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Abstract 

A MODIS Imagery Toolkit for ArcGIS Explorer 

by 

Sean Maunder Pack 

NASA’s medium spatial resolution MODIS sensor provides near-global, daily remote 
sensing coverage of the Earth in 36 spectral bands that are optimized for monitoring a 
wide variety of environmental parameters. MODIS data is provided by NASA at no cost 
and is easily accessible via the Internet. As such, MODIS provides a rich source of 
remotely sensed data that can provide timely environmental information to military 
operations, disaster monitoring, and relief efforts. However, current workflows for 
downloading MODIS and identifying environmental features of interest require the use of 
sophisticated software operated by experienced analysts. These software packages have 
the added limitations of being expensive and not readily available in combat and/or 
disaster relief environments. This paper discusses the development of a set of software 
tools using existing geographic information system technology. These tools can enable 
analysts with limited experience and operating in difficult environments to easily access 
MODIS data and develop environmental spatial data from it for further analysis. Two 
different system architectures were developed as solutions—one that exists as a set of 
standalone tools in a desktop environment using ArcGIS Explorer, and one that exists as 
a client-server framework using ArcGIS Server with ArcGIS Explorer as the client.
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Chapter 1  – Introduction 
The National Aeronautics and Space Administration’s (NASA) Moderate Resolution 
Imaging Spectroradiometer (MODIS) sensors, onboard the Earth Observing System Terra 
(EOS AM) and Aqua (EOS PM) satellites, were designed to monitor changes in Earth 
processes (land, sea, atmosphere, and cryosphere). Observed changes in these processes 
are a means to understand human-induced and natural changes to the Earth’s physical and 
biological systems, which can in turn help inform policy decisions related to 
environmental protection (NASA, 2008a). 

Although originally intended to monitor long-term and broad scale processes, these 
sensors have also developed a niche in monitoring short-term, regional environmental 
effects and disasters, including wildfires, effects of hurricanes and typhoons, floods, 
possible droughts, and crop yields for famine monitoring. Additionally, MODIS data are 
very useful in informing global military missions due to MODIS’s ability to monitor 
environmental parameters that may be factors in theaters of operation. These roles have 
developed primarily due to MODIS’s high temporal resolution and large coverage area, 
and the fact that environmental parameters and the effects of many environmentally-
related disasters can be detected at relatively low to medium spatial resolution (i.e., 250 
m to 1 km). 

The primary goal of this project is to increase user access to and exploitation of 
MODIS data through the development of custom GIS-based software tools, referred to 
collectively as the MODIS toolkit. A secondary goal is to make the resulting toolkit as 
broadly and easily available as possible through the use of existing technologies currently 
available at no cost via the Internet. 

1.1 Client 

This project is being undertaken specifically for the National Geospatial-Intelligence 
Agency’s (NGA) Image Sciences Division. However, numerous entities within NGA 
stand to benefit from the MODIS toolkit, including the Environmental Issues Branch, the 
Office of Global Support, and analytical units that focus on a variety of regional analyses, 
including homeland security. 

1.2 Problem Statement 

NGA needs a tool to facilitate analyst access to and exploitation of NASA’s MODIS 
imagery data. Currently the incorporation of MODIS data into projects ranging from 
direct military support to emergency response to long-term analysis is impeded by time 
consuming, inefficient, multi-step processing. This processing can also be intimidating to 
analysts not proficient in multiple software environments that can be complex to employ 
(e.g. ArcGIS, ERDAS Imagine, ENVI). These difficulties are exacerbated in deployed 
and disaster response settings where data and product turnaround have immediacy, access 
to software can be limited, and analytical expertise can be highly variable. As a result of 
these factors, NGA requires a set of MODIS analysis tools that: 
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• are easy to access in one software environment 
• can be easily downloaded and utilized without the need for end-user licenses for 

complex software packages 
• require little or no training prior to use 
• are quickly assimilated by analysts with varied expertise and capabilities 
• simplify as many tasks as possible, from data importation to feature identification 

1.3 Proposed Solution 

The solutions developed in this project rely on customizing existing GIS technologies—
specifically ESRI’s ArcGIS Explorer and ArcGIS Server—to provide the requisite 
functionality. Furthermore, the solutions exist in a user environment (ArcGIS Explorer, 
build 500) that is both easy to use and familiar to users with minimal GIS experience or 
exposure to globe-based data viewers like Google Earth. In attempting to meet the 
client’s needs, two separate solutions were developed. A standalone toolkit was 
developed using only custom tasks in ArcGIS Explorer. The second solution was a 
prototype client-server solution that includes a custom geoprocessing service hosted by 
ArcGIS Server with ArcGIS Explorer as the client. 

1.3.1 Goals and Objectives 

The primary goal of this project is to increase NGA analyst access to and exploitation of 
MODIS data. Through applying existing GIS technologies, the process by which NGA 
analysts access MODIS data and derive useful spatial information will be streamlined and 
incorporated into a single user environment. 

The intention is for the final user environment for MODIS access and exploitation to 
be a simple-to-use, freely available interface and toolkit that can be easily downloaded 
and used with access only to an Internet connection. Overall, the final MODIS toolkit’s 
intent was to improve the efficiency of the MODIS data processing stream and to make 
the toolkit widely available as a utility for developing environmental spatial data to aid in 
military and disaster relief support. As noted, these objectives are important to deployed 
NGA personnel because, while access to a computer and Internet connection is not 
generally a problem, access to end-user licenses for software may be. Furthermore, 
experience levels of deployed analysts are variable—the tools resulting from this project 
were simplified to a great extent in an effort to ensure success for analysts with wide 
ranging backgrounds and capabilities. 

The tools resulting from this project have the further benefit of being of potential 
value to other governmental, non-governmental, and academic entities involved in 
environmental monitoring and disaster relief. The toolkit could also serve as a prototype 
for development of new functionality or additional tools for improving access to other 
dispersed remote sensing data repositories (e.g., NOAA AVHRR and USGS Landsat). 

1.3.2 Scope 

The final products of this project include two solutions based on different architectures: a 
standalone set of custom software tools in a desktop environment, and a client-server 
solution. Final functionality includes the ability to: 
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• identify and download MODIS imagery through geographic query 
• classify environmental features of interest via supervised classification 
• conduct change detection with classified datasets 
• export resulting datasets in raster format 
• display results with other datasets of interest (e.g., boundaries, terrain, roads, etc.) 

in a user-friendly interface 
• create metadata automatically for downloaded data and any data derived through 

use of the toolkit 

1.3.3 Methods 

Solutions developed for this project relied exclusively on the use of ArcGIS Explorer 
(AGX) as the user interface for both the standalone and the client-server architectures. 
AGX was selected as the development platform for several reasons: 
 

• its simple and friendly user interface 
• its availability at no cost via Internet download 
• its ability to be customized through a .NET programming interface 
• its development and existence specifically as a client for ArcGIS Server 
• its off-the-shelf, built-in data and functionality that provide useful context and a 

rich user experience 
 
 NASA’s World Wind software was also explored as a possible environment in which to 
develop the MODIS toolkit but, in the author’s judgment, World Wind is a less ideal 
platform for this project due to the following reasons: 
 

• it has a more complicated user interface than AGX 
• it is slow to load and refresh base imagery data 
• its base imagery data has lower spatial resolution  than that of AGX 
• there is no available GIS server software with which it will work smoothly 
• its presumed lack of technical support and/or ongoing development relative to 

AGX 
 

With respect to the standalone desktop architecture, two custom tasks were 
developed for AGX that incorporate all of the desired access and exploitation 
functionality. For the client-server architecture, a prototype custom geoprocessing service 
was developed on ArcGIS Server that can be consumed by AGX. This geoprocessing 
service was developed specifically to conduct supervised image classification, and 
provides proof-of-concept that a similar service could be developed to enable users to 
download and view MODIS imagery. 

1.4 Audience 

This paper is intended for NGA analysts familiar with GIS technology who could benefit 
from using MODIS data in their analysis. Furthermore, the paper and associated solutions 
could be of interest to other governmental and non-governmental entities that have a need 
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for high temporal resolution environmental spatial data. Finally, prolific users of AGX 
and its associated custom tasks may find the functionality of the MODIS toolkit and/or its 
associated programming code to be useful. 

1.5 Overview of the Rest of this Report 

The next chapter provides more detailed background about the MODIS sensors, as well 
as a literature review detailing the application of remotely sensed data to environmental 
monitoring and disaster response. Chapter 3 includes more detailed information about 
MODIS data, specifically the MODIS Rapid Response Project image subsets that form 
the core data for this project. This is followed in Chapter 4 by an overview of the 
proposed solutions for the project. Chapters 5 and 6 then discuss the project 
implementation in detail, including the logic and programming code used to create the 
standalone and client-server solutions that were developed. Chapter 7 reviews the results 
of the project, including an analysis of the two architectures that were implemented, a 
performance analysis conducted on one of the custom software tools, and an example 
case study for how the MODIS toolkit could be applied. Chapter 8 concludes the report, 
highlighting project conclusions and areas for future work. 
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Chapter 2  – Background and Literature Review 
2.1 Background 

Two primary advantages of MODIS data are its high temporal resolution and its 
availability over the Internet at no cost. These factors make it a very rich source of 
remotely sensed environmental data, with a wide range of applications that include 
assessing the extent of flooding after severe storms or natural disasters, predicting 
drought conditions by analyzing snowpack for a given region, or determining mobility 
within a region as it pertains to current environmental conditions. 

With access to an Internet connection, image analysis and GIS software, users can 
classify and extract image classes of interest (e.g., water, snow, vegetation) from MODIS 
imagery for monitoring change or for further spatial analysis. However, this type of 
analysis currently entails a relatively complex workflow that includes retrieving MODIS 
data from one of four networked distribution sites, performing any necessary pre-
processing of the data, conducting feature identification and extraction in image analysis 
software (e.g., ArcGIS, ERDAS Imagine, ENVI). The resulting raster data or feature 
classes are then imported into a GIS software package for spatial analysis. This is an 
inefficient process accessible to only the most sophisticated users who have access to 
advanced software.  As a result, despite the availability of MODIS imagery at no cost, a 
barrier exists for many individuals and groups who could otherwise benefit from 
MODIS’s abundance of remotely sensed environmental data. 

NGA, a Department of Defense combat support agency and a member of the U.S. 
national intelligence community, is an agency that could benefit from better access to 
MODIS data. NGA provides geospatial intelligence (GEOINT) to warfighters, but is also 
heavily involved in providing GEOINT in support of disaster relief and homeland 
security operations (NGA, 2008a). Due to these missions, their global nature, and their 
necessity for swift reaction, NGA has a direct need for data acquired by the MODIS 
sensors. Indeed, three central facets of GEOINT as it pertains to NGA support are the 
abilities to define environments of interest, describe influences those environments have 
on mission planning, and assess threats and hazards that may be identified through 
synthesizing information from the first two facets (NGA, 2008b). Despite NGA’s need to 
apply information derived from MODIS imagery, the use of MODIS imagery in daily 
operations is limited by inefficient means to access the imagery, process it, and derive 
useful results that can be easily integrated into analysis and end-user products. 

Modern GIS software packages provide a number of ways to improve NGA’s access 
to, processing of, and integration of MODIS data. In addition to advanced geoprocessing 
capabilities that yield spatial data in a variety of formats, GIS software offers many 
alternative frameworks for development and implementation of solutions. These 
frameworks include customization of existing software and/or the development of client-
server solutions that can be driven across networks. 
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2.2 Review of Literature 

This project entails the application of GIS technology to improving access to and 
classification of remotely sensed data, specifically as it applies to disaster response. As 
such, the following literature review focuses on five main associated themes: 

 
• the use of remotely sensed data in environmental monitoring and disaster 

management 
• pertinent background information on MODIS imagery 
• examples of MODIS applications to environmental monitoring and disaster 

management 
• existing tools for exploiting MODIS data 
• an overview of imagery classification as a means to derive spatial data and the 

effects that data compression has on remote sensing data quality 

2.2.1 Remote Sensing and GIS in Environmental Monitoring and Disaster 
Management 

Evidence of the important role that remotely sensed data and GIS are now fulfilling in the 
realm of environmental monitoring and disaster management is abundant (Gillespie, Chu, 
Frankenberg, & Thomas, 2007; Doescher, Ristyb, & Sunne, 2005; Kevany, 2003; Ostir, 
Veljanovski, Podobnikar, & Stancic, 2003). Remote sensing and GIS technology have 
also been demonstrated to be improving analysis and understanding of the longer term 
environmental effects of natural disasters across broad areas (Sirikulchayanon, Oyana, & 
Sun, 2008). In fact, it has been argued that the application of remote sensing to disaster 
response has not only substantiated its use in these scenarios but has also highlighted the 
“great need for remotely sensed data during disaster response operations” (Doescher et 
al., 2005, p.124). Cutter (2003) supports the conclusions of the empirical studies cited 
above in a discussion of the role that geographic information science plays in the disaster 
response cycle. She indicates that spatial data acquisition and integration is one of the 
challenges of geographic information science as it applies to disasters and emergency 
management, further stating that “there is a critical need for real-time data and 
information [in the disaster response cycle]” (p.443). 

Due to its high spatial resolution, commercial satellite imagery has been an obvious 
tool applied to many disaster settings (Gillespie et al., 2007; Doescher et al., 2005). 
However, this high spatial resolution comes at the cost of lower temporal resolution, with 
revisit times of 1.7 days or more under ideal conditions (Digital Globe, 2008; GeoEye, 
2008). Airborne remote sensing in support of the Hurricane Katrina response also proved 
to be a valuable source of data for mapping damage (Corbley, 2006), but the very high 
spatial resolution of airborne sensors comes at the cost of global access—airborne remote 
sensing platforms can be either non-existent or slow to deploy in many parts of the world. 
It is important to note that another important trade-off to these sources of high resolution 
(spatial and spectral) data is that they can be cost-prohibitive for those outside of 
government or well-funded non-governmental organizations. 

As an alternative to the high resolution data sources indicated above, several authors 
have specifically demonstrated the value to environmental monitoring and disaster 
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response scenarios that exists in exchanging spatial resolution for high temporal 
resolution (Belward et al., 2007; Gillespie et al., 2007; Brakenridge & Anderson, 2006; 
Tralli, Blom, Zlotnicki, Donnellan, & Evans 2005; Domenikiotis, Loukas, & Dalezios, 
2003). As noted, this tradeoff is inherent in sensors like NASA’s MODIS (250-1000m 
spatial resolution) and the National Oceanic and Atmospheric Administration’s 
Advanced Very High Resolution Radiometer (AVHRR) (1.1 km spatial resolution). 

2.2.2 MODIS Data 

In addition to a series of slow-to-produce standard data products, more time-dependent 
imagery products are also routinely developed from MODIS data. During the historic 
summer 2000 forest fire season in the western United States, the utility of MODIS 
imagery for detecting and monitoring fires became very apparent to the U.S. Department 
of Agriculture (USDA) Forest Service (National Aeronautics and Space Administration, 
Goddard Flight Center, 2003). However, standard MODIS fire products at that time were 
generated approximately two months after data acquisition; this was clearly not timely 
enough to be of use to first responders (MODIS Rapid Response Project, 2004). 

As a result, the MODIS Science Team and the University of Maryland worked 
closely together to manually process MODIS data for provision to the USDA Forest 
Service. This customer-oriented initiative laid the framework for the MODIS Rapid 
Response Project (RRP), an alternative MODIS data processing and distribution system 
able to meet the quick turn-around demands of forest fire responders. Upon completion in 
2001, the MODIS Rapid Response system was able to process data, identify probable 
fires, and display images with fire detections within two to four hours of data collection. 
Initial data products included true-color images only, but have since expanded to include 
false-color images, as well. These new products were developed as a result of diverse 
applications and new partnerships that now include the USDA Forest Service, USDA 
Foreign Agriculture Service, U.S. Environmental Protection Agency, U.S. Air Force, and 
U.S. Navy (MODIS Rapid Response Project, 2004). 

2.2.3 MODIS Data Application to Environmental Monitoring and Disaster 
Response 

The success of the MODIS Rapid Response System in providing near-real-time data (2-4 
hours after acquisition, National Aeronautics and Space Administration, Goddard Flight 
Center, 2003) to the USDA Forest Service resulted in expansion of fire monitoring and 
mapping to the entire globe. The Fire Information for Resource Management System 
(FIRMS) provides web mapping of hot spots and active fires, as well as downloadable 
spatial datasets, for a subset of high risk regions across the globe (Fire Information for 
Resource Management System, 2008). 

In addition to fires, the USDA’s success with MODIS data led to a similar 
partnership with the Rapid Response Project for monitoring droughts and crop conditions 
as part of USDA’s Foreign Agricultural Service (USDA Foreign Agricultural Service, 
2007). The Dartmouth Flood Observatory has also demonstrated the effectiveness of 
using MODIS as an “almost ideal floodsat” in monitoring and mapping floods globally 
(Dartmouth Flood Observatory, 2002), and as a disaster response and damage assessment 
tool (Brakenridge & Anderson, 2006). Its application to disaster relief was very 
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effectively realized in May, 2008, after Cyclone Nargis crossed the Irriwaddy Delta in 
Myanmar, killing tens of thousands of people. MODIS Rapid Response imagery was 
used to determine damage extent and to help target relief supply shipments (J. Schmaltz, 
personal communication, October 2, 2008). 

Notwithstanding its relatively low spatial resolution, MODIS imagery has become a 
useful tool for monitoring natural disasters and environmental problems, as well as for 
relief efforts necessitated by these conditions. This is due to MODIS’s high temporal 
resolution, as well as its availability at no cost. 

2.2.4 Existing Tools for MODIS Exploitation 

Currently the only available tool specifically designed for MODIS imagery exploitation 
is the 4-D Viewer application within the MICRODEM GIS software utility developed by 
the U.S. Naval Academy (2007). This freeware utility allows for interactive selection and 
download of MODIS RRP image subsets that can then be combined with digital elevation 
data to create 3-D imagery scenes. Additional functionality includes the ability to rotate 
3-D scenes, scroll through other downloaded MODIS scenes for one’s area of interest, 
and create oblique block views. While MICRODEM is very useful for downloading and 
viewing MODIS imagery, it does not include the ability to classify image data and extract 
information for further spatial analysis. 

2.2.5 Classification of Remotely Sensed Data 

The procedures for transforming remotely sensed data into information are known 
collectively as classification (Jensen, 2005, p. 337). Classification techniques are well-
established within the discipline of remote sensing and provide the means to transform 
raw pixel values into thematic environmental information for GIS analysis. Several 
sources provide thorough reviews of the various methodologies that have been developed 
for multispectral image classification (Jensen, 2005; Narumalani, Hlady, & Jensen, 2002; 
Duda, Hart, & Stork, 2001; Tso & Mather, 2001). These methodologies typically require 
users to determine an appropriate image classification logic (parametric, non-parametric, 
non-metric), followed by an appropriate classification algorithm (minimum distance, 
parallelepiped, maximum likelihood).  Figure 2-1 summarizes some of the general steps 
one would follow to appropriately classify remotely sensed data (Jensen, 2005, p. 339). 

Although a comprehensive discussion of all classification schemes is beyond the 
scope of this paper, it is pertinent to provide background for two established classification 
methods: parallelepiped and maximum likelihood classification. This is due to the fact 
that the parallelepiped algorithm is the basis for image classification conducted using the 
AGX custom task toolkit developed for this project. Furthermore, maximum likelihood 
classification is one of two primary image classification tools available in ArcGIS, and it 
is the basis for the prototype client-server solution developed for this project. 
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Figure 2-1. General steps to appropriately classify remotely sensed data. 

2.2.5.1 Parallelepiped Image Classification 

The parallelepiped classification scheme is a non-parametric, supervised classification 
technique. This indicates that the pixel data for an image are grouped into classes using 
some prior knowledge or information about the image classes present (supervised), but 
the pixel data are not assumed to be normal, or Gaussian, in distribution (non-
parametric). Furthermore, the parallelepiped classification scheme is a per-pixel method 
that uses hard classification logic. These terms indicate that each pixel is evaluated for 
class membership individually (per-pixel) and each pixel must belong to one class only 
(hard logic); no pixel can be given partial membership in more than one image class 
(fuzzy logic) (Jensen, 2005). 

In practice, the parallelepiped method is applied through developing sets of training 
pixels for each class present in an image. These training pixels can be used to calculate a 
mean digital number and associated standard deviation for each class in each image band. 
The mean and standard deviation are then used to define a minimum-maximum envelope 
of inclusion for a given class, per the following expression: 

 
 

 
where DN represents the digital number or value of a pixel for class c in band k (Jensen, 
2005). The sensitivity for inclusion of pixels can therefore be increased or decreased by 
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simply increasing or decreasing the size of the enveloped defined by the standard 
deviations. A pixel can only be included in a given class if it falls within the minimum-
maximum envelope for every band in that class. Figure 2-2 illustrates this logic applied to 
two bands of image data from a MODIS RRP subset using double standard deviations to 
define the envelope for class inclusion. In two dimensions, these envelopes are clearly 
defined as rectangles, and will therefore be defined as rectangular or parallelogram 
prisms in three dimensions. When applied to n dimensions, or image bands, the envelopes 
take on forms that are known mathematically as parallelepipeds (Aronoff, 2005), the 
term also used to name the method. 

 

 
Figure 2-2. Parallelepiped classification envelopes of inclusion using two bands of 

image class data from a MODIS RRP subset and two standard 
deviations. 

 
The primary benefit of the parallelepiped classification technique is that it is very 

simple to calculate. However, as is evident from Figure 2-2, it may not always be the best 
technique to use because of the possible erroneous inclusion of pixels in an image class. 
This can be seen at double standard deviations for the envelope of inclusion for the 
vegetation class which will erroneously include pixels representing snow. This problem 
clearly increases proportionately with the number of standard deviations used. 

2.2.5.2 Maximum Likelihood Image Classification 

Maximum likelihood classification is similar to the parallelepiped approach in that it is a 
supervised method that operates per-pixel using hard classification logic. In contrast, 
maximum likelihood classification is parametric, which indicates that it assumes pixel 
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values are normally distributed. The most important difference between the two methods 
is that the maximum likelihood strategy is based on probability theory, assigning a pixel 
to the class for which it has the highest probability of belonging. This concept is 
illustrated in Figure 2-3 for the same set of image data used in Figure 2-2. In two 
dimensions, the likelihood or probability of belonging to an image class is defined by 
equiprobability contours (Aronoff, 2005). In three dimensions, these contours become 
three dimensional Gaussian curves. This concept can be extended to n dimensions  
through calculation and application of covariance matrices. The advantages of maximum 
likelihood classification are quite evident in Figure 2-3 since the directional alignment 
and shape of the regions of inclusion (equiprobability contours) results in less overlap 
between training classes. Furthermore, where overlap does occur, a pixel is assigned to 
the class for which it has the greatest likelihood of being a part. The primary 
disadvantage of the method is that it is very intensive from a computational standpoint. 
 

 
Figure 2-3. Equiprobability contours (illustrated, not actual) resulting from 

maximum likelihood classification of image data from a MODIS RRP 
subset. 

2.2.6 Compression of Remotely Sensed Data 

As a result of the vast amounts of data now being transmitted and downloaded by image 
scientists, file compression has also become an important consideration in remote 
sensing. Lam, Lau, & Li (1999) noted that compression techniques (e.g., JPEG, TIFF) 
“have been widely accepted in the remote sensing discipline to optimize data storage and 
to reduce data transmission time.” However, the employment of compression has given 
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rise to questions about the loss of information inherent in many compression techniques 
and their effects on the accuracy of image classification. 

In an investigation of the effects of JPEG compression on classification of SPOT 
(Satellite Pour l'Observation de la Terre) multispectral imagery, Lau, Li, & Lam (2003) 
found that: compression ratios of less than 10:1 had minimal effects; with ratios between 
10:1 and 30:1, classification accuracy decreased steadily, but was not more than 20-30% 
in error depending on the nature of the terrain being classified; but ratios beyond about 
35:1 resulted in significant reduction of overall classification accuracy. On the contrary, 
Webb, Robinson, & Evangelista (2004, p. 660) concluded “that JPEG compression of up 
to 46:1 was not detrimental to the classification results [of astronaut-acquired orbital 
photographs]”. Although Lau et al. (2003) investigated both supervised and unsupervised 
classification, the results from both studies cited above were for supervised classification, 
using the maximum likelihood classifier. 

2.3 Summary 

The literature abounds with examples of successful application of remote sensing data to 
environmental monitoring and disaster management. In fact, some authors suggest that 
this is a niche which could benefit from even greater use of remotely sensed data. The 
successful application of remote sensing for monitoring and management has, in 
particular, been associated with MODIS data due in large part to the development of the 
MODIS RRP and the project’s willingness to provide support and data to a broad group 
of diverse users. The following chapter will provide more detailed information about 
MODIS data, with specific focus on the image subsets produced by the RRP since they 
are the principal source of MODIS data for this project. 
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Chapter 3  – MODIS Data 
This chapter provides broad information about the MODIS sensors, the data they collect, 
and the standard MODIS data products. In addition, the concluding sections of the 
chapter present more detailed information about MODIS RRP image subsets which are 
the sole source of data accessed and exploited by the MODIS toolkit developed for this 
project. 

3.1 MODIS Overview 

With a viewing swath of 2,330 km, the MODIS instruments carried on the Terra and 
Aqua satellite platforms have the ability to measure specific spectral reflectance values 
for the entire Earth surface every 24 to 48 hours (NASA, 2008b). The two satellites 
operate on 705 km circular, near-polar, sun-synchronous orbits, with Terra on the 
descending node (morning pass) and Aqua on the ascending node (afternoon pass). 
Figure 3-1 illustrates the global coverage for both platforms on a typical day (NASA, 
2008c). Voids in coverage change daily based on satellite orbital characteristics. 
 

 
Figure 3-1. Global MODIS data coverage for October 1, 2008 for the Terra (a) and 

Aqua (b) sensors. 
 

a

b
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Spectral reflectance values are measured by the MODIS sensors in 36 different 
bands, each with a unique range of wavelengths and purpose in monitoring global change 
(Table 1) (NASA, 2008b). Subsequent to data collection and download via satellite link, 
numerous calibrated data products are developed and disseminated to the scientific 
community. The raw radiance data sets (referred to as Level 1A) are calibrated and 
geolocated to produce what are known as Level 1B data sets, which are generally 
available eight or more hours after initial data collection. The Level 1B data sets then 
serve as the base data from which higher level atmosphere, land, ocean, and cryosphere 
products are created (National Aeronautics and Space Administration, 2008d & 2008e). 
These products are distributed via four different disciplinary host sites. NASA uses the 
HDF-EOS (Hierarchical Data Format-Earth Observing System) file format for 
disseminating all standard MODIS data products. 
 
Table 1. MODIS spectral bands, associated wavelengths, and primary uses. 

Primary Use Band Bandwidth (µm)  Primary Use Band Bandwidth (µm) 
Land/Cloud/Aerosols 
Boundaries 

1 0.620 - 0.670 Surface/Cloud 
Temperature 

20 3.660 - 3.840 
2 0.841 - 0.876 21 3.929 - 3.989 

Land/Cloud/Aerosols 
Properties 

3 0.459 - 0.479 22 3.929 - 3.989 
4 0.545 - 0.565 23 4.020 - 4.080 
5 1.230 – 1.250 Atmospheric 

Temperature 
24 4.433 - 4.498 

6 1.628 – 1.652 25 4.482 - 4.549 
7 2.105 – 2.155 Cirrus Clouds 

Water Vapor 
26 1.360 - 1.390 

Ocean Color/ 
Phytoplankton/ 
Biogeochemistry 

8 0.405 - 0.420 27 6.535 - 6.895 
9 0.438 - 0.448 28 7.175 - 7.475 

10 0.483 - 0.493 Cloud 
Properties 29 8.400 - 8.700 

11 0.526 - 0.536 Ozone 30 9.580 - 9.880 
12 0.546 - 0.556 Surface/Cloud 

Temperature 
31 10.780 - 11.280 

13 0.662 - 0.672 32 11.770 - 12.270 
14 0.673 - 0.683 Cloud Top 

Altitude 
33 13.185 - 13.485 

15 0.743 - 0.753 34 13.485 - 13.785 
16 0.862 - 0.877 35 13.785 - 14.085 

Atmospheric 
Water Vapor 

17 0.890 - 0.920 36 14.085 - 14.385 
18 0.931 - 0.941   
19 0.915 - 0.965   

  

3.2 MODIS Rapid Response Project Images and Image Subsets 

In addition to the standard, calibrated MODIS data sets, a series of near real time images 
and image subsets are also produced from raw MODIS data by the MODIS RRP. The 
background and origin of the RRP and these images and subsets are discussed in more 
detail in Chapter 2, but their data characteristics are summarized in the following 
sections. 
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3.2.1 MODIS RRP Near Real Time Images 

MODIS RRP near real time images are unique due to their availability within a short 
amount of time after initial data collection by the sensors. The RRP images are available 
as true-color (MODIS bands 1-4-3) and false-color (MODIS bands 7-2-1 and 3-6-7) 
images, with an additional land surface temperature (LST) image as well. All of the 
images are available via the MODIS Rapid Response website and downloadable in HDF-
EOS format at spatial resolutions of 250m, 500m, 1km, 2km, and 4km (MODIS Rapid 
Response System, 2008a). Despite their availability shortly after collection, the near real 
time images are provided without geometric correction for distortion. Users must 
geometrically correct the images prior to use through one of several second party 
software utilities. 

3.2.2 MODIS RRP Image Subsets 

In addition to the near real time images, the RRP also provides a series of true-color, false 
color (MODIS bands 7-2-1), and Normalized Difference Vegetation Index (NDVI) image 
subsets in geometrically corrected and geopositioned JPEG, TIFF, and KML format. A 
select few subsets are also available in false-color composed of MODIS bands 3-6-7. The 
term “subset” is used for these files because they are available as subsets of MODIS’s 
daily global coverage. This fact and the subset file formats and their geometric correction 
and positioning are what really distinguish the image subsets from the near real time 
images. While the near real time images maintain scientifically calibrated spectral 
measurements, the JPEG, TIFF, and KML image subsets suffer from at least some loss of 
original information due to file compression and should therefore not be used for any 
application that requires accurate spectral measurements. 

All of the image subsets are available at spatial resolutions of 250m, 500m, 1km, and 
2km. Although the MODIS RRP near real time images are available for the Earth’s entire 
surface, RRP image subsets are more limited, focusing on the Earth’s land masses 
(Figure 3-2). Areal calculations in ArcMap indicate, however, that despite their limited 
extent, the image subsets still provide coverage of approximately 81% of the Earth’s land 
surface, not including Antarctica. 
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Figure 3-2. MODIS RRP subset coverage. 

 
The MODIS toolkit was developed specifically to work with the JPEG format 

subsets. Although there is some inherent loss of information due to JPEG compression, 
these image subsets have many advantages over the HDF-EOS near real time images, 
particularly for users in remote locations or those with limited experience with image 
data. Specifically, the JPEG files are relatively small (less than 9MB versus 28MB or 
more for the HDF-EOS near real time images), already orthorectified and geopositioned, 
archived in an easy-to-query manner, and easily imported by most GIS and imagery 
software. Their disadvantages compared to the HDF-EOS near real time images are their 
inherent loss of information due to compression, greater time lag for initial production 
(approximately 2-4 hours after Level-1B products), and their lack of complete global 
coverage. However, the image subsets provide good coverage for most of the major 
populated areas of the Earth. 
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Chapter 4  – System Design 
As indicated in previous chapters, two different architectures were developed for this 
project—a set of custom tasks for ArcGIS Explorer in a standalone framework, and 
custom geoprocessing services in a client-server framework. This chapter summarizes the 
requirements analysis conducted during the project’s initial phases, followed by a 
discussion of the broad nature of the two different architectures developed as final 
solutions. Details about AGX’s role in both architectures are also discussed since AGX is 
the primary user interface used in both solutions. Finally, the chapter concludes with an 
analysis of the initial project plan and proposed solution, as well as a discussion of how 
closely reality followed the initial plan. 

4.1 Problem Statement 

NGA needs a tool to facilitate analyst access to and exploitation of NASA’s MODIS 
imagery data. Currently the incorporation of MODIS data into projects ranging from 
direct military support to emergency response to long-term analysis is impeded by time 
consuming, inefficient, multi-step processing. This processing can also be intimidating to 
analysts not proficient in multiple software environments that can be complex to employ 
(e.g. ArcGIS, ERDAS Imagine, ENVI). These difficulties are exacerbated in deployed 
and disaster response settings where data and product turnaround have immediacy, access 
to software can be limited, and analytical expertise can be highly variable. As a result of 
these factors, NGA requires a set of MODIS analysis tools that: 
 

• are easy to access in one software environment 
• can be easily downloaded and utilized without the need for end-user licenses for 

complex software packages 
• require little or no training prior to use 
• are quickly incorporated into analysis by analysts with varied expertise and 

capabilities 
• simplify tasks, from data importation to feature identification 

4.2 Requirements Analysis 

The primary functional and technical requirements for this project are outlined in Table 2. 
The functional requirements include all the operations necessary to enable analysts to 
easily access MODIS data, derive useable spatial data from it, and view it in context. 
These functions include the ability to query for data using either a point tool, or by 
manually entering coordinates of interest; the ability to classify a MODIS image to 
identify image classes of interest (e.g., snow, water, vegetation, etc); and the ability to 
view classified images with other associated data (e.g., boundaries, place names, satellite 
imagery). In addition, due to the prospect that many MODIS image subsets and classified 
datasets may be downloaded and derived by users in a short amount of time, automated 
metadata creation is a necessary function that will save users time. Automated metadata 
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Table 2. Primary functional and technical requirements for the MODIS Toolkit. 
Functional Requirements Technical Requirements 

MODIS subset query via point query or 
geo-coordinates 

one software environment (AGX) 

automated subset retrieval easily downloaded and used without the 
need to pay for software licenses 

image classification—to enable the 
derivation of spatial data 

limited or no training required for use 

automated metadata creation Windows workstation with minimal 
requirements needed to use AGX 

data export in vector and/or raster format broadband Internet connection 
built-in base data Microsoft .NET 2.0 or later 

 
creation will also ensure that all data stemming from use of the MODIS toolkit will have 
the necessary associated information to ensure the data’s longevity and accurate use. 
Finally, users will be able to export data from the custom software environment to the 
local storage of their choice. This also serves to maximize the data’s longevity and use. 

The technical requirements are driven by a combination of the client’s needs and the 
decision to use AGX as the core software environment for the project solution. The 
decision to use AGX as the final development platform fulfills the basic technical 
requirements that the core software for the solution be easily downloaded without the 
need to purchase end-user licenses. As a result of this decision, AGX has a number of 
minimum system requirements for use, including the following basic hardware and 
software requirements (ESRI, 2009a): 

 
• a Windows workstation with Microsoft Windows 2000 SP1 or later 
• Intel Core Duo, Pentium 4 or Xeon Processors (1.6 GHz or higher) 
• a minimum of 1 GB of RAM 
• 64 MB of free disk space for loading the software 
• a broadband Internet connection of 380 kbps or greater 
• Microsoft .NET 2.0 or later 

4.3 System Architecture 

In order to fulfill the basic project requirements—availability without purchasing end-
user licenses; access to built-in base data; and the broadest availability possible—it was 
decided early on to use AGX (build 500) as the core software environment in which to 
develop customizations for MODIS access and exploitation. This decision opened up two 
possible architectures for the final solution—a set of custom tasks in AGX that could be 
used in a standalone desktop environment, or the development of custom geoprocessing 
services on ArcGIS Server that could then be accessed using AGX as the client. 

During the initial project planning phases, a client-server solution was the 
architecture of choice due to the vast number of tools in ArcGIS Server that are available 
for use in geoprocessing services. However, as the author’s skill increased with AGX and 
its custom task framework, the architecture of choice quickly transitioned to the 
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standalone framework due to its characteristic of independence from any additional 
software. 

4.3.1 Client-Server Architecture 

Figure 4-1 provides a schematic view of the client-server architecture. As illustrated, 
AGX would only serve as a simple client through which parameters for query and other 
operations would be passed to ArcGIS Server. Query and download of MODIS data 
would then be conducted using a custom geoprocessing script on ArcGIS Server that 
would communicate with the MODIS RRP subset web server. ArcGIS server would then 
pass the resulting MODIS image back to AGX for viewing. Users could then establish 
the necessary image classification parameters (e.g., supervised or unsupervised 
classification, training points/polygons, etc.) in AGX which would then be passed back to 
the server. ArcGIS Server would then conduct the classification using another custom 
geoprocessing service developed using the built-in image classification functions that 
already exist in ArcGIS (maximum likelihood classification, principal components). 
Finally, the resulting classified dataset would be passed back to AGX for viewing or 
further analysis. Clearly, AGX’s only role is as a user interface in which to create 
parameters and view results. 
 

 
          Figure 4-1. Schematic view of the client-server solution. 
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4.3.2 Standalone Architecture 

The standalone solution has a schematic architecture that is very similar to the client-
server version with one notable and obvious exception: the absence of any need for 
processing on ArcGIS Server (Figure 4-2). In the standalone framework, AGX would be 
used as the primary user interface for creating query parameters and viewing results. 
Meanwhile, custom tasks developed in AGX would also provide all the necessary 
functionality for retrieving data and conducting image classification. These custom tasks 
would communicate directly with the MODIS RRP web server to find and retrieve subset 
data. The obvious benefit of this architecture is its greater independence from additional 
software like ArcGIS Server. The clear disadvantage is the need for all functionality to be 
custom coded—pre-existing geoprocessing tools would not be available for use. 
 

 
          Figure 4-2. Schematic view of the standalone solution. 

The ability to directly customize AGX is a powerful feature of the software and one 
of the reasons it was selected as the core technology for this project. Examples of pre-
existing tasks for AGX include Identify, Measure, Find Place, Find Address, and Get 
Driving Directions—all of which are included as default tasks with installation of AGX. 

The application programming interface (API) for AGX is built on Microsoft’s .NET 
technology, which creates even more customization power for developers due to the vast 
library of programming classes that are available within .NET. There is also a very large 
.NET developer community active on the Internet, providing code snippets, suggestions, 
and ideas to other developers. These facts make the .NET programming languages very 
accessible to even the uninitiated. 

4.3.3 ArcGIS Explorer Custom Task Framework 

The AGX custom task framework provides the core functionality for the standalone 
architecture and can also be a factor in the client-server architecture. Custom tasks are 
developed using either VB.NET or C#.NET through a software development kit (SDK) 

Internet
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provided by ESRI. In addition to all the classes available via .NET, the AGX SDK 
enables access to an API which provides a number of programming classes specific to 
GIS that are very useful in developing custom spatial tools. For example, the API 
includes classes for working with different geometries (i.e., point, polyline, polygon), 
geodatabases, and raster and vector layers. 

A custom task in AGX is created through overriding abstract classes provided with 
the SDK in conjunction with creation of a custom user interface using Windows forms 
classes (ESRI, 2008d) (Figure 4-3). There are two primary classes that need to be 
overridden and/or included to create a custom task: a “TaskUI” class, which is used to 
instantiate a custom task and provides the necessary information to AGX in order to do 
so; and a “CustomTaskControl” class (also referred to as a task window class) that is 
derived from a Windows forms class and supplies the user interface and supporting code 
that actually drives the task. It is also possible to develop custom tasks that run 
asynchronously for operations that may take a long time to execute, such as tasks that use 
connections to remote web servers. Asynchronous tasks require the addition of a third, 
overridable abstract class, a “Task” class, which accepts a set of parameters from the 
main CustomTaskControl class and runs operations on a separate thread. This class 
eventually creates results and passes its status back to the task window class upon 
completion. Asynchronous tasks add versatility to AGX because they allow users to 
continue actively working with the software while operations run in the background. 
 

 
Figure 4-3. Generalized AGX custom task framework with supporting classes 

(ESRI, 2009b). 
 

Once completed and compiled, custom tasks are saved as NMF files that can be 
shared and loaded directly into AGX by any number of users. This design, coupled with 
the relatively simple framework of the tasks, their development in .NET, and their ability 
to operate asynchronously enables a wide range of task functionality. This functionality 
can include everything from simple feature identification tasks to sophisticated data 
retrieval and database tasks that can incorporate data from remote web servers. 
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4.4 Project Plan 

Initially, a solution based on a single architecture was envisioned that would be a hybrid 
of the two frameworks discussed in previous sections. The original plan was to develop a 
set of custom tasks that would provide some functionality within the AGX interface (e.g., 
point and coordinate query), while also relying on a connection to ArcGIS Server for 
more sophisticated functionality that might be difficult to code (e.g., image 
classification). During the initial development stages for the custom tasks, the author 
realized that all of the requisite functionality could be coded directly into the custom 
tasks, making them standalone tasks. This functionality included the more complicated 
image classification routines. Despite transitioning from a client-server framework to a 
standalone framework, the original project plan still provided valuable milestones. Rather 
than splitting the development of the required functionality between AGX and ArcGIS 
Server, all the same functionality was simply refocused to AGX as a standalone toolkit. 
The original timelines thus did not need modification. Figure 4-4 provides the originally 
planned workflow for the project, and Appendix A includes the project workplan that was 
devised to outline major tasks and guide completion. Although the required functionality 
was transitioned to a standalone framework, the original project workplan was still valid 
since none of the necessary functionality was altered. The original workflow, however, 
was minimally altered and will be discussed subsequently. 

A number of other minor modifications were made to the original plans and goals 
during the process of completing the project, but these also had no major impact on the 
original project workflow and workplan. One of the largest discrepancies between stated 
goals and reality, however, was the timing of completion of the project. Initially, a fairly 
aggressive timetable for completion was established (see Appendix A) with the goal of 
completing all project tasks by the end of March. In reality, all goals were on track until 
early February when scheduling changes resulted in delayed completion of some tasks 
until early May. Despite this, enough extra time was budgeted at the end of the project to 
enable successful completion. This extra time was budgeted specifically for 
unforeseeable changes that might occur during project execution. 

Another project design that turned out differently in reality was the anticipation that 
the three custom tasks that were originally envisioned could be developed in parallel, as 
illustrated in Figure 4-4. In reality, it was easier and more efficient to develop all the 
custom tasks in series, as illustrated in Figure 4-5. In other words, it was simpler to 
complete each custom task, from user interface design through documentation, prior to 
starting the next custom task. Despite this, the overall amount of time it took to complete 
the tasks was similar to what was originally planned. 
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Figure 4-4. Planned project workflow schematic. 
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Figure 4-5. Actual project workflow schematic. 

The custom tasks also changed somewhat from what was originally planned. At the 
outset, tasks were planned that could be used for querying and importing MODIS data, 
for classifying MODIS data, and for exporting classified results in either vector or raster 
format. While the first two tasks were completed as planned, the functionality to allow 
users to export data in vector or raster format was not fully implemented. As will be 
discussed in subsequent chapters, all data can be exported, but only in raster format. This 

Requirements 
Analysis

Meets Client 
Requirements

Design
Meets Client 

Requirements

Custom ArcGIS 
Explorer 

Task1

Custom ArcGIS 
Explorer 

Task2

ArcGIS Explorer 
Development

Testing

Proper
Functionality

Deliver to 
Client

Edit Code/
Software 

Documentation

MIP 
Documentation

MIP Defense
Committee 
Approval

Graduation

NoNo

No



25 

was largely due to altering the solution’s architecture to a standalone framework. The 
custom tasks could no longer rely on built-in data management tools in ArcGIS (e.g., 
raster to vector conversion), so everything had to be independently coded. A tenable 
solution for raster data creation and export was discovered and used, but the means to 
enable vector export, including any existing code, was not found. Despite this, time 
budgeted for the vector functionality was reallocated to developing additional, unplanned 
functionality that added a lot to the final solution. This additional functionality included a 
tool for conducting change detection of classified datasets, as well as a thumbnail query 
tool that made exploration of MODIS more efficient.  

Finally, once it was decided to alter the final architecture to a completely standalone 
framework, there were no plans to attempt a client-server solution. However, an 
opportunity arose and time was therefore allotted to trying to develop a client-server 
solution. Although a working client-server solution was never realized for reasons that 
will be discussed in Chapter 6, it was possible to explore the custom geoprocessing 
service framework and create a prototype solution that can be developed further in the 
future. 

Overall, the project was completed as planned. The project benefited from the fact 
that AGX provided all the expected functionality needed to complete the project, so it 
was not necessary to change software platforms part way through the project—an event 
that would have dramatically affected the project’s schedule. Similarly, the amount of 
days needed to complete the custom tasks was similar to what was planned for. 

4.5 Summary 

The work plan developed for this project proved to be an effective outline for completion 
of major tasks. Some changes were made to the proposed solution established at the 
outset of the project, but these modifications had only a minor impact on the final 
functionality and the timing of delivery.  

Although both of the AGX-based final solutions outlined in the opening sections of 
this chapter could provide the requisite functionality that the client desired, development 
of a standalone framework was more congruent with the goal for the final solution to be 
as independent as possible. As a result, most effort throughout the course of the project 
was directed towards developing a standalone solution. However, in an effort to provide 
proof-of-concept for the client-server architecture, a prototype custom geoprocessing 
service was developed for ArcGIS Server. The final solutions, their advantages, and 
disadvantages will be discussed in chapters 5 and 6. 
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Chapter 5  – Implementation: Standalone Solution 
In its final implementation, the standalone solution for this project, dubbed the MODIS 
Toolkit for ArcGIS Explorer, consists of two custom tasks developed for ArcGIS 
Explorer and designed to work in tandem. The tasks contain all the functionality 
requested by the client, but also include some additional features which increase the 
toolkit’s scope and utility. The first custom task is referred to as the MODIS Data 
Retriever and provides all the necessary query and retrieval functions to enable users to 
search for and download MODIS RRP image subsets. The second custom task is referred 
to as the MODIS Data Classifier and provides image classification capabilities that 
enable users to derive environmental spatial data from retrieved MODIS RRP image 
subsets. The MODIS Data Classifier also includes a tool for conducting change detection 
on previously derived classified data. This chapter discusses each of the custom tasks, 
their functions, and their user interfaces in more detail. 

5.1 The MODIS Data Retriever Custom Task 

The MODIS Data Retriever was developed in VB.NET and includes two essential classes 
required for any AGX custom task: a TaskUI class and a CustomTaskControl class (the 
AGX custom task framework was discussed in more detail in Chapter 4) (Figure 5-1). 
Since its primary function is to query and retrieve data from a remote web server, the 
custom task was developed to operate asynchronously and therefore has an overridden 
Task class which enables operation on a background thread. Finally, the MODIS Data 
Retriever has an additional task window class that provides the user interface and 
functionality for data export. 
 

 
Figure 5-1. Diagram of classes that compose the MODIS Data Retriever custom 

task. 
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In addition to the main VB.NET classes that compose the custom task, the MODIS 
Data Retriever includes several support files that are installed to a user’s local computer 
upon execution of the setup file for the task. These files include a geodatabase with 
feature classes of MODIS subset availability and of individual subset extents. These 
feature classes are used for display and query purposes. The setup executable also installs 
a help document in PDF format to a user’s local computer. This document can be 
accessed from the main task interface. 

The custom task user interface is shown added to the main AGX user interface in 
Figure 5-2. Upon initiating the custom task, a feature class from the supporting task 
geodatabase is added to the globe and given a red fill with 80% transparency. This feature 
class illustrates the availability of MODIS RRP image subsets. The goal of this feature 
class is to reduce the futility of querying for data where it does not exist, but the feature 
class can be turned off or removed at the user’s discretion. 
 

 
Figure 5-2. ArcGIS Explorer user interface with the MODIS Data Retriever custom 

task interface added to the task panel (red rectangle). The red arrows 
indicate the extent of the MODIS subset availability feature class. 

 

5.1.1 MODIS Subset Query Points 

Figure 5-3 details the primary user interface for the MODIS Data Retriever, with query 
tools and interfaces highlighted. Query points can be added to the AGX globe either by 
using a query point tool or by manually entering coordinates. When the query point tool 
button is selected (Figure 5-3, number 1), it activates a cursor that allows the user to 
manually add a point of interest to the globe. The coordinates of this point then form the 
basis of a subsequent MODIS data query. Alternatively, users can manually enter text-
based coordinates into the text query form (Figure 5-3, number 2) and add query points to 
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the globe. The text query form will accept coordinates in either degrees-minutes-seconds 
format or decimal degrees. A significant amount of built-in validation was coded to 
support the text query form so that no invalid coordinates can be entered. 

 

 
Figure 5-3. Detail of the MODIS Data Retriever user interface with query tools and 

interfaces highlighted. 
 
Upon placement, query points appear as a small globe icon added to the AGX 

interface, and the extent of the most appropriate RRP subset appears as a white outline, 
indicating the actual subset on which the query will be based (Figure 5-4). This subset is 
determined through coded logic that: 

 
• determines all the subsets that contain the query point (since there can be 

significant overlap amongst the subsets) 
• iteratively calculates the great circle distance between the query point and the 

centroid of each intersecting subset 
• iteratively updates a variable with the name of the subset whose centroid is closest 

to the query point 
 
(see Appendix B, Code Example 1) 

 
The purpose of this logic is to determine the subset with the greatest coverage around a 
given query point. Additional built-in validation ensures that query points beyond the 
extent of subset availability cannot be added to the globe. 
 

1 

2 
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Figure 5-4. Detail of a query point added to the AGX globe and the associated 

subset extent outlined in white. 
 

5.1.2 MODIS Data Exploration and Retrieval 

Once a valid query point has been added to the AGX globe, three additional MODIS 
image subset parameters must be selected prior to retrieval of thumbnails or image 
subsets: 

 
• the date of the subset 
• the subset’s satellite platform (Terra or Aqua), which is also referred to as the 

pass (AM or PM) 
• the subset band combination of interest (true color, false color, or NDVI)  

 
These parameters are set by the user in the parameter section of the form (Figure 5-5, 
number 1). Note that these parameters are also necessary for final subset retrieval. With a 
valid query point and the three subset parameters set, a thumbnail image of the subset can 
be retrieved using the “View Thumbnail” button (Figure 5-5, number 2), or the highest 
resolution version of the subset can be retrieved using the “Retrieve MODIS” button 
(Figure 5-5, number 3). 

Thumbnail queries allow users to view a lower resolution thumbnail of an image 
subset. These lower resolution images have much smaller file sizes than their high 
resolution counterparts and therefore can be downloaded relatively quickly. If a 
thumbnail appears to satisfy a user’s needs, then the user can retrieve the high resolution 
version of the subset. Once retrieved, thumbnail images are displayed in the thumbnail 
viewer embedded in the user interface (Figure 5-5, number 4; Figure 5-6). If a subset of 
interest is not available, a message box to that effect is displayed to the user. 
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To aid in subset exploration, forward and backward buttons are available next to the 
“View Thumbnail” button (Figure 5-5, number 2). These retrieve the next or last subset 
relative temporally to the one that is currently displayed. For example, if the currently 
displayed thumbnail is the true color subset from the morning of January 1, 2009, using 
the forward button will display the true color subset from the afternoon of January 1. The 
backward button will display the true color subset from the afternoon of December 31, 
2008. This functionality was added so that users would not have to continually open the 
date/time and satellite pass selection tools if they are simply looking for the most 
appropriate subset around a specific date (e.g., the least cloud covered). 

 

 
Figure 5-5. Detail of the MODIS Data Retriever user interface with thumbnail tools 

and interfaces highlighted. 
 

Retrieval of the high resolution subset images uses the same parameters established for 
thumbnail retrieval and is achieved using the “Retrieve MODIS” button. This button will 
initiate download of the subset and its associated world file using a uniform resource 
identifier (URI) created from input parameters and the subset name associated with the 
query point (Appendix B, Code Example 2). The following text reveals how the URI 
string is constructed (Appendix B, Code Example 3): 
 
"http://rapidfire.sci.gsfc.nasa.gov/subsets/?subset=" + 
      [MODIS Subset Name] + "." + [Year] + [Day] + "." + [Pass] + [Bands] + ".250m.jpg"  
 
Similar variables and logic are used for thumbnail download, the primary difference 
being the resolution of the image retrieved. Thumbnail URIs and filenames replace the 

4 

1 
2 3 
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“.250m” term with a “.2km” term. The high resolution images and thumbnails are 
retrieved asynchronously using the threading functionality enabled by inclusion of a Task 
class in the final custom task framework (Figure 5-1). 

Downloaded images and world files are saved to a temporary directory that is 
programmatically created on the user’s local computer when the task is used. Note that 
similar code and another temporary directory are also used for retrieving the smaller 
thumbnail files during thumbnail queries. The temporary directories for both thumbnails 
and final images are automatically cleaned up every time the custom task is used. Any 
files older than one day are automatically removed from the directories through coded 
logic to ensure that the directories do not become filled with unneeded data. As a result, 
however, users must export any data of interest to another local directory of choice. Tools 
to conduct data export are discussed in the next section. 

Depending upon subset file size, bandwidth of a user’s Internet connection, and 
traffic on the web server, subset download can take anywhere from 15 seconds to several 
minutes. Once download is complete, the image is automatically added to the AGX globe 
(Figure 5-6). 
 

 
Figure 5-6. Detail of a subset thumbnail and retrieved subset image added to the 

AGX globe. 
 
Addition of subset images to the AGX globe is dependent upon two necessary files: a 
world file for accurate geopositioning of the data (e.g., coordinates of the subset’s origin, 
pixel dimensions, rotation terms), and a spatial reference. Although some subsets with 
unusual spatial references do exist, particularly in polar regions, the vast majority of the 
RRP subsets, and all of those accessed by the MODIS Toolkit, use WGS-84 as their 
spatial reference. The world file is downloaded from the RRP web server, but the spatial 
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reference files are created programmatically as XML files for every downloaded image 
and thumbnail (Appendix B, Code Example 4). 

Given the large number of images that individual users may retrieve and save locally 
using the MODIS Data Retriever, manual metadata creation by users could be very time 
consuming and would likely lack standardization. As a result, the custom task also 
programmatically creates metadata in a standard ESRI XML format for every image that 
is retrieved (Appendix B, Code Example 5) (note that metadata is not created for 
thumbnails since they are only used for data exploration). This metadata file is consistent 
with the requirements of ArcGIS and includes information about the data’s source, its 
original filename (on the RRP web server), acquisition date, and a number of keywords 
related to the subset. Figure 5-7 illustrates an example of this metadata as it appears in 
ArcCatalog. 
 

 
Figure 5-7. Example of metadata created automatically by the MODIS Data 

Retriever, as seen in ArcCatalog. 

5.1.3 MODIS Data Export 

Retrieved image subsets are stored only in a temporary directory that is established on the 
user’s local computer. This directory is cleaned up every time the custom task is used by 
removing files that are older than one day. Therefore, if interested in saving a retrieved 
image subset, a user must export it to a local directory using the export tool (Figure 5-8). 
Reasons for developing this extra tool are twofold: it was assumed that users would not 
want to archive every image subset that they retrieved. It is therefore easier to 
programmatically maintain these images and obligate the user to archive only those that 
are of interest; and AGX does not provide the necessary functionality to save datasets in 
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their native formats—they can only be exported as AGX layer files (.lyr)—so the export 
tool provides this capability for raster data (vector data will be discussed in subsequent 
sections). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-8. Detail of the MODIS Data Retriever user interface with the data export 
tool and interface highlighted. 

 
When the file export user interface is launched, the user must select a file from the 

upper combo box dropdown menu. Since the tool was specifically designed for MODIS 
subset archiving, this combo box will display only raster datasets that are currently added 
to the AGX globe view. The lower text box is associated with a “Select” button that 
opens a file system explorer window, enabling the user to select the destination directory. 
When the “Export” button is implemented, the image subset is saved to the local 
directory specified by the user. All supporting files (i.e., world file, spatial reference, 
metadata) are also automatically saved to the new directory. Once completed, the AGX 
path associated with the file is updated and the export user interface displays a message 
indicating whether or not the file was exported successfully. 

5.1.4 Help Document 

Another tool available to users within the MODIS Data Retriever interface is the help 
button, which appears as a question mark on the main toolbar at the top of the interface. 
This button opens a help document in PDF format which contains information about the 
background and functionality of the custom task as an aid in using the task. 
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5.2 The MODIS Data Classifier Custom Task 

The MODIS Data Classifier was also developed in VB.NET and includes the two 
essential custom task classes: a TaskUI class and CustomTaskControl class (Figure 5-9). 
This task was also developed to operate asynchronously and therefore includes a Task 
class. The primary reason that asynchronous execution was selected for the MODIS Data 
Classifier is that, depending on the image subset being classified, a second subset may 
need to be retrieved from the MODIS RRP web server prior to classification. This will be 
discussed in more detail in subsequent sections. Like the MODIS Data Retriever, this 
custom task also has a task window class to enable data export, but it has an additional 
task window class and supporting code that enable change detection. 
 

 
Figure 5-9. Diagram of classes that compose the MODIS Data Classifier custom 

task. 
 
The MODIS Data Classifier also includes a supporting PDF help document that is 

installed to the user’s local computer upon executing the setup file for this task. Figure 5-
10 shows the MODIS Data Classifier user interface added to the main AGX user 
interface. 
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Figure 5-10. ArcGIS Explorer user interface with the MODIS Data Classifier 

custom task interface added to the task panel (red rectangle). 
 
Unlike other image classification tools available in software like ArcGIS and 

ERDAS Imagine, the MODIS Data Classifier was designed to classify only one image 
class at a time. The reason for this stems from the fact that the toolkit was developed for 
analysts deployed in military support and disaster response settings. These analysts will 
be primarily interested in developing data for singular environmental parameters, such as 
snow cover, flooded areas, wildfire extent, etc. Despite this design, multiple image 
classes can be derived from the same MODIS subset by simply reapplying tools in the 
MODIS Data Classifier. 

5.2.1 Adding Training Points 

Training points are pixels that are selected from an image to represent an image class of 
interest (i.e., water, snow, vegetation, etc.). The values, or digital numbers, associated 
with these pixels are used to define feature class characteristics in spectral space. 
Regarding the MODIS Data Classifier, image classes are defined statistically using the 
mean and standard deviation derived from the training points. 

Figure 5-11 highlights the tools and interfaces used for defining training points. Prior 
to adding any training points the user must select a MODIS image from the combo box 
dropdown menu (Figure 5-11, number 1). Built-in validation ensures that only MODIS 
subset images retrieved using the MODIS Data Retriever are allowed to be classified 
with the custom task. This is due to the fact that the custom task was developed to work 
specifically with MODIS RRP image subsets and no other image data. The MODIS Data 
Classifier ensures this by scanning the metadata file (if it exists) for any image that is 
currently added to the AGX globe view. The metadata must include the term “MODIS 
Rapid Response Project,” but must not include the terms “classified” or “change.” The 
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former ensures that the file is associated with the RRP and the latter ensures that the file 
is not a previously created classified or change detection dataset developed using the 
MODIS Data Classifier. The terms “classified” and “change” are used in the metadata of 
classified and change detection datasets, respectively (Appendix B, Code Example 6). 
This logic is necessary because classified and change detection datasets could also be 
added to the globe concurrent with image subsets. The result of this logic is a dropdown 
list of image subsets. 
 

 
Figure 5-11. Detail of the MODIS Data Classifier user interface with training point 

tools and interfaces highlighted. 
 
Another reason for the prerequisite that an image be selected is that the task also 

includes built-in validation that allows training points to be added to the globe only 
within the envelope of an image. Selection of an image by the user enables the 
boundaries of valid training point addition to be programmatically determined and 
enforced. This ensures that no training points can be added close to, but outside of an 
image, and also ensures that all calculated classification statistics are for one image only. 
Overall, this functionality ensures that training points are associated with the correct 
image and thereby reduces errors in calculating image class statistics for a given image. 

Once an image is selected, an image class description must also be selected before 
classification of an image can occur (Figure 5-11, number 2). This description is used in 
metadata creation and helps ensure accurate description of all resulting datasets. A 
number of pre-existing descriptions exist within the dropdown menu of this combo box, 
but users can also manually enter a description that is most suitable for the class they are 
interested in deriving. 

With both an image and class description selected, the “Add Training Point Set” 
button (Figure 5-11, number 3) will activate the point selection tool (Figure 5-11, number 
4). The point tool enables users to begin adding training points to the globe. The 
necessity of having to first select the “Add Training Point Set” button before adding 
points ensures that all points added to the globe are part of the same training set. Once the 
first training point is added, the “Remove Training Point” and “Export Training Point” 
buttons will be enabled (Figure 5-11, numbers 5 and 6). The “Export Training Point” 
button  allows users to save a set of training points as a CSV file to their local computer. 

1 

3 4 5 6 7 2 
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This CSV file contains spatial locations of training points, but not any spectral 
information associated with the current image. 

The final tool is the “Import Training Point” tool that then allows users to re-add 
training points from a previously saved CSV file (Figure 5-11, number 7). Allowing users 
to save and re-use training point sets from a local directory is an important time-saving 
feature given the effort and time required to create a quality training point set that 
accurately captures an image class’s statistics. It is important to note that reusing a 
training point set for an image other than the one for which it was created could be 
problematic, since the extent of image class will change through time. Figure 5-12 shows 
a false color image with a series of training points for “snow” added to the globe. 
 

 
Figure 5-12. Training points representing “snow” added to a false color MODIS 

subset on the AGX globe. Red arrows indicate the locations of some of 
the training points. 

 

5.2.2 Image Classification 

With a training point set added to an image, the only other necessary parameter to set 
prior to processing an image classification with the MODIS Data Classifier is the size of 
the classification envelope. This is set via the “Classification Range” trackbar which 
allows settings between 1 and 4. Classification range is a more user-friendly term used to 
define the number of standard deviations that will be used by the task in calculating an 
envelope of inclusion, or parallelepiped, for the image class of interest. The custom task 
will calculate the training point mean and standard deviation for each MODIS band in the 
selected subset. The custom task will then increase or decrease the range for pixel 
inclusion into a class by increasing or decreasing the number of standard deviations via 
the range trackbar. Therefore, the two parameters available to a user in conducting a 
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MODIS subset classification are the number and variability of training points and the 
range setting. 

With a training point set added to the globe and the range set, classification is 
conducted using the “Classify” button. This button initiates a series of logic that produces 
the classification results (Figure 5-13). The first step in this logic is to create a two-
dimensional array of training point locations, based on row-column coordinates, that are 
determined using the decimal degree coordinates of each training point and parameters 
from the subset world files, including the coordinates of the subset’s origin and the pixel 
size in decimal degrees (Appendix B, Code Example 7). This array of row-column 
coordinates is used later in the logical flow to develop training point statistics.  
 

 
Figure 5-13. Logical flow used to conduct custom task image classification. 
 

The second logical step is the determination of which subset image was selected for 
classification—true color/false color, or NDVI. If the image is either true color or false 
color, then the procedure used to classify the image is the same; the custom task retrieves 
the alternate image subset, hence the asynchronous execution. In other words, if the 
image selected for classification is the true color subset, then the task will retrieve the 
false color subset and vice-versa. Note that the extra image will be saved to the same 
directory as that of the image being classified—either the temporary or an archive 
directory. The goal of this is to use all available MODIS subset bands to improve the 
results of the classification. Using both the true color and false color subsets yields a total 
of five bands—MODIS bands one, two, three, four, and seven. Both of these subsets have 
three bands, but they overlap coverage of MODIS band one, resulting in five total bands. 

If the image selected for classification is the NDVI version of the subset, then it is 
processed by itself since there are no other associated subsets. It is important to clarify 
that the NDVI subsets represent calculated NDVI values that are color-coded. As such, 
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the three bands that compose the NDVI JPEGs are not bands of MODIS data. Rather, 
they are bands representing the red, green, and blue color values that create the color-
coded NDVI image. Therefore, using the custom task classification tools on NDVI 
subsets is not true image classification, but it allows users to select specific NDVI values 
and separate them for analysis. This functionality was added specifically for users 
interested in applying the MODIS Toolkit to drought and/or crop monitoring. The 
following discussions pertain to classification of the five true MODIS image bands from 
the true and false color subsets, but the logic supporting NDVI “classification” is similar, 
using only three bands. 

Prior to retrieving any additional data, the custom task will first scan the directory 
containing the image being classified to determine if the additional image has already 
been retrieved. If it has been retrieved, then the task will use this image rather than try to 
retrieve it again. This logic clearly saves time and reduces redundant data. In general, it 
also makes conducting additional classifications of the same image subset much quicker 
to execute since the data is already available locally. 

With all image data available, the next step in the classification algorithm is the 
creation of an image data array. For five bands of data, this array is a three-dimensional 
array that can essentially be visualized as a stack of five two-dimensional arrays (one for 
each band) with dimensions matching the height and width (in pixels, or rows and 
columns) of the source images. Each layer in the array stack contains single band digital 
numbers for each pixel in the source images. Image data (digital numbers) for the five 
bands are then copied into the image data array (Appendix B, Code Example 8). 

The image data array is then used in association with the previously created training 
point row-column coordinate array to calculate individual band statistics for the training 
points. This is done by iterating through the training point row-column coordinate array 
and using the row-column coordinates to access values in the image data array that are 
then used to calculate means and standard deviations for each MODIS band (Appendix B, 
Code Example 9). 

Finally, the means and standard deviations calculated for each band of the training 
data are used in conjunction with the range value set on the range trackbar to define 
minimum-maximum value ranges for each band, per the following equations: 
 

 
 

 
where the range setting is converted back to standard deviations prior to the above 
calculations. These minimum-maximum ranges therefore delimit the envelope of 
inclusion, or parallelepiped, for the image class being classified. 

The entire subset of interest is then classified by iterating completely through the 
image data array, testing each pixel to see if all its band values fall within the envelope of 
inclusion (Appendix B, Code Example 10). Parallelepiped classification is based on the 
logic that if any values fall outside the envelope of inclusion, then they are not considered 
to be part of the image class. An entirely new PNG format bitmap is then used to record 
the results. This new PNG is identical in dimensions (height and width, or rows and 
columns) to the original image subset, and its world file and spatial reference are derived 
by copying the same files from the original subsets. Pixels whose values fall within the 
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envelope of inclusion are set in the new bitmap to be red, while all others are set to be 
transparent. The 32-bit PNG format was selected to record final classification results due 
to the extra 8-bit channel it includes for transparency (i.e., alpha channel). This allows the 
classification results to be displayed in AGX without obscuring regions of the globe that 
do not meet classification criteria (Figure 5-14). 
 

 
Figure 5-14. Results of image classification performed on a false color MODIS 

subset to identify pixels representing snow. 
 

Upon completion of a classification, the text of the “Classify” button changes to 
“Reclassify”. The purpose of this is to indicate to a user that modifications to 
classification parameters can be made to produce better results, and is useful given that 
many attempts are usually necessary in order to obtain the desired results. Modifications 
can include the addition of more training points to improve training statistics, or further 
adjustment of the range trackbar. Subsequent classifications are given the same filename, 
but are numbered sequentially starting with the number one. 

Like the MODIS Data Retriever, all classification results from the MODIS Data 
Classifier have an XML metadata file automatically created upon execution of a subset 
classification. The metadata for classified results includes additional information to 
indicate how the results were derived, the source MODIS subsets used, and the image 
class represented by the data. 

Like the MODIS Data Retriever, a tool for exporting classified image results to an 
archive directory of choice is located on the main toolbar. In addition, a PDF help file for 
the MODIS Data Classifier can be accessed through a help button on the main toolbar. 
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5.2.3 Change Detection 

The final tool available to users in the MODIS Data Classifier custom task interface is the 
change detection tool that can be accessed via the change detection button on the main 
toolbar. Similar to the export data tool, a new user interface opens that requires input 
(Figure 5-15). This interface only requires the selection from the combo box dropdown 
menus of two previously classified image results that must adhere to the following 
criteria: 
 

• datasets must be derived from the same MODIS RRP subset (i.e., same 
geographic extent) 

• datasets must be from different dates/times; they can be from the same date, but 
one must be derived from the morning satellite pass (i.e., terra) and the other from 
the afternoon pass (i.e., aqua) 

• datasets must be derived for the same image class (i.e., snow, water, vegetation, 
etc.) 

• datasets must already be added to the current AGX globe view 
 

 
Figure 5-15. Detail of the MODIS Data Classifier user interface with the change 

detection tool and interface highlighted. 
 

Once a dataset has been selected, pertinent information (i.e., subset name, image 
class, date/time) is displayed below the combo box to aid the user in selection of 
appropriate datasets. Built-in validation exists such that the “Compare” button will only 
be enabled when two datasets that meet the above criteria are selected (Appendix B, 
Code Example 11). Datasets do not need to be selected in chronological order. The 
custom task will determine this independently. 

Areas of change are identified by comparing the two classified datasets on a per-pixel 
basis. The results are written to a new PNG format bitmap with pixels colored as follows 
based on results: 
 

• green pixels indicate no change in the image class between the two images 
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• red pixels indicate areas representing the image class in the first dataset 
(chronologically) that were no longer present in the second dataset; in other 
words, the image class is no longer represented by the pixel values 

• blue pixels indicate areas representing the image class in the second dataset 
(chronologically) that were not present in the first image; that is, new areas where 
the image class is present. 

 
The PNG format was used once again to allow pixels absent in both classifications to be 
made transparent for data visualization purposes. Figure 5-16 illustrates two original 
image classifications from two separate dates and the results of change detection 
conducted on these datasets. 
 

 

 
Figure 5-16. Change detection result from two image classifications of “snow” for 

the “AERONET_Fresno” RRP subset from the mornings of 3/30/2009 
(top left) and 4/19/2009 (top right). 

3/30/2009 AM 4/19/2009 AM 

increase in snow cover 

decrease in snow cover 



44 

5.3 Summary 

The MODIS Toolkit for ArcGIS Explorer, consisting of the MODIS Data Retriever and 
MODIS Data Classifier custom tasks, provides a standalone solution for the needs of this 
project. As a whole, the toolkit provides users with the ability to query for, explore, and 
retrieve MODIS RRP image subsets. The toolkit also provides the ability to classify the 
subsets to derive environmental spatial data, then compare classified datasets to 
determine change. Automated data handling and metadata creation aid users in managing 
all resulting data from the toolkit, including all image subsets and classified and change 
detection datasets. 
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Chapter 6  – Implementation: Client-Server Solution 
As previously noted, most of the effort put forth towards developing a final solution for 
this project was aimed at the standalone solution. This is due to the assessed superiority 
of a standalone solution because of its independence from any additional software. 
Despite this fact, a client-server approach has some advantages over a standalone 
solution, the most important of which is access to powerful pre-existing spatial analysis 
tools available within ArcGIS Server. The following sections outline a prototype client-
server solution developed to provide users with the ability to access the maximum 
likelihood classification (MLC) tools present in ArcGIS for application to MODIS RRP 
subset images. 

6.1 ArcGIS Explorer and ArcGIS Server in a Client-Server 
Architecture 

ArcGIS Server is a server-based GIS software utility developed and marketed by ESRI. It 
provides a number of advertised key features, including data management, GIS Web 
services, Web mapping, some spatial editing, mobile GIS support, and server-based 
analysis and geoprocessing (ESRI, 2009c). With the addition of server-based 
geoprocessing, ArcGIS Server provides much of the same functionality available to users 
in ArcMap, but without the need to host the software locally. 

Users can access data and services hosted by ArcGIS Server using a variety of 
clients, including ArcMap, web browsers, and mobile devices. In addition, ArcGIS 
Explorer was developed specifically as a client for ArcGIS Server, so it provides a lot of 
built-in functionality specifically for its use as a client interface. 

GIS content and functionality, including maps, data, and geoprocessing tools, are 
created and published as services on ArcGIS Server. Clients then connect to these 
services and use them remotely. As such, a spatial analysis tool like the “Maximum 
Likelihood Classification” tool that is readily available in ArcGIS can be published as a 
geoprocessing service to ArcGIS Server. This is true of most existing ArcGIS spatial 
analysis tools, but there are some limitations that will be discussed below. 

6.2 Maximum Likelihood Classification in ArcGIS 

Prior to explaining how an ArcGIS Server geoprocessing service was created for use in 
classifying MODIS subsets, an explanation of the workflow used in conducting MLC in 
ArcGIS is necessary. As with any supervised classification scheme, MLC in ArcGIS 
requires the user to define image classes of interest by identifying pixels that represent 
the individual classes. Through empirical observations, the MLC tool in ArcGIS 
performs best when hundreds of pixels are used to define each class. This is different 
from the approach used in the development of the MODIS Data Classifier custom task 
which can perform well with only tens of pixels identified. 

From a user perspective, identifying hundreds of pixels is most easily achieved by 
defining training polygons rather than points. These training polygons are then used in 
conjunction with the original image data, through application of the “Create Signatures” 



46 

tool, to calculate the statistics and covariance matrices required by MLC. The result of 
this tool is an ASCII file that contains all the necessary information about the user-
defined image classes to accurately classify an image. This reveals another difference 
between the ArcGIS MLC tool and the MODIS Data Classifier—all classes present in an 
image must be identified by the user when applying the MLC tool, rather than just a 
singular image class. 

With a signature file created, users then classify images with the MLC tool using the 
original image and the signature file as inputs. It is therefore clear that MLC in ArcGIS 
requires the application of a multi-step process to achieve classification results. Figure 6-
1 illustrates the ArcGIS maximum likelihood classification workflow as viewed in the 
ArcGIS ModelBuilder interface. 
 

 
Figure 6-1. ArcGIS maximum likelihood classification workflow as viewed in 

ModelBuilder. 

6.3 Development of a Maximum Likelihood Classification 
Geoprocessing Service 

Despite the pre-existing spatial analysis tools available within the ArcGIS Server 
software, creating geoprocessing services that can be consumed by remote clients is not a 
trivial task. This is a fact that only becomes more obvious as the complexity of the 
desired service increases. Much of the difficulty stems from the need to pass user 
parameters and data from client to server, and subsequent server results back to the client. 
The difficulty is exacerbated by limitations on data formats permissible for input and 
output, and these formats vary depending on the client being used (ESRI, 2009d). 

In addition to input/output difficulties, on the server side there is the additional 
complexity of creating a geoprocessing service that operates as expected. These services 
are usually developed from a model created in Model Builder. Publishing models that 
operate as desired can be a difficult and frustrating process. 

With respect to the current project, training polygons and a MODIS subset image 
need to be provided from the client (AGX) to ArcGIS Server and, after execution, a raster 
output of the classification results need to be returned from server to client. Therefore, 
one of the first limitations encountered in attempting to apply a client-server architecture 
is the fact that AGX cannot input a feature class to a geoprocessing service. Input features 
such as training polygons are generally created as feature sets and passed to the server, 
but feature sets have several limitations relative to this project. Principally, feature sets 
cannot be saved and they must be manually given a text attribute (e.g., training class 
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description). Both of these characteristics make them less than ideal for image 
classification because, although not mandatory, the ability to save training polygons is a 
time-saving feature, and having to manually define training polygons would be 
cumbersome. 

To negotiate this input roadblock, a new custom task was created for AGX that 
allows users to select an image class from a combo box dropdown menu and then draw 
training polygons on the AGX globe. Each image class text description is then 
programmatically assigned to a drawn polygon, removing the tedium of multiple manual 
entries. The task then allows the user to save the polygons as a .txt file, which is an 
allowable data format for input from AGX to ArcGIS Server per ESRI documentation 
(ESRI, 2009c). The custom task then programmatically formats the training polygon 
coordinates and image class descriptions in a manner that allows their re-creation on the 
server side using the pre-existing “Create Features from Text File” tool. 

The second roadblock that was encountered is the fact that raster data (i.e., MODIS 
image subsets) cannot be used as a direct input from AGX to the server. This is therefore 
handled by passing the server the exact MODIS subset ID as a string that includes the 
subset name, date, band information, and passes information. A custom Python script on 
the server side then uses this text to programmatically create a URI and retrieve the 
image to the server’s scratch workspace for use in the service. Although retrieving the 
data on the server side is redundant, this is transparent to the user and is the only solution 
that could be determined given the input data limitations. 

With input training polygons and the MODIS subset image available to the server, a 
model could be developed in ModelBuilder to execute the multi-step MLC process and 
subsequently published as the geoprocessing service (Figure 6-2). However, a multitude 
of attempts to create a model that executed properly when published as a service all 
failed. As well as can be determined, much of the failure is attributable to parameters that 
must be set for some of the tools in the ArcGIS MLC process, and attempts to hardcode 
these parameters into the model were ineffective. In the end, the best solution was to 
develop a custom Python script that includes hardcoded parameters for these tools, as 
well as code to create a training polygon feature class from the .txt file passed from AGX, 
retrieve the MODIS subset to be classified, create a signature file, and execute the 
maximum likelihood classification (Appendix B, code example 12). 
 

 
Figure 6-2. Custom geoprocessing workflow as viewed in ModelBuilder. 
 

With inputs and the custom geoprocessing script working properly, the next 
roadblock encountered was an issue with permissible outputs that can be returned from 
ArcGIS Server to AGX. Although raster datasets are not allowed to be output directly to 
AGX, a workaround exists so that raster data can be added to a map service and then the 
updated map service returned to AGX. A map service is essentially a TIFF image of data 
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that can be updated and served by the server. As a result, in addition to the custom 
geoprocessing service, an associated map service must be created to display the MLC 
results. The AGX client therefore has to connect to both services in order to view any 
resulting classified datasets. It is important to note that although this allows the client to 
view the results, one major disadvantage of this workaround is that the client never has 
access to the resulting data, only the map service. Although not implemented in the 
current prototype, one potential workaround to enable client access to actual data would 
be to convert the MLC raster results to a feature class and return this data, since feature 
classes are an allowable output format for AGX. This raster to vector conversion could be 
added as a final step in the aforementioned custom Python script.  

In their final form, the custom geoprocessing service and associated map service 
worked flawlessly when using ArcMap as a client. However, the services did not function 
at all in AGX, as was also the case after numerous and varied modifications were made to 
ArcGIS Server settings and the custom Python script. Finally, after consultation with the 
AGX development team at ESRI, it was revealed that there is a bug in the current version 
of AGX (build 500) such that text files cannot be used as input from AGX in 
geoprocessing services. As a result, the training polygon text file cannot be used as input 
and results in errors when the service is executed. This is contrary to ESRI’s 
documentation (ESRI, 2009d), but in hindsight makes sense because the service produces 
errors immediately upon use since the required input files are never uploaded to ArcGIS 
Server. This bug is slated to be fixed prior to the release of the 900 build of AGX in 
summer, 2009. 

6.4 Summary 

In its current form, the framework under which geoprocessing services can be published 
and consumed from ArcGIS Server provides a fair amount of functionality for spatial 
analyses related to vector data. This is supported by the currently permissible data types 
allowed as input and output for these services. Although feature sets have to be used for 
input, feature classes are a valid output data format. On the other hand, raster data is 
supported as neither input nor output unless it is added to and returned in a result map 
service. This indicates that most raster analysis results from tools available through the 
Spatial Analyst extension would require conversion to vector format if the goal was to 
return actual data to the user. In addition to input and output data types, the experience 
gained in development of this client-server prototype suggests that any advanced spatial 
analysis, whether with raster or vector data, may require significant workarounds (i.e., 
additional custom tasks in AGX, custom Python scripting) to be developed in order to 
create the full functionality one may desire. With respect to the current project, until 
greater input and output support are added to ArcGIS Server, it appears that the 
standalone architecture is the most efficient and user-friendly framework for achieving 
the functionality desired by the client. 
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Chapter 7  – Results and Analysis 
Analysis of the solutions for this project has been divided into three sections. The first 
section focuses on an analysis of the two different architectures developed for the 
project—standalone and client-server. Since the standalone “MODIS Toolkit for ArcGIS 
Explorer” prevailed as the superior solution, the second section of this chapter focuses on 
a performance analysis of the toolkit’s MODIS Data Classifier custom task. The analysis 
is concerned specifically with how well the custom task functions in deriving 
environmental spatial data, and what the optimal settings and best practices are in 
applying the custom task. To conclude the analysis of the MODIS Toolkit, the final 
section of the chapter provides a simple case study illustrating how the toolkit could be 
applied to a real-world environmental disaster. 

7.1 System Architecture 

The development of a toolkit to increase access to and exploitation of MODIS imagery 
proved successful at the conclusion of the project and yielded two solutions—one based 
on a standalone architecture and one on a client-server architecture. Each of these 
architectures has strengths and weaknesses. These solutions also revealed that ArcGIS 
Explorer is a valuable software utility in which to develop custom GIS solutions with 
sophisticated functionality. 

7.1.1 Analysis of the Client-Server Solution 

The originally proposed project solution included the use of ArcGIS Explorer as a client 
to access custom geoprocessing services developed for ArcGIS Server. This solution 
provides a number of advantages, the most important of which is access to pre-existing 
spatial analysis tools within the ArcGIS framework that can be leveraged in creating 
custom tools. In addition, this architecture allows for transparency to the user of software 
upgrades. It is possible to design this architecture such that all software changes can be 
made on the server side. Despite these benefits, this architecture proved not to be an ideal 
solution for this project, primarily due to existing limitations in the custom geoprocessing 
service framework. These limitations require significant workarounds to be designed and 
developed in order to create more sophisticated spatial tools, particularly those designed 
for raster data analysis. Future versions of ArcGIS Server may reduce this disadvantage, 
but for now it is significant enough to warrant serious consideration prior to developing a 
client-server solution. 

In addition to issues with the geoprocessing framework, from the perspective of this 
project the client-server solution is also limiting because it requires Internet connectivity 
at all times for functionality. The standalone solution needs connectivity to initially 
download the AGX software and the custom tasks, as well as for initial data access. But 
once data has been retrieved locally, connectivity is non-essential for the standalone 
framework. This can be an important characteristic in deployed and disaster-response 
environments where continued connectivity may be an issue. 
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7.1.2 Analysis of the Standalone ArcGIS Explorer Solution 

For the purposes of this project, the development of a set of custom tasks in AGX as a 
standalone toolkit for MODIS imagery access and exploitation proved to be the more 
valuable of the two possible paths to a solution. This is primarily due to AGX’s 
availability at no cost via the Internet, the complete independence of AGX and its custom 
tasks, AGX’s well-developed API and SDK supported by .NET, the ability to share 
custom tasks amongst many users, and AGX’s simple, user-friendly interface and built-in 
access to base data. Over the course of the project, it became clear that development of 
sophisticated custom GIS functionality in AGX is really only limited by a developer’s 
ability to leverage the AGX API and .NET, which together provide a wealth of 
programming classes for creation of custom GIS functionality. The combination of these 
factors enabled the final solution to meet and exceed all client-requested functionality. 

The standalone architecture’s only real limitation with regard to this project is its 
inability to be updated in a manner that is transparent to users. Any changes or upgrades 
to the custom tasks will require users to download new versions of the tasks. 

7.2 Performance Assessment of the MODIS Data Classifier 

As discussed in Chapter 5, the MODIS Data Classifier (MDC) custom task was 
developed specifically to enable classification of image subsets produced by the MODIS 
RRP. As such, the custom task provides users with the ability to develop environmental 
spatial data from MODIS RRP subsets that are otherwise simply images of the Earth. 
Despite the implicit utility of the MDC, data resulting from its use are only beneficial if 
they actually represent the classes of data captured by the original MODIS images (e.g., 
water, snow, vegetation, etc.). The following sections summarize a performance 
assessment conducted on data derived from the MDC in an effort to determine its overall 
utility in deriving environmental spatial data. As part of this assessment, the two primary 
parameters available in the MDC that affect results—the number and variability of 
training points and the range setting—were analyzed to try to determine their 
optimization. 

7.2.1 Data 

To initiate the study, one RRP subset was selected to meet the following criteria: 
 

• The subset needed to contain a number of unique image classes that included as 
many of the broad image classes as possible that are regularly seen in MODIS 
images (e.g., water, snow, vegetation, bare ground). 

• The subset needed to cover a large geographic area to be representative of most of 
the image subsets produced by the RRP. 

• The subset needed to have limited cloud cover since clouds can be difficult to 
classify and can obscure the ground features that most users are interested in 
classifying. 
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The “AERONET_Fresno.2009089.terra.250m” subset, collected March 30, 2009, over 
southern California, met these criteria and the subset’s true color and false color images 
were used as the basis for this study. The false color image is illustrated in Figure 7-1. 
 

 
Figure 7-1. MODIS RRP false color subset selected for the performance analysis, 

with descriptions of the broad image classes present. 
 
Both images are composed of three bands, but have one band in common—MODIS band 
1. As a result, together both images represent five unique MODIS bands that include 
bands 1, 2, 3, 4, and 7, which provide data for the visible portion of the electromagnetic 
spectrum, as well as some coverage within the shortwave infrared (SWIR) portion of the 
spectrum. 

With the primary experimental image data selected, the next step was to develop a 
reference classified data set against which to compare experimental results. This 
reference served to represent the “true” classes present in the image and provided a 
yardstick for assessing results from the MDC. For the present study, image classification  
results derived from commercially available software (e.g., ESRI ArcInfo or ERDAS 
Imagine) were deemed to be an appropriate reference. The reference classified data set 
was created using the maximum likelihood classification algorithm because this 
technique is one of the most widely used supervised classification methods (Jensen, 
2005). The reference data were derived using the “Maximum Likelihood Classification” 
analysis tool available in ArcGIS (Figure 7-2). 

7.2.2 Image Classification Parameters in the MODIS Data Classifier Custom Task 

With regard to the parallelepiped classification scheme use in the MDC, there are two 
primary ways that the envelope of pixel inclusion can be altered: adjusting the mean and 
standard deviation for that class, and adjusting the number of standard deviations used to 
create the envelope. While the mean and standard deviation for a class may be adjusted  
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Figure 7-2. Results of classifying the “AERONET_Fresno.2009089.terra.250m” 

image subset using the ArcGIS “Maximum Likelihood Classification” 
tool to derive reference data. 

 
indirectly through varying the number and variability of training points used to define the 
class (i.e., training pixels), the number of standard deviations used in the classification 
can be modified directly in the MDC using the adjustable “range” trackbar control in the 
custom task user interface (see Figure 5-11). This trackbar allows the user to adjust the 
number of standard deviations, from one to four, used to define the envelope of inclusion. 
The readout below the trackbar provides a unit-less measure from 0 to 100. Table 3 
summarizes the basic allowable standard deviations and their associated trackbar settings; 
fractional standard deviations can be applied using intermediate settings. 
 
Table 3. Standard deviation settings for the MODIS Data Classifier custom task and 

associated trackbar setting values. 
Number of Standard Deviations Trackbar Setting 

1 0 
2 33 
3 66 
4 100 

 
The performance analyses that follow are specifically focused on how classification 

results are influenced by adjusting the range and the number and variability of training 
points, as well as how results of the MDC custom task compare to results from the 
ArcGIS maximum likelihood classification tool. 

To be clear, the intent of this study was not to determine the accuracy of the MDC 
results versus reality, but rather to compare the MDC results to those derived using 
commercially available tools. The purpose of this was simply to ensure that the MDC 
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functions as designed and that there are no anomalous results which might be the product 
of an error programmed into the logic of the tool. 

7.2.3 Performance Analysis 

7.2.3.1 Reference Image Class 

The MDC custom task was developed to classify only one class in a given MODIS RRP 
subset. The primary reason for this design is that the client for this project is interested in 
using the resulting custom task toolkit for identifying and monitoring environmental 
conditions related to natural disasters or conditions that may affect mobility (e.g., 
flooding, vegetation/ground cover, snow/ice, dust). Therefore, generally only one image 
class would be necessary to extract at any given time. In addition, designing the MDC 
custom task to operate on only one class at a time made development of the task much 
more straightforward and also makes executing the task simple and fast from a 
computational standpoint. 

Due to this focus on only one image class, it was necessary to select an appropriate 
class for the present study. Since the goal of the study was to analyze the performance of 
the MDC custom task, “water” was selected as the baseline image class to use for 
comparison because it appears to have the most class separation of all the broad image 
classes present, and also has the least variability with regard to spectral values (Figure 7-
3).  
 

 
Figure 7-3. Two dimensional spectral distribution of image classes present in the 

“AERONET_Fresno.2009089.terra.250m” subset.  
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These characteristics provide the ability to assess the MDC’s performance while limiting 
any variation or error that could result from using an image class that is in proximity to or 
overlapping the spectral space of another image class. All of the results that follow focus 
on the performance of the MDC custom task in classifying pixels that represent “water” 
versus pixels classified as “water” by the ArcGIS maximum likelihood classification tool. 

7.2.3.2 Adjusting the Number of Standard Deviations Used 

Methods 
 
In an effort to assess the impact of changing the number of standard deviations used with 
the MDC custom task, 30 training points were selected that represent as much of the 
variability as possible for “water” pixels in the 
“AERONET_Fresno.2009089.terra.250m” subset. The subset was then classified using 
the MDC custom task to identify all “water” pixels using trackbar settings equivalent to 
1, 1.5, 2, 2.5, 3, 3.5, and 4 standard deviations. The results of each of these classifications 
were then compared to “water” pixels from the reference classified data set. 
 
Results 
 
Figures 7-4 and 7-5 illustrate the overall results of the analysis. In Figure 7-4, the overall 
number of “water” pixels that were identified is plotted along with a line indicating the 
overall number of “water” pixels from the reference classified data set. Since results from 
the two different methods will not produce exactly the same results, Figure 7-5 illustrates 
the differences using graphs that plot the number of pixels for four different comparisons.  

These graphs are intended to show differences in the numbers of pixels classified 
either as “water” or “not water” for both methods. The most noticeable characteristics of 
these results are that: 
 

• the number of “water” pixels from the MDC custom task quickly exceed the 
number of “water” pixels in the reference data set 

• while the number of “water” pixels increases rapidly between 1 and 2 standard 
deviations then more slowly from 2 to 4 standard deviations, the number of pixels 
reached a plateau of sorts between 2 and 2.5 standard deviations 

• this same plateau is visible in the four comparisons of “water” and “not water” 
pixels 

• there are a large number of pixels classified as “water” by the MDC custom task 
that were classified as “not water” in the reference data set 

• there are also a large number of pixels classified as “water” in the reference data 
set that were classified as “not water” by the MDC task. 

 
Although the results of the MDC custom task are similar to those from ArcGIS, 

increasing the number of standard deviations used beyond 1 resulted in an apparent over-
prediction of “water” by the MDC task of anywhere from 11,450 to 44,746 pixels, or as 
much as 1.3% of those identified in the reference. It is clear from Figure 7-5 that nearly  
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Figure 7-4. Number of pixels classified as “water” by the MDC using varying 

standard deviations. The red dashed line indicates the number of 
“water” pixels in the reference data set, and the red arrow indicates an 
apparent plateau between 2 and 2.5 standard deviations. 

 

 
Figure 7-5. Four different comparisons showing the number of pixels that were 

classified by the MDC custom task and the reference data set as either 
“water” or “not water”. 
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all of this difference is explained by pixels classified by the MDC task as “water” that are 
“not water” in the reference. 

To determine what other class or classes in the reference data set could explain the 
large differences between the two methods, pixels classified as “water” by the MDC task  
were compared with the four other broad image classes from the reference (i.e., cloud, 
snow/ice, vegetation, and ground). Figure 7-6 illustrates the results of these comparisons 
and reveals that virtually all of the difference is explained by pixels classified in the 
reference as “cloud” that the MDC task classified as “water”. 
 

 
Figure 7-6. Overlap of “water” pixels identified by the MDC custom task with other 

image classes in the reference data set. 
 

To evaluate this apparent misclassification, results of both methods were analyzed 
visually and in spectral space. One region of the original image containing cloud over 
water reveals that the MDC custom task did, in fact, classify many more pixels as 
“water” that are “not water” (i.e., cloud) in the reference data set (Figure 7-7). However, 
close visual inspection of these pixels indicates that classifying them as “water” is 
probably more accurate than classifying them as “cloud”. Analysis of a subset of these 
pixels in spectral space (MODIS bands 2 and 7) supports this conclusion and indicates 
that there is likely a significant amount of overlap between the “water” and “cloud” 
image classes (Figure 7-8). In fact, there appears to be a continuum of “cloud” values 
between the “cloud” and “water” end-members (see Figure 7-3 again for end-member 
locations in the same spectral space). This makes sense since pixels with decreasing 
density of clouds will take on more and more of the spectral characteristics of the ground 
features over which they exist. Therefore, a similar continuum is likely to exist between 
the “cloud” end-member and all other image class end-members. 
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Figure 7-7. Visual comparison of results from the reference data set and the MDC 

custom task (using 2.5 standard deviations) for a region of cloud over 
water from the original image subset. Light blue indicates pixels 
classified as “water”. 
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Figure 7-8. Spectral comparison of a subset of pixels from the area of interest in 

Figure 7-7. A clear continuum in spectral space exists between “water” 
and “cloud”. 

 
Conclusions 
 
The analysis of standard deviations has provided some useful conclusions that are very 
relevant to the use of the MDC custom task. Perhaps most evident is the suggestion that 
the task’s design to function on only one specific image class may actually provide better 
results than what can be derived from classification methods that yield all classes present 
in an image. It is not that the ArcGIS maximum likelihood classification tool is any less 
accurate, but rather that there is a competitive relationship that is in effect when pixels are 
being grouped into more than one class. To state this more clearly, when classifying an  
image using multiple training classes there is essentially a competition between classes 
for pixels. The MDC task, however, simply determines whether a pixel is inside a user-
defined class envelope. It is not competing with any other class envelopes for pixels. This 
may give the user more flexibility in fine-tuning results for a given class. 

The rapid rise in the number of classified pixels with the number of standard 
deviations to a plateau between 2 and 2.5 standard deviations suggests that this may be 
the optimal setting for classifying “water” pixels. However, per Figure 7-3 this setting 
will change depending upon the image class being classified and the location of all 
classes in spectral space. With respect to the current study, between 2 and 2.5 standard 
deviations, the number of pixels remained constant but steadily increased again between 
2.5 and 4 standard deviations. The assumption is that increasing the number of standard 
deviations beyond 2.5 may increase accuracy but may also increase the number of false 
positives, or erroneous image class pixel assignments, due to the image class envelope 
overlapping other image classes, as illustrated in Figure 7-3. This is supported by visual 
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inspection of difficult to classify regions (e.g., transition between water and land) and 
regions of false positives in the original subset with increasing standard deviations 
(Figure 7-9). It is evident that more and more pixels in the difficult to classify transition 
zones are classified with increasing standard deviations, but it comes at the cost of 
including more and more erroneously classified pixels. The conclusion is that more pixels 
will be classified correctly using higher standard deviations, but there is also a higher 
likelihood of errors of commission (false positives), so more care must be taken in 
interpreting the results. 

7.2.3.3 Varying the Number and Selectivity of Training Points 

Methods 
 
To assess the effect that increasing the number and selectivity of training points has on 
MDC classification results, an initial set of five training points was created and used to 
classify the image. These points were not selectively placed, rather just quickly added to 
areas of the image that contained water. Additional non-selective training points were 
added in increments of five, up to 50 total training points, and the image was reclassified 
after adding each new increment. The resulting classification results were then compared 
for overlap with the reference data set of pixels classified as “water.” Since the 
experimental classifications were compared for overlap with the reference, the greatest 
number of pixels that could be classified was that which was contained within the 
reference. This provided a baseline against which to compare experimental results. 

For comparison, following the classifications using non-selective training points, 
two classifications were conducted using sets of 10 and 25 selectively placed points that 
were added with the purpose of trying to characterize as much variation as possible in the 
“water” image class (i.e., selective placement). 
 
Results 
 
Results of increasing the number and variability of training points are summarized in 
Figure 7-10. It is clear and probably not too surprising that increases in the number of 
training points are, in general, positively correlated with the number of pixels that are 
classified. The small variation in pixel count evident between increments is also to be 
expected, since the addition of new training points will modify the effective class mean 
and standard deviation used in the parallelepiped classification. 

It is also clear from Figure 7-10 that selectively placed training points yield more 
accurate classification results, and good initial results were achieved with as few as 10 
training points. In fact, 10 selectively placed points yielded better results than 40 non-
selectively placed points, and 25 selectively placed points were able to account for almost 
the same number of classified pixels as 50 non-selectively placed points. Again, this is 
not surprising, given that selectively placed points have a greater likelihood of capturing 
more of the overall variability of the class, creating a more accurate envelope of inclusion 
for an image class. 

The fact that the MDC custom task did not yield results that overlapped all or nearly 
all of the same pixels as those derived for the reference data set is expected; application 
of different classification methods and training points will result in different class  
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Figure 7-9. Increasing accuracy and false positives with increasing standard 

deviations. Pixels classified as water are light blue. Red arrows indicate 
greater accuracy for some pixels (left column, transition from water to 
land) and greater error for others (right column, shadows). 
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Figure 7-10. Classification results using increasing numbers of non-selectively 

placed training points, with two sets of selectively placed training points 
for comparison. 

 
statistics. Close inspection of the various classification results reveals that all of the non-
overlapping pixels resulted from small bodies of water with a unique spectral signature. 
The addition of one or two more selectively placed training points to these bodies of 
water would remove this discrepancy. 
 
Conclusions 
 
The training point analysis yielded results that provide important considerations for 
applying the MDC custom task. It is clear, albeit not surprising, that adding training 
points that capture most or all of the variations in an image class renders the most faithful 
classification results. What is surprising, however, is that very accurate results can be 
accomplished with relatively few (i.e., 10 to 25) training points. This is an informative 
result since the MDC custom task only provides users with the ability to add points and 
not polygonal training areas. 

7.2.4 Performance Analysis Summary 

Performance analyses conducted on the MODIS Data Classifier custom task for ArcGIS 
Explorer provided valuable information for application of the task in deriving 
environmental spatial data. Although the study is preliminary, based on a single class, the 
analyses reveal that the custom task can yield classification results comparable to results 
obtained through commercial software packages like ESRI’s ArcGIS and ERDAS 
Imagine. However, the analyses also reveal that even better classifications may result 
through careful placement of image class training points, using at least 10 training points. 
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Further accuracy in classification results may be attainable through carefully increasing 
the applied standard deviation to four standard deviations, as long as one is cognizant that 
larger standard deviations can also yield more erroneous pixel classifications. In 
hindsight, it also appears that the design of the custom task to operate on only one image 
class at a time may also operate in the task’s favor from the standpoint of overall 
classification accuracy using the parallelepiped method. 

7.3 A Case Study: April/May 2009 Flooding of the Red River of the 
North 

The Red River of the North originates along the southern border of North Dakota with 
Minnesota and forms much of the border between the two states. The river flows from 
south to north through the cities of Fargo and Grand Forks, North Dakota, eventually 
crossing the border into Canada, flowing through Winnipeg, Manitoba. At its terminus, 
the river empties into Lake Manitoba (Wikipedia, 2009a). 

The river has a history of major flooding, with record floods occurring in the 1880s, 
1950, 1997, and most recently in March and April, 2009 (Wikipedia, 2009b). As 
previously indicated, due to its high temporal resolution and large coverage area, the 
MODIS RRP provides a valuable source of data for monitoring large-scale environmental 
events like floods. 

To provide an example of how the MODIS Toolkit for ArcGIS Explorer can aid in 
analyzing an event like the 2009 flood of the Red River of the North, three MODIS 
subset images covering the river were classified and compared for change. The first 
subset was from May, 2008, and was selected to serve as a reference for normal river 
levels. Two more subsets from 2009, one from April 9 and the other from May 3, were 
then analyzed and compared to reveal the 2009 flood extents and how the flood 
progressed from North Dakota northward into Manitoba. Figure 7-11 illustrates the 
results, with the left-hand image showing normal conditions; the center image showing 
change between the normal conditions of May, 2008, and the flood conditions of April 9, 
2009; and the right-hand image revealing changes in flood extent between April 9 and 
May 3, 2009. 

The left-hand image shows normal conditions as of May, 2008, with red pixels 
indicating the presence of water. Note that the Red River of the North is normally so 
narrow that it is not even detected by the MODIS sensor. The center image shows the 
extent of floodwaters on April 9, with blue pixels indicating water that is not normally 
present. The right-hand hand image reveals how floodwaters moved northward between 
April 9 and May 3, from the Fargo and Grand Forks, North Dakota area into Manitoba. 
Red pixels indicate areas flooded on April 9 that were no longer flooded on May 3, blue 
pixels indicate areas not flooded on April 9 that were on May 3, and green pixels indicate 
flooded areas that did not change between April 9 and May 3. 
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Figure 7-11. Comparison of flood extents for the Red River of the North, spring 

2009, using results from the MODIS Data Classifier custom task. 
 

7.4 Summary 

The standalone “MODIS Toolkit for ArcGIS Explorer” is a solution that meets and 
exceeds all client-requested functionality for exploiting MODIS data. Furthermore, its 
availability at no cost via the Internet makes it an ideal, truly independent solution. The 
performance analysis results, coupled with the example real-world case study, reveal that 
the toolkit functions as designed and yields useful environmental spatial data that can be 
applied to military support and disaster response scenarios. Initial client feedback has 
been positive and, while not yet widely applied by the client, the toolkit was used to help 
complete a project for which MODIS RRP subsets were an ideal data source. 
 

normal 4/9/2009 5/3/2009 
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Chapter 8  – Conclusions and Future Work 
8.1 Conclusions 

At the outset of this project, the primary goals as defined by the client included the 
development of a set of tools in one user environment that would enable and improve 
user access to MODIS imagery, and the development of environmental spatial data from 
it. ArcGIS Explorer proved to be a very suitable environment in which to develop these 
tools and in many ways exceeded initial expectations. This is particularly true of the 
standalone capability of AGX, due to its custom task framework and well-developed API 
which allowed for the development of the MODIS Toolkit for ArcGIS Explorer. This 
toolkit includes all the functionality requested by the client, including: 
 

• MODIS data query and retrieval 
• image classification capability 
• automated metadata creation 
• data export capability 

 
The toolkit also includes additional functionality not requested by the client, but which 
yields a more functional and user-friendly solution. This added functionality includes: 
 

• thumbnail image queries to enhance data exploration 
• training point import/export 
• change detection capability 

 
The only characteristic of this final solution that was not realized is the ability to upgrade 
software in a manner which is transparent to the user. However, this characteristic can 
really only be implemented in a client-server framework where all necessary software 
modifications are made on the server side, and was therefore exchanged for the 
characteristic of greater software independence provided by the standalone framework. 

The development of a prototype client-server solution also yielded some important 
results related to the development of distributed GIS functionality for end-users without 
access to software licenses for commercial GIS software like ArcGIS. Specifically, the 
current framework for development of custom geoprocessing services is relatively 
limited, especially for more sophisticated GIS functionality and for certain data types, 
especially raster data. However, future improvements to ArcGIS Server may make this 
architecture a viable and more user-friendly solution that would provide access to an 
abundance of pre-existing spatial tools. Access to these tools is an important 
consideration. The standalone framework is ideal due to its independence, but this also 
requires custom development of any functionality that may be desired. This can be 
problematic in that development of custom tasks, whether simple or complicated, can be 
time consuming and requires the involvement of a programmer skilled in .NET and its 
use with the AGX API. 
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8.2 Future Work 

There are a number of possible avenues for future work related to this project. As 
discussed in Chapter 3, the core data source for the MODIS toolkit is the JPEG image 
subsets created by the MODIS RRP. However, the RRP also creates HDF-EOS format 
images for the entire Earth whose radiometric accuracy remains intact. Extending the 
present tools to enable access to and exploitation of these image files would provide users 
access to MODIS data that could be used for more scientific endeavors. 

In addition to MODIS data, another important data source that would increase the 
value of the toolkit is the archive of Landsat data now available at no cost through the 
USGS. Adding access to this archive would provide users with another source of 
environmental data—one with lower temporal resolution, but much greater spatial 
resolution (i.e., 30-90 meters). While MODIS data is a valuable source of environmental 
data, certain applications could benefit from an alternative, higher spatial resolution 
imagery source. 

As should be apparent from preceding discussions, the MODIS toolkit was also 
developed to classify only MODIS JPEG images that were retrieved using the MODIS 
Data Retriever custom task. Another extension to this project that could add value would 
be to reprogram the tools to allow users to classify any images that were loaded into 
AGX, not just RRP JPEG subsets. This would give users greater flexibility in the data 
they could use and create a toolkit that might be of use to more groups. 

In addition to developing tools to access different data sources, improving the 
existing parallelepiped classification algorithm could increase the toolkit’s usefulness. 
More specifically, the existing algorithm could be modified to allow for mathematical 
rotation of the calculated parallelepipeds. This rotation would enable the envelopes 
defined by the parallelepipeds to adhere more closely to the data, resulting in greater 
accuracy. Furthermore, developing tools to enable different image classification 
algorithms could also be beneficial to users. These tools could include both supervised 
and unsupervised schemes to maximize user friendliness and usability.  

Finally, the custom tasks discussed in this paper were all developed specifically for 
the 500 build of AGX. A completely revamped version of the software (build 900), 
complete with a totally new API, is currently scheduled for public release in summer 
2009. Since the new API includes a set of completely new programming classes, there is 
no overlap between the AGX build 500 API and the AGX build 900 API. As a result, 
tasks developed in build 500 will have to be re-developed using the build 900 API in 
order to continue working in the new software. Upgrading this project’s tasks using the 
new API and SDK would ensure their longevity and broader use. 
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Appendix B. Code Examples 
Code Example 1. VB.NET code used to determine the most suitable subset for a 

given query point using the MODIS Data Retriever custom task. 
 

' If layer is connected then determine closest subset to the query 
point 

If lvlMODISSubsets.IsConnected Then 
            fsetSubsets = lvlMODISSubsets.QueryFeatures(point, "", _ 

esriE2SpatialRelationship.Intersects) 
            If fsetSubsets.FeatureCount > 0 Then 
                intNumberOfSubsets = fsetSubsets.FeatureCount 
                intNumberOfIterations = intNumberOfSubsets - 1 
      ' i matches index values of the GetFeature method 
                For i As Integer = 0 To intNumberOfIterations 
                    ' Convert user point and subset centerpoint lats 

and longs to radians 
subsetLongRadians = (0.0174532925) * _ 
  fsetSubsets.GetFeature(i).Shape.Envelope.Center.X 

                    subsetLatRadians = (0.0174532925) * _ 
    fsetSubsets.GetFeature(i).Shape.Envelope. _ 
    Center.Y.ToString 

                    pointLongRadians = (0.0174532925) * _ 
    point.Envelope.Center.X.ToString 

                    pointLatRadians = (0.0174532925) * _ 
    point.Envelope.Center.Y.ToString 

 
                    ' Great circle distance 
                    dblDistance = 6378 * (Acos((Cos(pointLatRadians) _ 

* Cos(subsetLatRadians)) * _ 
(Cos(pointLongRadians - subsetLongRadians)) _ 

                        + ((Sin(pointLatRadians)) * _ 
    (Sin(subsetLatRadians))))) 
 
                    ' If this is the first iteration then set 

  dblShortestDistance to the first distance result 
                    If i = 0 Then 
                        dblShortestDistance = dblDistance 
                        featSubset = fsetSubsets.GetFeature(0). _ 

    GetValueAsString(2) 
                    End If 
     ' If distance is shorter than dblShortestDistance,  

reset dblShortestDistance & use new subset name 
                    If dblDistance <= dblShortestDistance Then 
                        dblShortestDistance = dblDistance 
                        featSubset = fsetSubsets.GetFeature(i). _ 

    GetValueAsString(2) 
' used to set up geometry of correct subset for 
    display 

                        subsetIndex = i 
                    End If 
                Next 
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                ' Set the geometry of the correct subset to be 
displayed with query point on globe 

                _subsetGeometry = fsetSubsets.GetFeature _ 
(subsetIndex).Shape 

            Else 
                featSubset = "No Subsets" 

' Clears _subsetGeometry if previous queries were 
performed 

                _subsetGeometry = Nothing 
            End If 

End If 
 

Code Example 2. VB.NET code used to establish URI's and filenames from user-
defined parameters for retrieving MODIS subset images and world 
files. 

 
' String variables for URI’s and local filenames; used to download with 
the WebClient class 
 
' Note: the structure of the URI's below may have to be changed if 
' MODIS Rapid Response changes the URL's used to archive data 
Dim strImageURI As String = _str_MODIS_RRP_URL & _strMODISSubset & _ 

"." & _strYear & _strDay & "." & _strPass & _strBands & _ 
".250m" & ".jpg" 

Dim strWorldfileURI As String = _str_MODIS_RRP_URL & _ 
_strMODISSubset & "." & _strYear & _strDay & "." & _ 
_strPass & _strBands & ".250m" & ".jgw" 

Dim strImageFileName As String = _strMODISSubset & "." & _ 
_strYear & _strDay & "." & _strPass & _strBands & _ 
".250m" & ".jpg" 

Dim strWorldfileName As String = _strMODISSubset & "." & _strYear _ 
& _strDay & "." & _strPass & _strBands & ".250m" & ".jgw" 

 
Code Example 3. VB.NET code used for retrieving MODIS subsets and world files 

with the WebClient class 
 
' Set up webclients and download MODIS images and worldfiles 
Dim webclientRetrieveMODIS As New WebClient() 
Dim webclientRetrieveWorldfile As New WebClient 
webclientRetrieveMODIS.DownloadFile(strNewImageURI,strNewImageFilename)           
webclientRetrieveWorldfile.DownloadFile(strNewWorldfileURI, _ 

strNewWorldfileFilename) 
 
Note that the variable strNewImageURI holds the same value as strImageURI (etc. for 
the world file URI and filename variables) from Code Example 2. strImageURI is passed 
to the Task class to run asynchronously and is renamed to try to avoid confusion 
 
Code Example 4. VB.NET code used to programmatically create spatial reference 

XML files for every image and thumbnail that is retrieved. 
 
' Create the spatial reference for the images. All are WGS-84 
Dim intFilenameLength As Integer = strImageFileName.Length 
Dim strXMLFilename As String = strImageFileName.Remove_ 

(intFilenameLength - 4, 4) 
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Dim strSpatialRefFilename As String = _strProgramFilesPath & _ 
"\ArcGIS Explorer\MODIS Toolkit\MODISDataRetriever\ _ 
MODIS Images\" & strXMLFilename & ".jpg.aux.xml" 

Dim charQuote As Char = Chr(34) 
Dim strSpatialRefText As String = "<PAMDataset>" & vbCrLf & _ 

" <SRS>GEOGCS[" & charQuote & "GCS_WGS_1984" & charQuote & _ 
",DATUM[" & charQuote & "WGS_1984" & charQuote & ",SPHEROID[" & _ 
charQuote & "WGS_1984" & charQuote & ",6378137.0," & _ 
"298.257223563]],PRIMEM[" & charQuote & "Greenwich" & _ 
charQuote & ",0.0],UNIT[" & charQuote & "Degree" & charQuote & _ 
",0.0174532925199433]]</SRS>" & vbCrLf & "</PAMDataset>" 

File.WriteAllText(strSpatialRefFilename, strSpatialRefText) 
 
Code Example 5. VB.NET code used to programmatically create metadata XML 

files for every image that is retrieved. 
 
' Create a simple metadata file for the image. 
Dim strMetadataFilename As String = _strProgramFilesPath & _ 

"\ArcGIS Explorer\MODIS Toolkit\MODISDataRetriever\" & _ 
"MODIS Images\" & strXMLFilename & ".jpg.xml" 

Dim strMetadataText As String = "<?xml version=" & charQuote & "1.0" &_ 
charQuote & "?>" & vbCrLf & "<!-- <!DOCTYPE metadata SYSTEM " & _ 
charQuote & "http://www.esri.com/metadata/esriprof80.dtd" & _ 
charQuote & ">-->" & vbCrLf & "<metadata xml:lang=" & _ 
charQuote & _"en" & charQuote & ">" & vbCrLf & " <idinfo>" & _ 
vbCrLf &"  <descript>" & vbCrLf & "  <langdata Sync=" & _ 
charQuote & "TRUE" & charQuote & ">en</langdata>" & vbCrLf & _ 
"  <abstract>This is a MODIS subset image produced by the " & _ 
"MODIS Rapid Response Project at NASA/GSFC and available at " & _ 
"http://rapidfire.sci.gsfc.nasa.gov/subsets/." & "</abstract>" &_ 
vbCrLf & "  </descript>" & vbCrLf & "  <citation>" & vbCrLf & _ 
"   <citeinfo>" & vbCrLf & "    <origin>MODIS Rapid Response " &_ 
"Project at NASA/GSFC</origin>" & vbCrLf & "    <pubdate>" & _ 
dtpDate.Value.Date & "</pubdate>" & vbCrLf & "    <title Sync="&_ 
charQuote & "TRUE" & charQuote & ">" & strImageFileName & _ 
"</title>" & vbCrLf & "    <ftname Sync=" & charQuote & _ 
"TRUE" & charQuote & ">" & strImageFileName & "</ftname>" & _ 
vbCrLf & "    <geoform Sync=" & charQuote & "TRUE" & charQuote &_ 
">raster digital data</geoform>" & vbCrLf & "   </citeinfo>" & _ 
vbCrLf & "  </citation>" & vbCrLf & "  <timeperd>" & vbCrLf & _ 
"   <timeinfo>" & vbCrLf & "    <sngdate>" & vbCrLf & _ 
"     <caldate>" & dtpDate.Value.Date & "</caldate>" & vbCrLf & _ 
"    </sngdate>" & vbCrLf & "   </timeinfo>" & vbCrLf & _ 
"  </timeperd>" & vbCrLf & "  <keywords>" & vbCrLf & _ 
"   <theme>" & vbCrLf & "    <themekey>MODIS Rapid Response & _ 
Project, " & "NASA/GSFC, subset: " & _strMODISSubset & ", source 
file: " & strImageFileName & "</themekey>" & vbCrLf & _ 
"   </theme>" & vbCrLf & "  </keywords>" & vbCrLf & _ 
" </idinfo>" & vbCrLf & "</metadata>" 

File.WriteAllText(strMetadataFilename, strMetadataText) 
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Code Example 6. VB.NET code used to ensure that only MODIS RRP subsets are 
able to be selected for classification via the MODIS Data Classifier. 

 
' Setup vars for metadata (if it exists) 
Dim strMetadata As String = currentLayer.Workspace & _ 
                                currentLayer.Dataset & ".xml" 
Dim isMetadata As Boolean = File.Exists(strMetadata) 
Dim xmlDocument As XmlDocument = New XmlDocument 
Dim strXMLAbstractkey As String 
Dim strXMLThemekey As String 
Dim isJPEG As Boolean = False 
Dim isMODIS As Boolean = False 
 
' If metadata exists, check it to see if the image is a 
' jpeg and if it's a MODIS RRP image subset 
If isMetadata = True Then 

xmlDocument.Load(strMetadata) 
strXMLAbstractkey = xmlDocument.SelectSingleNode _ 

       ("/metadata/idinfo/descript/abstract").InnerText 
strXMLThemekey = xmlDocument.SelectSingleNode _ 

       ("/metadata/idinfo/keywords/theme").InnerText 
isJPEG = Not strXMLAbstractkey.Contains("classified") And _ 

               Not strXMLAbstractkey.Contains("change") 
      isMODIS = strXMLThemekey.Contains("MODIS Rapid Response Project") 
End If 
 
' If the layer is a raster dataset (i.e., an image) and it 
' is a MODIS RRP subset, then add to the combobox 
If currentLayer.Type = "Raster Layer" And isJPEG = True _ 

And isMODIS = True Then 
cboSelectImage.Items.Add(currentLayer.DisplayName) 

End If 
 
Code Example 7. VB.NET code used by the MODIS Data Classifier to create an 

array of training point row-column coordinates. This array is used to 
develop band statistics for the training points (see Code Example 9) 

 
ReDim _aryTrainingPoints(_intPointCount - 1, 1) 
 
' Iterate through all training points and add 
' row, column coordinates to array 
For i As Integer = 0 To _intPointCount - 1 

' Set up variables to hold training point coordinates 
      Dim currentResult As ESRI.ArcGIS.E2API.Result = _ 
  _resultManager.GetTopLevelResult(0).GetChildResult(i) 
      Dim dblPointLong As Double = currentResult.GetExtent.Center.X 
      Dim dblPointLat As Double = currentResult.GetExtent.Center.Y 
      ' Set up variables to determine column, row of the point 
      Dim dblPixelSizeX = _aryWorldfileText(0) 
      Dim dblPixelSizeY = _aryWorldfileText(3) 
 ' get first pixel longitude 
      Dim dblFirstPixelX As Double = _aryWorldfileText(4) 
 ' get first pixel latitude 
      Dim dblFirstPixelY As Double = _aryWorldfileText(5) 
      ' Calculate column, row of the training point 
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      Dim intPointColumn As Integer = ((dblPointLong - dblFirstPixelX)_ 
/ dblPixelSizeX) + 1 

      Dim intPointRow As Integer = ((dblPointLat - dblFirstPixelY) _ 
/ dblPixelSizeY) + 1 

      ' Add to the training point array 
      _aryTrainingPoints(i, 0) = intPointRow 
      _aryTrainingPoints(i, 1) = intPointColumn 
Next 
 
Code Example 8. VB.NET code used to copy individual byte values from MODIS 

images into an image data array for further use in the MODIS Data 
Classifier custom task. 

 
' Redimension image data array using height and width of selected image 
' to set array extent. 5 layers for 5 bands. 
ReDim _aryImageData(4, _imageOriginal1.Height - 1, _ 

_imageOriginal1.Width - 1) 
 
' Set up parameters for lockbits method 
Dim imageRectangle As Rectangle = New Rectangle(0, 0, _ 
 _imageOriginal1.Width, _imageOriginal1.Height) 
Dim pixelFormat As PixelFormat = pixelFormat.Format24bppRgb 
'true color (bands 1-4-3) 
Dim imageData1 As BitmapData = _imageOriginal1.LockBits _ 
(imageRectangle, ImageLockMode.ReadWrite, pixelFormat) 
'false color (bands 7-2-1) 
Dim imageData2 As BitmapData = _imageOriginal2.LockBits _ 

(imageRectangle, ImageLockMode.ReadWrite, pixelFormat) 
Dim ptr1 As IntPtr = imageData1.Scan0 'true color 
Dim ptr2 As IntPtr = imageData2.Scan0 'false color 
 
' Determine total number of bytes in the image 
Dim intNumBytes As Integer = _imageOriginal1.Width * _ 
     _imageOriginal1.Height * 3 
Dim aryByteValues1(intNumBytes - 1) As Byte 
Dim aryByteValues2(intNumBytes - 1) As Byte 
Marshal.Copy(ptr1, aryByteValues1, 0, intNumBytes) 
Marshal.Copy(ptr2, aryByteValues2, 0, intNumBytes) 
 
' Since data was copied to aryByteValues 1 and 2, we can unlock 
' bits of the original images 
_imageOriginal1.UnlockBits(imageData1) 
_imageOriginal2.UnlockBits(imageData2) 
 
' Iterate through the image byte value arrays, adding band values 
' to the appropriate layer in _aryImageData. Iteration is set up  
' to add the bands sequentially (1-2-3-4-7). 
Dim intByteIndex As Integer = 0 
For j As Integer = 0 To _imageOriginal1.Height - 1 

For k As Integer = 0 To _imageOriginal1.Width – 1 
 'band 1 

       _aryImageData(0, j, k) = aryByteValues1(intByteIndex + 2) 
  'band 2  
            _aryImageData(1, j, k) = aryByteValues2(intByteIndex + 1) 

'band 3  
            _aryImageData(2, j, k) = aryByteValues1(intByteIndex) 
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  'band 4 
            _aryImageData(3, j, k) = aryByteValues1(intByteIndex + 1) 
  'band 7  
            _aryImageData(4, j, k) = aryByteValues2(intByteIndex + 2)  
            intByteIndex = intByteIndex + 3 

Next k 
Next j 
 
Code Example 9. VB.NET code used by the MODIS Data Classifier to iterate 

through the training point row-column coordinate array to calculate 
the mean training point value for each MODIS image band. 

 
Private Function calculateMean(ByVal bandNumber As Integer) As Double 
 

Dim sum As Integer = 0 
      Dim mean As Double 
      Dim row As Integer 
      Dim column As Integer 
 
      ' Iterate through the training point row-column coordinate array, 
 ' using the rows and columns to access image data 
      For i As Integer = 0 To _intPointCount - 1 
       row = _aryTrainingPoints(i, 0) 
            column = _aryTrainingPoints(i, 1) 
            If _isNDVI = False Then 
                sum = sum + _aryImageData(bandNumber, row - 1, _ 

column - 1) 
            Else 
                sum = sum + _aryNDVIData(bandNumber, row - 1, _ 

column - 1) 
            End If 

Next i 
 
      mean = (sum / _intPointCount) 
      Return mean 
End Function 
 
Note that this function calculates the mean for each band. Similar code is used to 
calculate the standard deviations for each band of the training point data. 
 
Code Example 10. VB.NET code using nested For loops to test each element of the 

image data array for inclusion in the image class of interest. If array 
(subset pixel) values fall within the window of inclusion, their 
equivalent pixel in a new .png bitmap is set to red—otherwise they are 
set to transparent. 

  
' Iterate through the image byte value arrays, testing each pixel 
' to see if it meets the min-max envelope of each band as determined 
' from the training point set. 
Dim i As Integer = 0 
For j As Integer = 0 To _imageOriginal1.Height - 1 

For k As Integer = 0 To _imageOriginal1.Width - 1 
If _isNDVI = False Then ' classify image data 

If (band1Min <= _aryImageData(0, j, k) _ 
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 And _aryImageData(0, j, k) <= band1Max) _ 
                   And (band2Min <= _aryImageData(1, j, k) _ 

 And _aryImageData(1, j, k) <= band2Max) _ 
                   And (band3Min <= _aryImageData(2, j, k) _ 

 And _aryImageData(2, j, k) <= band3Max) _ 
                   And (band4Min <= _aryImageData(3, j, k) _ 

 And _aryImageData(3, j, k) <= band4Max) _ 
 And (band7Min <= _aryImageData(4, j, k) _ 
 And _aryImageData(4, j, k) <= band7Max) Then 

              aryByteValues(i) = 0 ' blue channel 
                   aryByteValues(i + 1) = 0 ' green channel 
                   aryByteValues(i + 2) = 255 ' red channel--set 
                   aryByteValues(i + 3) = 255 ' Alpha channel 
             Else 
                   aryByteValues(i) = 0 ' blue channel 
                   aryByteValues(i + 1) = 0 ' green channel 
                   aryByteValues(i + 2) = 0 ' red—don’t set 
                   aryByteValues(i + 3) = 0 ' Alpha-set transp. 

End If 
      i = i + 4 

Next k 
Next j 
 
Code Example 11. VB.NET code used to validate entries in the change detection 

user interface of the MODIS Data Classifer custom task. 
 

Private Sub ValidateEntries() 
btnCompare.Enabled = False 'reset to disabled then check again 

 '2 datasets selected 
      If Not lblDataset1.Text = "" And Not lblDataset2.Text = "" Then 
  'not the same dataset 
            If Not lblDataset1.Text = lblDataset2.Text Then 
   'same image subset for comparison 
                 If _strSubset1Name = _strSubset2Name Then 
    'same image class 
                     If _strImageClass1 = _strImageClass2 Then 
                        btnCompare.Enabled = True 
                     End If 
                 End If 
        End If 
    End If 
End Sub 
 
Code Example 12. Python script used on ArcGIS Server to conduct maximum 

likelihood classification of a MODIS subset image. Required inputs 
include a .txt file with training polygon coordinates and descriptions, 
and the MODIS subset ID as text. 

 
import string, os, sys, locale, arcgisscripting, urllib, time, 
traceback 
gp = arcgisscripting.create(9.3) 
gp.overwriteoutput = 1 
 
def retrieveMODISImage(imageName): 
    gp.AddMessage("\tRetrieving MODIS image....") 
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    outputImage = os.path.join(gp.scratchworkspace, 'Image.jpg') 
    outputWorldfile = os.path.join(gp.scratchworkspace, 'Image.jgw') 
 
    # setup necessary variables 
    worldfileName = imageName[:-4] + ".jgw" 
    imageURL = 'http://rapidfire.sci.gsfc.nasa.gov/subsets/?subset=' + 

imageName 
    worldfileURL ='http://rapidfire.sci.gsfc.nasa.gov/subsets/?subset=' 

+ worldfileName 
 
    # retrieve image data from NASA's MODIS Rapid Response web server 
    image = urllib.URLopener() 
    image.retrieve(imageURL,outputImage) # retrieve image 
    image.retrieve(worldfileURL,outputWorldfile) # retrieve worldfile 
 
    return outputImage, outputWorldfile 
 
if __name__ == '__main__':     
try: 
    # Check out Spatial Analyst extension license 
    gp.CheckOutExtension("Spatial") 
 
    # Get inputs 
    inputTxtFile = gp.getparameterastext(0) 
    imageName = gp.getparameterastext(1) 
    OutClassifiedRaster = gp.getparameterastext(2) 
    OutClassifiedRaster = os.path.join(gp.scratchworkspace, 

"mlcoutput") 
    TrainingPolygonFC = os.path.join(gp.scratchworkspace, 

"TrainingPolygons.shp") 
 
    ##------------------------------------------- 
    ##Create Feature Class from the trainingpolygons 
    ##------------------------------------------- 
    outputSR = "GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID 

['WGS_1984',6378137.0,298.257223563]],PRIMEM 
['Greenwich',0.0],UNIT['Degree',0.0174532925199433]];
IsHighPrecision" 

    gp.CreateFeaturesFromTextFile_samples(inputTxtFile, ".", 
TrainingPolygonFC, outputSR) 

    gp.AddField(TrainingPolygonFC, "TrainingID", "LONG") 
    gp.CalculateField(TrainingPolygonFC, "TrainingID", "[File_ID]") 
 
    ##------------------------------------------- 
    ##Delete "Id" field from TrainingPolygon.shp 
    ##------------------------------------------- 
    gp.AddMessage("\tDeleting 'File_ID' and 'Id' fields from training 

polygon feature class....") 
    gp.deletefield_management(TrainingPolygonFC, "File_ID;Id") 
     
    ##------------------------------------------- 
    ##Retrieve MODIS image 
    ##------------------------------------------- 
    InRasters, WorldFile = retrieveMODISImage(imageName) 
 
    ##------------------------------------------- 
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    ##Create signature file 
    ##------------------------------------------- 
    gp.AddMessage("\tCreating signature file....") 
    SignatureFile = os.path.join(gp.scratchworkspace, "sigfile.gsg") 
    SampleField = "TrainingID" 
    gp.CreateSignatures_sa(InRasters, TrainingPolygonFC, SignatureFile, 

"", SampleField) 
 
    ##------------------------------------------- 
    ##Run maximum likelihood classification 
    ##------------------------------------------- 
    gp.AddMessage("\tConducting maximum likelihood classification....") 
    gp.MLClassify_sa(InRasters, SignatureFile, OutClassifiedRaster) 
 
except: 
    tb = sys.exc_info()[2] 
    tbinfo = traceback.format_tb(tb)[0] 
    pymsg = "PYTHON ERRORS:\nTraceback Info:\n" + tbinfo + "\nError 

Info:\n    " + \ str(sys.exc_type)+ ": " +  
str(sys.exc_value) + "\n" 

    gp.AddError(pymsg) 
    gp.AddError("GP ERRORS:\n" + gp.getmessages()) 
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