainfall and Temperature allowed the modeler to estimate NDVI 

values for additional years (see Table 4-10). The equation used for estimating NDVI is: 

 

This equation may be used to estimate values since 1988. However, a MLR using 

estimated NDVI since 1988 produced a R
2
 of 0.06. Other MLRs suggested that it is 

extremely inaccurate using the equation for estimating NDVI before 1997. 

Table 4-10 - Data including estimated NDVI for years 1997 to 2000 

    

The final step was running a MLR of yield rate on rainfall, temperature, and estimated 

NDVI (see Table 4-11). The result showed an acceptable R
2 

of 0.7196. The prediction 

model equation is: 

 

Year Yield Rate 

(tons / 

hectare)

Rainfall 

(mm)

Temp

 (°C)

NDVI

1997 1.6778 93.93 28.24 0.7435

1998 1.5641 160.33 28.28 0.6936

1999 1.7818 115.37 27.90 0.7363

2000 2.0528 122.25 27.59 0.7391

2001 1.8582 101.85 27.98 0.7328

2002 1.9013 79.14 28.32 0.7532

2003 1.8306 155.61 27.85 0.7472

2004 1.8610 127.10 27.77 0.7222

2005 1.7622 197.22 27.83 0.6580
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Table 4-11 - Results of a MLR of yield rate on rainfall, temperature and estimated NDVI (1997 -

2005) 

 

 

 

Regression Statistics

Multiple R 0.8483

R
2

0.7196

Adjusted R
2

0.5514

Standard Error 0.0928

Observations 9

ANOVA

df SS MS F Sig F

Regression 3 0.11059 0.03686 4.27746 0.07579

Residual 5 0.04309 0.00862

Total 8 0.15368

Coeff SE t Stat P-value

Intercept 14.4283 4.9812 2.8965 0.0339

Rainfall -0.0020 0.0018 -1.1507 0.3019

Temperature -0.4516 0.1479 -3.0541 0.0283

NDVI 0.3747 2.0032 0.1871 0.8590
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5. Model-GIS Integration and Results 

One of the client‟s requirements is to encourage the use of ESRI software. The prototype 

uses only the functionality of ESRI ArcGIS software. ArcInfo license level is the most 

complete ESRI desktop product and provides most of the tools for storing, retrieving, 

visualizing, and processing the information. The software provides its own user interface. 

Figure 5-1 shows how ESRI ArcGIS provides a unique way for the user to interact with 

all the elements of the system. 

  

Figure 5-1 - ArcGIS provides the software and the correspondent user interface 

ArcGIS not only has the functionality to store the information, but also the option to 

create and run multiple automated functions (Models). The modeling tool used to 

combine the geodatabase, the raster imagery processing, and the regression coefficients is 

called Model Builder. A model, or a sequence of parameterized tools, reduces the user 

time required to present the demonstration, the interface complexity, and some user 

errors. Furthermore, models improve the impact of a commercial demonstration using the 

prototype and permitting a relatively easy incorporation and use of future data. 

This chapter discusses how to integrate the tasks described in Chapter 4, such as 

classifying a raster image, interpolating weather readings, calculating NDVI and running 

the MLR model. A Geodatabase toolbox called Prediction stores the project models 

inside the geodatabase Mip.gdp. 

5.1. General Considerations 

All models, unless specified, have pre-defined environment settings. In the general 

settings, the current workspace is Mip.gdb; the scratch workspace is Mipscratch.gdb; the 

output coordinate system is WGS_UTM_18N; and the extent is set to default. In the 

Database

Raster Data Vector Data

ESRI ArcInfo

Model

Reports
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raster analysis settings, cell size depends on the output coordinate system. By modifying 

it, it is possible to manage model performance and detail. Smaller cell sizes offer more 

detail but increase raster operations time. Mask is the SelectedAOI dataset. These setting 

transform pixels outside the AOI in Nodata.  

The Import Symbology option, in the output dataset properties, assigns default 

symbology for each output layer. Output layers also have the Intermediate Data option 

unchecked, so that all results are stored within the geodatabase. If the model is open 

while running, Intermediate Data is not deleted. Model parameters have predetermined 

default values. A Spatial Analyst license is required.  

5.2. AOI Selection Model 

A professional presentation was one of the required deliverables of the project. The AOI 

Selection Model allows the user to select a predefined AOI and clip the analysis image 

using the AOI shape. Furthermore, this model reduces the size of the images used and 

assures a clean results display in the interface. The first part uses a Select SQL expression 

to pick the AOI by feature ID from the AOI feature class. The second part extracts the 

pixels from the input image inside the Selected AOI feature created in the first part. 

Figure 5-2 shows the model diagram in Model Builder and Figure 5-3 shows the model‟s 

result using Test Image Two and AOI = 3. 

 

Figure 5-2 - AOI Selection model diagram 
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Figure 5-3 - Result from the AOI Selection Model using Test Image Two 

Initially, the Clip tool in ArcGIS did not create the raster based on the features. The 

problem apparently occurred because of the different reference system between the AOI 

layer and the raster. Tests such as saving the AOI layer in the same reference system as 

the raster to clip, changing the file paths to reduce the incidence of long pathnames or 

special characters, or modifying spatial analyst settings did not give a satisfactory result. 

The ESRI Support Center recommended reinstalling and patching ArcGIS; after 

reinstallation, the problem continued but the installation of ArcGIS Desktop Service Pack 

3 partially fixed the problem. The fact that the Clip tool worked when the user manually 

typed the coordinates proved that the tool works, but also proved that the SelectedAOI 

feature class must have the same coordinate system as the image. At the end, Extract by 

Mask produced better results than the Clip tool because it handled the user‟s AOI 

preference dynamically. In addition, Extract by Mask was slower than Clip, but it 

handled different AOI shapes, while Clip handled only rectangles. For cell size as the 

minimum of inputs, average time was three minutes and twenty seconds, and seventeen 

seconds for cell size equal to 125 meters.  

5.3. Interpolation Model 

The Interpolation model automates the process described in Subsection 4.2.3. The model 

requires special organization of the Weather Station dataset as described in Section 3.3.  

The model‟s extent is the same of States dataset. After this change, IDW operations 

covered completely the AOS and prevented the re-sampling of the raster pixels. The 

Interpolation Model has two parameters that select variables, such as temperature (T) or 

rainfall (R), and month and year. Field determines the field that contains the weather 

readings. SQL Expression selects the weather stations with data in the Field parameter. 

Both should use the same field value. Figure 5-4 shows the model diagram in Model 

Builder and Figure 5-5 shows the model‟s result using rainfall readings in August 2008. 
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Figure 5-4 - Interpolation model diagram 

 

Figure 5-5 - Result from the Interpolation Model using rainfall readings in August 2008 

5.4. NDVI Model 

The NDVI model replicates the NDVI formula described in Subsection 4.2.2. This model 

has two parameters: Red Band and Near-infrared Band. The parameters add the 

flexibility for the use of both Landsat and Spot Imagery bands in a unique NDVI model. 

The Float tool allows the Divide tool to produce floating point NDVI values as required 

in Subsection 4.2.3. Figure 5-6 shows the model diagram in Model Builder and Figure 

5-7 show the model‟s result using red and near-infrared bands on Test Image Two. 
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Figure 5-6 - NDVI model diagram 

 

Figure 5-7 - Result from the NDVI Model using Test Image Two 

5.5. Classification Model 

Although ESRI does not provide robust image processing software, this project used 

ESRI ArcGIS classification functionality because it integrated seamlessly with other 

ESRI tools that smooth the raster, such as Filter or Majority Filter. 

Classification Model is the result of attempting to develop a model that automatically 

identifies corn from a multispectral image, and automates the process described in 

Subsection 4.2.1.1 and 4.2.1.2. The parameter is the Signature File. Different pre-made 

signature files are available for unsupervised and supervised classification in both 

Landsat and Spot Images (see Table 5-1).  
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Table 5-1 - Available signature files 

 

Again, the environment‟s cell size had a direct impact on processing time. For example, 

when the model ran using the default value of 125, it took only 19 seconds; with 25 it 

took 42 seconds; and when it ran with minimum of input options it took five minutes. 

Immediately after the Maximum Likelihood Classification process, a Majority filter 

reduces the raster speckle.  Figure 5-8 shows the model diagram in Model Builder.  

 

Figure 5-8 - Classification model diagram 

Figure 5-9 shows the model‟s result for the selected AOI in the Test Image Two. For this 

example, the signature file used was Spot-sup18.gsg. This result is comparable to other 

supervised classifications on a Spot Image. Yellow pixels are classified as corn. 

Signature File Name Satellite Classes Method

Spot_3.gsg Spot 3 Unsupervized

Spot_4.gsg Spot 4 Unsupervized

Spot_15.gsg Spot 15 Unsupervized

Spot_18.gsg Spot 18 Unsupervized

Spot_sup18.gsg Spot 18 Supervized

Spot_20.gsg Spot 20 Unsupervized

Spot_25.gsg Spot 25 Unsupervized

Landsat_18.gsg Landsat 18 Unsupervized

Landsat_18sup.gsg Landsat 18 Supervized
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Figure 5-9 - Result from the Classification Model using Test Image Two 

5.6. Integration Model 

The Integration Model is the ultimate tool of the prototype, using the regression model, 

the NDVI calculation, the weather readings interpolation, and the image classification to 

obtain estimated crop yields. The Linear Regression model contains two ArcGIS tools: a 

Weighted Sum tool that multiplies the regression coefficients (obtained in Section 4.3) by 

the values in the NDVI raster, and temperature and rainfall interpolation rasters; and a 

Plus tool that adds the MLR intercept value into the equation. The initial result is a raster 

that contains corn yield rate (see Figure 5-10). 

 

Figure 5-10 - Regression model diagram 
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This model has only the parameter Hectare Equals to normalize corn yield rate (tons per 

hectare) accordingly to the cell size. Yield Per Cell Normalization divides Yield Rate by 

hectare equivalence. The reclassify tool selects Corn Cells from the image previously 

classified and filtered. The result is a raster of the corn yield rate. It is equivalent to 

assigning a Yield per Cell to Corn Cells. Figure 5-11 shows the second part of the model 

diagram in Model Builder. 

 

Figure 5-11 - Integration model diagram 

Figure 5-12 shows the final raster obtained from the integration model based on the 

resulting raster from Sections 5.3, 5.4, and 5.5. The example shows the cells planted with 

corn inside AOI 3, in August 2006. The cells are displayed in different colors equivalent 

to five Quantiles of estimated corn yield rate per hectare. 

 

Figure 5-12 - Areas planted with corn displayed by the estimated yield of each cell 
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5.7. Result  

The prototype produced a raster in which each pixel value denoted the corn yield rate per 

hectare within the pixel. The raster presents to the user corn areas and yields inside a 

given AOI. This final raster is presented to the user in a Yield Report which include the 

estimation statistics (see Figure 5-13). 

The Yield Report is an ArcMap file (Report.mxd) withh its layout pre-defined. The report 

communicates the basic statistics from the resulting raster. The raster itself provides all 

the data, such as cell size, number of cells, and the pixel values, required to estimate corn 

yield on a given AOI. Total AOI area is obtained by multiplying cell area per the total 

number of cells in the raster. Total corn planted area is obtained by multiplying cell area 

per the number of cells with values different from zero. An estimated yield in the AOI is 

calculated by adding all cell values and dividing the result by the cell to hectare 

equivalent. Estimated average yield per hectare is the result of dividing forecasted yield 

by the number of hectares planted. 

 

Figure 5-13 - Corn Yield Report inside AOI in August, 2006  
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In the example shown in Figure 5-13 the raster size is 279 cells by 252 cells equivalent to 

70,308 cells, which multiplied per the cell size of 125m by 125m, equals 1,098,562,500 

squared meters, or 109,856 hectares. The area planted with corn is 6,341 cells or 9,907 

hectares. The sum of pixel values is 13,209.6 and when divided by .64 (cell size 

equivalent to hectare) obtains a yield of 20,640 tons. Therefore, the average yield is 2.083 

tons per hectare 

Model accuracy is also shown in the report, as well as cloud coverage and gaps from 

SLC-off Landsat malfunctions. Although the prototype does not specifically include 

images with SLC-Off characteristics, cloud presence is an unwanted constant over the 

Colombian territory. The report shows the model accuracy and cloud coverage data, both 

of them affecting the overall accuracy. 
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6. Conclusions and Recommendations 

The project demonstrated that GIS technologies could effectively help to estimate crop 

yields in Colombia. The project organized and brought together different data types, and 

integrated them into an interesting GIS application for agriculture clients. The prototype 

demonstrates the basic functionalities of using GIS and remote sensing imagery 

technologies as a decision-making tool in terms of analysis, data storage, source 

integration, process productivity, and accuracy, and uses historic weather data and 

satellite imagery to predict corn yields in the area of study, based on a linear regression 

model.  

Data acquisition was a key issue in this project, especially quality historic satellite 

imagery. Remotely sensed imagery proved to be an effective method to identify clouds 

and their shadows. The cloud coverage played an important role in assessing model 

accuracy, defining the AOIs, and pre-selecting acceptable imagery. Although better 

accuracy is desirable and can be improved, its improvement was not an objective of this 

project. However, additional project achievements included defining the required and 

available data, supporting the used procedures, designing the models, and defining key 

parameters. 

The resulting prototype is portable and it works on a single workstation without using 

network resources or interfaces with other systems. However, the ArcGIS interface 

permits the use of many compatible data formats. The implementation of the system had 

the continuous support of Procalculo Prosis and the University of Redlands staff. The 

resulting prototype is meaningful and operational as a demonstration of a GIS. It does not 

pretend to be the final system that the customers can use.  

The prototype will support the decisions about GIS acquisition inside the BNA and 

Ministry of Agriculture. These key customers are currently interested in developing a 

full-scale system in the country. Procalculo Prosis could use the prototype as a proof-of-

concept project for these customers. The prototype budget was $500.00; small if 

compared with the resources needed to implement an operational countrywide system. 

Although the initial investment in technology in similar Latin American countries‟ 

projects started around two million dollars, many financial institutions have the resources 

to promote these initiatives. An example is the $52.3 million fund for the Productive 

Agribusiness/Farmer Partnerships Initiative of the World Bank (World Bank Group, 

2007) 

6.1. Recommendations 

Based on the results and the data used, this section presents some recommendations for 

the improvement of accuracy in this prototype and the further development of the system. 

Fisette et al. (2006) discussed different methodologies related to the image classification 

process. The most important were linking and understanding the phenology and remote 

sensing readings, and recollecting and storing ground truth information. A real yield 

estimation application, based on remote sensing and GIS technologies, requires including 

recent field observations. In addition, several studies have shown that multi-temporal 

images improve the classification accuracy by utilizing different spectral responses of the 

vegetation over a period. In relation to the weather data, including available weather 
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stations and using each reading metadata for accuracy assessment can improve the 

interpolation accuracy or at least determine the lack thereof.  

Radarsat-2, the new generation of cloud-penetrating radar satellites from MDA, has a 

spatial resolution of three meters and multi-polarization beams. Brown & Ellis (2000) 

demonstrated that the use of multi-polarized imagery (3 bands) provides enough 

information for fairly effective crop identification and measurement. The satellite was 

finally launched in 2007 and has been operative since May, 2008. It offers a new 

alternative to multispectral data in places with high levels of cloud coverage. 

In the prediction model realm, Gommes (2003) states that developing countries can 

benefit from the use of non-parametric models. “Simulation models have also reached a 

degree of sophistication where only marginal improvements can be expected.  Non-

parametric methods, on the other hand, are still young. Significant progress for crop yield 

forecasting can be expected” (Gommes, 2003). It is the opinion of the author that GIS can 

also help in this initiative. 

From the technology perspective, the author considers that the use of ESRI Server 

products will increase performance and functionality. For example, Image Server can 

organize the raster files, manage larger amount of images and storage requirements, work 

with multiple spanning images, and facilitate the retrieval and mosaicing of the system 

imager. The use of ArcGIS Server enables GIS as decision support system, allowing an 

organization not only to analyze the information, but also to compare and share the 

results.  
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