
University of Redlands University of Redlands

InSPIRe @ Redlands InSPIRe @ Redlands

MS GIS Program Major Individual Projects Theses, Dissertations, and Honors Projects

8-2010

Dynamic Visualizations for the Analysis of Desert Tortoise Dynamic Visualizations for the Analysis of Desert Tortoise

Telemetry and Habitat in Joshua Tree National Park Telemetry and Habitat in Joshua Tree National Park

David D. Turnbull
University of Redlands

Follow this and additional works at: https://inspire.redlands.edu/gis_gradproj

 Part of the Geographic Information Sciences Commons, and the Zoology Commons

Recommended Citation Recommended Citation
Turnbull, D. D. (2010). Dynamic Visualizations for the Analysis of Desert Tortoise Telemetry and Habitat in
Joshua Tree National Park (Master's thesis, University of Redlands). Retrieved from
https://inspire.redlands.edu/gis_gradproj/125

This work is licensed under a Creative Commons Attribution 4.0 License.
This material may be protected by copyright law (Title 17 U.S. Code).
This Thesis is brought to you for free and open access by the Theses, Dissertations, and Honors Projects at
InSPIRe @ Redlands. It has been accepted for inclusion in MS GIS Program Major Individual Projects by an
authorized administrator of InSPIRe @ Redlands. For more information, please contact inspire@redlands.edu.

https://inspire.redlands.edu/
https://inspire.redlands.edu/gis_gradproj
https://inspire.redlands.edu/etd
https://inspire.redlands.edu/gis_gradproj?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/81?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:inspire@redlands.edu

University of Redlands

Dynamic Visualizations for the Analysis of Desert Tortoise Telemetry
and Habitat in Joshua Tree National Park

A Major Individual Project submitted in partial satisfaction of the requirements
for the degree of Master of Science in Geographic Information Systems

by

David D. Turnbull

Fang Ren, Ph.D., Committee Chair

Mark Kumler, Ph.D.

August 2010

Dynamic Visualizations for the Analysis of Desert Tortoise Telemetry and Habitat in
Joshua Tree National Park

Copyright © 2010

by

David D. Turnbull

 v

Acknowledgements

I would like to thank the University of Redlands and the professors for the opportunity,
education, and guidance that enabled me to complete this project. In particular, I give my
gratitude to my advisor, Fang Ren, Ph.D., for her guidance and input.

 I would like to give much thanks to Joshua Tree National Park GIS Analyst Sean
Murphy, whose timely support and enthusiasm with the project allowed me to ensure
successful completion.

I would also like to thank Kevin Martin, creator of the Export to KML Tool for ArcMap.
His assistance and willingness to enhance his tools based upon my request, helped to
provide for better animations of the data within Google Earth, ArcGIS Explorer, and
ArcMap 10.

The encouragement and support of my supervisor, Jerry Tuttle, made it possible for me to
participate in this program.

I would like to dedicate this project to my late grandmother, Marie Zacharias, who
always had a house filled with tortoise and turtle figurines.

Of course, I could not have done this without the support of my wife, who suggested that
I enroll in the MS GIS program and supported me throughout the project. I also thank my
family as a whole for their voting, “Let’s go to California!”

 vii

Abstract

Dynamic Visualizations for the Analysis of Desert Tortoise Telemetry and Habitat in
Joshua Tree National Park

by
David D. Turnbull

Joshua Tree National Park (JOTR) has been monitoring their desert tortoise population’s
telemetry since 2005 using transmitters attached to as many as 18 tortoises. JOTR needed
to visualize tortoise telemetry data and temporal environmental datasets to see what
factors may be affecting the movements of the tortoises. JOTR also needed to look at the
telemetry data in relation to roads to see if curbing implementations have been effective.
The foundation for this project is ArcMap™. This project includes various tools written
in Python within ArcMap’s toolboxes that allow for automated data manipulation and
analysis of the various datasets. These tools prepare the datasets for dynamic
visualizations of the data in Google Earth®. Additionally, the preparation of the data will
also enable it to be exploited by ArcGIS 10’s integrated time-visualization capability.
ArcGIS Explorer™ can also be used to perform similar dynamic visualizations as Google
Earth. The provided tools and visualizations aim to provide JOTR with a means to help
analyze and monitor their tortoise population to improve their survivability.

 ix

Table of Contents

Chapter 1 – Introduction ... 1
1.1 Client ... 1
1.2 Problem Statement .. 2
1.3 Proposed Solution ... 3
1.3.1 Goals and Objectives .. 3
1.3.2 Scope ... 4
1.3.3 Methods... 4
1.4 Audience ... 5
1.5 Overview of the Rest of this Report ... 5

Chapter 2 – Background and Literature Review .. 7
2.1 Physical Environment and Survivability .. 7
2.2 Movement Tracking .. 8
2.3 Summary ... 9

Chapter 3 – Systems Analysis and Design .. 11
3.1 Problem Statement .. 11
3.2 Requirements Analysis ... 11
3.2.1 Non-Functional Requirements .. 11
3.2.2 Functional Requirements .. 12
3.3 System Design .. 14
3.4 Project Plan ... 15
3.4.1 Initial Project Plan... 15
3.4.2 Changes to the Initial Project Plan .. 17
3.5 Summary ... 18

Chapter 4 – Database Design ... 19
4.1 Conceptual Data Model .. 19
4.2 Logical Data Model .. 20
4.2.1 Tortoise Geodatabase .. 21
4.2.2 Joshua Tree Features Geodatabase ... 25
4.2.3 Weather Geodatabase .. 27
4.2.4 Summary of Data Sources .. 30
4.3 Data Collection Methods .. 33
4.4 Data Scrubbing and Loading .. 36
4.5 Summary ... 38

Chapter 5 – Implementation .. 39
5.1 TimeStamp and EndTime Field Creator ... 40
5.1.1 Formatting Time ... 40
5.1.2 Populating TimeStamp (Start Time) ... 41
5.1.3 Populating EndTime ... 41
5.2 Road and Trot Buffer Tool ... 42
5.3 Stationary Event from Table Tool .. 43
5.3.1 Event Table ... 43
5.3.2 Geometry for the Stationary Event ... 44

 x

5.3.3 Options for Creating Event Tables ... 44
5.3.4 Metric/English Units ... 45
5.4 Tortoise Import Tool ... 45
5.4.1 Options for Importing Data ... 45
5.4.2 Naming Feature Classes .. 46
5.5 Tortoise Maximum Speed Finder ... 47
5.5.1 Methods to Calculate the Maximum Speed .. 47
5.5.2 Finding Maximum Tortoise Speed with Python ... 47
5.6 Tortoise Potential Path Tool ... 48
5.6.1 Building the Ellipse ... 48
5.6.2 Tool Options ... 52
5.7 Lost Tortoise Tool ... 53
5.8 Priority Trot Needs Tool ... 54
5.9 Export to KML .. 56
5.10 Summary ... 57

Chapter 6 – Results and Analysis .. 59
6.1 Installation of Components ... 59
6.1.1 Custom-Built Tools ... 59
6.1.2 Military Analyst Extension ... 60
6.1.3 Export to KML 2.5.5 ... 60
6.1.4 Google Earth ... 61
6.1.5 ArcGIS Explorer ... 61
6.2 Use-Cases and Results .. 61
6.2.1 What are the danger zones near roads? ... 61
6.2.2 Where have the tortoises been? ... 64
6.2.3 How fast are the tortoises? .. 66
6.2.4 What area could a tortoise cover between positions? 70
6.2.5 How to prioritize where new curbing should be implemented 74
6.2.6 How to locate a lost tortoise.. 75
6.2.7 Does a changing weather condition affect tortoise movement 77
6.2.8 Animation of Hawth’s Tools results ... 80
6.3 Issues ... 84
6.4 Process Times ... 84
6.5 Summary ... 85

Chapter 7 – Conclusions and Future Work ... 87

Works Cited ... 89

Appendix A. Python Code ... 91

Appendix B. Toolbox Help Documents .. 129

Appendix C. Export to KML and Google Earth Use ... 153

Appendix D. Output Windows ... 161

 xi

Table of Figures

Figure 1-1: Joshua Tree National Park General Layout .. 2

Figure 1-2: Tortoise in Road at Joshua Tree National Park ... 3

Figure 2-1: Tortoise in Tortoise Trot (asphalt not poured in road yet) 7

Figure 3-1: Recommended System Architecture ... 14

Figure 4-1: Conceptual Model – Tortoise Environment .. 19

Figure 4-2: Tortoise Locations Feature Dataset Schema ... 22

Figure 4-3: Minimum Convex Polygons Feature Dataset Schema 23

Figure 4-4: 95 Percent Volume Contour Polygon Feature Dataset Schema 24

Figure 4-5: 95 Kernel Density by Year Polygon Feature Dataset Schema 25

Figure 4-6: JOTR – Foundation Feature Dataset Schema ... 26

Figure 4-7: JOTR – Roads Feature Dataset Schema ... 27

Figure 4-8: Weather – Precipitation Feature Class Schema 28

Figure 4-9: Weather – Average Daily Temperature Feature Class Schema 29

Figure 4-10: Weather – Daily High and Daily Low Feature Class Schema 30

Figure 4-11: Data Collection Process .. 34

Figure 4-12: Desert Tortoise at JOTR with Mounted Transmitter Visible 35

Figure 4-13: Directional Antenna and Radio Receiver .. 35

Figure 4-14: Magellan® Mobile Mapper 6 with ArcPad® 36

Figure 4-15: Air Resource Specialists, Inc. Website for NPS Weather Data 37

Figure 4-16: Correctly Formatted CSV File in Notepad ... 38

Figure 5-1: Custom-Built ArcMap Tortoise Toolbox .. 39

Figure 5-2: Original Tortoise Date and Time Fields ... 41

 xii

Figure 5-3: TimeStamp and EndTime Field Creator Tool .. 41

Figure 5-4: Feature Class with New Fields Added ... 42

Figure 5-5: Road and Trot Buffer Tool ... 43

Figure 5-6: Stationary Event from Table Tool .. 44

Figure 5-7: Tortoise Import Tool .. 46

Figure 5-8: Tortoise Maximum Speed Finder ... 48

Figure 5-9: Components of an Ellipse. .. 49

Figure 5-10: Ellipse with Potential Distance in Red and Blue 50

Figure 5-11: Angles from Y-Axis to Ellipse Major and Minor Axis 51

Figure 5-12: Tortoise Potential Path Tool ... 52

Figure 5-13: Lost Tortoise Tool .. 53

Figure 5-14: Priority Trot Needs Tool .. 54

Figure 5-15: Priority Trot Needs Tool Outputs in ModelBuilder 56

Figure 6-1: Loading the Tortoise Tools, Step 1 .. 60

Figure 6-2: Saving Toolbox for All Sessions .. 60

Figure 6-3: Flow Diagram, Road and Trot Use-Case.. 62

Figure 6-4: Road and Curbing Buffer Results Shown in ArcMap 63

Figure 6-5: Flow Diagram, Tortoise Movement ... 65

Figure 6-6: Animated Tortoise Movement in Google Earth. 66

Figure 6-7: Elizabeth’s Calculated Speeds .. 67

Figure 6-8: Flow Diagram, Tortoise Speeds ... 68

Figure 6-9: Tortoise by Name Table ... 69

Figure 6-10: Tortoise by Name and Year Table .. 69

 xiii

Figure 6-11: Tortoise Average Speed/Year ... 70

Figure 6-12: Flow Diagram, Tortoise Potential Path ... 72

Figure 6-13: Tortoise Potential Paths in ArcMap .. 73

Figure 6-14: Tortoise Potential Paths in Google Earth .. 74

Figure 6-15: Tortoise Trot Needs by Priority .. 75

Figure 6-16: Flow Diagram, Lost Tortoise Tool ... 76

Figure 6-17: Lost Tortoise Simulation and Portrayal in Google Earth 77

Figure 6-18: Flow Diagram, Dynamic Weather Data .. 78

Figure 6-19: Google Earth View of Dynamic Weather Data and Tortoise Positions 80

Figure 6-20: Flow Diagram, Animating Hawth’s Tools Results 81

Figure 6-21: Google Earth View of a Dynamic MCP ... 82

Figure 6-22: Google Earth View of a Dynamic 95 Percent Volume Contour 83

Figure 6-23: Google Earth View of a Kernel Density Polygon 84

Figure 6-24: Processing Times of Custom Tools with Use-Cases 85

 xv

List of Tables

Table 1. Non-Functional Requirements .. 12

Table 2. Functional Requirements .. 13

Table 3. Summary of Data Sources .. 31

 xvii

List of Acronyms and Definitions

95PVC 95 Percent Volume Contour

AGX ArcGIS Explorer

AIS Aerial Information System

CSV Comma Separated Values

GIS Geographic Information System

GPS Global Positioning System

ISO International Organization for Standardization

JOTR Joshua Tree National Park

KML Keyhole Markup Language

KMZ Keyhole Markup Language Zipped files

MCP Minimum Convex Polygon

MXD ArcMap Project File

NPS National Park Service

PVC Percent Volume Contour

USGS U.S. Geological Survey

UTM Universal Transverse Mercator

1

Chapter 1 – Introduction
Joshua Tree National Park (JOTR) has been monitoring its desert tortoise population’s
telemetry since 2005 using radio-transmitters attached to approximately 18 tortoises. The
number changes because of tortoises dying or disappearing, as well as new tortoises
being equipped with transmitters. The tortoise was placed on both the California and
Federal Endangered Species Lists between 1989 and 1990, with a threatened status. This
is just one notch below endangered (Davidson, 2009).

JOTR needed to be able to visualize tortoise telemetry, habitat, and environmental
datasets in relation to time to determine which factors may be affecting the movements of
the tortoises. JOTR also needed to look at the telemetry data in relation to roads to see if
new curbing equipped with tortoise trots need to be implemented in other locations to
reduce tortoise deaths. A tortoise trot is a gap in the curb that allows the tortoise to easily
move off the road without having to climb the curbing. The curbs are put in place to deter
vehicles from going off-road.

1.1 Client

The client for this project is the National Park Service (NPS), in particular the JOTR
Resource Management Division. Sean Murphy, a GIS specialist with the NPS, was the
primary point of contact for the project and was supported by the chief of the JOTR
Wildlife Branch, Michael Vamstad.

The client provided the telemetry data gathered from 2005 through 2008 for 18
tortoises, as well as other datasets, including habitat extents, roads, curbing, tortoise trot
locations, trails, wilderness areas, and camping areas (Figure 1-1). In addition, it was
decided to use the temperature and precipitation data acquired from the data collected
from the two NPS air quality stations in JOTR.

Additional work with the client included fieldwork, tracking tortoises, and recording
tortoise data to get an understanding of the tracking procedure and witness the tortoises in
their environment.

2

Figure 1-1: Joshua Tree National Park General Layout

1.2 Problem Statement

JOTR currently has over four years of collected telemetry data from 18 of their desert
tortoises, and has collected other potentially related data sources. JOTR needed a way to
bring together the data to enable analysis through dynamic visualization, as well as to
perform analyses using analytical methods. For example, since roads offer the biggest
threat to the tortoises, the analyst needed to be able to dynamically visualize and perform
analyses on the telemetry data as it relates to the roads, curbing, and tortoise trots. Since
many factors may influence the movement of the tortoises, it was possible that other
factors were helping to lead the tortoises towards the roads (Figure 1-2). It is difficult to
reveal these relationships without an interactive visualization environment. Thus, the lack
of a dynamic visualization of the telemetry and related data hinders the analysis of the
JOTR tortoise researchers.

3

Figure 1-2: Tortoise in Road at Joshua Tree National Park

1.3 Proposed Solution

This project aimed to address JOTR's need to further examine the movement of the desert
tortoise in relation to the roads, curbing, and tortoise trots that have been placed along the
roads. To reach this goal, ArcMap was used as the foundation for static viewing, data
preparation, analysis, and data export. Dynamic viewing was achieved by using the time-
attributed and exported Keyhole Markup Language (KML) datasets from ArcMap in
Google Earth®. Manipulation of the data was achieved by the creation of several ArcMap
tools using Python. These tools prepare existing datasets and create new time attribute
fields. The datasets can be exported to KML format through an existing user-built KML
creator for ArcMap. By having the two time attributes, the data can be animated and
visualized dynamically within Google Earth. Additionally, in ArcGIS 10, these attributes
will enable dynamic visualization with ArcMap. The resulting visualization includes
tortoise movement, potential tortoise movement, daily high and low temperatures, daily
precipitation, implementation of curbing, tortoise trots, roads, and associated buffers. A
secondary option for dynamic viewing is ArcGIS Explorer™ (AGX). The produced
KML datasets will view in AGX. However, AGX currently lacks the capability to change
KML layer attributes, such as color, symbol, and elevation.

1.3.1 Goals and Objectives

The client’s main goal was to help improve the survivability of the tortoises by
examining the tortoise telemetry data with the other related data. As part of this goal,

4

there were two objectives in this project. First, the project aimed to create a dynamic
visualization framework to view the tortoise telemetry data and other related data, such as
roads, curbs, and tortoise trot locations, precipitation, and temperature. Second, the
developed tools should enable the client to perform different types of analysis on various
related datasets. In doing so, the client will be able to analyze and predict the tortoise
telemetry and possibly help lead JOTR to develop new means to help keep the tortoises
from going near the roads. The project may also prove useful for analyzing other species
at JOTR, as well as at other locations where tortoise or other animal behaviors are being
studied.

1.3.2 Scope

The project study area included various regions within the extent of JOTR. Many spatial
factors were considered as potentially affecting the survivability of the desert tortoise at
JOTR. For this project, all of the telemetry data collected by JOTR going back to early
2005 was used. The project also considered other datasets that might be related to the
tortoise movement. These included habitat extents, roads, curbs, tortoise trot locations,
trails, wilderness areas, and camping areas. The temperature and precipitation data
obtained from an online database of two NPS air quality stations in JOTR were also
included.

The tools in the project include the Tortoise Import Tool for automated creation of
multiple feature classes, the Stationary Event from Table Tool for creating temperature
and precipitation polygons, the TimeStamp and TimeEnd Field Creator Tool for
modifying all feature classes to be animated, the Road and Trot Buffer Tool for creating
safety buffers around the roads and tortoise trots feature classes, the Tortoise Maximum
Speed Finder Tool to calculate the maximum achieved speed by each tortoise over time,
and the Tortoise Potential Path Tool to create ellipses representing potential area
traversed between recorded positions.

The data were delivered as custom-built layers in an ArcMap project file (MXD).
This MXD contains all of the custom-built tools that were used to automatically create
the layers, and the tool that was used to export the layers into KML format. All of the
layers from the MXD are delivered in a zipped KML, known as KMZ format. These can
be viewed in Google Earth as well as AGX. Once loaded, the KMZ can be viewed
dynamically using the time slider within the application.

1.3.3 Methods

To accomplish dynamic visualization of the layers within Google Earth or AGX, existing
tools as well as new tools have been developed. The data underwent three phases. The
initial phase brought the dataset into ArcMap. Data import was not a straightforward
process, as feature classes of individual tortoises were required. The client provided a
master feature class of all tortoise positions, as well as 68 manually created sub-feature
classes of individual tortoises. However, these sub-feature classes will need to be
constantly created, as updated data are collected. Therefore, extracting sub-feature class
is a routine process faced by the client and manual processing is not efficient. As such, a

5

new tool within the ArcMap toolbox was developed as part of this project to automate
this process. The second phase was data preparation and analysis. This was accomplished
by building six tools within the ArcMap toolbox. These tools prepared datasets for
dynamic animation in relation to time. Additionally, the client utilized Hawth’s Analysis
Tools to create the MCP, 95PVC, and Kernel Density feature classes. These feature
classes were also manipulated for animation. All of the tools created for this project were
built from scratch using Python scripting and geoprocessing methods. The third phase,
exporting to KML format for Google Earth or AGX animation, was accomplished by
using an existing user-built tool. This tool, Export to KML 2.5.5, was evaluated and
accepted for use within this project. These three phases are addressed in detail in this
document.

1.4 Audience

The intended audience for both this report and the use of the custom tools of the project is
any GIS user who is involved with space-time mapping and animations. The specific
intended audience for this report, the custom tools, and the full set of deliverables, are the
GIS Analysts and Park Rangers at JOTR. Additionally, anyone from the NPS or other
organization involved with either animal tracking or monitoring time-based data changes
may benefit from this research. With the new release of ArcGIS 10, there may be a great
need for the tools that have been built for anyone working with time and animation.

1.5 Overview of the Rest of this Report

The remainder of this report goes into the details of the structure of data, the tools, the
outputs, and the animations. Chapter 2 discusses research of previous tortoise or wildlife
projects that formed the foundation for this project. Chapter 3 discusses the systems
analysis and design work and the issues that were encountered. Chapter 4 gives an
overview of the database design for the feature layers. Chapter 5 describes the
implementation. Chapter 6 includes analyses of the results. Lastly, the conclusion and
future work are addressed in Chapter 7. The Appendix contains the hardcopy Python
code written for the tools delivered in the project, as well as screenshots and output of the
various tools and animations.

7

Chapter 2 – Background and Literature Review
The desert tortoises have been, and continue to be, extensively studied by many
government and private organizations to improve the tortoises’ survivability. With the
introduction of GIS as a tool to view geographically referenced data and to perform
spatial analysis on collected data, the relationships between tortoise telemetry and data
reflecting their environment can be spatially analyzed to reveal new correlations.

For this study, three aspects were reviewed relevant to tortoises: their physical
environment, survivability, and tracking. Additionally, vegetation was considered, but
adequate vegetation data for Joshua Tree National Park (JOTR) did not exist.

2.1 Physical Environment and Survivability

In a JOTR published report, the dangers that the roads impose to the desert tortoises’
survival are outlined. The report gives the status of the curbing that has been
implemented along certain portions of the roads to both deter off-road vehicles and allow
the tortoise to cross the road (Joshua Tree National Park, 2008). This gap in the curbing is
what JOTR calls a tortoise trot (Figure 2-1).

Figure 2-1: Tortoise in Tortoise Trot (asphalt not poured in road yet)

The tortoise trots allow the tortoise to get across the road by using the openings.
Without the gaps, a tortoise may spend more time on the road as it may have trouble
getting over the curb, or the mere existence of the curb may deter the tortoise from
egression.

Boarman, Sazaki, and Jennings (1997) added further in-depth information regarding
the threat of roads and highways to the tortoise populations. They also discussed the
effects of the barrier fences and culverts used to minimize the danger. The study found

8

that a considerable amount of dead tortoises were found along the roadsides in the
Mojave Desert. The implementation of the fences and culverts for their study proved to
help the tortoise survivablity as no tortoises were killed, and only one tortoise made it
past the fence. The remaining nine torotises went away from the barriers. Of particular
interest is their consideration of two different buffer areas to consider along roads when
evaluating the potential cause of a discovered dead tortoise. The study suggests that
tortoises found dead within 0.8km of the road may likely have been killed by a car. They
also suggest that tortoises found dead up to 3.5km from the road may have been hit by a
car but still have travelled a distance before die. Additionally, it is suggested that exotic
plants, as well as native plants, are more abundant along roadsides. This increased
vegetation may be attractive to the tortoises and should be considered.

Duda and Krzysik (1998) discussed rainfall as a factor that influences tortoise range.
Peterson (1996) performed analysis on the effects of rainfall and drought on the desert
tortoises. His study points to correlations between the amount of rainfall and the extent of
the tortoises’ range. The shortage of rainfall affects both the tortoises and vegetation that
the tortoises require for food. These findings support the need to study rainfall and its
ecological effect on the desert tortoise.

2.2 Movement Tracking

JOTR’s 2008 Annual Report summarizes the minimum convex polygon (MCP) data
collected for the year. The mapping and analysis of the MCPs used the kernel density
method to estimate the probability densities. The MCP of each tortoise’s home range was
built by connecting the outer locations of its positions. Kernel density analysis was
performed on each of the home ranges to produce 95 Percent Volume Contours (PVC)
which represent where the tortoise can be found with a confidence of 95%. The Results
indicate that the tortoises had a mean MCP of 76.97ha and mean 95 PVC of 29.87ha
(JOTR, 2008).

Bissonette, Sherburne, and Ramsey (1994) provide further consideration regarding
the analysis of animal telemetry data. Their article explains the science involved in the
calculations regarding radiotelemetry data of free-ranging animals. Additonally, they
suggest that general polygon data of the telemetry data may not be enough, as other
environmental aspects may affect the range of the tortoises. Environmental data
impacting their habitat should be considered. It is important to note that the data gathered
from their animals did not include GPS-transmitted coordinates. The positions acquired
were from the intersection of three bearings. With GPS transmitted coordinates, the error
in the data can be minimized.

Many other studies also suggest integrating the telemetry data with other data, such
as MCPs of tortoises, to further examine tortoise behavior. Duda and Krzysik (1998), in
conjunction with the US Army Corps of Engineers, produced a very detailed technical
report based on their radio telemetry study of the population of desert tortoises. The study
included an area within the Sand Hill Training Area of the Marine Corps Ground Combat
Center, Twentynine Palms, CA, as well as a comparison area at the Pinto Basin in JOTR.
The study was conducted using different data, including the telemetry data, MCPs of the

9

data, dispersal barriers, habitat fragmentation, burrow locations, vegetation, and rainfall.
Analysis was performed on the data using various statistical calculations. The study also
points out how GIS integrated with satellite telemetry receivers is a major stepping-stone
in studying tortoise and animal behavior.

In a similar study, Riedle, Bolen, and Averill-Murray (2002) examined the tortoise
population of the Florence Military Reservation (FMR) located in Arizona’s Sonoran
Desert. In the three-year study period, radiotelemetry data, MCPs of tortoise movement,
vegetation, burrows, and the existence of eggs in the female tortoises were examined.
However, the impact that roads may have on tortoise survivability was not excluded in
the study. Of further interest is their use of the Animal Movement extension to
ArcView®, which was used to estimate MCP home ranges.

Telemetry research on other animal types may also be beneficial to consider.
Kernohan, Millspaugh, Jenks, and Naugle (1998) discuss how they used an adaptive
kernel home-range estimator in a GIS environment to study the habitat of white-tailed
deer. Like many other studies, they calculated ninety-five percent home-range contours
by using the adaptive kernel method.

2.3 Summary

Studies of the tortoises, their habitat, and the dangers that they face, the information, and
professional research reveal many similarities. Much duplication of effort exists with the
main difference being that the studies were performed in a different location or at a
different time.

The research has shown that the majority of the work related to tortoises uses the
Minimum Convex Polygons (MCP) and 95 Percent Volume Contours (95PVC). With this
project, the client provided both MCP and 95PVC data approved by JOTR naturalists.
Tools already exist to create these types of features; however, there needs to be a way to
visualize the many different features related to tortoise movement. Similarly, there is a
lack of relating tortoise movement and their physical environment to time. Since many of
the factors that may affect tortoise movement are events in time, there is much
uncertainty as to what impacts tortoise movement when.

This project aimed to create something new and innovative to study tortoises. Space
and time are intriguing, so the advantages of time attributes to try to animate the daily or
hourly changes in the tortoises and their environment were included. Since the creation of
many of the studies, new tools now exist with the capability for dynamic visualization of
georeferenced features.

The project primarily focused on representing temperature and precipitation data in
time to see how it affects tortoise telemetry. The studies did not address temperature, but
examined vegetation. Temperature is an additional environmental factor that may
contribute to changes in plant and water supply. The available vegetation data for JOTR
was unfortunately unusable, as it did not identify annuals, the desert tortoises’ primary
source of food. Since the data were not available, the project focused on precipitation as

10

the other environmental factor. Both temperature and precipitation affect the amount of
vegetation that exists in the park, as well as affect the availability of water. The project
also examined the roads and the barriers placed along the roads in JOTR.

In addition to the visualization, the project also included the development of the
required tools for analysis and calculations of the various datasets.

11

Chapter 3 – Systems Analysis and Design
This chapter addresses the systems analysis and design for the project. The client, Sean
Murphy of Joshua Tree National Park (JOTR), provided many datasets for the project.
Through constant communication and review of progress, the client validated the
direction and accompanying recommended solutions.

3.1 Problem Statement

JOTR has over four years of collected telemetry data from eighteen of their desert
tortoises. Additionally, they have other data that may relate to tortoise telemetry. Since
roads offer the biggest threat to the tortoises, the client needed to be able to dynamically
visualize and perform analysis on the telemetry data as it relates to roads, curbs, and
tortoise trots. In addition to the roads, many factors may influence the telemetry of the
tortoises. It is possible that analysis of other collected data will indicate other factors that
lead the tortoises towards the roads. Therefore, a dynamic visualization of the telemetry
and related data were required for the analysis of the tortoises at JOTR.

3.2 Requirements Analysis

For this project, there were several functional requirements, as well as a few non-
functional requirements.

3.2.1 Non-Functional Requirements

The non-functional requirements are listed with descriptions in Table 1.

12

Table 1. Non-Functional Requirements

Requirement Description

Ease of Use

The tools must be easy to use and intuitive.
The tools must include explanations for utilization
and data entry.

Automated Processing

The tools shall automate processes that are
complicated to perform manually.
The tools shall minimize automated processing
time to ensure efficiency and usability.

Flexibility of Tools

The tools shall be able to handle different data
types and different field types for processing.
The processes performed with the tools shall
indicate any errors that arise from misuse of the
tools and provide guidance.

Modifiable Tools

The tools shall be written in deliverable code that
can be modified in the future by the client if
needed.

Ease of Training

The client will be trained as part of the
deliverables.
The deliverables shall be organized and
documentation provided to enable ease of training
to further analysts by the client.

3.2.2 Functional Requirements

The client currently uses Hawth’s Analysis Tools 3.27 for the majority of their analysis
of tortoise data. Hawth’s Analysis Tools is an extension within ArcMap designed to
perform spatial analysis and functions that are not easily accessed or available within
standard ArcMap (Beyer). The client would not benefit from recreation of similar tools;
however, there was a need to enhance decision making by visualizing the results
produced by Hawth’s Tools. The recommendation to the client was to use Google Earth
to dynamically depict their data and results with respect to time. The client approved of
this idea. The client agreed that tools should be created to prepare the data for animation,
as well as export the data into KML format for Google Earth viewing. For analysis, it was
decided that tools would need to be created that would calculate maximum achieved
speed per tortoise as well as build time-attributed ellipses depicting the maximum
potential area covered between recorded positions. The types of data to be animated
included Tortoise Positions, Minimum Convex Polygons (MCP), 95 Percent Volume
Contours (95PVC), and Kernel Density polygons created by Hawth's Analysis Tools,
temperature, precipitation, and road and tortoise trot curbing buffers. The functional
requirements and descriptions are provided in Table 2.

13

Table 2. Functional Requirements

Requirement Description

 Convert a master Tortoise feature class
into many sub-feature classes

The deliverables shall include a tool to
automate creation of multiple feature
classes from a master feature class based
on tortoise name or tortoise name and
year.

Create dynamic stationary event
polygons for animating temperature
and precipitation

The deliverables shall include a tool that
will automate creation of polygon feature
classes representing dynamic
precipitation amounts and temperatures.

Add TimeStamp and EndTime
attributes to feature classes

The deliverables shall include a tool that
will automatically convert date and time
fields into a standardized TimeStamp
field. The tool shall also allow for
automatic creation and population of an
EndTime attribute based on user-selected
criteria, including EndTime by interval
and EndTime is start of next event.

Create road and tortoise trot buffers
based on distance and time

The deliverables shall include a tool that
will allow the client to create multiple
road buffers and curbs with tortoise trot
buffers based upon user entered
parameters.

Calculate maximum achieved tortoise
speeds

The deliverables shall include a tool,
which will calculate the maximum
achieved speed by each individual
tortoise over the duration of the study as
well as by year.

Create potential path ellipses between
recorded positions

The deliverables shall include a tool to
automatically create ellipse feature
classes per tortoise that will depict the
maximum potential area covered based
upon the time difference between
recorded positions and either the
maximum achieved tortoise speed or a
user-entered speed.

Export dynamic data to KML

The deliverables shall require the
installation of a KML export tool that
resides on the ESRI developer’s network.

Capability to view static data in Google
Earth, including roads, trails, and road
buffers

These feature classes do not contain time
attributes

14

Animate temporal data in Google
Earth, which include tortoise movement
and potential paths, curbing
construction, temperature, precipitation,
minimum convex polygons, and 95
percent volume contours.

The tools will be provided for the client
to perform the steps necessary for
creation of various KMLs.

3.3 System Design

The system design centered on the creation of new tools, as well as animating the results
using Google Earth (Figure 3-1). The system architecture that existed at the client’s
location was discussed with the client and it did not require any hardware modifications
to facilitate this delivery. However, the system setup was flexible, as the tools only
require installation on the ArcGIS workstation.

Figure 3-1: Recommended System Architecture

For software, ArcMap version 9.3, with the ArcInfo License level, was the core piece
of software required. Export to KML 2.5.5 was required on the workstation as well, to
export the data to KML with the necessary start and end times for dynamic Google Earth
viewing. Installation of Google Earth was required to view the exported KML files
dynamically. Additionally, a text editor, such as Notepad, was needed for preparing
weather data to import into ArcMap.

Optionally, other software can work with the datasets created in this project. The
extension to ArcMap called Tracking Analyst allows for advanced analysis and
visualization of temporally dynamic data within ArcMap. With ArcGIS 10, the animation

15

portion of Tracking Analyst is part of the baseline software, so Tracking Analyst was not
required for this delivery. ArcGIS Explorer is an ESRI provided application that is free to
download and similar to Google Earth. This tool has the ability to animate feature layers;
however, it lacks the capability to change KML layer attributes, such as color, symbol,
and elevation.

The tools of the project within ArcMap were developed with Python scripting.
Python has become one of the primary coding languages within ArcMap for
geoprocessing tools. The tools are part of the ArcMap Toolbox. This format allows for
future editing or enhancing by the client or other user. Because of the complex functions
carried out by the custom-built Python tools, ArcGIS ModelBuilder was only used for
one of the eight custom tools. However, the tools can be used as needed within
ModelBuilder, should a user wish to take advantage of their capabilities.

The utilization of the tools and the system setup could be enhanced to use served
databases, but it was not required. Additionally, the data in the project, as well as the final
products, could also be served to the client’s users. This was recommended as an efficient
way to distribute the data, but it was not required. The requirements of this project could
exist entirely on a single workstation.

3.4 Project Plan

The planning for the project was simple conceptually, as the goals of the project were
achieved through much discussion with the client. However, as all projects go,
unforeseen circumstances, as well as discovery of new methods or solutions, can alter the
outcome. In the first part of this section is the initial project plan. It addresses the phases
involved in the project, as well as the tasks required. This will be followed by analysis of
how the original plan evolved to accommodate the reality. The changes in direction will
be addressed, as well as lessons learned. The initial approach followed the waterfall
method of project management.

3.4.1 Initial Project Plan

This section outlines the phases, milestones, and tasks of the initial project plan.

Phase 1- Planning.

The planning phase includes acquiring data, developing simulated prototypes, studying
the format of the data, accompanying the client in the field to study the tortoise, and
gather information and needs from the client.

• Milestone-Data gathering
o Task- Build Simple Dynamic Prototypes: Google Earth and AGX Models
o Task- Acquire Tortoise Data: Tortoise position data for past five years-

provided by JOTR
o Task- Acquire Road, Trails and Camping data
o Task- Acquire Weather data: Temperature min/max and precipitation

16

o Task- Acquire Vegetation data: Vegetation layer depicting annuals
o Task- Acquire Tortoise Trot Data: Polyline feature class of roadside

barriers
• Milestone- Client Technical Exchange

o Task- Accompany JOTR in the field: Assist at JOTR with tortoise locating
o Task- Submit Information Needs Questionnaire to Client
o Task- Analyze feedback from Questionnaire

Phase 2- Development

The development phase includes the development of the required tools within ArcMap,
development of a symbolized ArcGIS template that includes all of the data, and
utilization of the KML exporting to create dynamic KMLs of the data for utilization in
Google Earth.

• Milestone- ArcGIS Template (MXT)
o Task- Create Base MXT: This will be the foundation for the deliverables

• Milestone- Import Tools
o Task- Build Habitat Base Map Import: Simple importing
o Task- Build Import Roads Tool with Buffering: Import roads, and create

two buffers
o Task- Build Import Tortoise Trot Tool with buffering: Import roads and

one buffer
o Task- Build Import Tortoise Telemetry Tool: This will import the tool and

modify the existing tables to add timestamp attribute
o Tool-Build Import Weather tool: This will import the weather data and

add timestamp attribute
• Milestone- Analysis Tools

o Task- Build MCP By Year Tool: This tool will create a Minimum Convex
Polygon by tortoise by year with timestamp attribute

o Task- Build 95PVC Tool: This will build a 95 percent volume contour
o Task- Build Tortoise Intersect Tool: This will create area intersects

between all MCPs depicting density of tortoise visitation
o Task- Build Potential Path Tool: This will calculate the farthest distance

over time that each tortoise has travelled and create a potential path
polygon

o Task- Build Burrow Probability Tool: This will search the telemetry data,
extract positions labeled as burrows, and look for frequented positions as
being potential burrow locations

• Milestone- Symbology
o Task- Create project symbology: This task involves establishing project

symbology as agreed upon with the client
• Milestone- Export Tools

o Task- Build KML/KMZ Export Tool: This tool will be built in Python and
export all of the project feature classes to KML format, which will be able
to be viewed in AGX and Google Earth

17

Phase 3- Testing

The testing phase includes thorough testing of all the created tools to ensure that they run
successfully on the client-provided data. Time is allotted for fixing any uncovered errors.

• Milestone- Validation and Repair
o Task- Create New blank .MXD: Testing this to ensure that custom tools

can also be added to a new dataset
o Task- Load Custom Tools and Representation
o Task- Load Data and verify tools work: Load all project data, run tools
o Task- Export Data and View: Export the data into KML, verify it works
o Task- Fix errors

Phase 4- Delivery

The delivery phase includes installation of required software, delivery of all tools, project
files, data, and reference material. Additionally, the delivery will include training the
JOTR personnel.

• Milestone- Material
o Task- Have Necessary Software Installed: AGX and Google Earth
o Task- Assemble Project Deliveries: CDs, plots, instructions
o Task- Deliver Project: visit JOTR for delivery

• Milestone- Training
o Task- Train JOTR employees: Half to full day at JOTR on delivery day

for training and demonstration

3.4.2 Changes to the Initial Project Plan

That initial project plan changed immensely since its original creation. The necessary
changes to the plan were agreed upon by both the client and advisor. The many changes
in direction that affected the final delivery are discussed below.

For the datasets that were to be used, vegetation data were removed from the project.
After evaluation of the vegetation data, it was determined that the data does not
adequately identify annuals, the main source of food for the tortoises. JOTR hopes to
someday create a useful annual vegetation dataset. This is recommended in Chapter 7.
The weather data presented some problems as well. Initially it was not decided upon as to
which weather data to use. Upon consulting the rangers at JOTR, it was realized that
temperature and precipitation data had been collected hourly in two locations in the park
by JOTR. These data were used for the project. Fortunately, the tools that were developed
did not require alteration to accept the new data.

In addition to the changes in data sources, there were other changes in system
implementation. Originally, the ArcMap project was designed to be a normal template
(MXT) so it could be shared easily without modification. While this still was an alternate
way to provide the data, an ArcMap document (MXD) was deemed more flexible for the

18

client. Additionally, it allowed for being an ArcServer service should the client want to
serve an interactive view of the data.

Originally, the project consisted of many import tools; however, most of the data
were stored in a file geodatabase format that is compatible with ArcMap. However, all of
the feature classes provided were manually created by the client from the master
database. Therefore, the only import tool that was created was to facilitate future
automated creation of individual tortoise feature classes by tortoise name, by tortoise
name and year, or for all tortoises by year from the master tortoise feature geodatabase.
For the roads and tortoise trots curbing, rather than an import tool, a buffer tool was
created to facilitate creation of multiple buffers along the roads and trot curbs. The
weather import tool was also removed; however, it was replaced with a tool that creates
polygons representing temperatures or precipitation in time.

Originally, the project consisted of both a 95 Percent Volume Contour (95PVC) and
a Minimum Convex Polygon (MCP) creation tool. Since the client already has a tool to
create these and the features have already been created and validated by the rangers, these
tools were not developed in the project. Instead, the project included modified 95PVCs
and MCPs to animate them through time.

Because of the complexity of the tools needed, the tortoise intersection tool and
burrow probability tool were not included in the project. Instead, the tortoise maximum
speed tool, the Lost Tortoise Tool, and the Tortoise Potential Path Tool were built for the
project. These tools are quite useful as the calculated maximum achieved speed is used to
show potential areas covered by the tortoise between recorded positions as well as
enables the client to try to find a tortoise that cannot be located.

The project also originally called for the creation of a KML/KMZ export tool. Two
factors contribute to this not being built. Not only would creation of a tool like this be a
project in itself, but also a user-built tool already exists to perform such an export. This
tool was tested and evaluated. A few bugs in the tool were discovered that have been
resolved through collaboration with the developer. As a result, the developer is planning
to release a new and improved version of the tool.

3.5 Summary

The final project accounted for the obstacles and changes in direction encountered
through the project plan producing deliverables that met the needs for JOTR to perform
analysis on the tortoises to help with their survivability. Throughout the project, various
aspects were discovered that changed the direction of the project. Such aspects as data
availability, data accuracy, data format, complexity of code, and availability of existing
tools were investigated early on in the project to ensure minimal resources were wasted
and that the project stayed in scope.

19

Chapter 4 – Database Design
This chapter outlines the database design for the project, which includes the conceptual
data model, the logical data model, and the scrubbing and loading required. The input
data for the project consisted of both geodatabases provided by the client, and the tabular
data downloaded from the internet. In both cases, some custom-built tools built in
ArcMap modified the data. Additional custom-built tools created datasets within the
database that were required for analysis.

4.1 Conceptual Data Model

The design of the conceptual module for this project was straightforward. The client
works with data in a schema that they have developed, and therefore, their data structure
remained in the project. However, additional fields were required to be added to their
data model to perform some of the analyses. These fields were automatically created by
using the delivered custom-built tools. This section describes the objects within the
tortoise environment and how they relate to each other (Figure 4-1).

Tortoise
-TID : Integer
-Name : String
-Frequency : Short

Vegetation

Annual_Veg

TortoiseTrot
-TimeStamp : String

Road
-ROADS_NAME : String
-ROADS_NUMB : String
-ROADS_TYPE : String

3 Eats

Transmitter

1
1

JoshuaTreeNP

3
 L

iv
es

 in

Habitat

3
 H

as

3 Intersects

May Separate

Covers4

Vehicle

3
 U

se

3 Kill

Precipitation

PoolsOn4

Drinks4

3 FallsOn

MayExistAlong4

3 HelpsGrowthOf

Temperature

Affects4

A
ffe

ct
s 4

Campsite
-TYPE : String

Trail
-Name : String
-Type : String

E
xi

st
sI

n 4

Figure 4-1: Conceptual Model – Tortoise Environment

20

Each tortoise has a unique name and is identifiable by means of a radio transmitter.
Physical characteristics of the tortoise are on file to identify the tortoise, in case the
transmitter becomes separated from the tortoise. The radio transmitters are affixed to 18
desert tortoises in JOTR. The transmitters are affixed to the shell using a two-part epoxy.
Each tortoise’s transmitter is on a unique frequency for identification purposes. The
transmitter has an 18-month battery, which is replaced before expiration.

The tortoises eat mainly the annual vegetation that exists in JOTR. The tortoises also
drink from the sparse water supply that temporarily exists after it precipitates (rains).
Many roads intersect the habitat at JOTR. When it rains in JOTR, most of the
precipitation absorbs into the ground, but can pool on the roads, creating an oasis for the
tortoises. Because of the rain running off the roads, vegetation can thrive alongside the
roads as well. The roads can be appealing for the tortoise as it can offer water and
vegetation.

The problem with the tortoises’ attraction to the area near roads is the threat of being
hit by vehicles. Solid curbing had been installed in sections of roads to deter off-road
vehicle traffic. However, if a tortoise enters the road, he may spend more time on the
road. For that reason, some of the roads have tortoise trots implemented along either one
or both of their sides to allow quick egression by the tortoises. JOTR is trying to get a
better grasp of the effectiveness of these curbing and trots. Currently the trots only cover
about one-third of the roads at JOTR.

The temperature at JOTR affects vegetation growth and the habitat of the tortoise.
As a result, it is possible there will be a correlation between the tortoise movement and
temperature. Within JOTR, there are also scattered campsites and many trails. At this
point, there are no known associations between the tortoise behavior and these features.

4.2 Logical Data Model

The client used ArcGIS file geodatabases to store most of their data and provided them in
that format. Other data were provided in personal geodatabase and shapefile format. In
general, the given schema of their geodatabases and shapefiles were not changed;
however, new fields were created and populated using the delivered customized tools.
These new fields enable dynamic visualization within the various interfaces used for
animation. It is noted that JOTR should consider revising the format of certain collection
fields, such as time, for easier utilization. For example, time is currently collected as a
Double field rather than as a Date field; however, the delivered tools were created to
handle either case.

The geodatabases that were provided by the client include Tortoise_Telemetry.gbd,
Exotics.gdb, and JOTR_AISVegLayer.mdb. The last two databases both relate to
vegetation and were not used for this project, as they did not identify annual vegetation.
Tortoises primarily eat annual vegetation. The shapefiles provided by the client included
curb lines (tortoise trot and standard curbs), camping (campsites, visitor and nature
centers), no camping (Areas where camping is not allowed), roads, trails, and wilderness
areas.

21

For the weather data, data were extracted from the NPS Gaseous Pollutant and
Meteorological Data website. Four files were created as a result of querying by location
and by the years covering this study, including: Cottonwood Canyon ambient temperature
(aspirated), Cottonwood Canyon precipitation, Black Rock ambient temperature
(aspirated), and Black Rock precipitation. Aspirated means that air is constantly forced
over an enclosed sensor; non-aspirated is when the air is free to flow around an open
sensor.

4.2.1 Tortoise Geodatabase

This geodatabase includes four feature datasets: Tortoise_Locations,
Minimum_Convex_Polygons, Percent_Volume_Contours, and Kernel_by_Year. In
addition, TimeStamp and EndTime attributes were added where appropriate using the
custom-built tools. Additionally, new feature classes and tables were created by using the
tools. This included a tortoise potential path feature class for each tortoise and the tables
showing maximum speed achieved by tortoise and maximum speed achieved by tortoise
per year.

4.2.1.1 Tortoise Locations Feature Dataset

This feature dataset contains 69 feature classes. Figure 4-2 shows a sample of the
All_Tortoises feature class and Elizabeth feature class. One of them, the All_Tortoises
feature class, contains all of the data for the 18 tortoises for five years. Additionally, there
are four All_Tortoises by year, 18 feature classes by tortoise, and 46 tortoise by year
feature classes (a total of 68 feature classes). Only the All_Tortoises feature class is
needed, since the other 68 feature classes are duplications of information that exist within
the All_Tortoises feature class. It is unnecessary to permanently keep these many
additional feature classes; however, they are needed to export KML files by tortoise and
by year. Originally, the client had to manually create the 68 feature classes.

In addition, two new attribute fields, TimeStamp and EndTime, were automatically
added and populated using the custom-built tools. These fields are of type String, using
the International Organization for Standardization (ISO) approved date format, YYYY-
MM-DD HH:MM:SS.

This feature dataset also includes the newly created tortoise potential path feature
classes. These feature classes also include TimeStamp and TimeEnd attribute fields.

In general, these feature classes are used to represent tortoise movement for all of the
tracked tortoises.

22

Figure 4-2: Tortoise Locations Feature Dataset Schema

4.2.1.2 Minimum_Convex_Polygons Feature Dataset

This feature dataset contains 85 feature classes. All except one represents a Minimum
Convex Polygon (MCP) for a tortoise for either summer or winter of a given year. The
other feature class was an All_Tortoises feature class; however, it only contains the
polygons without the year, season, or tortoise name identified in the attributes.
Additionally, this feature class includes the name of the tortoise and season within the
feature class name and not within the table. For this project, it would have been ideal to
have an All_Tortoises feature class that contained the tortoise name and time attributes.
As a result, the individual feature classes were manually merged into one feature class

23

and manually populated with new attributes: Name, TimeStamp, and TimeEnd. This was
required to recreate the sub-feature classes when using the delivered import tool.

Figure 4-3 shows a sample of one of the feature classes within the dataset.
Additionally, the dataset contains one feature class for both winter and summer for each
year per tortoise for the years 2005 through 2008. They have the same schema as the
depicted feature class MCP_Elizabeth_Summer_2006. The MCP_All_Tortoises feature
class has the same schema as well. The Name, TimeStamp, and EndTime attributes were
manually added.

Figure 4-3: Minimum Convex Polygons Feature Dataset Schema

4.2.1.3 Percent_Volume_Contours Feature Dataset

This feature dataset contains 18 feature classes, each representing the 95 percent volume
contours for each tortoise over the entire period of the study. Since they cover the entire
period of the study, they were not animated and therefore, they did not have to be
manipulated.

Figure 4-4 shows a sample of one of the feature classes within the dataset.
Additionally, the dataset contains one feature class for each of the 17 other tortoises.
They have the same schema as the depicted feature class elizabeth_poly. The Name
attribute was manually added.

24

Figure 4-4: 95 Percent Volume Contour Polygon Feature Dataset Schema

4.2.1.4 Kernel_by_Year Feature Dataset

This feature dataset includes 44 feature classes, each representing a tortoise’s Kernel
Density polygon for a given year. The name of the tortoise and season are contained
within the feature class name and not as attributes. For this project, the individual feature
classes were manually merged into one feature class and the new attributes, Name,
TimeStamp, and TimeEnd were populated. This was required to recreate the sub-feature
classes when using the delivered import tool.

Figure 4-5 shows a sample of one of the feature classes within the dataset.
Additionally, the dataset contains one feature class for each year per tortoise for the years
2005 through 2008. They have the same schema as the depicted feature class eliz05_poly.
The Name, TimeStamp, and EndTime attributes were manually added.

25

Figure 4-5: 95 Kernel Density by Year Polygon Feature Dataset Schema

4.2.2 Joshua Tree Features Geodatabase

These data were originally provided as separate shapefiles. They were compiled into a
single geodatabase, JOTR.gdb, which includes mostly static features within the park,
including camping areas, no camping areas, park limits, trails, wilderness areas, roads,
and tortoise trots. Additionally, new feature classes were added to the geodatabase that
have been automatically created from the utilization of the tools. These feature classes
include Road_Buffer_Close, Road_Buffer_Far, and Tortoise_Trot_Buffer.

4.2.2.1 Foundation Feature Dataset

This feature dataset includes the shapefiles Camping, NoCampingAreas, limits, Trails
and WildernessArea. The Camping feature class also includes facilities within JOTR,
including visitor centers, nature centers, and park headquarters (Figure 4-6).

26

Figure 4-6: JOTR – Foundation Feature Dataset Schema

4.2.2.2 Roads Feature Dataset

This feature dataset includes supplied shapefiles TortoiseTrots and Roads. Additionally,
it includes the feature classes Road_Buffer_Close, Road_Buffer_Far, and
Tortoise_Trot_Buffer that were created using the delivered tools (Figure 4-7).

27

Figure 4-7: JOTR – Roads Feature Dataset Schema

The TortoiseTrots Feature Class has an extensive number of attributes; therefore, the
feature class has not been expanded within the diagram. This feature class was not
modified for this project.

4.2.3 Weather Geodatabase

This geodatabase was created to contain the feature classes created from the weather data
obtained from the Black Rock Nature Center and the Cottonwood Canyon Visitor Center
in the park, which specifically contains daily precipitation, daily average temperature,
daily high temperature, and daily low temperature. Eight feature classes are included:
BlackRock_DailyPrecip, BlackRock_AveTemp, BlackRock_HighTemps,
BlackRock_LowTemps, CottonwoodCanyon_DailyPrecip,
CottonwoodCanyon_AveTemp, CottonwoodCanyon _HighTemps, and
CottonwoodCanyon _LowTemps.

4.2.3.1 Daily Cumulative Precipitation Feature Class

Two feature classes were designed to include stationary polygons attributed with daily
precipitation totals by date (Figure 4-8). Similar to other feature classes, timestamp fields
are necessary.

28

Figure 4-8: Weather – Precipitation Feature Class Schema

4.2.3.2 Average Daily Temperature Feature Class

These feature classes include stationary polygons attributed with the average daily
temperature by date (Figure 4-9).

29

Figure 4-9: Weather – Average Daily Temperature Feature Class Schema

4.2.3.3 Daily High and Daily Low Temperature Feature Classes

These feature classes include stationary polygons attributed with the daily high
temperature by date, as well as feature classes attributed with daily low temperature
(Figure 4-10).

30

Figure 4-10: Weather – Daily High and Daily Low Feature Class Schema

4.2.4 Summary of Data Sources

For the project, JOTR provided most of the datasets directly. For the temperature and
precipitation data, JOTR data were extracted from the Air Resource Specialists, Inc.
website. The data sources are listed in Table 3.

31

Table 3. Summary of Data Sources

Data Description Processing
All_Tortoises
JOTR

A single feature
class that includes
all recorded
tortoise positions

A delivered tool can be
used to automatically
create the Tortoise and
Tortoise_byYear feature
classes. Another tool was
used to automatically
create and populate
TimeStamp and EndTime
fields.

Tortoise
JOTR

18 feature classes,
one for all
positions of each
tortoise

A delivered tool was used
to automatically create
and populate TimeStamp
and EndTime fields.

Tortoise_byYear
JOTR

69 feature classes,
one for each
tortoise in each
year

A delivered tool was used
to automatically create
and populate TimeStamp
and EndTime fields.

MCP_All_Tortoises
JOTR

A single feature
Class that includes
Minimum Convex
Polygons for each
tortoise

No processing or
utilization of this feature
class performed. This
feature class was rebuilt
to include Tortoise Name
and Year.

MCP_byTortoise_Winter_byYear
JOTR

44 feature classes,
by tortoise, by year
and by winter.

These feature classes was
used to rebuild a new
All_Tortoises feature class
that is complete. The
Name, TimeStamp, and
EndTime fields had to be
manually created and
populated.

MCP_byTortoise_Summer_byYear
JOTR

44 feature classes,
by tortoise, by year
and by winter.

These feature classes was
used to rebuild a new
All_Tortoises feature class
that is complete. The
Name, TimeStamp, and
EndTime fields had to be
manually created and
populated.

32

PVC: Tortoise_poly
JOTR

18 feature classes
of 95 Percent
Volume Contours
by tortoise.

The Name field had to be
manually added and
populated with the
tortoise name.

Kernel by Year:
TortoiseYear_poly
JOTR

44 feature classes
of Kernel Density
by tortoise and by
year.

The Name, TimeStamp,
and EndTime fields had to
be manually created and
populated.

Trails
JOTR

A single feature
class represents
the trails in JOTR.
The trails are
classified by trail
use type.

The data are represented
by the trail use type in
ArcMap.

Camping
JOTR

A single feature
class represents
camping areas,
picnic areas, and
visitor centers in
JOTR.

The data are represented
by the type in ArcMap.

NoCampingAreas
JOTR

A single feature
class represents
the areas where
camping is not
prohibited in JOTR.

This is a minor feature
class, which is included,
but is optional to display.

WildernessAreas
JOTR

A single feature
class represents
the wilderness
areas of JOTR.

This is a minor feature
class, which is included,
but is optional to display.

Limits
JOTR

A single feature
class represents
the limit of JOTR.

This is included in the
deliverables with no
manipulation.

Roads
JOTR

A single feature
class representing
the roads, and
categorized by
Road Type.

The roads were used to
create road buffers that
were included in the
project.

Curbing
JOTR

A single feature
class contains both
standard curbing
and tortoise trot
curbing.

The curbs are categorized
and include their
implementation date.
These were used to
create tortoise trot
buffers.

33

Black Rock Precipitation
JOTR/ Air Resource Specialists, Inc

A single table
created from
importing comma-
delimited
precipitation data.

This table is used by the
delivered tools to create
the time-attributed
polygon feature class
representing daily
precipitation.

Black Rock Temperatures
JOTR/ Air Resource Specialists, Inc

A single table
created from
importing comma-
delimited
temperature data.

This table is used by the
delivered tools to create
the time-attributed
polygon feature classes
representing daily high,
daily low, and daily
average temperatures.

Cottonwood Canyon Precipitation
JOTR/ Air Resource Specialists, Inc

A single table
created from
importing comma-
delimited
precipitation data.

This table is used by the
delivered tools to create
the time-attributed
polygon feature class
representing daily
precipitation.

Cottonwood Canyon
Temperatures
JOTR/ Air Resource Specialists, Inc

A single table
created from
importing comma-
delimited
temperature data.

This table is used by the
delivered tools to create
the time-attributed
polygon feature classes
representing daily high,
daily low, and daily
average temperatures.

4.3 Data Collection Methods

All of the data used for the project were collected by the National Park Service at JOTR.
The data were provided in file geodatabase, shapefile, or comma separated value (CSV)
formats. To gain an understanding of the process involved in collecting tortoise position
data and to gain insight into the tortoises and their environment, the client was
accompanied in the field to observe the process as well as locate and identify a tortoise.
This section describes the objects related to how the tortoise, vegetation, and weather
data were collected (Figure 4-11). It is noted that vegetation data were removed from this
project after conceptual design, as adequate delineation between annuals and perennials
was not available within the data.

34

Figure 4-11: Data Collection Process

Each tortoise is fitted with a transmitter that has a unique frequency (Figure 4-12).
Each tortoise was located by the JOTR park ranger by tuning a hand-held radio receiver,
equipped with a directional antenna, to the frequency and walking towards the strongest
return signal received (Figures 4-12, 4-13). The park ranger attempts to locate tortoises
three to five times per week. Once a tortoise is located, the ranger uses a Magellan
Mobile GPS unit to record the location of the tortoise along with additional metadata
(Figure 4-14).

35

Figure 4-12: Desert Tortoise at JOTR with Mounted Transmitter Visible

Figure 4-13: Directional Antenna and Radio Receiver

36

Figure 4-14: Magellan® Mobile Mapper 6 with ArcPad®

The National Park Service (NPS) and the U.S. Geological Survey (USGS)
contracted Aerial Information Systems (AIS) to use photo interpretation to identify
vegetation types and create attributed polygons depicting the vegetation area. Since the
dataset was developed in the mid 1990s, JOTR park rangers have modified and updated it
as needed. The dataset is improved continually. Currently, however, it is generalized.
Annuals are only depicted if they dominate a polygon. Since there was little detail in the
dataset concerning annuals, vegetation analysis was removed from the project.

JOTR has weather stations at the Black Rock Nature Center and the Cottonwood
Canyon Visitor Center that collect weather data. The NPS contracted Air Resource
Specialists, Inc. to house the collected weather database for the NPS. These data are
available through their Gaseous Pollutant and Meteorological Data website: http://ard-
request.air-resource.com/. Air Resource Specialists, Inc. operates this website under
contract with the National Park Service. The downloaded data for this project include
hourly precipitation and hourly temperature. These data can be downloaded as tab-
delimited text tables.

4.4 Data Scrubbing and Loading

The datasets used in this project required some organization, formatting, and
modification to be used.

For the project, the geodatabases and feature classes all had to be in an NAD 1983
UTM Zone 11N Projection, as it is required by JOTR. This format is additionally useful
for calculating distance measurements in meters with the geoprocessing tools that were
delivered. Feature classes were reprojected as necessary.

Both provided datasets and downloaded data were manipulated within the
geodatabases. For delivered data, the MCP, 95PVC, and Kernel Density datasets needed
extensive manipulation. Initially, the master feature class for each had to be manually

http://ard-request.air-resource.com/�
http://ard-request.air-resource.com/�

37

created that contained all of the necessary attribution. Then, several custom tools were
built to automate further data preparation. Additionally, the weather data extracted from
the web needed conversion to bring the data into the created weather geodatabase.

The Minimum Convex Polygon (MCP) dataset included 85 feature classes that only
included the tortoise name, year, and either Winter or Summer in the individual feature
class file names. All of these feature classes had to have the Name, TimeStamp, and
EndTime attribute fields manually added and populated. Once these were populated, they
were additionally migrated into the MCP_All_Tortoises feature class. This enabled
dynamic display of all the MCPs.

The 95 Percent Volume Contour (95PVC) dataset covered the entire time frame of
the data, so TimeStamp and EndTime are not applicable fields. However, the tortoise
name was only part of the file name and not collected as an attribute. The Name field had
to be manually added to the 18 feature classes. The datasets were then brought into a
single PVC_All_Tortoises feature class should the analyst want to turn all of the PVCs on
at once.

The Kernel Density dataset included 44 feature classes, one for each tortoise for each
year. Again, these feature classes only included the tortoise name and year within their
file name. All of these feature classes had to have the Name, TimeStamp, and EndTime
attribute fields manually added and populated. Once these were populated, they were
additionally all migrated into a Kernel_All_Tortoises feature class. This enables dynamic
display of all the kernel density polygons.

The weather data for the time of the project from 2005 through 2008 were queried
and downloaded from the NPS Gaseous Pollutant and Meteorological Data website. The
downloaded data included the precipitation and temperature (aspirated) data for the Black
Rock Nature Center (Figure 4-15).

Figure 4-15: Air Resource Specialists, Inc. Website for NPS Weather Data

38

Clicking continue lead to the next screen to generate the comma separated value file
(CSV) that became displayed on the screen. On the website output screen, a right-mouse
click followed by Save Page As, allowed the CSV file to be saved. This file needed to be
modified prior to bringing it into ArcMap. Using Notepad, all of the header information
was deleted, except the field row above the data. In addition, the spaces were removed
from the field names (Figure 4-16). The file was then ready to add to ArcMap as a simple
table. This process was replicated for the Temperature (aspirated).

Figure 4-16: Correctly Formatted CSV File in Notepad

4.5 Summary

In summary, all data provided for this project were collected by JOTR and, in general,
required little scrubbing. The scrubbed data were modified as needed by custom-built
tools to both add attribute fields to the feature classes and to create new feature classes.
These modifications were necessary to enable the data to be used for dynamic animations
in ArcMap 10 as well as Google Earth. The attributes that were added included
TimeStamp and EndTime, as well as attributes that were created to support generation of
those fields.

The conceptual model described the relationships amongst the various components
of the tortoises and their environment. This provided the foundation for developing the
logical model. The logical model depicts the three geodatabases of the project: tortoise
locations, JOTR features, and weather. There are many data sources used in this project,
as well as many feature classes that were delivered to the client. These delivered feature
classes were the result of running the various custom-built Arc Toolbox tools. These tools
were also provided to the client.

39

Chapter 5 – Implementation
This project created a custom ArcGIS toolbox to prepare Joshua Tree National Park
(JOTR) tortoise and habitat data for time-based animations using Google Earth, ArcGIS
Explorer (AGX), and ArcMap. This chapter describes the seven Python-based tools and
one ModelBuilder tool, in the order of their creation (Figure 5-1).

Figure 5-1: Custom-Built ArcMap Tortoise Toolbox

To animate the tortoises’ movements using their temporal attributes, the TimeStamp
and EndTime attributes were needed. The TimeStamp and EndTime Field Creator Tool
was built to automate the creation and population of these attributes. This tool was used
in many of the use-cases for the project, as these attributes are the mechanism for time-
based animation.

The Road and Trot Buffer Tool was created to calculate either one or two buffers
from the roads feature class, and one buffer for the curbing. This tool helps in visualizing
whether a tortoise’s recorded positions or potential paths overlap the danger zones close
to the roads.

For the weather data, the Stationary Event from Table Tool allows for animation of
changes in recorded values of precipitation and temperatures.

The Tortoise Import Tool speeds up creation of multiple sub-feature classes for the
project and tools, as well as for future data utilization. This tool automates a lengthy
manual process and assists the users who do not have much experience with ArcGIS.

The Tortoise Maximum Speed Finder Tool creates a table in ArcMap that includes
calculated maximum achieved speed for each tortoise for either the duration of the study
or by year. The Tortoise Potential Path Tool and the Lost Tortoise Tool use this table.

The Tortoise Potential Path Tool uses the maximum speed table for calculating
potential distances travelled by a tortoise between every two consecutive positions. The

40

potential distance can then be used to create the time-attributed potential path ellipse that
the tortoise might travel during the lapse between the two recorded times.

The Lost Tortoise Tool also uses the information from the maximum speed table to
create a search polygon for a lost tortoise. After the last known position and datetime is
entered, the tool calculates its potential areas travelled.

Besides the above custom tools, Export to KML 2.5.5 is used to export the feature
classes and into KML format for time-based animation in Google Earth. This tool was
created by Kevin Martin, and is available for free download from the ESRI developer’s
network (Martin, 2010). Both the feature classes and KMLs make up the data
deliverables to the client. The KML files are viewable in AGX; however, the KML layer
display attributes cannot be modified.

5.1 TimeStamp and EndTime Field Creator

Much of the provided data include date and time attributes; however, inconsistent
formatting and the timestamp being broken into two separate attributes were problems.
The other tools require consistency of a single format for timestamp for both start time
and end time. Therefore, the TimeStamp and EndTime Field Creator Tool was created to
standardize temporal attributes, which provide the backbone of the toolbox. Additionally,
the tool provides methods to add an EndTime field and populate it based on the chosen
method. The TimeStamp and EndTime fields created by the tool are the key elements for
time-based animation in KML, as well as for the ArcMap animation in ArcMap 10.

5.1.1 Formatting Time

The original date field was in ESRI’s date format and the time was in a separate field as a
Double. Also, there were unnecessary fields called Month and Year. However, the
timestamp needed to be a single field in a consistent usable format.

Originally, the created tool made the new attribute a date field. However, in Python,
the date fields were passed in as MM/DD/YYYY format. Many of the tools that were
created later need to perform many sorting routines by date. Sorting dates in that format
becomes quite complicated as a normal sort in Python orders them by month, then by
day, then by year. Since many of the tools would have to perform date sorting, this tool
changes the format for the timestamp fields to be text in the ISO date-time format:
YYYY-MM-DD HH:MM:SS. Sorting in Python becomes much more efficient with this
format, as it orders the times correctly. The EndTime attribute applies the same format
(Figure 5-2).

41

Figure 5-2: Original Tortoise Date and Time Fields

5.1.2 Populating TimeStamp (Start Time)

The TimeStamp field (start time) is created by the tool and populated by either just taking
the date field or by taking the date and time fields, and converting to the ISO format as
text (Figure 5-3).

Figure 5-3: TimeStamp and EndTime Field Creator Tool

5.1.3 Populating EndTime

The user has the option to add and populate an EndTime field with the tool. The
EndTime field is in the same format as the TimeStamp field. EndTime can be calculated
by one of two methods that is selected by the user. The method EndTime is StartTime of
Next Occurring Feature creates a sorted Python list of the event dates, then populates
EndTime by finding its matched date in the table and retrieving the next date from the

42

list. Each tortoise is handled separately, based on the user-selected tortoise name. The
method EndTime is Start of Next Day(s), allows the user to enter days or decimal days.
The EndTime is calculated and populated by adding the entered days to the TimeStamp
(Start Time) field (Figure 5-3). Adding days requires Python to convert the field string
back into a date object. Once the tool has been run, the feature class contains the new
populated fields (Figure 5-4).

Figure 5-4: Feature Class with New Fields Added

5.2 Road and Trot Buffer Tool

The Road and Trot Buffer Tool builds buffers around the roads and curbing. The tool
allows the user to enter a near road buffer distance, a far road buffer distance, and a
single buffer distance for the curbs. Since the curbs with tortoise trots have an
implementation year, the tool also dissolves the buffers based on the year. The
TimeStamp and EndTime Field Creator Tool creates a TimeStamp field for the curbs
with tortoise trots to support dynamic animation. The tool has default values of 0.8
kilometer populated for the near road buffer distance, and 2.5 kilometers for the far road
buffer distance. The default road buffers are based on suggested values in the study by
Boarman, Sazaki, and Jennings (1997). The road buffers created by these distances
values indicate the area in which any tortoises found dead may have been hit by a car.
Additionally, a buffer may be created for the tortoise trot curbing. This can be used for
erasing sections of road that already have curbing, and utilized for the Priority Trot
Needs Tool as described in Section 5.8. The user may change the default values to create
other buffers. The user may also change the measurement units (Figure 5-5).

43

Figure 5-5: Road and Trot Buffer Tool

5.3 Stationary Event from Table Tool

The Stationary Event from Table Tool converts any non-geographic event table data into
a geographic, dynamic feature class to prepare it for animated visualizations in Google
Earth, AGX, and ArcGIS 10.

5.3.1 Event Table

The event table defined in this project is an ArcMap table that contains a TimeStamp and,
optionally, an EndTime field such that any record in the table represents an event
occurring at a particular time. The event tables for weather data were created by adding
comma-delimited weather data to a text editor to remove header information and remove
spaces from the field names, and then importing it into ArcMap. The temperature and
precipitation tables each consist of hourly recordings from January of 2005 to January of
2009. The TimeStamp and EndTime Field Creator Tool was then used to create the
proper fields (Figure 5-6).

44

Figure 5-6: Stationary Event from Table Tool

5.3.2 Geometry for the Stationary Event

The tool allows the user to select any single feature, of any feature type, from any
georeferenced feature class. This feature’s geometry will be used for all of the geometries
for the stationary event. The feature class and Object ID of the feature must be specified
in the tool. This single geometry will represent the event location, enabling stationary
animation by symbol and label.

5.3.3 Options for Creating Event Tables

The tool has several methods to choose from in the parameter Data Type of Table and
Frequency Requested, to create the stationary event.

• Temperature High and Low

This option produces two feature classes: a feature class that has a single record
for each day with the high temperature of that day, and a feature class that has a
single record for each day with the low temperature of that day.

• Average Daily Temperature

This option produces a feature class that has a single record for each day with the
average temperature of that day.

• Hourly Temperature

If the data from the table are stored hourly, this option merely creates a feature for
each row of the table. The number of objects in the output feature class will equal
the number of records in the table. This process was not used for the data in the
project due to the large number of records for the project.

45

• Daily Precipitation

This option produces a feature class that has a single record for each day with the
total precipitation of that day. This is calculated by adding up the hourly totals for
the day.

• Other Method

This option can be used when the user would like to tie the records from other
types of time-attributed tabular data to a stationary geometry. It creates a feature
for each row of the table. The number of objects in the output feature class will
equal the number of records in the table. This process was not used for the data in
the project.

5.3.4 Metric/English Units

The Include English Units in Output Feature Class option in the tool creates a field that
contains the English units that result from converting the metric units. This is used for
both temperature and precipitation.

5.4 Tortoise Import Tool

The Tortoise Import Tool allows the user to create multiple sub-feature classes from a
single feature class, based on tortoise name, year, or tortoise name and year. This tool
replaces the client’s manual process used to create 68 tortoise feature classes within
seconds. This will also be very useful for the processing the updated tortoise data in the
future. Additionally, it can be used to extract sub-datasets from any data based on an
attribute field or time.

5.4.1 Options for Importing Data

The tool contains several methods that the user can choose from depending on their data
need (Figure 5-7).

46

Figure 5-7: Tortoise Import Tool

• Create Feature Classes by Tortoise

This queries the master database by tortoise and produces a feature class for each
tortoise, which results in 18 new feature classes.

• Create Feature Classes by Tortoise and Year

This queries the master database by tortoise and year and produces a feature class
for each tortoise for each year. There are 46 feature classes in the output.

• Create All Tortoises by Year

This queries the master database by year and produces a feature class for each
year that contains all of the tortoises. There are four feature classes in the output.

• Create All Three Types of Feature Classes

This option applies all of the previous methods to produce all of the different sub-
feature class types. This was the method used for the project to create the 68
delivered feature classes for the client.

5.4.2 Naming Feature Classes

When multiple sub-feature classes are generated, it is important to define a naming
schema to differentiate them. The tortoise name, all_tortoises, or name and year together
are tagged to the name of the output files where appropriate. Additionally, there is an
optional parameter to add an extra preceding tag to the name to further identify the
output.

47

5.5 Tortoise Maximum Speed Finder

The Tortoise Maximum Speed Finder Tool calculates the maximum sustained speed
achieved by each tortoise. Not only is the table useful for the study of the tortoise speed,
but it supports the Tortoise Potential Path Tool and the Lost Tortoise Tool (Sections 5.6
and 5.7). The TimeStamp and EndTime Field Creator Tool must be run prior to using this
tool.

5.5.1 Methods to Calculate the Maximum Speed

The user can choose from two methods.

• Tortoise by Name

This calculates the maximum speed achieved by each particular tortoise over the
period covered in the feature class.

• Create All Three Types of Feature Classes

This calculates the maximum speed achieved by each particular tortoise for each
year.

Speed is determined by dividing the distance travelled between any two consecutive
positions by the time elapsed between the same two positions. The resulting speed is in
meters per hour.

In this project, the Euclidean distance formula was used to calculate the distance
between any two points with X and Y coordinates. The coordinates were defined in the
Universal Transverse Mercator (UTM) projection, as it is the requested projection for
NPS data. UTM has the advantage of being measured in linear meters, rather than angular
degrees. This makes it more reliable than geographic coordinate systems and ideal for
calculating distances (Cole, 1977). The coordinates are measured in meters North and
East from a local origin.

The time is measured by the difference between the TimeStamps of the two
positions. When subtracting two dates in Python, the result is in decimal hours, so the
equation provides the result in the needed units.

5.5.2 Finding Maximum Tortoise Speed with Python

The Python script first creates a list of the possible tortoises, and optionally a list of the
years from the tortoise feature class. The script iterates through each tortoise and creates
a date-ordered list of position dates of the particular tortoise. The script then iterates
through the rows in date order and calculates the tortoise speed between consecutive
positions. If the time difference is less than 18 hours, the speed is not calculated. Tortoise
positions are acquired once a day, unless a ranger has moved the tortoise. In that case,
unrealistic speeds are calculated. The 18-hour minimum time difference prevents those
speeds from being used. If the new tortoise speed is greater than the maximum tortoise

48

speed (initially set to zero), the tortoise speed becomes the new maximum tortoise speed.
Once the iteration is finished for the tortoise, or the tortoise and year, the script adds a
new record to the output table indicating the tortoise, year, maximum speed, start time,
end time, distance travelled, and time elapsed. This script performs the same process by
iterating through each tortoise (Figure 5-8).

Figure 5-8: Tortoise Maximum Speed Finder

5.6 Tortoise Potential Path Tool

The Tortoise Potential Path Tool uses the calculated tortoise’s maximum speed to find
the potential area that the tortoise could travel between any two consecutive recorded
positions. The potential area is defined by an ellipse with the two recorded locations as
the focal points (Figure 5-8). The tool populates a row in an ellipse table with all of the
parameters needed, as well as TimeStamp and EndTime. Once all ellipse data are loaded
into the table, a new feature class is created that includes all of the ellipses. Additionally,
the tool has an option to create and populate a symbol angle field in the original tortoise
feature class.

5.6.1 Building the Ellipse

An ellipse is defined by multiple parameters, including foci, semi-major axis, semi-minor
axis, center, and the rotation angle. In Figure 5.9, F1 and F2 are the two focal points
determined by the two consecutive positions of a tortoise.

49

Figure 5-9: Components of an Ellipse.

The blue line represents the maximum potential distance that the tortoise can travel
within the time lapse between the first recorded position (F1) and the second recorded
position (F2). This distance equals the semi-major axis (labeled as a in Figure 5-9)
multiplied by two. The maximum potential distance is calculated in the script by finding
the time difference in hours between the two foci positions and multiplying it by the
tortoise’s maximum speed. It is worth noting that the time difference in Python is
measured in seconds. The formula is listed below:

𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑟 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

= (𝑑𝑎𝑡𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 24) + (𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ∗
1.0

3600
)

In the above equation, the seconds are multiplied by 1.0, which is necessary in
Python to make it a Double type. Once the maximum potential distance is obtained, the
length of the semi-major axis can be calculated by dividing it in two.

By the nature of an ellipse, the sum of the distances from any point on the ellipse to
those two foci is constant. Therefore, the length of blue and red lines in Figure 5-10 are
the same. According to the Pythagorean Theorem, the semi-minor axis (denoted by b)
squared plus one-half of the distance between the two foci (denoted by ea) squared equals
to one-half the maximum potential distance squared. The semi-minor axis is then solved.
See equation below:

�
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

2 �
2

= 𝑏2 + 𝑒𝑎2

The value for ea can be found because ea is exactly one-half of the actual distance
calculated between the two consecutive positions designated by F1 and F2 in Figure 5-10.
The actual distance is calculated by using the Euclidean distance formula and the UTM
coordinates.

50

Figure 5-10: Ellipse with Potential Distance in Red and Blue

In some cases, when the user enters the tortoise maximum speed, the maximum
potential distance may be less than the actual travel distance by the tortoise. Put
differently, the blue line in Figure 5-10 after calculation may be shorter than the distance
between the two foci. In those cases, the ellipse would be a collapsed ellipse. A
calculation was added to the code that checked to see if this is the case. If so, the minor
axis will be set to zero. Because the collapsed ellipses are not easy to see, the value for
this case will be changed to 1.0. This makes the ellipses distinguishable and nearly
resembling a line.

The center point of the ellipse is also a necessary parameter. The X-coordinate of the
center is found by the sum of the X-coordinates of two foci and then divided by 2. The Y-
coordinates are used in the same manor to find the Y-coordinate of the center. For the
ellipse builder, integer values are required for the coordinates.

Lastly, the rotation angle is calculated in two steps. First, the Python formula for
arctangent is used to calculate angle θ in radians (Figure 5-11). This angle is measured
from the positive y-axis to the Major Axis.

51

Figure 5-11: Angles from Y-Axis to Ellipse Major and Minor Axis

To avoid a divide by zero circumstance, a result of zero for YF2-YF1 needs to be
considered, as shown in the formula below:

𝜃 = arctan �
𝑋𝐹2 − 𝑋𝐹1
𝑌𝐹2 − 𝑌𝐹1

�,

𝑤ℎ𝑒𝑟𝑒 𝑖𝑓 𝑌𝐹2 − 𝑌𝐹1 = 0 𝑎𝑛𝑑 𝑋𝐹2 − 𝑋𝐹1 ≥ 0, 𝜃 = 0 𝑎𝑛𝑑

𝑖𝑓 𝑌𝐹2 − 𝑌𝐹1 = 0 𝑎𝑛𝑑 𝑋𝐹2 − 𝑋𝐹1 < 0, 𝜃 = 𝜋

Once this angle is calculated, it needs to be converted to degrees. Normally this
would be simple; however, the actual direction of the major axis is needed. This value
will be used in another function of the tool that populates the symbol angle for the
tortoise. For this reason, four different radian to degree conditions will have to be
checked for every two consecutive pairs of coordinates, depending on whether XF2-XF1 is
positive or negative and whether YF2-YF1 is positive or negative. The Tortoise Potential
Path Tool applies the TableToEllipse command, which is part of the Military Analyst
Extension. This extension is free to download from ESRI. This tool, however, measures
its angles from the positive y-axis to the semi-minor axis; therefore, once the angle in
radians is converted to degrees, 90 degrees will be added to the result to get the proper
rotation angle. The following formulas convert to degrees, accounting for the true
direction of the major axis, as well as adding 90 degrees to get the bearing of the minor
axis needed for the TableToEllipse command:

52

𝐼𝑓 𝑋𝐹2 − 𝑋𝐹1 ≥ 0 𝑎𝑛𝑑 𝑌𝐹2 − 𝑌𝐹1 > 0, 𝑡ℎ𝑒𝑛 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 = 𝜃 ∗
180
𝜋

+ 90

𝐼𝑓 𝑋𝐹2 − 𝑋𝐹1 ≥ 0 𝑎𝑛𝑑 𝑌𝐹2 − 𝑌𝐹1 < 0, 𝑡ℎ𝑒𝑛 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 = 𝜃 ∗
180
𝜋

+ 270

𝐼𝑓 𝑋𝐹2 − 𝑋𝐹1 < 0 𝑎𝑛𝑑 𝑌𝐹2 − 𝑌𝐹1 < 0, 𝑡ℎ𝑒𝑛 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 = 𝜃 ∗
180
𝜋

+ 270

𝐼𝑓 𝑋𝐹2 − 𝑋𝐹1 < 0 𝑎𝑛𝑑 𝑌𝐹2 − 𝑌𝐹1 > 0, 𝑡ℎ𝑒𝑛 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 = 𝜃 ∗
180
𝜋

+ 90

When the tortoise SymAngle field is populated further in the tool, 90 degrees is
subtracted from the rotation angle to get the proper direction for the tortoise.

5.6.2 Tool Options

When using the tool, the user can select different options for two of the parameters
(Figure 5-12).

Figure 5-12: Tortoise Potential Path Tool

5.6.2.1 Tortoise Speed Options

The user can either reference the Tortoise Maximum Speed Table or choose to enter a
specific speed in meters/hour for the creation of the ellipses. It is important to note that
small user-entered speeds result in ellipses that do not contain the two positions when the
potential distance is less than the actual distance travelled.

53

5.6.2.2 Limiting Potential Distance Options

Normally the maximum speed for the tortoise is multiplied by the time difference to
obtain the potential distance used to find the ellipse parameters. However, this can result
in large potential path ellipses if there is a large time gap between consecutive positions.
An option exists in the tool to override this maximum potential distance.

When the box is checked to limit the maximum potential distance, the values for
hour limit and distance limit will be used. The hour limit represents the maximum time
gap between positions for calculating potential distance. The distance limit is the
minimum distance difference that should be considered.

If the time gap is larger than the hour limit value and the distance between positions
is less than the distance limit, the maximum tortoise speed will be multiplied by 24 hours.
This limits excessively large ellipses. The theory behind this method reflects that if a
tortoise has not moved far and considerable time has passed, then it is likely that it did
not take a long trip and return. The output of the tool yields an initial ellipse table, as well
as the ellipse feature class.

5.7 Lost Tortoise Tool

The Lost Tortoise Tool uses the Tortoise Maximum Speed Finder Tool to help to locate
tortoises that cannot be located (Figure 5-13).

Figure 5-13: Lost Tortoise Tool

The tool uses the maximum achieved speed for the tortoise and the elapsed time to
obtain a maximum potential distance travelled. Using this maximum potential distance as

54

the input buffer distance, a buffer can be created at the last recorded position of the lost
tortoise to represent the potential area where could have travelled. The projection
parameter is required by the geoprocessing command used to create the new feature class.
Optionally, feature classes can be selected to both clip and erase portions of the search
buffer. This could be used when there are known barriers that inhibit tortoise movement.

5.8 Priority Trot Needs Tool

The Priority Trot Needs Tool was the only tool developed in ModelBuilder. The tool uses
core ArcMap tools and data produced by the Tortoise Potential Path Tool and the Road
and Trot Buffer Tool. By selecting all the unlimited and limited potential path feature
classes, the near road buffer feature class, and a clip feature class, the tool processes the
data to produce three feature classes depicting three levels of priority for road lengths
needing curbing with tortoise trots (Figure 5-14).

Figure 5-14: Priority Trot Needs Tool

The tool can best be described using Boolean logic.

55

Primary Trot Needs =

(Limited Potential Paths AND Near Road Buffers) AND NOT

Existing Curb Buffers

Secondary Trot Needs =

(Unlimited Potential Paths AND Near Road Buffers) AND NOT

 (Primary Trot Needs OR Existing Curb Buffers)

Tertiary Trot Needs =

Near Road Buffers AND NOT

(Primary Trot Needs OR Secondary Trot Needs OR Existing Curb Buffers)

The tool uses the core tools for this logic. The intersect tool is used for the AND
operator, and the erase tool and the clip tool are used for the NOT operator. The OR
operator is achieved by performing the appropriate operator again.

Initially, all of the limited potential path polygons are dissolved by tortoise name into
a new feature class. This new feature class is then dissolved entirely. This two-step
dissolve considerably speeds up the dissolving needed as fewer dissolves are needed. The
same process is performed on the unlimited potential path polygons.

The unlimited and limited potential path feature classes are then clipped by a
selected feature class. In this project, the JOTR park boundary was used for clipping. The
two new feature classes are then clipped by the Road_Buffer_Near feature class. The
clipped limited potential path feature class is output as the PrimaryTrotNeeds feature
class. This output is additionally used to erase portions of the unlimited potential path
feature class to output the SecondaryTrotNeeds feature class. The PrimaryTrotNeeds and
SecondaryTrotNeeds are then erased from the Road_Buffer_Near feature class to output
the TertiaryTrotNeeds feature class (Figure 5-15).

56

Figure 5-15: Priority Trot Needs Tool Outputs in ModelBuilder

5.9 Export to KML

Before the output files can be dynamically visualized in Google Earth or ArcGIS
Explorer (AGX), they need to be exported to KML format. This was achieved by using
the Export to KML 2.5.5 tool downloaded from the ESRI Developers’ Network. The tool
supports both the TimeStamp and EndTime fields created by the custom-built tools.
Collaboration with the developer, Kevin Martin, included platform testing and fine-
tuning the tool to produce dynamic labeling. The capability of this tool exceeded the
baseline ArcMap Layer to KML tool, which currently does not have the capability to
export TimeStamp and EndTime.

To visualize KML files, both Google Earth and AGX allow for multiple KML time
animations. In AGX, all of the KMLs must be wrapped into a single KMZ to allow
simultaneous animations. However, AGX does not allow for representation editing of the
KMLs. Such things as symbology and elevation value or method cannot be manipulated
on the KML layers. Since most of the KMLs needed their representation changed for the
deliverables, AGX was not used as the primary display software.

Additionally, the feature classes created in this project can be animated within
ArcGIS 10. ArcGIS 10 includes the capability to turn on animations for any feature class
using the TimeStamp and EndTime attributes. This new capability adds even more value
to the custom-built tools.

57

5.10 Summary

This chapter outlined the various tools built and used for the project. Custom-built tools
were used for importing, manipulating, and analyzing the data. The user-built tool,
Export to KML, was used to create KML files from the data created from the tools to
create time-based animations in Google Earth and AGX. ArcMap 10 promises to exploit
the capability of the created tools even further.

59

Chapter 6 – Results and Analysis
The objectives of the project were accomplished through the seven custom tools built
with Python in ArcGIS, a ModelBuilder tool, and the existing Export to KML 2.5.5 tool.
The results can be animated and visualized in Google Earth.

To depict danger areas related to the roads in JOTR, the Road and Trot Buffer Tool
can generate static buffers around the roads and dynamic buffers around the curbing with
tortoise trots. The precipitation and temperature data are used in the Stationary Event
from Table Tool to create dynamic stationary weather events. The dynamic tortoise
movement data are produced by the TimeStamp and EndTime Field Creator Tool. The
Tortoise Maximum Speed Finder Tool analyzes the tortoise movement data to yield a
Tortoise Speed Table that contains the maximum achieved speed for each tortoise. The
output from this tool is used by the Tortoise Potential Path Tool to generate the tortoise
dynamic potential path ellipses between every two consecutive recorded positions of the
tortoises. The Lost Tortoise Tool, along with the Tortoise Speed Table, produces a buffer
that depicts the search extent for locating the tortoise. All of these tools require data that
has been processed by the TimeStamp and EndTime Field Creator Tool. This tool also
processed the client-provided 95PVC contours, MCPs, and Kernel Density polygons to
visualize them dynamically.

All of the output feature classes from these tools are exported to dynamic KML
format using the Export to KML Tool. For the project, the KML files were packaged
together for the client, which enables selective animation of multiple feature types in
Google Earth. However, these files can also be viewed in ArcGIS Explorer (AGX) with
limitations in customized viewing. Additionally, with the newly released ArcGIS 10, the
client will be able to animate the various feature classes within ArcMap. This chapter
discusses the installed components, different scenarios in which the tools can be used for
analysis, and issues that arose in the project.

6.1 Installation of Components

6.1.1 Custom-Built Tools

The seven custom-built tools were created in ArcMap using Python and ArcMap’s
geoprocessing engine. The other tool was built using ModelBuilder. The eight tools are
contained in an ArcMap toolbox called Tortoise Tools. The tools were designed in
ArcGIS 9.3.1 with ArcInfo License.

Within an ArcMap session, open the ArcToolbox Window. Within the white space
of the window, a right mouse-button click will open a menu (Figure 6-1) in which Add
Toolbox must be selected. When the browse window opens, navigate to the folder with
the Tortoise Tools toolbox and highlight it, then click open. The toolbox is now loaded
for only the current session.

60

Figure 6-1: Loading the Tortoise Tools, Step 1

After the previous step has been completed, the user may desire the tools to be
available for all sessions. Within the white space of the window, a right mouse-button
click will open a menu (Figure 6-2) in which Save Settings must be selected, followed by
To Default. Now the toolbox will be available for all sessions. It is noted that each user
must perform this, as the ArcMap Toolboxes are stored in the personal profile.

Figure 6-2: Saving Toolbox for All Sessions

6.1.2 Military Analyst Extension

Within ArcMap 9.3.1, the Military Analyst Extension must be installed in order for the
Tortoise Potential Path Tool to work. This extension contains the TableToEllipse
geoprocessing function required to build ellipses. The Python script calls this function.
ArcGIS 10 includes a core TableToEllipse Python function and does not require Military
Analyst. The function in ArcGIS 10 uses a different set of parameters and syntax than
Military Analyst extension for 9.3. The Tortoise Potential Path Tool accounts for this by
including a check for version number. If ArcGIS 10 is used, the tool will use the newer
function.

6.1.3 Export to KML 2.5.5

The Export to KML 2.5.5 tool must be installed within ArcMap for exporting the
dynamic feature classes into KML.

61

The tool can be downloaded from the ArcScripts website: http://arcscripts.esri.com.
The installation of the tool varies depending on the version of Windows and an
administrator must install it. The instructions and requirements are included in the
download.

6.1.4 Google Earth

Google Earth is the primary means for viewing the dynamic layers of this project. Google
Earth is free to download from the Google website: http://earth.google.com.

The Google Earth website contains the instructions necessary to install the
application. The provided KML files can be opened by either dragging the file to Google
Earth, or by selecting File from the main menu and then clicking Open. A listing of the
delivered KML layers is provided in Appendix C.

6.1.5 ArcGIS Explorer

ArcGIS Explorer (AGX) is a powerful tool very similar to Google Earth; each application
has its unique benefits and capabilities. If AGX had the capability to change symbol
representations of KML, like Google Earth, it would be another primary means for
animating the results of this project.

AGX is free to download from the ESRI website and simple to install using the
provided instructions. This section does not cover the specifics on opening the KML files
in AGX, as the next version may require a new method.

6.2 Use-Cases and Results

The developed tools can be used in various combinations to perform analysis of tortoise
movement and their environment under different scenarios. This section addresses eight
use-cases for the tools and demonstrates the results of each use-case.

The tools were built to allow flexibility for the user, as well as to be compatible with
each other. The feature classes created are based upon user-entered parameters that affect
the results. Parameters for this project and the provided data are based on a combination
of previous studies, JOTR criteria, and by achieved results.

Since Google Earth can be used for all use-cases, a brief introduction to using the
Export to KML 2.5.5 tool and a listing of the delivered KML layers is provided in
Appendix C.

6.2.1 What are the danger zones near roads?

The roads within JOTR are mostly unchanging; however, the curbing with tortoise trots
were added to portions of the roads where tortoises have been observed in the relative
vicinity. The curbing has been added incrementally through the past ten years and is
intended to prevent people from driving off-road, yet allows the tortoises to egress from
the road. JOTR can examine the roads and curbs with trots, in relation to the tortoises by

http://arcscripts.esri.com/�
http://earth.google.com/�

62

using the Road and Trot Buffer Tool to create a close road buffer, a far road buffer, and a
curb with trot buffer. The curb with trot buffers are dissolved, or merged, by their year of
implementation so they will only show up in a dynamic display once the year of their
implementation is reached. Additionally, the analyst may want to create a buffer around
the solid curbs using the tool.

6.2.1.1 Process

The workflow of this scenario is shown in Figure 6-3, in which blue represents feature
classes, red represents tools, green represents KML files, and yellow represents
animations. This color scheme will be used for the workflows in this chapter.

Roads
Feature
Class

Road&Trot Buffer Tool

Tortoise
Trots

Feature
Class

Tortoise
Trot Buffer

Feature
Class

Road Buffer
Near

Feature
Class

Road Buffer
Far Feature

Class

Export to KML
2.5.5 Tool

(VBA)

Time-Dynamic
KML of Tortoise
Trots and Roads

ArcGIS 10
Time Animation

Google Earth
Full Time
Animation

ArcGIS
Explorer

Limited Time
Animation

P-Trot Buffer Distance

P- Far Buffer Distance

P- Near Buffer Distance

TimeStamp & EndTime
Field Creator Tool

Figure 6-3: Flow Diagram, Road and Trot Use-Case

The TimeStamp and EndTime Field Creator Tool is first used on the Tortoise Trot
feature class to create and populate the TimeStamp attribute with the DATE_ attribute’s

63

value. The Road and Trot Buffer Tool can then create up to three buffers. The user has
the option to choose which buffers are produced. The buffer distances can be changed, as
well as their units. For this scenario, the default buffer distances were used and all three
buffers were created. Once these feature classes were created, the buffers were clipped
using the park limit feature class. This removed the buffer areas outside of the park. As
with the other scenarios in this project, the feature classes can be exported into KML for
dynamic visualization in Google Earth.

6.2.1.2 Results

The results are depicted in ArcMap (Figure 6-4). The buffers created show that 54.7% of
the area within JOTR falls within the far road buffer of 3.5 kilometers, and 13.4% fall
within the near road buffer of 0.8 kilometers. It can be seen in the visualization that there
are many areas that appear to be protected by the curbing; however, it is more apparent
where gaps between curbs open up considerable dangerous area.

Figure 6-4: Road and Curbing Buffer Results Shown in ArcMap

The output becomes particularly useful when it is combined with dynamic
movements of tortoises. By visualizing the protected areas, roads, curbing, and dangerous
zones with tortoise trajectory, we can see whether a tortoise passes within or near a buffer
that is considered dangerous. This can be used to help determine curb implementation
effectiveness and needs. The positions of tortoises found dead can be added to the display
to help determine if the probable cause of death may be related to the tortoise’s proximity
to these areas.

64

6.2.2 Where have the tortoises been?

Having recorded telemetry data of 18 tortoises over the past five years, the JOTR staff is
interested in visualizing the movement of these tortoises and exploring their paths in
relation to the physical environment in the park. With the custom tools TimeStamp and
EndTime Field Creator Tool and Tortoise Import Tool, they now can easily view the
dynamic trajectories of the tortoises.

6.2.2.1 Process

The workflow of this process is illustrated in Figure 6-5. Initially, the TimeStamp and
EndTime Field Creator Tool was run on the All_Tortoises feature class to create and
populate the TimeStamp and EndTime fields. Once this was completed, the Tortoise
Import Tool was used to create all of the necessary sub-feature classes for animation.
These feature classes were brought into ArcMap. These feature classes were each
exported to KML twice. The first time, the feature class is exported with both the
TimeStamp and EndTime fields with the tortoise symbol. The second time, the feature
class is exported with only the TimeStamp field and symbolized with a black circle
representing a footprint. This results in the tortoise leaving behind a footprint as he
moves through time.

65

All
Tortoises
Feature
Class

All Sub-Feature
Class Types

Method

Tortoise
Feature
Classes

Footprint
Layers

Export to KML
2.5.5 Tool

(VBA)

Time-Dynamic
KML of Tortoise
Positions and

Footprints

ArcGIS 10
Time Animation

Google Earth
Full Time
Animation

ArcGIS
Explorer

Limited Time
Animation

TimeStamp & EndTime
Field Creator Tool

Tortoise Import Tool
(Creates Sub-Classes)

EndTime is
StartTime of next

Event Method

Figure 6-5: Flow Diagram, Tortoise Movement

6.2.2.2 Results

The results shown in Google Earth depict the current tortoise position, as well as icons
indicating the locations that the tortoise has previously visited. When animated in Google
Earth, the icons show up based upon their TimeStamp. Figure 6-6 shows the footprint of
the tortoise called Elizabeth, which includes 207 recorded positions over 43 months. All
icons are clickable, producing a pop-up balloon that contains the tortoise name and
TimeStamp attributes. The pop-up balloon in the figure points to one of Elizabeth’s many
footprints. By giving the footprint symbols 50% opacity, a sense of density is observed.
Where footprints overlap, the color is darker. This can help to determine possible tortoise
burrows, or favorite spots. They also could indicate a pattern of behavior, or normal
extent for the tortoise.

66

Figure 6-6: Animated Tortoise Movement in Google Earth.

Whether it is one or all of the tortoises, they can be animated in Google Earth. Since
a tortoise icon indicates the current position, the user can see the tortoise location in
respect to another tortoise. Since the tortoise symbol represents the current position, it
may be easier to observe possible tortoise interactions as tortoise symbols group together.
The locations can be shown with the road and curb buffers, as well as other features such
as the dynamic weather features discussed in Section 6.2.7, to see if there are dangers or
correlation to weather conditions.

6.2.3 How fast are the tortoises?

For the project, many of the tools depend on knowing the maximum achieved speed of
each tortoise. Knowing the maximum moving speed does not meet the needs of the tools,
as a tortoise can have a faster speed if recorded while the tortoise moving in a short time.
Since it is not known where the tortoise went between any two consecutive positions, a
maximum achieved speed was obtained by using the Euclidean distance between the two
consecutive positions divided by the lapse in time. The tool can also calculate the
maximum achieved speed for each tortoise by year, with which the client can further
examine the speed variation of tortoise population over years. The tool does not consider
speeds that were achieved in a duration of less than 18 hours. This eliminates high speeds
being recorded for tortoises that were relocated within 18 hours. This effect can be seen
in the graph in Figure 6-7, in which a speed of 108.6 was calculated after 49 minutes.

67

Figure 6-7: Elizabeth’s Calculated Speeds

6.2.3.1 Process

The workflow to address this question is summarized in Figure 6-8, in which the
TimeStamp and EndTime Field Creator Tool and the Tortoise Maximum Speed Finder
are the tools used. The light blue color in the figure represents a decision needs to be
made by selecting an option in the tool. The output of the Tortoise Maximum Speed
Finder Tool is an ArcMap table. The maximum achieved speed is calculated in meters
per hour.

0

20

40

60

80

100

120

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

Sp
ee

d
m

et
er

s/
ho

ur

Hours Between Positions

Elizabeth's Calculated Speeds

68

All
Tortoises
Feature
Class

By Tortoise Name or By
Tortoise Name and Year

TABLE:
Tortoise By

Name

TABLE:
Tortoise By
Name and

Year

TimeStamp & EndTime
Field Creator Tool

Tortoise Maximum
Speed Finder

EndTime is
StartTime of next

Event Method

Figure 6-8: Flow Diagram, Tortoise Speeds

6.2.3.2 Results

This process was run on the All_Tortoises feature class that had been previously been
processed by the TimeStamp and EndTime Field Creator Tool. The process was run twice
to create the two different types of output tables: Tortoise By Name table that contains
the maximum achieved speed of each tortoise and when that speed was achieved during
the past four years (Figure 6-9), and Tortoise By Name and Year table including the
maximum achieved speed of each tortoise in each year (Figure 6-10).

69

Figure 6-9: Tortoise by Name Table

Figure 6-10: Tortoise by Name and Year Table

70

By analyzing the results in the tables created in ArcMap, the fastest tortoise,
Mortimer, achieved 26.7 meters per hour, and the slowest tortoise, Scuter, only achieved
1.8 meters per hour at his fastest speed. The mean speed for all of the tortoises was 13.5
meters per hour. The tortoise by name and year table was created for analysis and was not
used to support any of the other scenarios. The values in the table were used to calculate
the average speed per year for the tortoises. The tortoise average speed per year was
calculated within Microsoft Excel to output a graph (Figure 6-11). This graph shows that
the slowest average speed over the four years was 2007. This graph could be compared to
the results of other analysis, such as weather, to determine if there is a correlation. It was
documented in JOTR that “2007 was a year of extremely low annual plant productivity
which is reflected in reduced home ranges” (Joshua Tree National Park, 2008). Was the
slow speed in 2007 due to lack of energy, lack of moisture, or possibly no food in the
surrounding area? The introduced variable of tortoise average speed/year could be
studied further in relation to these other factors.

Figure 6-11: Tortoise Average Speed/Year

6.2.4 What area could a tortoise cover between positions?

The recorded positions of the desert tortoises are at most recorded daily, unless the
tortoise has been relocated. Because of reasons such as inclement weather, minimal
workforce, or the inability to locate a tortoise on any given day, there may be gaps
anywhere from one day to about two weeks between positions. Therefore, the potential
extent of ground covered by the tortoise between recorded positions is unknown.
However, the potential path areas are helpful to determine the tortoise habitat range and
can reveal the relationship between the tortoise trajectories and roads. Therefore, the
Tortoise Potential Path Tool provides a means to create ellipses between consecutive
positions that indicate the possible ground covered.

0
2
4
6
8

10
12
14
16
18

2005 2006 2007 2008

Tortoise Average Speed/Year

Average Speed

71

6.2.4.1 Process

To find out the tortoise’s potentially travelled area, many of the custom tools were used
(Figure 6-12). Except for the Tortoise Potential Path Tool, all of the tools have been
described in previous use-cases. This process uses the tortoise speed table or a user-
entered speed. If the speed entered by the user is smaller than the speed calculated in the
table, the potential distance travelled between two consecutive recorded times can be less
than the actual distance. In those cases, ellipses will be generated between the positions
with a one-meter semi-minor axis.

There are two output types to choose from when using the tool. The default output is
for unlimited potential path ellipses. This is found by using the maximum speed of the
tortoise and the time difference between consecutive positions. However, this approach
can result in unrealistically large ellipses when there are large time lapses between the
positions. For example, a tortoise may not move much during two weeks, while the
potential ellipse for that time frame is very large. To account for this issue, a limited
potential path ellipse option was added. This requires another two parameters: a
maximum amount of time between positions and a minimum distance in meters that the
tortoise has to move. For example, using the default parameter values of hours equals 36
and distance equals 21 meters, if the time gap is larger than 36 hours and the tortoise has
moved less than 21 meters, then the maximum speed will simply be multiplied by one
day or 24 hours. This minimizes the size of the ellipses when applicable. If this option is
chosen, the parameter values are adjustable.

72

All
Tortoises
Feature
Class

Tortoise Import Tool
(Creates Sub-Classes)

 Individual
Tortoise
Feature
Classes

TimeStamp & EndTime
Field Creator Tool

Sub-Classes
Method

 Individual
Tortoise
Feature

Classes By
Year

All Sub-Feature
Class Types

Tool Method

EndTime is
StartTime of
Next Event

EndTime =
Input

Number of
Decimal

Days

No
EndTime

Tortoise Maximum
Maintained Speed

Finder Tool

TABLE:
Tortoise
Speeds

Tortoise Potential
Path Tool

 (Ellipses By Time)

Tortoise
Potential

Path
Feature
Classes

Export to KML
2.5.5 Tool

(VBA)

Time-Dynamic
KML of Tortoise
Potential Path

Ellipses

ArcGIS 10
Time Animation

of Potential
Path Ellipses

Google Earth
Full Time
Animation

ArcGIS
Explorer

Limited Time
Animation

Figure 6-12: Flow Diagram, Tortoise Potential Path

6.2.4.2 Results

The results of the tool can be seen in ArcMap (Figure 6-13). The yellow ellipse
represents the potential path through which the tortoise will be moving. The gray ellipses
represent the other potential path ellipses.

73

Figure 6-13: Tortoise Potential Paths in ArcMap

The resulting feature classes were also exported to KML for viewing in Google Earth
(Figure 6-14). The feature classes were exported twice, one with 60% opacity magenta
fill and both TimeStamp and EndTime attributes exported, and the other one with 60%
opacity yellow fill and only the TimeStamp attribute exported. When these two feature
classes are animated in Google Earth simultaneously, the current ellipse will appear to
leave behind footprints of the previous ellipse. This allows the user to see the total
possible area that has been covered by previous ellipses.

MMaajjoorr AAxxiiss == 331166 MMeetteerrss

74

Figure 6-14: Tortoise Potential Paths in Google Earth

When portraying the ellipses based on the tortoise speed table, the ellipses
overlapped much of the road buffers. The limited potential path ellipses covered much
less road than the unlimited potential path ellipses. The unlimited potential path ellipses
covered 59% of JOTR’s total area, while the limited potential path ellipses covered only
28% of JOTR’s total area. Therefore, if the user went by the unlimited buffer, it would
indicate that the tortoises could cover 59% of JOTR, which is unrealistic.

When the limited potential path areas are all merged together or merged by
individual tortoises, an estimation of the habitat range of all tortoises or individual
tortoises is obtained. With that information, further studies can be conducted to examine
the interactions between different tortoises and, most critical, possible interaction with
roads. Because of the capability and findings, a new tool was added to the deliverables
using ModelBuilder, as described in the following section.

6.2.5 How to prioritize where new curbing should be implemented

JOTR has a need to determine where new tortoise trot curbing needs to be implemented
and which sections of road are high priority. The Priority Trot Needs Tool was created to
address this need. By using the road buffers created by the Road and Trot Buffer Tool,
and the tortoise potential path ellipses built by the Tortoise Potential Path Tool, this tool
determines tortoise trot curbing needs and prioritizes them in three categories depending
on whether they are covered by limited ellipses, unlimited ellipses, or not covered by any
ellipses. This process involved only one model, which was described in Section 5.8. The

MMaajjoorr AAxxiiss == 331166 mmeetteerrss

75

areas could be calculated differently by the client, based upon their using of different
parameters for the limited potential path ellipses.

6.2.5.1 Results

The results of the tool yield three zones depicting the Primary, Secondary, and Tertiary
road segments in consideration for future tortoise trots (Figure 6-15). JOTR can use the
output of the tool to determine their priority curbing needs (in red), secondary curbing
needs (in yellow), and tertiary curbing needs (in green). Using other limiting parameters
for tortoise potential path limits, JOTR has the capability to perform the same process
with the existing data or any new data that they collect.

Figure 6-15: Tortoise Trot Needs by Priority

6.2.6 How to locate a lost tortoise

In tracking the tortoises, sometimes they may not be found where they are expected. This
can be due to the time elapsed from the last recorded position, the tortoise moving to a
further location, or the transmitter malfunctioning. In such situations, the park staff needs
an estimation of potential areas that the lost tortoise could visit. To address this issue, the
Lost Tortoise Tool was built to locate the lost tortoise by considering its maximum
achieved speed and the time lapsed.

6.2.6.1 Process

The workflow of finding a lost tortoise is summarized in Figure 6-16. To obtain the result
for illustration, a fictitious UTM last known position was entered for Tex the tortoise, as

76

well as the last known position TimeStamp. For the simulation, the Tortoise Speed Table
was used, rather than a user-entered speed. The Lost Tortoise Tool outputs a feature class
for the last known position, called Lost_Tex_LastKnownPos, and a feature class for the
search area, called Lost_Tex_Buffer.

Lost Tortoise Tool

Tool Method
TABLE:
Tortoise
Speeds

Lost
Tortoise
Feature
Class

User-
Entered
Speed

Export to KML
2.5.5 Tool

(VBA)
ArcGIS

Google Earth

ArcGIS
Explorer

Tortoise Maximum
Maintained Speed

Finder Tool

Figure 6-16: Flow Diagram, Lost Tortoise Tool

6.2.6.2 Results

The last recorded position of the tortoise and the search area are shown in Google Earth
(Figure 6-17). The KML symbol for the search area was changed to have an elevation of
three meters relative to the ground measured at the center position, rather than clamped to
ground. This demonstrates the capability to set a maximum height that the tortoise is able
to climb. By changing this value with terrain turned on in Google Earth, the terrain over
three meters from the last known position masks out the search area. The attributes can
also be exported as part of the Export to KML Tool.

77

 Figure 6-17: Lost Tortoise Simulation and Portrayal in Google Earth

These results could be used to narrow the search area for a missing tortoise and
provide the metadata related to the tortoise to help locate it.

This tool could be useful not only for locating a lost tortoise, but also for locating
other creatures whose last know position is known and the speed can be estimated. This
KML format could also easily be shared with members of a search party.

6.2.7 Does a changing weather condition affect tortoise movement

Several articles mention that lack of vegetation or water affects tortoise movement, as
tortoises need water and the plants they eat also require water. Indirectly, the temperature
has an impact on the tortoise, as it influences the abundance or lack of annual vegetation,
as well as evaporation or freezing of water. To examine the relations between the weather
changes and the movement of the tortoises, animating both precipitation and temperature
amongst the dynamic tortoise movement could provide a starting point. The tortoise
animation has already been achieved through the other tools. To animate weather data
through time, the Stationary Event from Table Tool was created. This tool uses textual
precipitation and temperature data, and converts it to animated stationary events.

6.2.7.1 Process

The Stationary Event from Table Tool requires use of the TimeStamp and EndTime Field
Creator Tool. This use-case requires many steps (Figure 6-18).

SSeeaarrcchh RRaaddiiuuss == 22 kkiilloommeetteerrss

78

Downloaded
Weather Data

(text)

Method and Frequency

TABLE:
Weather Data

Stationary Event from
Table Tool

ArcMap-
Add Data

Include English
Units?

Notepad:
Establish

Correct Table
Header

Any Polygon
Feature Class

Single Polygon
ObjectID

Temperature-
Daily High

and Low (two
feature
classes)

Precipitation-
Daily Total

Temperature-
Average Daily

Temperature-
Hourly

Feature
Class(es)

TimeStamp & EndTime
Field Creator Tool

Modified
Feature

Class(es)

SYMBOLIZE BY
BAND

Export to KML
2.5.5 Tool

(VBA)

Time-Dynamic
KMLHigh and

Low
Temperatures,

and Precipitation

ArcGIS 10
Time Animation

Google Earth
Full Time
Animation

ArcGIS
Explorer

Limited Time
Animation

Figure 6-18: Flow Diagram, Dynamic Weather Data

The weather data needed to be downloaded first and imported to the geodatabase, as
described in Section 4-5. For the project, the high and low temperatures and the

79

precipitation features needed to be present when viewing each tortoise. This called for
creating the three feature classes 18 times, once for each tortoise. By zooming into the
area of a tortoise, the central tortoise point was selected. The ObjectID for that feature
was noted from the attribute table. The feature class and ObjectID are required for the
Stationary Event from Table Tool.

The Stationary Event from Table Tool has five methods to use. For this project, the
Temperature-Daily High and Low method was used for the temperature data, and the
Precipitation-Daily Total was used for the precipitation data. The Temperature-Daily
High and Low method creates both a high and a low temperature feature class.

Once these feature classes were created, they were processed with the TimeStamp
and EndTime Field Creator Tool using the EndTime is Start of Next Day(s) method and
an EndTime Days parameter of one day. Within ArcMap, the feature classes were each
symbolized by equal interval color bands. These new feature classes were then exported
to KML for Google Earth animation. As part of the export, the appropriate temperature
field or precipitation amount field was set as the label. The TimeStamp and EndTime
attributes were specified in the tool for export. Both the color and label were animated in
Google Earth. To separate the temperature indicators from the precipitation indicator, the
high temperature KML export was offset +18 meters on the y-axis, and the low
temperature KML export was offset -18 meters.

6.2.7.2 Results

The feature classes that were exported to KML format can be viewed dynamically in
Google Earth. By initiating the animation or by manually adjusting the time slider, the
three feature classes change color and label value. The high and low temperatures are
both color banded from blue to red, representing the temperature. Centered in each
symbol is either the high or the low temperature for that day. The precipitation feature is
represented by a color band from white to dark blue, representing the total daily
precipitation. This feature is only visible on days when there is precipitation. The layout
of the features has the feature high temperature on top, followed by precipitation and low
temperature (Figure 6-19). By animating the tortoises simultaneously with the weather,
one can look for visual relation between tortoise movement and the weather.

This tool would be more useful for animal movement that is recorded at regular
intervals without interruption. In altering the time for several of the tortoises, it appears
that a tortoise is mostly stationary during rainy or very cold days. However, this is
because the weather conditions may be prohibiting the rangers from acquiring positions
for those days.

80

 Figure 6-19: Google Earth View of Dynamic Weather Data and Tortoise Positions

6.2.8 Animation of Hawth’s Tools results

In addition to the tortoise telemetry data, the client also provided data including
Minimum Convex Polygons (MCP), 95 Percent Volume Contours (95PVC), and Kernel
Density polygons for each tortoise. These data were created with Hawth’s Tools that is a
free to download extension for ArcMap. The goals of this project did not include
rebuilding the functionality of Hawth’s Tools, nor did it require further analyses of these
datasets. However, since the data were provided with temporal attributes, it is worth
improving the visualization of these data layers with the tools built in the project.

6.2.8.1 Process

The provided data covered the time frame of the study; however, the schema of the
provided feature classes needed to be modified for the project. Once the schema was
modified, the TimeStamp and EndTime Field Creator Tool was run on the feature classes.
The feature classes were then exported to KML for animation in Google Earth (Figure 6-
20).

HHHiiiggghhh TTTeeemmmpppeeerrraaatttuuurrreee

PPPrrreeeccciiipppiiitttaaatttiiiooonnn

LLLooowww TTTeeemmmpppeeerrraaatttuuurrreee

81

95%
Volume
Contour
Feature
Classes

Minimum
Convex
Polygon
Feature
Classes

HAWTH’S TOOLS
(Existing Extension

for ArcMap)

Kernel
Density
Feature
Classes

DATA CLEAN UP
and ADD

ATTRIBUTES
Name and Year

(manual process)

TimeStamp & EndTime
Field Creator Tool

Output
Datasets

Export to KML
2.5.5 Tool

(VBA)

Time-Dynamic
KML of MCP,
95PVC, and

Kernel Density
Polygons

ArcGIS 10
Time Animation

Google Earth
Full Time
Animation

ArcGIS
Explorer

Limited Time
Animation

Figure 6-20: Flow Diagram, Animating Hawth’s Tools Results

The original data had the tortoise name, year, or season as part of the file name;
however, these values did not exist in the fields of the data. Attribute fields needed to be
created and populated with these values. Each individual feature class had to be modified.

The MCP feature classes required creating the name, TimeStamp, and EndTime
attributes. The name attribute was populated with the tortoise’s name; the time fields had
to be manually populated with timestamps matching the season.

The PVC feature classes were simpler, as they covered the entire time of the study.
The Kernel Density feature classes were by name and year. These feature classes needed
the name field, as well as the TimeStamp and EndTime fields manually populated.

Once modified, all of the MCP feature classes were merged into a single MCP
feature class. The 95PVC and Kernel Density feature classes were handed the same way.
This created three new single feature classes. The old feature classes were no longer
needed.

82

6.2.8.2 Analysis

The single MCP_All_Tortoises feature class was exported into 18 feature classes by
tortoise, using the Tortoise Import Tool. These new feature classes were then exported
from ArcMap into KML format for animation within Google Earth (Figure 6-21). The
pink area in the figure shows the Minimum Convex Polygon for Elizabeth the tortoise.

Figure 6-21: Google Earth View of a Dynamic MCP

The single PVC_All_Tortoises feature class was exported into 18 feature classes by
tortoise, using the Tortoise Import Tool. These feature classes are not dynamic, as they
cover the entire study period. These new feature classes were then easily exported from
ArcMap into KML format into Google Earth (Figure 6-22). The pink area in the figure
depicts the 95 Percent Volume Contour for Elizabeth the tortoise.

AArreeaa ooff MMCCPP == 221100,,447711 mmeetteerrss22

83

Figure 6-22: Google Earth View of a Dynamic 95 Percent Volume Contour

The single Kernel Density feature class was exported into 18 feature classes by
tortoise, using the Tortoise Import Tool. These feature classes are not dynamic as they
cover the entire study period. These new feature classes were then easily exported from
ArcMap into KML format into Google Earth (Figure 6-23). The light blue area in the
figure depicts the kernel density polygon for Elizabeth the tortoise in 2008.

AArreeaa ooff 9955PPVVCC == 225599,,334444 mmeetteerrss22

84

Figure 6-23: Google Earth View of a Kernel Density Polygon

6.3 Issues

All of the processes for the use-cases were performed many times. This was required for
documenting the processes and acted as a test plan. This involved start to finish
processing of all the data. As a result, many issues were encountered.

Many coding glitches were found when different feature classes were processed.
These errors were fixed. Formula modifications also were made, as errors were
discovered in the results. Additionally, interface efficiencies discovered though later tools
were added to the earlier built tools. The Python scripts for all of the tools are included in
Appendix A. Additionally, the Toolbox Help html files are shown in Appendix B.

6.4 Process Times

When running all of the processes in the use-cases detailed in this chapter, the process
times were recorded. The results suggest that all of the custom tools could be run on the
tortoise data in about two hours. This signifies efficiencies in the tools. The other steps of
the processes that are not tool-based add additional time that has not been measured;
however, the goal of building efficient automated tools was achieved (Figure 6-24).
Additionally, process output windows are included in Appendix D.

AArreeaa ooff KKeerrnneell PPoollyyggoonn == 113355,,008800 mmeetteerrss22

85

Tool Process Times
(seconds) Tool:

Use Case: Im
po

rt
 T

oo
l

Ti
m

eS
ta

m
p

To
ol

St
at

io
na

ry

Ev
en

t

Lo
st

 T
or

to
ise

Ro
ad

 &
 T

ro
t

Sp
ee

d
Fi

nd
er

Po
te

nt
ia

l P
at

h

Process
Time:

(minutes)
Roads & Trot Buffers 10 10 0.33
Tortoise Movement 49 157 3.43
Tortoise Speed - Name *157 216 3.60
 -By Name and Year *157 226 3.77
Potential Path -Limited *49 *157 *216 863 14.38
 -Unlimited *49 *157 *216 877 14.62
Lost Tortoise 18 *216 0.30
Weather -High Temps 230 4440 77.83
 -Low Temps 210 3.50
 -Precipitation 227 227 7.57
Tortoise Trot Needs 55 ** ** ** 0.92

Total Time: 130.25

*Previously Run Process
 **Uses Existing Feature Class

 Figure 6-24: Processing Times of Custom Tools with Use-Cases

6.5 Summary

This chapter addressed tool requirements and installation procedures, the processes for
the use-cases involving the tools, results, issues encountered, and process times. The
eight custom-built tools can be run either individually, or in conjunction with each other
to support many use-cases. Such use-cases include road and tortoise trot buffering,
tortoise movement visualization, tortoise speed calculations, tortoise potential path
depiction, lost tortoise search zones, prioritization of curbing needs, temperature, and
precipitation visualization. Additionally, the tools were used to modify Hawth’s Tools
produced MCP, 95PVC, and kernel density polygons. All of the created or modified
feature classes that resulted from the use-cases were exported into KML format. This
format allowed the features to be visualized in Google Earth or ArcGIS Explorer.

87

Chapter 7 – Conclusions and Future Work
The eight tools that were built for ArcGIS, along with the existing ArcGIS tools Export to
KML and Military Analyst, were used for manipulation of the provided data to produce
many new feature classes, tables, and KML files for the project. These tools were built to
be living tools, meaning that they can be used on newly collected data for new datasets
and analysis. In addition, the original project data could be used with the tools and
different desired parameters to produce different results. The results in the project
achieved the goals of providing a means to dynamically visualize tortoise movement and
weather data. The client also wanted to analyze curbing and tortoise trots to see if they
were adequate or if new curbing was needed. The Trot Needs ModelBuilder tied several
of the other tools’ results together to provide such a prioritization for new curbing.

Because of the extensive amount of work involved in creating the tools for this
project, the lack of certain collected data, as well as ideas generated by completing this
project, there are several areas for future work to expand on this project. Since the tools
can be used for other species monitoring, as well as for other time-based dynamic
visualizations, a generic version of the toolbox will be published for other analysts’ use
following the project. Since ArcGIS 10 and ArcGIS Explorer have time and animation
integrated within their application, the tools offer great utility for the users of the new
version.

Concerning studying different factors that may influence the desert tortoise, it could
benefit JOTR to collect a useful vegetation layer depicting existence of annual vegetation
types eaten by tortoises, attributed with the estimated start and end of the plant life cycle.
The collected data could be animated using the existing tools and added to the dynamic
model for study.

Two additional tools were considered during the project that could also enhance the
tortoise toolbox. The tortoise database includes an attribute describing the status of the
tortoise for each recorded position. Many of the records state that the tortoise is in their
burrow. It is envisioned having a tool that parses out records that contain the word
burrow, and making these features be the locations of known burrows. Additionally, the
tool could analyze densities of the multiple positions of the recorded tortoises to
statistically calculate potential burrow locations. For a second additional tool, it may be
possible to have a tool that analyzes the created ellipses for all of the tortoises and find
intersections in time to indicate possible tortoise interactions. This may potentially be
used to identify mating habits, etc.

The tools created for this project would be useful for the study of other animals, as
well. It is recommended to share the tools and deliverables throughout the NPS. It was
realized that the animations for tortoises are lacking due to the nature of the recorded
positions. There are many gaps in time with the tortoises because rangers have to locate
and record positions. Weather also creates gaps in recorded data. The utilization of GPS
on the tracked animals would enhance the animations immensely and minimize the
predictions involved in studying the tortoises.

88

With this project, the custom-built toolbox, and the general version of the toolbox to
be built, dynamic visualization of tortoises, other animals, and their environment are
possible. It is envisioned that the tools will continue to be used and developed to further
help with the protection of species, and used for other time-based needs in ArcGIS.

89

Works Cited
Beyer, H. (n.d.). Hawth's Analysis Tools for ArcGIS [ArcMap Extension Computer

Program]. Retrieved April 20, 2010, from Spatial Ecology.com:
http://www.spatialecology.com/htools/overview.php

Bissonette, J. A., Sherburne, S. S., & Ramsey, R. D. (1994). Analysing telemetry data
with a GIS-based vector structure. International Journal of Geographical
Information Science , 8 (6), 533-543.

Boarman, W. I., Sazaki, M., & Jennings, W. B. (1997). The Effect of Roads, Barrier
Fences, and Culverts on Desert Tortoise Populations in California, USA.
Conservation, Restoration, and Management of Tortoises and Turtles - An
International Conference (pp. 54-58). New York Turtle and Tortoise Society.

Cole, W. P. (1977). Using the UTM Grid System to Record Historic Sites. Retrieved July
10, 2010, from National Park Service, National Register Publications:
http://www.nps.gov/history/nr/publications/bulletins/nrb28/

Davidson, C. (2009). Joshua Tree National Park - Desert Tortoise. Retrieved September
30, 2009, from National Park Service:
http://www.nps.gov/jotr/naturescience/tortoise.htm

Duda, J. J., & Krzysik, A. J. (1998). Radiotelemetry Study of a Desert Tortoise
Population. US Army Corps of Engineers.

Joshua Tree National Park. (2008). 2008 Annual Report for the Monitoring Program to
Assess the Effects of Curbing on Tortoise Movement and Survival. Resource
Management Division, Wildlife Branch.

Kernohan, B. J., Millspaugh, J. J., Jenks, J. A., & Naugle, D. E. (1998). Use of an
adaptive kernel home-range estimator in a GIS environment to calculate habitat
use. Journal of Environmental Management (53), 83-86.

Martin, K. (2010). Export to KML (2.5.5) [ArcMap Extension Computer Program].

Peterson, C. C. (1996, Sep.). Ecological Energetics of the Desert Tortoise (Gopherus
Agassizii): Effects of Rainfall and Drought. Ecology , 77 (6), pp. 1831-1844.

Riedle, J. D., Bolen, D. K., & Averill-Murray, R. C. (2002). Desert Tortoise Habitat Use
and Home Range Size on the Florence Military Reservation 2002 Progress
Report. Arizona Game and Fish Department, Nongame Branch, Wildlife
Management Division.

91

Appendix A. Python Code
Python Code 1: Tortoise Import Tool

tortimport.py
Created on: Feb 27 2010 12:44:03 PM

Built By David Turnbull (NGA), University of Redlands MS GIS for
Joshua Tree National Park as part of his Master's Project
Updated: 5/18/2010

Import system modules
import sys, string, os, arcgisscripting
from datetime import date, datetime, timedelta, time

Create the Geoprocessor object
gp = arcgisscripting.create()
gp.overwriteoutput =1

Load required toolboxes...
gp.AddToolbox("C:/Program Files
(x86)/ArcGIS/ArcToolbox/Toolboxes/Conversion Tools.tbx")

Local variables...
gp.addmessage("Setting Local Variables...")
infeatureClass = gp.GetParameterAsText(0)
workspacex = gp.GetParameterAsText(1)
methName = gp.GetParameterAsText(2)
tortfield = gp.GetParameterAsText(3)
datefield = gp.GetParameterAsText(4)
tag = gp.GetParameterAsText(5)

#adds tag + underscore to filenames in end if tag is populated
if tag != "":
 tag = tag+"_"

gp.AddMessage("")
gp.Workspace = workspacex

#Selectable Methods...
FCBT = "Create Feature Classes By Tortoise"
FCBTY = "Create Feature Classes By Toroise and Year"
FCABY = "Create All Tortoises By Year"
FCBTTY = "Create All Three Types of Feature Classes Above"

#This Creates the Tortoise List...
gp.AddMessage("Tortoises:")
startSearch = gp.UpdateCursor(infeatureClass)###changed to Update
tortlist = list()
searchRow = startSearch.Next()

while searchRow:
 tort = searchRow.GetValue(tortfield)

92

 ###Added this section to remove spaces from Names
 tort = tort.replace(" ","")
 searchRow.SetValue(tortfield, tort)
 startSearch.UpdateRow(searchRow)

 if tort not in tortlist:
 tortlist.append(tort)
 gp.AddMessage(tort) #prints tortoise name
 searchRow = startSearch.Next()
del startSearch

#Feature Classes By tortoises...
if methName == FCBT or methName == FCBTTY:
 for tort in tortlist:
 gp.FeatureClassToFeatureClass_conversion(infeatureClass,
workspacex, tag+tort, '"'+tortfield+'"'+" = "+"'"+tort+"'")

elif (methName == FCBTY and datefield != "") or (methName == FCBTTY and
datefield != ""):
 gp.AddField(infeatureClass,"YearX","Text")
 for tort in tortlist:
 yrSearch = gp.UpdateCursor(infeatureClass, '"'+tortfield+'"'+"
 = "+"'"+tort+"'")
 yrlist = list()
 yr = yrSearch.Next()

 while yr:
 thisdate = datetime.strptime(yr.getValue(datefield),"%Y-%m-
 %d %H:%M:%S")
 thisyr = thisdate.year
 if thisyr not in yrlist:
 yrlist.append(thisyr)
 gp.AddMessage(thisyr) #prints tortoise year
 yr.SetValue("YearX", thisyr)
 yrSearch.UpdateRow(yr)
 yr = yrSearch.Next()

 for y in yrlist:
 tyear = str(y)
 gp.FeatureClassToFeatureClass_conversion(infeatureClass,

 workspacex, tag+tort+"_"+tyear,
'"'+tortfield+'"'+" = "+"'"+tort+"'"+" and
"+'"YearX" = '+"'"+tyear+"'")

 del yrSearch

elif (methName == FCABY and datefield != "") or (methName == FCBTTY and

datefield != ""):
 gp.AddField(infeatureClass,"YearX","Text")
 yrlist2 = list()
 yrSearch2 = gp.UpdateCursor(infeatureClass)
 yr2 = yrSearch2.Next()

 while yr2:
 thisdate2 = datetime.strptime(yr2.getValue(datefield),"%Y-%m-%d

 %H:%M:%S")
 thisyr2 = thisdate2.year
 if thisyr2 not in yrlist2:

93

 yrlist2.append(thisyr2)
 yr2.SetValue("YearX", thisyr2)
 yrSearch2.UpdateRow(yr2)
 yr2 = yrSearch2.Next()

 for y2 in yrlist2:
 tyear2 = str(y2)
 gp.FeatureClassToFeatureClass_conversion(infeatureClass,
workspacex, tag+"AllTortoises_"+tyear2, '"YearX" = '+"'"+tyear2+"'")
 del yrSearch2

else:
 gp.AddMessage("Try Again")

gp.AddMessage("------------------------")

95

Python Code 2: TimeStamp and EndTime Field Creator Tool

timestamp.py
Created on: Wed Mar 18, 2010

Built By David Turnbull (NGA), University of Redlands MS GIS for
Joshua Tree National Park as part of his Master's Project
4/22/2010

Import system modules
import sys, string, os, arcgisscripting, time, datetime, math
from datetime import date, datetime, timedelta
from operator import itemgetter

Create the Geoprocessor object
gp = arcgisscripting.create()
gp.overwriteoutput =1

Load required toolboxes...
gp.AddToolbox("C:/Program Files (x86)/ArcGIS/ArcToolbox/Toolboxes/Data

 Management Tools.tbx")

Local variables...
gp.addmessage("Setting Local Variables...")
infeatureClass = gp.GetParameterAsText(0)
insort = gp.GetParameterAsText(1)
infield = gp.GetParameterAsText(2)
intime = gp.GetParameterAsText(3)
endMethod = gp.GetParameterAsText(4)
endDays = gp.GetParameterAsText(5)

#This sets variable to selection for determining endTime
nFeature = "EndTime is StartTime of Next Occuring Feature"
nDay = "EndTime is Start of Next Day(s)"
noEnd = "No EndTime Calculation"

Adding the TimeStamp or TimeStamp_ field and EndTime field
gp.addmessage("Adding the TimeStamp Field...")
gp.AddField(infeatureClass,"TimeStamp","Text") ###was Date
if endMethod != noEnd:
 gp.addmessage("Adding the EndTime field")
 gp.AddField(infeatureClass,"EndTime","Text") ###was Date

gp.workspace= infeatureClass

#Creating a sort list. If populated, a multilist, if empty, a single
list
#This is necessary for the eventtime starting at next.
if insort != "":
 startSearch = gp.SearchCursor(infeatureClass)
 gp.AddMessage("Tortoises:")
 tortlist = list()
 searchRow = startSearch.Next()

96

 while searchRow:
 tort = searchRow.GetValue(insort)
 if tort not in tortlist:
 tortlist.append(tort)
 gp.AddMessage(tort) #prints tortoise name
 searchRow = startSearch.Next()
 del startSearch
elif insort == "": #I did it this way so there will be a list either
way.
 tortlist = list()
 tortlist.append("SingleSort")
 gp.AddMessage("Sort not specified, treating all records as part of
one event class.")

#Adding the TimeStamp field
if infield != "":
 gp.AddMessage("")
 gp.AddMessage("Feature Class: "+infeatureClass)
 gp.AddMessage("Converting "+infield+" to TimeStamp Field...")
 gp.AddMessage("")

 desc= gp.Describe(infeatureClass)
 fields = desc.Fields
 field = fields.next()
 while field:
 if field.Name == "TimeStamp":
 fieldn ="TimeStamp"
 break
 elif field.Name == "TimeStamp_":
 fieldn = "TimeStamp_"
 break
 field = fields.next()

 #Popoulate TimeStamp
 for tort in tortlist:
 if insort == "":
 TimeRows= gp.UpdateCursor(infeatureClass)
 elif insort != "":
 TimeRows= gp.UpdateCursor(infeatureClass, '"'+insort+'"'+"

 = "+"'"+tort+"'")

 #Creating an empty list
 tlist = tort+"_timelst"
 tlist = list()

 TR = TimeRows.Next()
 while TR:
 dayx = datetime.strptime(TR.GetValue(infield), "%m/%d/%Y")
 xdayx = dayx
 if intime != "":
 timex = TR.GetValue(intime)
 desc2 = gp.Describe(infeatureClass)
 fields2 = desc.Fields
 fields = fields2.next()
 while fields:
 if fields.Name == intime:

97

 ft = fields.Type
 gp.AddMessage("")
 fields = fields2.next()
 if ft == "Double":
 strtime = str(timex)
 ntime = datetime.strptime(strtime, "%H.%M")
 newtime = datetime.time(ntime)
 daytimex = str(datetime.combine(xdayx, newtime))
 elif ft == "Date":
 otime = datetime.strptime(timex, "%I:%M:%S %p")
 timex = datetime.time(otime)
 daytimex = str(datetime.combine(xdayx,timex))
 elif intime == "":
 daytimex = str(dayx)

 TR.SetValue(fieldn,daytimex)
 TimeRows.UpdateRow(TR)
 newtime = TR.GetValue(fieldn)
 gp.AddMessage(newtime)

 if newtime not in tlist:
 tlist.append(newtime)
 TR = TimeRows.Next()

 if endMethod == nFeature:
 resultx = sorted(tlist, reverse=False)
 n = len(resultx)
 gp.AddMessage(n)

 gp.AddMessage("Sorting List Next...")
 #Check to see order of new list--
 gp.AddMessage("")
 gp.AddMessage("This is the sorted list")
 i=0
 for i in range(n):
 gp.AddMessage(resultx[i])
 gp.AddMessage("End of sorted list")
 gp.AddMessage("")

 gp.AddMessage("Populating EndTime with the date of the

 start time of the next event.")

 if insort == "":
 FinishTime= gp.UpdateCursor(infeatureClass)
 elif insort != "":
 FinishTime= gp.UpdateCursor(infeatureClass,

'"'+insort+'"'+" = "+"'"+tort+"'")

 L1 = FinishTime.Next()
 while L1:
 start = L1.GetValue(fieldn)
 gp.AddMessage(start)

 i=0

 if start in resultx:
 i = resultx.index(start) + 1

98

 if i < n:
 end = resultx[i]
 L1.SetValue("EndTime",end)
 FinishTime.UpdateRow(L1)
 L1 = FinishTime.Next()

 if endMethod == nDay: #This only shows a feature for one day
 if endDays == 1:
 gp.AddMessage("Populating EndTime with a date "+endDays+"

 Day later.")
 else:
 gp.AddMessage("Populating EndTime with a date "+endDays+"

 Days later.")

 FinishTime= gp.UpdateCursor(infeatureClass)

 L1 = FinishTime.Next()
 while L1:
 if intime == "":
 start = L1.GetValue(fieldn)
 end1 = datetime.strptime(start,"%Y-%m-%d %H:%M:%S")
 numDays = float(endDays) #Can do decimal days even

 #though no initial time
 d = timedelta(days=numDays)
 end = end1 + d
 d2 = datetime.strftime(end, "%Y-%m-%d %H:%M:%S")

 L1.SetValue("EndTime", d2)
 FinishTime.UpdateRow(L1)
 elif intime != "":
 start = L1.GetValue(fieldn)
 end1 = datetime.strptime(start,"%Y-%m-%d %H:%M:%S")
 numDays = float(endDays)
 d = timedelta(days=numDays)
 end = end1 + d
 d2 = datetime.strftime(end, "%Y-%m-%d %H:%M:%S")

 L1.SetValue("EndTime", d2)
 FinishTime.UpdateRow(L1)
 L1 = FinishTime.Next()

gp.AddMessage("____________")

99

Python Code 3: Stationary Event from Table tool

poly2tableNew2.py
Created on: Fri Jan 08 2010

Built By David Turnbull (NGA), University of Redlands MS GIS for
Joshua Tree National Park as part of his Master's Project
Updated: 5/18/2010

#Import system modules
import sys, string, os, arcgisscripting, copy
from operator import itemgetter
from datetime import date, datetime

#Create the Geoprocessor object
gp = arcgisscripting.create(9.3)
gp.overwriteoutput =1

#Local variables...
gp.addmessage("Setting Local Variables...")
mainFeatureClass = gp.GetParameterAsText(0)
inTable = gp.GetParameterAsText(1)
inRow = gp.GetParameterAsText(2)
procType = gp.GetParameterAsText(3)
dateField = gp.GetParameterAsText(4)
tempField = gp.GetParameterAsText(5)
convert = gp.GetParameterAsText(6)
workspace = gp.GetParameterAsText(7)
tag = gp.GetParameterAsText(8)

if tag != "":
 tag = tag+"_"
else:
 tag = tag

gp.Workspace = workspace
inFeatureClass = "inFeatureClass"

#These are the choices for procType: Coding them for ease
THL = "Temperature-Daily High and Low"
TAV = "Temperature-Daily Average"
THO = "Temperature-Hourly- matches table records (Large dataset \

possible)"
PRE = "Precipitation-Daily Total"
OTH = "Other- matches table records"

#Temporary feature class that will be deleted in end
gp.AddMessage("")
gp.AddMessage("Creating Temporary Dataset...")
try:
 gp.FeatureClassToFeatureClass_conversion(mainFeatureClass,

workspace, inFeatureClass, "", "")
except:
 print "An error occurred"

100

 print gp.GetMessages()

#Give Feature Counts - For All Cases!
gp.AddMessage("")
gp.AddMessage("Input Feature Class: "+mainFeatureClass)
gp.AddMessage("Table: "+inTable)
gp.AddMessage("Object id: "+inRow)
gp.AddMessage("")

#Check to see if fields already were created
processed = "N"
drsc = gp.describe(inTable)
fn = drsc.Fields
for fns in fn:
 if fns.Name == "TCrossRef":
 processed = "Y"
 gp.AddMessage("Table already processed...")

if processed == "Y":
 gp.deletefield(inTable, "TCrossRef")

del drsc

#THL or TAV processes...
if procType == THL or procType == TAV:

 if processed == "N":
 #adding fields
 gp.addmessage("Adding the HighTemp and Low Temp Field...")
 gp.AddField(inTable,"HighTemp","Text")
 gp.AddField(inTable,"LowTemp","Text")
 gp.AddField(inTable,"TempAve","Double")

 dateList = list()
 mmaxRows =gp.SearchCursor(inTable)
 mmaxRow = mmaxRows.Next()
 while mmaxRow:
 day = mmaxRow.GetValue(dateField)
 tx = mmaxRow.GetValue(tempField)
 if day not in dateList and (tx != -999):
 dateList.append(day)
 mmaxRow = mmaxRows.Next()
 del mmaxRow
 del mmaxRows

 gp.addmessage("Setting Max and Min Temperature...")
 for item in dateList:
 tmpList = list()
 searchRows = gp.SearchCursor(inTable, '"'+dateField+'"'" =

 date '"+item+"'")
 searchRow= searchRows.Next()
 total = 0
 tcount = 0
 while searchRow:
 this = searchRow.GetValue(tempField)
 if (this != -999):
 tmpList.append(this)

101

 total = total + this
 tcount = tcount + 1
 searchRow = searchRows.Next()
 mintemp = min(tmpList) #sets min, max and ave temps
 maxtemp = max(tmpList)
 aveTemp = total/tcount
 del tmpList

 updateRows = gp.UpdateCursor(inTable, '"'+dateField+'"'" =

 date '"+item+"'")
 updateRow= updateRows.Next()
 updatedHi = 0
 updatedLo = 0
 while updateRow:

 tempCheck = updateRow.GetValue(tempField)
 if (tempCheck == mintemp and updatedLo == 0):
 updateRow.SetValue("LowTemp","True")
 updateRow.SetValue("TempAve",aveTemp)
 updateRows.UpdateRow(updateRow)
 updatedLo = updatedLo + 1
 if (tempCheck == maxtemp and updatedHi == 0):
 updateRow.SetValue("HighTemp","True")
 updateRow.SetValue("TempAve", aveTemp)
 updateRows.UpdateRow(updateRow)
 updatedHi = updatedHi +1
 updateRow= updateRows.Next()

 del searchRow # Clean up
 del searchRows
 del updateRow # clean up
 del updateRows
 del dateList

##Precipitation
elif procType == PRE:
 if processed == "N":
 #adding fields
 gp.addmessage("Adding the Daily Precipitation Field...")
 gp.AddField(inTable,"DailyPreMM","Double")
 gp.AddField(inTable,"Use","Text")

 dateList = list()
 mmaxRows =gp.SearchCursor(inTable, '"'+tempField+'"'+" > 0")
 mmaxRow = mmaxRows.Next()
 while mmaxRow:
 day = mmaxRow.GetValue(dateField)
 tx = mmaxRow.GetValue(tempField)
 if day not in dateList:
 dateList.append(day)
 mmaxRow = mmaxRows.Next()
 del mmaxRow # Clean up
 del mmaxRows

 gp.addmessage("Calculating Daily Cumulative Precipitation...")
 for item in dateList:
 tmpList = list()

102

 searchRows = gp.UpdateCursor(inTable, '"'+dateField+'"'" =
date '"+item+"' and "+'"'+tempField+'"'+" > 0")

 searchRow = searchRows.Next()
 total = 0
 tcount = 0
 while searchRow:
 this = searchRow.GetValue(tempField)
 if tcount == 0:
 searchRow.SetValue("Use","Y")

 # This puts a Y in the Updated field for first
 # record of query

 searchRows.UpdateRow(searchRow)
 if (this != -999):
 tmpList.append(this)
 total = total + this
 tcount = tcount + 1
 searchRow = searchRows.Next()
 totPre = total
 del tmpList
 del searchRow # Clean up
 del searchRows

 updateRows = gp.UpdateCursor(inTable, '"'+dateField+'"'" =

date '"+item+"' and "+'"Use" = '+"'Y'")
 updateRow= updateRows.Next()

 while updateRow:
 updateRow.SetValue("DailyPreMM",totPre)
 updateRows.UpdateRow(updateRow)
 updateRow= updateRows.Next()

 del updateRow # Clean up
 del updateRows
 del dateList

#This returns the number of records in the table to be used later
if procType == THL or procType == TAV:
 thlCount = 0
 thr =gp.SearchCursor(inTable, '"HighTemp" = '+"'True' or

"+'"LowTemp" = '+"'True'")
 thlrow = thr.Next()
 while thlrow:
 thlCount = thlCount + 1
 thlrow = thr.Next()
 resultx = thlCount
 del thlrow # Clean up
 del thr
elif procType == PRE:
 thlCount =0
 thr =gp.SearchCursor(inTable, '"DailyPreMM" >= 0')
 thlrow = thr.Next()
 while thlrow:
 thlCount = thlCount + 1
 thlrow = thr.Next()
 resultx = thlCount
 del thlrow # Clean up
 del thr

103

else:
 resultx = gp.GetCount_management(inTable)
stringresult = str(resultx)
gp.AddMessage("The table "+inTable+" has "+ stringresult +" records;")
gp.AddMessage("they will be put into the feature class:
"+inFeatureClass+".")
gp.AddMessage("")

#This adds a CrossRef index field to the two datasets for later field
#join
gp.AddMessage("Adding the CrossRef fields...")
 #In Feature Class Check and add
fieldExists = "False"
flds = gp.listfields(inFeatureClass)
for field1 in flds:
 gp.AddMessage(field1)
 if field1.Name == "CrossRef":
 fieldExists = "True"
 gp.AddMessage("CrossRef Already Exists.")
if fieldExists == "False":
 gp.AddField(inFeatureClass,"CrossRef","double")
 gp.AddMessage("CrossRef was added.")
 #In Table Class Check and add

fieldExists2 = 0
flds2 = gp.listfields(inTable)
for field2 in flds2:
 if field2.Name == "TCrossRef":
 fieldExists2 = 1
 gp.AddMessage("TCrossRef Already Exists.")
if fieldExists2 == 0:
 gp.AddField(inTable,"TCrossRef","double")
 gp.AddMessage("TCrossRef was added.")

#This populates the CrossRef of the inTable
if procType == THL or procType == TAV: #### THL and TAV
 tabrows =gp.UpdateCursor(inTable, '"HighTemp" = '+"'True' or

"+'"LowTemp" = '+"'True'")
 tabrow = tabrows.Next()
 tcross = 1
 while tabrow:
 tabrow.SetValue("TCrossRef", tcross)
 tabrows.UpdateRow(tabrow)
 tcross = tcross+1
 tabrow = tabrows.Next()
 del tabrow # Clean up
 del tabrows
elif procType == PRE: #Precipitation
 tabrows =gp.UpdateCursor(inTable, '"DailyPreMM" >= 0')
 tabrow = tabrows.Next()
 tcross = 1
 while tabrow:
 tabrow.SetValue("TCrossRef", tcross)
 tabrows.UpdateRow(tabrow)
 tcross = tcross+1
 tabrow = tabrows.Next()
 del tabrow # Clean up

104

 del tabrows
else: ##### Everything Else!!!!
 xtabrows =gp.UpdateCursor(inTable)
 xtabrow = xtabrows.Next()
 tcross = 1
 while xtabrow:
 xtabrow.SetValue("TCrossRef", tcross)
 xtabrows.UpdateRow(xtabrow)
 tcross = tcross+1
 xtabrow = xtabrows.Next()
 del xtabrow # Clean up
 del xtabrows

gp.AddMessage("")
#Get object in in Feature class to copy
rows =gp.UpdateCursor(inFeatureClass)
row = rows.Next()
while row:
 test = str(row.GetValue("ObjectID"))
 if test == inRow:
 gp.AddMessage("OBJECT FOUND!")
 #Updates the Cross Ref for just this one object
 row.SetValue("CrossRef", 1)
 rows.UpdateRow(row)
 #End of Cross Ref updating
 geom = row.shape #existing row
 desc = gp.Describe(inFeatureClass)
 fields = desc.Fields #existing fields
 x = 0
 myvars ={}
 myvars2 ={}
 for field in fields:
 if (field.Name != "OBJECTID" and field.Name != "Shape" and

field.Name != "Date_" and field.Name != "Time" and
field.Name !="Id" and field.Name !="Area" and
field.Name != "TimeStamp" and field.Name != "EndTime"
and field.Name !="Shape_Length" and field.Name !=
"Shape_Area" and field.Name != "CrossRef" and
field.Name != "TCrossRef"):

 x = x +1
 num = str(x)
 myvars["attr_"+num] = field.Name
 myvars2["val_"+num] = row.GetValue(field.Name)
 row = rows.Next()
del row # Clean up
del rows

gp.AddMessage("Creating Duplicate Features, Please wait...")
gp.AddMessage("")
cprows= gp.InsertCursor(inFeatureClass)
count = 1
i = 1
cross = 2 #cross reference 1 already exists
while count <= (resultx -1): #1 row in class already exists
 cprow = cprows.NewRow()
 while i <= x:
 newi = str(i)

105

 new_attr = myvars["attr_"+newi]
 new_value = myvars2["val_"+newi]
 cprow.SetValue(new_attr, new_value)
 i = i +1
 cprow.SetValue("CrossRef", cross)
 cprow.shape = geom
 cprows.InsertRow(cprow)
 cross = cross+1

 count = count +1
del cprow # Clean up
del cprows
gp.AddMessage("Attaching the table attributes to features...")
gp.joinfield(inFeatureClass, "CrossRef", inTable, "TCrossRef")

##Adding Optional Fahrenheit Fields
#True = "true"
#False = "false"

if convert == "true":
 gp.AddMessage("Converting units from metric to new English
Field...")
if convert == "true" and (procType == THL or procType == TAV):
 gp.AddField(inFeatureClass,"LowTFahr","Double")
 gp.AddField(inFeatureClass,"HighTFahr","Double")
 gp.AddField(inFeatureClass,"TempAveFahr","Double")

 unitSearch = gp.UpdateCursor(inFeatureClass)
 unit = unitSearch.Next()
 while unit:
 getlo = "False"
 gethi = "False"
 getlo = unit.GetValue("LowTemp")
 if getlo == "True":
 cLow = float(unit.GetValue(tempField))
 fLow = int(((cLow*9.0)/5)+32)
 unit.SetValue("LowTFahr", fLow)
 unitSearch.UpdateRow(unit)
 else:
 gethi = unit.GetValue("HighTemp")
 if gethi == "True":
 cHigh = float(unit.GetValue(tempField))
 fHigh = int(((cHigh*9.0)/5)+32)
 unit.SetValue("HighTFahr", fHigh)
 unitSearch.UpdateRow(unit)
 tCheck = unit.GetValue("TCrossRef")
 if tCheck > 0:
 cAve = float(unit.GetValue("TempAve"))
 fAve = int(((cAve*9.0)/5) + 32.0)
 unit.SetValue("TempAveFahr", fAve)
 unitSearch.UpdateRow(unit)
 unit = unitSearch.Next()
 del unit
 del unitSearch

elif convert == "true" and procType == PRE:
 gp.AddField(inFeatureClass,"DailyPreInch","Double")

106

 unitSearch2 = gp.UpdateCursor(inFeatureClass)
 unit2 = unitSearch2.Next()
 while unit2:
 t2Check = unit2.GetValue("TCrossRef")
 if t2Check > 0:
 mmPre = unit2.GetValue("DailyPreMM")
 gp.AddMessage(str(mmPre))
 inPre = round((mmPre/25.4), 1)
 unit2.SetValue("DailyPreInch", inPre)
 unitSearch2.UpdateRow(unit2)
 unit2 = unitSearch2.Next()
 del unit2
 del unitSearch2

#Creating new feature classes and deleting the temporary ones
if procType == THL:
 gp.AddMessage("Creating High and Low Temperature Feature

 Classes...")

 # Process: HighTemperatures...
 highnewset = workspace+"\\"+tag+"HighTemps"
 gp.Select_analysis(inFeatureClass, highnewset, "\"HighTemp\" =

'True'")

 # Process: Low Temperatures...
 lownewset = workspace+"\\"+tag+"LowTemps"
 gp.Select_analysis(inFeatureClass, lownewset, "\"LowTemp\" =

'True'")

 #Deleting the temporary dataset
 gp.AddMessage("Deleting the temporary dataset...")
 gp.Delete_management(inFeatureClass)

elif procType == TAV:
 gp.AddMessage("Creating Average Temperature Feature

Classes...")
 # Process: AverageTemperatures...
 tavnewset = workspace+"\\"+tag+"AveTemp"
 gp.Select_analysis(inFeatureClass, tavnewset, "\"TempAve\" >= -

30")

 #Deleting the temporary dataset
 gp.AddMessage("Deleting the temporary dataset...")
 gp.Delete_management(inFeatureClass)

elif procType == PRE:
 gp.AddMessage("Creating Daily Precipitation Features...")
 # Process: Daily Precipitation...
 newset = workspace+"\\"+tag+"DailyPre"
 gp.Select_analysis(inFeatureClass, newset, "\"Use\" >= 'Y'")

 #Deleting the temporary dataset
 gp.AddMessage("Deleting the temporary dataset...")
 gp.Delete_management(inFeatureClass)

elif procType == THO:

107

 gp.AddMessage("Creating Hourly Features...")
 # Process: Hourly...
 newset = workspace+"\\"+tag+"Hourly"
 gp.Select_analysis(inFeatureClass, newset)

 #Deleting the temporary dataset
 gp.AddMessage("Deleting the temporary dataset...")
 gp.Delete_management(inFeatureClass)

elif procType == OTH:
 gp.AddMessage("Creating New Time Features...")
 # Process: Other...
 newset = workspace+"\\"+tag+"TimeFeatures"
 gp.Select_analysis(inFeatureClass, newset)

 #Deleting the temporary dataset
 gp.AddMessage("Deleting the temporary dataset...")
 gp.Delete_management(inFeatureClass)
gp.AddMessage("Done!")
gp.AddMessage("____________")

109

Python Code 4: Road and Trot Buffer Tool

buffertool.py
Created on: Sat Dec 12 2009 12:27:20 PM

Built By David Turnbull (NGA), University of Redlands MS GIS for
Joshua Tree National Park as part of his Master's Project
05/17/2010
--

Import system modules
import sys, string, os, arcgisscripting

Create the Geoprocessor object
gp = arcgisscripting.create()

gp.overwriteoutput = 1

Load required toolboxes...
gp.AddToolbox("C:/Program Files
(x86)/ArcGIS/ArcToolbox/Toolboxes/Analysis Tools.tbx")

Local variables...
gp.addmessage("Setting Local Variables...")
Public_Road = gp.GetParameterAsText(0)
First =gp.GetParameterAsText(1)
Buffer1 = gp.GetParameterAsText(2)
Second = gp.GetParameterAsText(3)
Buffer2 = gp.GetParameterAsText(4)
Trot = gp.GetParameterAsText(5)
TrotLayer = gp.GetParameterAsText(6)
TrotSize = gp.GetParameterAsText(7)
workspace = gp.GetParameterAsText(8)
tag = gp.GetParameterAsText(9)

#This had to be added due to a bug in 9.3 whereby the booleans are
lower case
True = "true"
False = "false"

gp.Workspace = workspace

#Tag handling
if tag == "":
 tag = ""
else:
 tag = tag+"_"

Process: Buffer (2)...
if (Second == True and Public_Road != "" and Buffer2 != ""):
 gp.addmessage("")
 gp.addmessage("Creating Far Buffer of "+ Buffer2+ " ...")
 gp.addmessage("Source Feature Class: "+ Public_Road)
 roadfar = tag+"Roads_Buffer_Far"
 gp.addmessage("Output Feature Class: "+ workspace+": "+roadfar)

110

 gp.Buffer_analysis(Public_Road, roadfar, Buffer2, "FULL", "ROUND",
"ALL", "")

 gp.addmessage("You may have to change layer order to view both!")

Process: Buffer (1)...
if (First == True and Public_Road != "" and Buffer1 != ""):
 gp.addmessage("")
 gp.addmessage("Creating Close Proximatey Buffer of "+ Buffer1+ "

...")
 gp.addmessage("Source Feature Class: "+ Public_Road)
 roadnear = tag+"Roads_Buffer_Near"
 gp.addmessage("Output Feature Class: "+ workspace+": "+roadnear)
 gp.Buffer_analysis(Public_Road, roadnear, Buffer1, "FULL", "ROUND",

"ALL", "")

Process: Trot Buffer...
if (Trot == True and TrotLayer != "" and TrotSize != ""):
 gp.addmessage("")
 gp.addmessage("Creating Trot Buffer of "+ TrotSize+ " ...")
 gp.addmessage("Source Feature Class: "+ TrotLayer)
 trotbuff = tag+"TortoiseTrot_Buffer"
 gp.addmessage("Output Feature Class: "+ workspace+": "+trotbuff)
 timecheck = ("TimeStamp" or "TimeStamp_")
 gp.Buffer_analysis(TrotLayer, trotbuff, TrotSize, "FULL", "ROUND",

"LIST", timecheck)

else:
 gp.AddMessage("The selected buffers were created")

gp.AddMessage("____________")

111

Python Code 5: Tortoise Maximum Speed Finder Tool

tortspeed2.py
Created on: Thurs Feb 11, 2010

Built By David Turnbull (NGA), University of Redlands MS GIS for
Joshua Tree National Park as part of his Master's Project
5/17/2010

Import system modules
import sys, string, os, arcgisscripting, time, datetime, math
from datetime import date, datetime, timedelta, time
from operator import itemgetter

Create the Geoprocessor object
gp = arcgisscripting.create()
gp.overwriteoutput =1

Load required toolboxes...
gp.AddToolbox("C:/Program Files (x86)/ArcGIS/ArcToolbox/Toolboxes/Data

Management Tools.tbx")

Local variables...
gp.AddMessage("Setting Local Variables...")
infeatureClass = gp.GetParameterAsText(0)
infield = gp.GetParameterAsText(1)
inMethod = gp.GetParameterAsText(2)
inDate = gp.GetParameterAsText(3)
infolder = gp.GetParameterAsText(4)

gp.Workspace = infolder

#This sets variable to selection for determining method
methName = "Tortoise By Name"
methYear = "Tortoise By Name and Year"

if inMethod == methName:
 gp.CreateTable(infolder, "TortSpeeds")
 loc = infolder+"\TortSpeeds"
 gp.AddField(loc,"Name","Text")
 gp.AddField(loc,"MaxSpeed","Double")
 gp.AddField(loc,"StartTime","Text")
 gp.AddField(loc,"EndTime","Text")
 gp.AddField(loc,"Distance","Double")
 gp.AddField(loc,"TimeElapse","Text")

 tortlist = list()
 startSearch = gp.SearchCursor(infeatureClass, "","",infield)
 searchRow = startSearch.Next()
 while searchRow:
 tort = searchRow.GetValue(infield)
 if tort not in tortlist:
 tortlist.append(tort)
 gp.AddMessage(tort) #prints tortoise name

112

 searchRow = startSearch.Next()
 for tort in tortlist:
 gp.AddMessage("")
 gp.AddMessage(tort)
 gp.AddMessage("------------")
 tortSearch = gp.SearchCursor(infeatureClass, '"'+infield+'"'+"

= "+"'"+tort+"'")
 ttimeDiff = 0
 tdistDiff = 0
 ttimeHourDiff = 0
 tspeed = 0
 maxspeed = 0
 tortRow = tortSearch.Next()

 while tortRow:
 dat = datetime.strptime(tortRow.getValue(inDate),"%Y-%m-%d

%H:%M:%S")
 geom = tortRow.shape
 ex = geom.GetPart()
 origx = ex.x
 origy = ex.y
 ##These two lines would list the position if added back
 ##gp.AddMessage(ex.x)
 ##gp.AddMessage(ex.y)

 #This looks through all remaining positions of the tortoise

#to get max speed
 original = tortRow.GetValue("ObjectID")
 tortSearch2 = gp.SearchCursor(infeatureClass,

'"'+infield+'"'+" = "+"'"+tort+"'")
 tortRow2 = tortSearch2.Next()
 while tortRow2:
 ##These two rows were to check to ensure the correct

 ##tortoise was being called torx=
 ##tortRow2.GetValue(infield)
 ##gp.AddMessage(torx)
 ttimeDiff = 0
 dat2 = datetime.strptime(tortRow2.getValue(inDate),"%Y-

%m-%d %H:%M:%S")
 ttimeDiff = abs(dat2 - dat) #absolute value
 geom2 = tortRow2.shape
 newex = geom2.GetPart()
 newx = newex.x
 newy = newex.y
 tdistDiff = math.sqrt((origx-newx)**2 + (origy-

newy)**2)
 del newex
 #convert to only hours
 ###Note- timedelta has time in seconds only
 ttimeHourDiff= ttimeDiff.days*24 +

ttimeDiff.seconds/3600
 if ttimeHourDiff > 12:

#Was >0, but am changing to 12 due to drastic
#movements by rangers within a few hours.

 tspeed = tdistDiff/ttimeHourDiff
 if maxspeed < tspeed and ttimeHourDiff > 12: #Added

#this for same reason as above

113

 maxspeed = tspeed
 maxdate = dat2
 startday = dat
 finaldist = tdistDiff
 finaltime = ttimeDiff
 finalday = dat2
 tortRow2 = tortSearch2.Next()
 del tortSearch2
 tortRow = tortSearch.Next()
 tspeed = str(maxspeed)
 sdays = str(startday)
 fdays = str(finalday)
 fdist = str(finaldist)
 ftime= str(finaltime)

 #This creates a row in the new table
 newrs = gp.InsertCursor(loc)
 newr = newrs.NewRow()
 newr.SetValue("Name",tort)
 newr.SetValue("MaxSpeed",maxspeed)
 newr.SetValue("StartTime",sdays)
 newr.SetValue("EndTime",fdays)
 newr.SetValue("Distance",finaldist)
 newr.SetValue("TimeElapse",ftime)
 newrs.InsertRow(newr)

 #This prints the info to the output screen
 gp.AddMessage(tort+" has a max speed of: "+tspeed+" meters per

hour, beginning on "+sdays+" and ending on
"+fdays+" total distance= "+fdist+" total time=
"+ftime)

elif inMethod == methYear:
 gp.CreateTable(infolder, "TortSpeedByYr")
 loc = infolder+"\TortSpeedByYr"
 gp.AddField(loc,"Name","Text")
 gp.AddField(loc,"Year","Long")
 gp.AddField(loc,"MaxSpeed","Double")
 gp.AddField(loc,"StartTime","Text")
 gp.AddField(loc,"EndTime","Text")
 gp.AddField(loc,"Distance","Double")
 gp.AddField(loc,"TimeElapse","Text")

 tortlist = list()
 startSearch = gp.SearchCursor(infeatureClass, "","",infield)
 searchRow = startSearch.Next()
 while searchRow:
 tort = searchRow.GetValue(infield)
 if tort not in tortlist:
 tortlist.append(tort)
 gp.AddMessage(tort) #prints tortoise name
 searchRow = startSearch.Next()
 for tort in tortlist:
 gp.AddMessage("")
 gp.AddMessage(tort)
 gp.AddMessage("------------")
 yearlist = list()

114

 tortSearcher= gp.SearchCursor(infeatureClass, '"'+infield+'"'+"
 = "+"'"+tort+"'")

 tortSearch1 = tortSearcher.Next()
 while tortSearch1:
 yrx = datetime.strptime(tortSearch1.GetValue(inDate),"%Y-

%m-%d %H:%M:%S")
 yr = yrx.year
 if yr not in yearlist:
 yearlist.append(yr)
 tortSearch1 = tortSearcher.Next()
 for tyear in yearlist:
 tortSearch = gp.SearchCursor(infeatureClass,

'"'+infield+'"'+" = "+"'"+tort+"'")
 ttimeDiff = 0
 tdistDiff = 0
 ttimeHourDiff = 0
 tspeed = 0
 maxspeed = 0
 tortRow = tortSearch.Next()

 while tortRow:
 yrsx = datetime.strptime(tortRow.getValue(inDate),"%Y-

 %m-%d %H:%M:%S")
 yrs = yrsx.year
 if tyear == yrs:
 dat = datetime.strptime(tortRow.getValue(inDate),

 "%Y-%m-%d %H:%M:%S")
 geom = tortRow.shape
 ex = geom.GetPart()
 origx = ex.x
 origy = ex.y
 ##These two lines would list the position if added

 ##back-
 ##gp.AddMessage(ex.x)
 ##gp.AddMessage(ex.y)

#This looks through all remaining positions of the
##tortoise to get max speed

 original = tortRow.GetValue("ObjectID")
 tortSearch2 = gp.SearchCursor(infeatureClass,

'"'+infield+'"'+" = "+"'"+tort+"'")
 tortRow2 = tortSearch2.Next()
 while tortRow2:
 ##These two rows were to check to ensure the

##correct tortoise was being called torx=
##tortRow2.GetValue(infield)

 ##gp.AddMessage(torx)
 ttimeDiff = 0
 dat2 =

datetime.strptime(tortRow2.getValue(inDate)
,"%Y-%m-%d %H:%M:%S")

 ttimeDiff = abs(dat2 - dat) #absolute value
 geom2 = tortRow2.shape
 newex = geom2.GetPart()
 newx = newex.x
 newy = newex.y
 tdistDiff = math.sqrt((origx-newx)**2 + (origy-

115

newy)**2)
 del newex
 #convert to only hours
 ###Note- timedelta has time in seconds only
 ttimeHourDiff= ttimeDiff.days*24 +

ttimeDiff.seconds/3600
 if ttimeHourDiff > 12:
 ##Was >0, but am changing to 12 due to

 ##drastic movements
 ##by rangers within a few hours.
 tspeed = tdistDiff/ttimeHourDiff
 if maxspeed < tspeed and ttimeHourDiff > 12:

#Added this for same reason as above
 maxspeed = tspeed
 maxdate = dat2
 startdate = dat
 finaldist = tdistDiff
 finaltime = ttimeDiff
 finalday = dat2
 tortRow2 = tortSearch2.Next()
 del tortSearch2
 tortRow = tortSearch.Next()
 tspeed = str(maxspeed)
 sdays = str(startdate)
 fdays = str(finalday)
 fdist = str(finaldist)
 ftime= str(finaltime)

 #This creates a row in the new table
 newrs = gp.InsertCursor(loc)
 newr = newrs.NewRow()
 newr.SetValue("Name",tort)
 newr.SetValue("Year",tyear)
 newr.SetValue("MaxSpeed",maxspeed)
 newr.SetValue("StartTime",sdays)
 newr.SetValue("EndTime",fdays)
 newr.SetValue("Distance",finaldist)
 newr.SetValue("TimeElapse",ftime)
 newrs.InsertRow(newr)

 #This prints the info to the output screen
 gp.AddMessage(tort+" in year: "+str(tyear)+" had a max

speed of: "+tspeed+" meters per hour, beginning
on "+sdays+" and ending on "+fdays+" total
distance= "+fdist+" total time= "+ftime)

 gp.AddMessage("")
gp.AddMessage("____________")

117

Python Code 6: Tortoise Potential Path Tool

potentpathtool4.py
Created on: Mon May 17 2010

Built By David Turnbull (NGA), University of Redlands MS GIS for
Joshua Tree National Park as part of his Master's Project
Modified: 6/12/2010

Import system modules
import sys, string, os, arcgisscripting, math
from datetime import date, datetime, timedelta
from operator import itemgetter

Create the Geoprocessor object
gp = arcgisscripting.create()
gp.overwriteoutput =1

#This is added to see if ArcGIS 10 or later is being used. The ellipse
too
#function differs after ArcGIS 9.3
installD = gp.GetInstallInfo("desktop")
for key in installD.keys():
 if key == "Version":
 gp.AddMessage("ArcGIS Version: "+installD[key])
 thisVersion = float(installD[key])

Load required toolboxes...
gp.AddToolbox("C:/Program Files

(x86)/ArcGIS/ArcToolbox/Toolboxes/Analysis Tools.tbx")
Local variables...
gp.addmessage("Setting Local Variables...")
infeatureClass = gp.GetParameterAsText(0)
inName = gp.GetParameterAsText(1)
inDate = gp.GetParameterAsText(2)
opt1table = gp.GetParameterAsText(3)
opt2speed = gp.GetParameterAsText(4)
outworkspace = gp.GetParameterAsText(5)
potpathlim = gp.GetParameterAsText(6)
hrlim = gp.GetParameterAsText(7)
distlim = gp.GetParameterAsText(8)
wgsutm = gp.GetParameterAsText(9)
symangle = gp.GetParameterAsText(10)

dlim = float(distlim)
hlim = int(hrlim)

#Gets added to end of feature class name unless changed
if potpathlim == "true":
 tag = "_LtdH"+str(hrlim)+"D"+str(distlim)
else:
 tag = "_Unlimited"

gp.Workspace = outworkspace

118

#Create SymAngle Field
if symangle == "true":
 gp.AddField(infeatureClass,"SymAngle","Short")

#Fetch Datum, UTM zone and central meridian of dataset
desc = gp.describe(infeatureClass)
sr = desc.SpatialReference
projn = sr.Name
values = projn.split("_")
datm = values[0] + "_" + values[1]
zone = values[4]
lenzone = len(zone)
znum = zone[0:lenzone-1]
zstr = zone[lenzone-1]
zonecomma = str(znum)+","+zstr+","
cm = sr.CentralMeridian
gp.AddMessage("Source Datum: "+datm)
gp.AddMessage("Source UTM Zone: "+str(zone)+
"("+str(znum)+","+str(zstr)+")")
gp.AddMessage("Central Meridian: "+str(cm))
if (zstr != "N" and zstr != "S"):
 gp.AddMessage("The source data must be in UTM!!!")
 gp.AddMessage("Your results will be incorrect.")

#Begin...
tortlist = list()
startSearch = gp.SearchCursor(infeatureClass, "","",inName)
gp.AddMessage("")
searchRow = startSearch.Next()
while searchRow:
 tort = searchRow.GetValue(inName)
 if tort not in tortlist:
 tortlist.append(tort)
 gp.AddMessage(tort) #prints tortoise name
 searchRow = startSearch.Next()
gp.AddMessage("------------")
for tort in tortlist:
 #get tortoise speed from table
 if opt1table != "":
 spdSrch = gp.SearchCursor(opt1table, '"Name"'+" =

 "+"'"+tort+"'")
 gp.AddMessage(tort)
 spdRow = spdSrch.Next()
 while spdRow:
 spd = spdRow.GetValue("MaxSpeed")
 spdRow = spdSrch.Next()
 elif opt2speed != "":
 spd = float(opt2speed)
 else:
 gp.AddError("Please Select an Option")

 #Make individual Tortoise Table for each tortoise
 gp.CreateTable(outworkspace, tort+"_ellipse_table"+tag)
 loc = outworkspace+"/"+tort+"_ellipse_table"+tag
 gp.AddField(loc,"Name","Text")
 gp.AddField(loc,"CenterXY","Text")

119

 gp.AddField(loc,"CenterX","Text") ## This field and the next will
 ## be needed for ArcGIS 10

 gp.AddField(loc,"CenterY","Text") ## "
 gp.AddField(loc,"SemiMinorAxis","Double")
 gp.AddField(loc,"SemiMajorAxis","Double")
 gp.AddField(loc,"Rotation","Double")
 gp.AddField(loc,"TimeStamp","Text")
 gp.AddField(loc,"EndTime","Text")

 #search tortoise info...
 TimeRows= gp.SearchCursor(infeatureClass, '"'+inName+'"'+" =

"+"'"+tort+"'")

 #Creating an empty list
 gp.AddMessage("------------")
 dlist = list()
 TR = TimeRows.Next()
 while TR:
 time = TR.GetValue(inDate)
 if time not in dlist:
 dlist.append(time)
 TR = TimeRows.Next()

 resultx = sorted(dlist, reverse=False)
 n = len(resultx)
 for i in range(n):
 gp.AddMessage(str(resultx[i]))
 i = i + 1

 for i in range(n-1): #no action for last feature
 datew = resultx[i]
 datex = datetime.strptime(datew, "%Y-%m-%d %H:%M:%S")
 gp.AddMessage("------------")

 ##DR = DateRows.Next()
 ##while DR:
 datey = datetime.strptime(resultx[i+1], "%Y-%m-%d %H:%M:%S")
 gp.AddMessage(str(datex)+" to "+str(datey))
 ###TimeDelta between two positions VARIABLE 1
 datediff = abs(datey - datex)
 gp.AddMessage("Time Difference = "+str(datediff))
 ###Potential Distance between two positions VARIABLE 2
 ddatediff = datediff.days*24
 dtimediff = datediff.seconds*1.00/3600.00
 totdatediff = ddatediff+dtimediff
 gp.AddMessage("Time Difference in Hours = "+ str(totdatediff))
 potdist = spd * totdatediff
 gp.AddMessage("Tortoise Max Speed: "+ str(spd))
 gp.AddMessage("Potential Distance = "+str(potdist))
 semimajorAxis = potdist/2 ###############Semi-Major Axis
 gp.AddMessage("Semi-Major Axis: "+str(semimajorAxis)+ "

 meters")
 DateRows = gp.SearchCursor(infeatureClass, '"'+inName+'"'+" =

"+"'"+tort+"'"+" and "+'"'+inDate+'"'+" =
"+"'"+str(datex)+"'")

120

 #Get x and y here of i
 DR = DateRows.Next()
 while DR:
 geom = DR.shape
 ex = geom.GetPart()
 origx = ex.x
 origy = ex.y

 NewDateRows = gp.SearchCursor(infeatureClass,

'"'+inName+'"'+" = "+"'"+tort+"'"+" and
"+'"'+inDate+'"'+" = "+"'"+str(datey)+"'")

 NDR = NewDateRows.Next()
 while NDR:
 ngeom = NDR.shape
 nex = ngeom.GetPart()
 norigx = nex.x
 norigy = nex.y
 NDR = NewDateRows.Next()
 ###Semi-Minor Axis Calculation
 ##SIDE 1: ea
 tdistDiff = math.sqrt((origx-norigx)**2 + (origy-

 norigy)**2)
 gp.AddMessage("z distance = "+str(tdistDiff))
 ea = tdistDiff/2

 if (potpathlim == "true" and hrlim != "" and distlim !=

""):
 if ((tdistDiff < dlim) and (totdatediff > hlim)):
 ##This ensures that recorded positions are larger

 ##than x hrs apart.
 gp.AddMessage("Potential Distance has been limited

to 1 day for large date gaps >
"+str(dlim)+" hours and movement
less than "+str(distlim)+"
meters.")

 potdist = spd * 24
 gp.AddMessage("Limited Potential Distance =

 "+str(potdist))
 semimajorAxis = potdist/2 ###############Limited

 #######Semi-Major Axis
 gp.AddMessage("Limited Semi-Major Axis:

"+str(semimajorAxis)+ " meters")

 #Pythagorean ###############Semi-Minor Axis
 ma = ((2*semimajorAxis)-(2*ea))
 if ma <= 0.0:
 semiminorAxis = 1.0
 else:
 semiminorAxis = math.sqrt((semimajorAxis**2)-(ea**2))
 gp.AddMessage("Semi-Minor Axis: "+str(semiminorAxis)+ "

meters")

 ###Center Point #######################CENTER POINT
 midX = int((origx + norigx)/2)
 midY = int((origy + norigy)/2)
 gp.AddMessage("Start Point at: x= "+str(origx)+" y=

"+str(origy))

121

 gp.AddMessage("End Point at: x= "+str(norigx)+" y=
"+str(norigy))

 gp.AddMessage("Center at: x= "+str(midX)+" y= "+str(midY))

###Angle between the two points: ROTATION ANGLE, in degrees
###from positive X axis

 pi = math.pi
 if (norigy-origy) != 0.00: #Have to account for the div/0

 theta = math.atan((norigx-origx)/(norigy-origy))

angle in radians of major axis
 elif ((norigy-origy) == 0.00) and ((norigx-origx) >= 0):
 rotAngle = 180 #rotation angle of minor axis
 elif ((norigy-origy) == 0.00) and ((norigx-origx) < 0):
 rotAngle = 360
 #Degrees and minor
 if ((norigx-origx) >= 0.00) and ((norigy-origy) > 0.00):
 rotAngle = theta*180/pi + 90 # angle in degrees of

 minor axis (0 + 90 for major to minor)
 elif ((norigx-origx) >= 0.00) and ((norigy-origy) < 0.00):
 rotAngle = theta*180/pi + 270
 elif ((norigx-origx) < 0.00) and ((norigy-origy) < 0.00):
 rotAngle = theta*180/pi + 270
 elif ((norigx-origx) < 0.00) and ((norigy-origy) > 0.00):
 rotAngle = theta*180/pi + 450 #Have to add 360 here for

#logical symbol angle later when I
#subtract 90 or for ArcGIS 10

 gp.AddMessage(str(theta))

 if thisVersion != 9.3: #ArcGIS 10 measures from Yaxis to

 #Major Axis; whereas Military
 #Analyst 9.3 is to minor axis

 rotAngle = rotAngle - 90
 gp.AddMessage("angle = "+str(rotAngle))

 ###Populate original tortoise file with symangle for symbol

###direction
 if symangle == "true":
 AngleRows = gp.UpdateCursor(infeatureClass,

'"'+inName+'"'+" = "+"'"+tort+"'"+" and
"+'"'+inDate+'"'+" = "+"'"+str(datex)+"'")

 AR = AngleRows.Next()
 while AR:
 AR.SetValue("SymAngle", round(rotAngle-90, 0))
 AngleRows.UpdateRow(AR)
 AR = AngleRows.Next()

 ###Insert rows into table
 nrow = gp.InsertCursor(tort+"_ellipse_table"+tag)
 nrows = nrow.NewRow()
 nrows.SetValue("Name", tort)
 nrows.SetValue("CenterXY",

zonecomma+str(midX)+","+str(midY))
 nrows.SetValue("CenterX", str(midX))## This field and the

##next will be useful for ArcGIS 10
 nrows.SetValue("CenterY", str(midY)) ## "
 nrows.SetValue("SemiMinorAxis", semiminorAxis)

122

 nrows.SetValue("SemiMajorAxis", semimajorAxis)
 nrows.SetValue("Rotation", rotAngle)
 nrows.SetValue("TimeStamp", str(datex))
 nrows.SetValue("EndTime", str(datey))
 gp.AddMessage("")
 nrow.InsertRow(nrows)
 del nrow
 DR = DateRows.Next()

 i = i + 1

 #Build Ellipse Feature Class for this tortoise
 if thisVersion == 9.3:
 inEllipseTable = tort+"_ellipse_table"+tag
 EllipseFCWGS = tort+"_PotPath_WGS"+tag
 EllipseFCUTM = tort+"_PotPath_UTM"+tag
 gp.AddMessage("Creating Ellipses")
 gp.TableToEllipse(inEllipseTable, EllipseFCWGS, "UTM",

"CenterXY", "", "SemiMinorAxis",
"SemiMajorAxis", "Meters", "Semi", "Rotation",
"Degrees")

 gp.AddMessage("-----------")
 if wgsutm != "true":
 gp.Project_management(EllipseFCWGS, EllipseFCUTM,

"PROJCS['"+datm+"_UTM_Zone_"+zone+"',GEOGCS['GCS_Nort
h_American_1983',DATUM['D_North_American_1983',SPHERO
ID['GRS_1980',6378137.0,298.257222101]],PRIMEM['Green
wich',0.0],UNIT['Degree',0.0174532925199433]],PROJECT
ION['Transverse_Mercator'],PARAMETER['False_Easting',
500000.0],PARAMETER['False_Northing',0.0],PARAMETER['
Central_Meridian',"+str(cm)+"],PARAMETER['Scale_Facto
r',0.9996],PARAMETER['Latitude_Of_Origin',0.0],UNIT['
Meter',1.0]]", "NAD_1983_To_WGS_1984_5",
"GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID['W
GS_1984',6378137.0,298.257223563]],PRIMEM['Greenwich'
,0.0],UNIT['Degree',0.0174532925199433]]")

 #Deleting the WGS feature class and table, they are not

#needed, comment them if desired
 gp.Delete_management(inEllipseTable)
 gp.Delete_management(EllipseFCWGS)
 else:
 gp.Delete_management(inEllipseTable)

 if thisVersion != 9.3:

arcpy.TableToEllipse_management(tort+"_ellipse_table"+tag,
tort+"_PotPath_UTM"+tag, "CenterX", "CenterY", "SemiMajorAxis",
"SemiMinorAxis", "METERS", "Rotation", "DEGREES", "OBJECTID",
"PROJCS['"+datm+"_UTM_Zone_"+zone+"',GEOGCS['GCS_North_American_1
983',DATUM['D_North_American_1983',SPHEROID['GRS_1980',6378137.0,
298.257222101]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.017453292
5199433]],PROJECTION['Transverse_Mercator'],PARAMETER['False_East
ing',500000.0],PARAMETER['False_Northing',0.0],PARAMETER['Central
_Meridian',"+str(cm)+"],PARAMETER['Scale_Factor',0.9996],PARAMETE
R['Latitude_Of_Origin',0.0],UNIT['Meter',1.0]];-5120900 -9998100
10000;-100000 10000;-100000
10000;0.001;0.001;0.001;IsHighPrecision")

123

 del dlist

gp.AddMessage("____________")

125

Python Code 7: Lost Tortoise Tool

losttortoise.py
Created on: Mon May 17 2010

Built By David Turnbull (NGA), University of Redlands MS GIS for
Joshua Tree National Park as part of his Master's Project
Updated: 07/27/2010

Import system modules
import sys, string, os, arcgisscripting
from datetime import date, datetime, timedelta, time

Create the Geoprocessor object
gp = arcgisscripting.create()
gp.overwriteoutput =1

Load required toolboxes...
gp.AddToolbox("C:/Program Files
(x86)/ArcGIS/ArcToolbox/Toolboxes/Analysis Tools.tbx")

Local variables...
gp.addmessage("Setting Local Variables...")
tortname = gp.GetParameterAsText(0)
torttable = gp.GetParameterAsText(1)
tortspeed2 =gp.GetParameterAsText(2)
spatial = gp.GetParameterAsText(3)
xPos = gp.GetParameterAsText(4)
yPos = gp.GetParameterAsText(5)
date1 = gp.GetParameterAsText(6)
date2 = gp.GetParameterAsText(7)
clipArea = gp.GetparameterAsText(8)
eraseArea = gp.GetparameterAsText(9)
workspace = gp.GetParameterAsText(10)

gp.workspace = workspace

Process: Buffer...
if (torttable != "" and tortspeed2 != ""):
 gp.AddMessage("Either Enter Option1 OR Option2")

elif (torttable != "" or tortspeed2 != ""):
 gp.addmessage("")
 dat1 = datetime.strptime(date1,"%m/%d/%Y %I:%M:%S %p")
 dat2 = datetime.strptime(date2,"%m/%d/%Y %I:%M:%S %p")

 timediff = (dat2 - dat1)
 gp.addmessage("")

 #Get tortoise speed from table
 if (torttable != ""):
 gp.AddMessage(tortname)
 gp.addmessage("Source Table: "+ torttable)
 gp.addmessage("Output Feature Class: Lost_"+ tortname+"_Buffer

126

in "+workspace)
 spdSrch = gp.SearchCursor(torttable, '"Name"'+" =

"+"'"+tortname+"'")
 gp.addmessage(str(timediff))
 spdRow = spdSrch.Next()
 while spdRow:
 tortspeed1 = spdRow.GetValue("MaxSpeed")
 spdRow = spdSrch.Next()
 gp.addmessage("Creating Tortoise Location Buffer Based on Table

Speed: "+str(tortspeed1)+" ...")
 elif(tortspeed2 != ""):
 tortspeed1 = float(tortspeed2)
 gp.addmessage("Creating Tortoise Location Buffer Based on Input

Speed: "+str(tortspeed1)+" ...")

 thours = timediff.days * 24.0
 tortdist1 = tortspeed1 * thours

 #Create a feature class here
 gp.AddMessage("Creating Tortoise Possible Location Buffer...")
 fc = gp.CreateFeatureClass(workspace,

"Lost_"+tortname+"_LastKnownPos",
"POINT", "", "","", spatial)

 gp.AddField(fc, "Name", "Text")
 gp.AddField(fc, "CurrDate", "Text")
 gp.AddField(fc, "LastSeen", "Text")
 gp.AddField(fc, "TimePass", "Text")
 gp.AddField(fc, "MaxSpeed", "Double")
 gp.AddField(fc, "SearchRadius", "Double")
 gp.AddField(fc, "RadiusUnits", "Text")

 #Make a point feature here
 newpt = gp.InsertCursor(fc)
 newrow = newpt.NewRow()
 pnt = gp.CreateObject("Point")
 newrow.SetValue("Name", tortname)
 newrow.SetValue("CurrDate", str(dat2))
 newrow.SetValue("LastSeen", str(dat1))
 newrow.SetValue("TimePass", str(timediff))
 newrow.SetValue("MaxSpeed", tortspeed1)
 newrow.SetValue("SearchRadius", tortdist1)
 newrow.SetValue("RadiusUnits", "Meters")
 pnt.x = xPos
 pnt.y = yPos
 newrow.shape = pnt
 newpt.InsertRow(newrow)

 del newpt
 del newrow

 #Creating Buffer
 outx = "Lost_"+tortname+"_Buffer"
 gp.AddMessage("")
 gp.AddMessage("Creating Output Feature Classes...")
 gp.AddMessage("Creating Circular Buffer: "+outx)
 gp.Buffer_analysis(fc, outx, tortdist1, "", "", "NONE")

127

 if clipArea != "":
 outx = "Lost_"+tortname+"_Buffer_Clipped" #This way due to

 #optional erase
 gp.AddMessage("Clipping Circular Buffer to new feature class:

"+outx)
 gp.Clip_analysis("Lost_"+tortname+"_Buffer", clipArea, outx,

"")

 if eraseArea != "":
 gp.AddMessage("Erasing Portion of Buffer to new feature class:

"+outx+"_Erase")
 gp.Erase_analysis(outx, eraseArea, outx+"_Erase","")
else:
 gp.addmessage("")
 gp.addmessage("Nothing Was Selected or necessary fields not

populated!")
 gp.addmessage("")

gp.AddMessage("____________")

129

Appendix B. Toolbox Help Documents

Tortoise Import Tool

This tool was built by David Turnbull, NGA, as part of his thesis at the University of Redlands
(2010). This tool was designed for his client: Joshua Tree National Park, but can be used for
manipulating any dynamic data to prepare it for dynamic visualizations in ArcGIS Explorer and
Google Earth.

Command line syntax

TortImport <Select_Feature_Class_> <Output_Workspace_> <Create Feature Classes By Tortoise |
Create Feature Classes By Toroise and Year | Create All Tortoises By Year | Create All Three Types
of Feature Classes Above> <Select_Name_Sort_Field_> {Select_Date_Sort_Field_}
{Add_Tag_To_File_Name_}

Parameters

Expression Explanation

<Select_Feature_Class_> Select a feature class that you would like to create
multiple sub-feature classes from.

<Output_Workspace_>
Select the Geodatabase or folder location for the feature
classes to be created in.

<Create Feature Classes By Tortoise
| Create Feature Classes By Toroise
and Year | Create All Tortoises By
Year | Create All Three Types of
Feature Classes Above>

Options:

• Create Feature Classes By Tortoise-This will create a
single feature class containing all positions for each
tortoise.

• Create Feature Classes By Toroise and Year- This
will create multiple feature classes by year for
each tortoise.

• Create All Tortoises By Year- This will create a feature
class for each year containing all tortoise positions for
that year.

• Create All Three Types of Feature Classes Above- This
will create all of the feature classes described above.

<Select_Name_Sort_Field_>
Select the field for the Tortoise Name.

130

{Select_Date_Sort_Field_}
Select the Date Field.

{Add_Tag_To_File_Name_}
Optional: Add a tag name that gets appended to the
beginning of the output file name.

Scripting syntax

TortImport (Select_Feature_Class_, Output_Workspace_, Select_Method_,
Select_Name_Sort_Field_, Select_Date_Sort_Field_, Add_Tag_To_File_Name_)

Parameters

Expression Explanation

Select Feature Class: (Required) Select a feature class that you would like to create
multiple sub-feature classes from.

Output Workspace: (Required)
Select the Geodatabase or folder location for the feature
classes to be created in.

Select Method: (Required)
Options:

• Create Feature Classes By Tortoise-This will create a
single feature class containing all positions for each
tortoise.

• Create Feature Classes By Toroise and Year- This will
create multiple feature classes by year for each
tortoise.

• Create All Tortoises By Year- This will create a feature
class for each year containing all tortoise positions for
that year.

• Create All Three Types of Feature Classes Above- This
will create all of the feature classes described above.

Select Name Sort Field: (Required)
Select the field for the Tortoise Name.

Select Date Sort Field: (Optional)
Select the Date Field.

Add Tag To File Name? (Optional)
Optional: Add a tag name that gets appended to the
beginning of the output file name.

131

TimeStamp and EndTime Field Creator

This tool was built by David Turnbull, NGA, as part of his thesis at the University of Redlands
(2010). This tool was designed for his client: Joshua Tree National Park, but can be used for
manipulating any dynamic data to prepare it for dynamic visualizations in ArcGIS Explorer and
Google Earth.

This tool is used to add a TimeStamp attribute to a feature class as well as copy existing time
information from another field to the new attribute. In some cases, it will create an attribute called
TimeStamp. This tool also has the option to automatically create a TimeEnd attribute by either
adding a number of days to the Start Time or by populating the EndTime with the Start Time of the
next event's Start Time.

Command line syntax

TimeStampFieldCreator <Select_Feature_Class_> {Select_Event__Tortoise_Name__}
<Select_Field_with_Date_> {Select_Field_with_Time_} <EndTime is StartTime of Next Occuring
Feature | EndTime is Start of Next Day(s) | No EndTime Calculation>
{TimeEnd_Days__decimal_days_ok__}

Parameters

Expression Explanation

<Select_Feature_Class_> Select a feature class that has a DATE attribute.

{Select_Event__Tortoise_Name__}
Enter the field to sub-sort by if feature class contains
many event categories. In this case, select the field that
contains the tortoise name.

<Select_Field_with_Date_>
Select the FIELD from the Input Feature Class that has a
DATE attribute.

{Select_Field_with_Time_}
OPTIONAL- Select the field that has a Time in it. The
field must be either a Date Field or a Double Field.

<EndTime is StartTime of Next
Occurring Feature | EndTime is Start of
Next Day(s) | No EndTime
Calculation>

Options:

• EndTime is StartTime of Next Occurring
Feature- This will populate EndTime with the
next event date for your particular tortoise. This
is beneficial when wanting to view in Google
Earth and have the tortoise remain on screen in
between events.

• EndTime is Start of Next Day(s)- This will populate

132

the EndTime with a date that is the number of days
specified in the last optional field. The default value
is 1 day. This value can be in decimal days as well.
The decimal days will be converted to time.

• No EndTime Calculation- This will not produce a
TimeEnd Attribute. If one already exists within the
data, it will remain and be unaffected.

{TimeEnd_Days__decimal_days_ok__}
This is only needed for the second method. Enter the
number of days. This value can be in decimal days as
well- The decimal days will be converted to time.

Command Line Example
Scripting syntax

TimeStampFieldCreator (Select_Feature_Class_, Select_Event__Tortoise_Name__,
Select_Field_with_Date_, Select_Field_with_Time_, TimeEnd_Method_,
TimeEnd_Days__decimal_days_ok__)

Parameters

Expression Explanation

Select Feature Class: (Required) Select a feature class that has a DATE attribute.

Select Event (Tortoise Name):
(Optional) Enter the field to sub-sort by if feature class contains

many event categories. In this case, select the field that
contains the tortoise name.

Select Field with Date: (Required)
Select the FIELD from the Input Feature Class that has a
DATE attribute.

Select Field with Time: (Optional)
OPTIONAL- Select the field that has a Time in it. The field
must be either a Date Field or a Double Field.

TimeEnd Method: (Required)
Options:

• EndTime is StartTime of Next Occurring Feature- This
will populate EndTime with the next event date for
your particular tortoise. This is beneficial when
wanting to view in Google Earth and have the tortoise
remain on screen in between events.

• EndTime is Start of Next Day(s)- This will populate
the EndTime with a date that is the number of days
specified in the last optional field. The default value is
1 day. This value can be in decimal days as well. The
decimal days will be converted to time.

• No EndTime Calculation- This will not produce a
TimeEnd Attribute. If one already exists within the
data, it will remain and be unaffected.

133

TimeEnd Days (decimal days ok):
(Optional) This is only needed for the second method. Enter the

number of days. This value can be in decimal days as
well- The decimal days will be converted to time.

135

Stationary Event from Table

This tool was built by David Turnbull, NGA, as part of his thesis at the University of Redlands
(2010). This tool was designed for his client: Joshua Tree National Park, but can be used for
manipulating any dynamic data to prepare it for dynamic visualizations in ArcGIS Explorer and
Google Earth.

Usage Tips

Need: feature class with at least one geometry (any type) & a non-geographic table that contains a
date or datetime field.

Command line syntax

AreaPoly2Weather22 <Input_Feature_Class_> <Input_Table_> <Input_Object_id_>
<Temperature-Daily High and Low | Temperature-Daily Average | Temperature-Hourly- matches
table records (Large dataset possible) | Precipitation-Daily Total | Other- matches table records>
{Table_Field_for_Date____Required_for_Average_or_Hi_Low_Calculations_}
{Table_Field_for_Aver_Hi_Low___Required_for_Average_or_Hi_Low_Calculations_}
{Include_English_Units_in_Output_Feature_Class__} <Work_Space_>
{Enter_Optional_Output_File_Tag_}

Parameters

Expression Explanation

<Input_Feature_Class_> Select the Feature Class that you will be grabbing the
single geometry from to copy it for multiple dates or
datetimes.

<Input_Table_>
Select the non-geographic table of data that has a date
or datetime field. These records will be copied to the
duplicated geometries of the feature from the input
feature class.

<Input_Object_id_>
Please enter the numeric Object ID of the feature from
the Input Feature Class that you want to duplicate.

<Temperature-Daily High and Low |
Temperature-Daily Average |
Temperature-Hourly- matches table
records (Large dataset possible) |
Precipitation-Daily Total | Other-
matches table records>

Options:

• Temperature High and Low: This will produce two
feature classes, a feature class, which has a single
record for each day with the High Temperature of
that day, and a feature class, which has a single
record for each day with the Low Temperature of
that day.

136

• Average Daily Temperature: This will produce a
feature class that has a single record for each
day with the Average Temperature of that day.

• Hourly temperature: This basically is the same as
the "Other" option. If the data from the table are by
the hour, it merely creates a feature for each row of
the table. The number of objects in the output
feature class will equal the number of records in the
table.

• Daily Precipitation: This will produce a feature class
that has a single record for each day with the Total
Precipitation of that day.

• Other: This option is here to allow utilization for any
non-geographic table that has a date attribute and
there is a need to tie the records to a geometry. It
merely creates a feature for each row of the table.
The number of objects in the output feature class
will equal the number of records in the table.

{Table_Field_for_Date____Required_fo
r_Average_or_Hi_Low_Calculations_} Select the field from the table that has the date or

datetime attribute.

{Table_Field_for_Aver_Hi_Low___Requ
ired_for_Average_or_Hi_Low_Calculati
ons_}

Select the field from the table that has the desired value
to get the Hi/Low, Daily Average, or Daily Total from.
This also can be used for the "Other" option. Any field
that is numeric can be summarized.

{Include_English_Units_in_Output_Fea
ture_Class__}

This option will add a field to the feature class that
contains the values in English units, in addition to the
metric field.

<Work_Space_>
Please select the Geodatabase or workspace folder that
the outputs will be put into. Note that the outputs may
not be automatically loaded into your view.

{Enter_Optional_Output_File_Tag_} Optional: Add a tag name that gets appended to the
beginning of the output file name.

Command Line Example
Scripting syntax

AreaPoly2Weather22 (Input_Feature_Class_, Input_Table_, Input_Object_id_,
Data_Type_of_Table_and_Frequency_Requested_,
Table_Field_for_Date____Required_for_Average_or_Hi_Low_Calculations_,
Table_Field_for_Aver_Hi_Low___Required_for_Average_or_Hi_Low_Calculations_,
Include_English_Units_in_Output_Feature_Class__, Work_Space_,
Enter_Optional_Output_File_Tag_)

Parameters

Expression Explanation

137

Input Feature Class: (Required) Select the Feature Class that you will be grabbing the
single geometry from to copy it for multiple dates or
datetimes.

Input Table: (Required)
Select the non-geographic table of data that has a
date or datetime field. These records will be copied to
the duplicated geometries of the feature from the
input feature class.

Input Object id: (Required)
Please enter the numeric Object ID of the feature
from the Input Feature Class that you want to
duplicate.

Data Type of Table and Frequency
Requested? (Required) Options:

• Temperature High and Low: This will produce two
feature classes, a feature class, which has a
single record for each day with the High
Temperature of that day, and a feature class,
which has a single record for each day with the
Low Temperature of that day.

• Average Daily Temperature: This will produce a
feature class that has a single record for each day
with the Average Temperature of that day.

• Hourly temperature: This basically is the same as
the "Other" option. If the data from the table are
by the hour, it merely creates a feature for each
row of the table. The number of objects in the
output feature class will equal the number of
records in the table.

• Daily Precipitation: This will produce a feature
class that has a single record for each day with
the Total Precipitation of that day.

• Other: This option is here to allow utilization
for any non-geographic table that has a date
attribute and there is a need to tie the
records to a geometry. It merely creates a
feature for each row of the table. The number
of objects in the output feature class will
equal the number of records in the table.

Table Field for Date: (Required for
Average or Hi/Low Calculations)
(Optional)

Select the field from the table that has the date or
datetime attribute.

Table Field for Aver/Hi Low: (Required for
Average or Hi/Low Calculations)
(Optional)

Select the field from the table that has the desired
value to get either the Hi/Low, Daily Average or Daily
Total from. This also can be used for the "Other"
option. Any field that is numeric can be summarized.

138

Include English Units in Output Feature
Class?: (Optional)

This option will add a field to the feature class that
contains the values in English units, in addition to the
metric field.

Work Space: (Required)
Please select the Geodatabase or workspace folder
that the outputs will be put into. Note that the outputs
may not be automatically loaded into your view.

Enter Optional Output File Tag: (Optional) Optional: Add a tag name that gets appended to the
beginning of the output file name.

139

Road and Trot Buffer Tool

This tool was built by David Turnbull, NGA, as part of his thesis at the University of Redlands
(2010). This tool was designed for his client: Joshua Tree National Park, but can be used for
manipulating any dynamic data to prepare it for dynamic visualizations in ArcGIS Explorer and
Google Earth.

This tool is used to calculate one or two BUFFERS from the roads and one buffer for the Tortoise
Trots. The default values are 0.8 kilometers and 3.5 kilometers for the roads and 0.5 kilometers for
the trots. The default values used for roads reflect the values in the study by Boarman, Sazaki, and
Jennings (1997). The study suggests that the areas within 0.8km of the road may be more
beneficial to study as well as a secondary buffer of up to 3.5km from the road should be considered.
This is a result of tortoises being hit, but travelling a distance before the effects of being hit by a
vehicle cause them to die. -- Boarman, W. I., Sazaki, M., &
Jennings, W. B. (1997). The Effect of Roads, Barrier Fences, and Culverts on Desert Tortoise
Populations in California, USA. Conservation, Restoration, and Management of Tortoises and Turtles
- An International Conference (pp. 54-58). New York Turtle and Tortoise Society.

Command line syntax

BufferTool {Select_Road_Feature_Class} {Build_Close_Buffer_}
<Select_Buffer_Tolerance_1__close_proximity_> {Build_Far_Buffer_}
<Select_Buffer_Tolerance_2__farther_> <Build_Trot_Buffer_> {Tortoise_Trot_data}
{Enter_Trot_Buffer_Size} <Output_Workspace> {Enter_a_filename_tag_if_desired_}

Parameters

Expression Explanation

{Select_Road_Feature_Class} Select the Road feature class that you would
like to create buffers from

{Build_Close_Buffer_}
Check this box if you want the tool to build
this buffer

<Select_Buffer_Tolerance_1__close_proximity_>
Buffer #1 tolerance. Default is 0.8 Km.

{Build_Far_Buffer_}
Check this box if you want the tool to build
this buffer

<Select_Buffer_Tolerance_2__farther_>
Buffer #2 tolerance. Default is 3.5 Km.

<Build_Trot_Buffer_>
Check this box if you want the tool to build
this buffer

{Tortoise_Trot_data}
Select the feature class that contains the
Tortoise Trots

140

{Enter_Trot_Buffer_Size}
Enter the Tortoise Trot Buffer Size

<Output_Workspace>
Select the output geodatabase or feature
dataset.

{Enter_a_filename_tag_if_desired_}
Optional- Enter a tag name that will be
appended to the front of the output file name
followed by a "_".

Scripting syntax

BufferTool (Select_Road_Feature_Class, Build_Close_Buffer_,
Select_Buffer_Tolerance_1__close_proximity_, Build_Far_Buffer_,
Select_Buffer_Tolerance_2__farther_, Build_Trot_Buffer_, Tortoise_Trot_data,
Enter_Trot_Buffer_Size, Output_Workspace, Enter_a_filename_tag_if_desired_)

Parameters

Expression Explanation

Select Road Feature Class (Optional) Select the Road feature class that you would like to create
buffers from

Build Close Buffer? (Optional)
Check this box if you want the tool to build this buffer

Select Buffer Tolerance 1 (close
proximity) (Required) Buffer #1 tolerance. Default is 0.8 Km.

Build Far Buffer? (Optional)
Check this box if you want the tool to build this buffer

Select Buffer Tolerance 2 (farther)
(Required) Buffer #2 tolerance. Default is 3.5 Km.

Build Trot Buffer? (Required)
Check this box if you want the tool to build this buffer

Tortoise Trot data (Optional)
Select the feature class that contains the Tortoise Trots

Enter Trot Buffer Size (Optional)
Enter the Tortoise Trot Buffer Size

Output Workspace (Required)
Select the output geodatabase or feature dataset.

Enter a filename tag if desired:
(Optional) Optional- Enter a tag name that will be appended to the

front of the output file name followed by a "_".

141

Tortoise Maximum Speed Finder

This tool was built by David Turnbull, NGA, as part of his thesis at the University of Redlands
(2010). This tool was designed for his client: Joshua Tree National Park, but can be used for
manipulating any dynamic data to prepare it for dynamic visualizations in ArcGIS Explorer and
Google Earth.

Usage Tips

***The Timestamp Creator Tool should be run before running this tool.

Command line syntax

tortspeed <Input_Tortoise_Feature_Class_> <Input_Tortoise_Name_Field_> <Tortoise By Name |
Tortoise By Name and Year> <Select_TimeStamp_Field_> <Ouput_location_of_Table_>

Parameters

Expression Explanation

<Input_Tortoise_Feature_Class_> Select a tortoise positions feature class that contains
tortoise positions for one or more tortoises. ***This
feature class should have had the TimeStamp Field
Creator Tool run on it prior.

<Input_Tortoise_Name_Field_>
Select the Field from the list that contains the Tortoise
Names.

<Tortoise By Name | Tortoise By
Name and Year> Options:

• Tortoise By Name- Calculates the maximum speed
achieved by each particular tortoise over the period
covered in the feature class.

• Tortoise By Name and Year- Calculates the
maximum speed achieved by each particular
tortoise for each year.

<Select_TimeStamp_Field_>
Select the TimeStamp field. If it does not exist, the
TimeStamp Creator tool needs to be run first.

<Ouput_location_of_Table_>
Select the Geodatabase or Feature Dataset where you
want the output table to be created.

• Tortoise By Name: Output File will be called

142

"TortSpeeds"

• Tortoise By Name and Year: Output File will be called
"TortSpeedByYr"

Scripting syntax

tortspeed (Input_Tortoise_Feature_Class_, Input_Tortoise_Name_Field_, Method_,
Select_TimeStamp_Field_, Ouput_location_of_Table_)

Parameters

Expression Explanation

Input Tortoise Feature Class:
(Required)

Select a tortoise positions feature class that contains
tortoise positions for one or more tortoises. ***This
feature class should have had the TimeStamp Field
Creator Tool run on it prior.

Input Tortoise Name Field:
(Required) Select the Field from the list that contains the Tortoise

Names.

Method: (Required)
Options:

• Tortoise By Name- Calculates the maximum speed
achieved by each particular tortoise over the period
covered in the feature class.

• Tortoise By Name and Year- Calculates the maximum
speed achieved by each particular tortoise for each
year.

Select TimeStamp Field: (Required)
Select the TimeStamp field. If it does not exist, the
TimeStamp Creator tool needs to be run first.

Output location of Table: (Required)
Select the Geodatabase or Feature Dataset where you
want the output table to be created.

• Tortoise By Name: Output File will be called
"TortSpeeds"

• Tortoise By Name and Year: Output File will be called
"TortSpeedByYr"

143

Tortoise Potential Path Tool

This tool was built by David Turnbull, NGA, as part of his thesis at the University of Redlands (2010). This tool was designed
for his client: Joshua Tree National Park, but can be used for manipulating any dynamic data to prepare it for dynamic
visualizations in ArcGIS Explorer and Google Earth.

Command line syntax

PotentialPathTool <Select_Feature_Class> <Select_Animal_Identifier_Field_>
<Select_TimeStamp_Field> {Option1__Select_Tortoise_Speed_Table_}
{Option2__Input_Tortoise_Speed_} <Output_Workspace_>
{Limit_Potential_Distance___Enter_limits_below_} <-------Hour_Limit_> <------
Distance_Limit__meters__> {Output_as_WGS84__Not_UTM__}
<Populate_Input_Feature_Class_with_Symbol_Angle__>

Parameters

Expression Explanation

<Select_Feature_Class>
Select the feature class that contains tortoise
positions. It can contain many tortoises or an
individual tortoise.

<Select_Animal_Identifier_Field_> Select the field that contains the Animal
Identifier.

<Select_TimeStamp_Field> Select the TimeStamp field. If it does not exist,
the TimeStamp Creator tool needs to be run first.

{Option1__Select_Tortoise_Speed_Table_} Option 1:

• Select the tortoise speed table.
This table would have been
created by the Tortoise Maximum
Speed Finder tool. If it has not
been run, please run it first to use
this option. That tool calculated
the maximum achieved speed in
meters/hour for each tortoise.

{Option2__Input_Tortoise_Speed_} Option 2:

• Enter the tortoise speed in
meters/hour.

<Output_Workspace_> Select the Geodatabase or Feature Dataset where
you want the output table to be created.

{Limit_Potential_Distance___Enter_limits_below_} When checked and the Hour Limit and Distance
Limit populated, this will limit the sizes of the
ellipses to a 1 Day potential distance IF the

144

consecutive positions are less than the limit
distance (meters) and the positions are greater
than the Hour Limit (hours) apart.

<-------Hour_Limit_> The minimum hour differential that consecutive
positions must be to be candidates for limited
ellipse calculations.

• Default is 36 hours (1.5 days).

<------Distance_Limit__meters__> The maximum distance differential that
consecutive positions must be to be candidates
for limited ellipse calculations.

• Default is 21 meters.

{Output_as_WGS84__Not_UTM__} Check this box if you want the output to be in
WGS84 datum. Unchecked, the results will be in
UTM 11N.

<Populate_Input_Feature_Class_with_Symbol_Angle__> Checked- This will create a SymAngle field in
your input feature class and populated it with the
objects bearing to the next sequential position.
The angle value in the field can then be used in
the layer properties to automatically rotate the
symbols to these values.

Command Line Example

Scripting syntax

PotentialPathTool (Select_Feature_Class, Select_Animal_Identifier_Field_, Select_TimeStamp_Field,
Option1__Select_Tortoise_Speed_Table_, Option2__Input_Tortoise_Speed_, Output_Workspace_,
Limit_Potential_Distance___Enter_limits_below_, -------Hour_Limit_, ------
Distance_Limit__meters__, Output_as_WGS84__Not_UTM__,
Populate_Input_Feature_Class_with_Symbol_Angle__)

Parameters

Expression Explanation

Select Feature Class (Required)
Select the feature class that contains tortoise positions. It can contain
many tortoises or an individual tortoise.

Select Animal Identifier Field:

(Required)

Select the field that contains the Animal Identifier.

Select TimeStamp Field (Required) Select the TimeStamp field. If it does not exist, the TimeStamp Creator
tool needs to be run first.

Option1: Select Tortoise Speed

Table: (Optional)

Option 1:

• Select the tortoise speed table. This table would have
been created by the Tortoise Maximum Speed Finder
tool. If it has not been run, please run it first to use
this option. That tool calculated the maximum

145

achieved speed in meters/hour for each tortoise.

Option2: Input Tortoise Speed:

(Optional)

Option 2:

• Enter the tortoise speed in meters/hour.

Output Workspace: (Required) Select the Geodatabase or Feature Dataset where you want the output
table to be created.

Limit Potential Distance? (Enter limits

below) (Optional)

When checked and the Hour Limit and Distance Limit populated, this
will limit the sizes of the ellipses to a 1 Day potential distance IF the
consecutive positions are less than the limit distance (meters) and the
positions are greater than the Hour Limit (hours) apart.

-------Hour Limit: (Required) The minimum hour differential that consecutive positions must be to be
candidates for limited ellipse calculations.

• Default is 36 hours (1.5 days).

------Distance Limit (meters):

(Required)

The maximum distance differential that consecutive positions must be to
be candidates for limited ellipse calculations.

• Default is 21 meters.

Output as WGS84 (Not UTM)?

(Optional)

Check this box if you want the output to be in WGS84 datum.
Unchecked, the results will be in UTM 11N.

Populate Input Feature Class with

Symbol Angle?: (Required)

Checked- This will create a SymAngle field in your input feature class
and populated it with the objects bearing to the next sequential position.
The angle value in the field can then be used in the layer properties to
automatically rotate the symbols to these values.

147

Lost Tortoise Tool

This tool was built by David Turnbull, NGA, as part of his thesis at the University of Redlands
(2010). This tool was designed for his client: Joshua Tree National Park, but can be used for
manipulating any dynamic data to prepare it for dynamic visualizations in ArcGIS Explorer and
Google Earth.

Command line syntax

losttortoise <Tortoise_Name_> {Option1__Select_Tortoise_Speed_Table_}
{Option2__Estimated_Tortoise_Speed_in_meters_hr_} <Projection_>
<Enter_the_last_known_UTM__X_Position__meters__>
<Enter_the_last_known_UTM_Y_Position__meters__>
<Enter_the_last_known_position_TimeStamp_> <Enter_the_current_TimeStamp_>
{Clip_Search_Radius_by_a_Feature_Class_}
{Erase_part_of_Search_Radius_by_a_Feature_Class_} {Workspace_}

Parameters

Expression Explanation

<Tortoise_Name_> Enter the Lost Tortoise's Name. If using
the Tortoise Maximum Speed Tool, it
must match the spelling and case listed
in the tool.

{Option1__Select_Tortoise_Speed_Table_}
Option 1: Select location of Tortoise
Maximum Speed table.

{Option2__Estimated_Tortoise_Speed_in_meters_hr_}
Option 2: Enter the tortoise's
approximate speed in meters/hour. It is
noted that the speeds of the tortoises
are likely below 18 meters/hour.

<Projection_>
Please select the preferred projection
for the output.

<Enter_the_last_known_UTM__X_Position__meters__>
Enter the UTM longitude in meters.

<Enter_the_last_known_UTM_Y_Position__meters__>
Enter the UTM latitude in meters.

<Enter_the_last_known_position_TimeStamp_> Enter the last known position's
TimeStamp.

<Enter_the_current_TimeStamp_> Enter the current TimeStamp.

148

{Clip_Search_Radius_by_a_Feature_Class_} Optional- select a feature class to clip
the search area by.

{Erase_part_of_Search_Radius_by_a_Feature_Class_} Optional- select a feature class to erase
part of the search area.

<Workspace_>
Select the output workspace.

Scripting syntax

losttortoise (Tortoise_Name_, Option1__Select_Tortoise_Speed_Table_,
Option2__Estimated_Tortoise_Speed_in_meters_hr_, Projection_,
Enter_the_last_known_UTM__X_Position__meters__,
Enter_the_last_known_UTM_Y_Position__meters__, Enter_the_last_known_position_TimeStamp_,
Enter_the_current_TimeStamp_, Clip_Search_Radius_by_a_Feature_Class_,
Erase_part_of_Search_Radius_by_a_Feature_Class_, Workspace_)

Parameters

Expression Explanation

Tortoise Name: (Required) Enter the Lost Tortoise's Name. If using the Tortoise
Maximum Speed Tool, it must match the spelling and case
listed in the tool.

Option1: Select Tortoise Speed
Table: (Optional) Option 1: Select location of Tortoise Maximum Speed

table.

Option2: Estimated Tortoise Speed in
meters/hr: (Optional) Option 2: Enter the tortoise's approximate speed in

meters/hour. It is noted that the speeds of the tortoises
are likely below 18 meters/hour.

Projection: (Required)
Please select the preferred projection for the output.

Enter the last known UTM X Position
(meters): (Required) Enter the UTM longitude in meters.

Enter the last known UTM Y Position
(meters): (Required) Enter the UTM latitude in meters.

Enter the last known position
TimeStamp: (Required)

Enter the last known position's TimeStamp.

Enter the current TimeStamp:
(Required)

Enter the current TimeStamp.

Clip Search Radius by a Feature

Class? (Optional)

Optional- select a feature class to clip the search area by.

Erase part of Search Radius by a
Feature Class? (Optional)

Optional- select a feature class to erase part of the search
area.

149

Workspace: (Required)
Select the output workspace.

151

Priority Trot Needs Tool

This tool was built by David Turnbull, NGA, as part of his thesis at the University of Redlands (2010). This tool was designed
for his client: Joshua Tree National Park.

Command line syntax

primarytrots222
<Input__All_Limited_Potential_Path_Areas_;Input__All_Limited_Potential_Path_Areas_...>
<Input_All_Unlimited_Potential_Path_Areas_;Input_All_Unlimited_Potential_Path_Areas_...>
<Select_the_Road_Buffer_Near_Feature_Class_> <Enter_Park_Boundary_Limit_Feature_Class_>
<Primary_Trot_Needs_Feature_Class> <Secondary_Trot_Needs_Feature_Class>
<Tertiary_Trot_Needs_Feature_Class>

Parameters

Expression Explanation

<Input__All_Limited_Potential_Path_Areas_;Input_

_All_Limited_Potential_Path_Areas_...>

Select all Limited Potential Path polygons created by
the Tortoise Potential Path Tool.

<Input_All_Unlimited_Potential_Path_Areas_;Input

_All_Unlimited_Potential_Path_Areas_...>

Select all Unlimited Potential Path polygons created by
the Tortoise Potential Path Tool.

<Select_the_Road_Buffer_Near_Feature_Class_> Select the Road Buffer Near feature class created by
the Road and Trot Buffer Class.

<Enter_Park_Boundary_Limit_Feature_Class_> Select the Park Boundary feature class or other area
feature class that you want to clip the data with.

<Primary_Trot_Needs_Feature_Class> Specify the location and name for the new Primary
Trot Needs Feature Class.

<Secondary_Trot_Needs_Feature_Class> Specify the location and name for the new Secondary
Trot Needs Feature Class.

<Tertiary_Trot_Needs_Feature_Class> Specify the location and name for the new Tertiary
Trot Needs Feature Class.

Scripting syntax

primarytrots222 (Input__All_Limited_Potential_Path_Areas_,
Input_All_Unlimited_Potential_Path_Areas_, Select_the_Road_Buffer_Near_Feature_Class_,
Enter_Park_Boundary_Limit_Feature_Class_, Primary_Trot_Needs_Feature_Class,
Secondary_Trot_Needs_Feature_Class, Tertiary_Trot_Needs_Feature_Class)

152

Parameters

Expression Explanation

Input All Limited Potential Path

Areas: (Required)

Select all Limited Potential Path polygons created by the Tortoise
Potential Path Tool.

Input All Unlimited Potential Path

Areas: (Required)

Select all Unlimited Potential Path polygons created by the Tortoise
Potential Path Tool.

Select the Road Buffer Near Feature

Class: (Required)

Select the Road Buffer Near feature class created by the Road and Trot
Buffer Class.

Enter Park Boundary Limit Feature

Class: (Required)

Select the Park Boundary feature class or other area feature class that you
want to clip the data with.

Primary Trot Needs Feature Class

(Required)

Specify the location and name for the new Primary Trot Needs Feature
Class.

Secondary Trot Needs Feature Class

(Required)

Specify the location and name for the new Secondary Trot Needs Feature
Class.

Tertiary Trot Needs Feature Class

(Required)

Specify the location and name for the new Tertiary Trot Needs Feature
Class.

153

Appendix C. Export to KML and Google Earth Use

Export to KML 2.5.5 General Instructions

The Export to KML button will appear on the toolbar if properly installed and at
least one feature class is in the Table of Contents in ArcMap. Clicking on it will invoke
the Export to KML 2.5.5 tool. The key parameters are outlined in red in Figure C-1. First,
you must select the layer to export. This layer must be in your Table of Contents in
ArcMap. The second field allows you to choose a field for labeling the features. Once
you have set these parameters as well as the output location, the Options Button must be
clicked.

Figure C-1: Initial Export to KML Window and Parameters

The options window includes three important tabs that contain parameters modified
for the production of the KMLs in this project. Those tabs include Export Options,
Database Schema Options, and Time Options. The Export Options seen in Figure C-2,
allows you to specify the output layer name that appears in the KML, as well as
additional metadata. This tab also allows you to apply an X or Y shift in the data. This
function was used to produce the images in this document to mask the true positions of
the tortoises.

154

Figure C-2: Export Options Tab and Parameters

The Database Schema Options tab seen in Figure C-3, allows the user to select fields
to be mapped to the KML file. These attributes will be shown in pop-up balloons if the
feature is clicked on in Google Earth.

155

Figure C-3: Database Schema Options Tab and Parameters

The Time Options tab seen in Figure C-4 is where the user selects either the
TimeStamp field for features that are meant to stay on once the date occurs, or both the
TimeStamp and EndTime field for feature that are temporal.

156

Figure C-4: Time Options Tab and Parameters

157

JOTR KMZ Folder Structure

Figure C-5: Collapsed JOTR KMZ Folders

158

Figure C-6: Expanded Tortoise and Potential Path Folders

159

Figure C-7: Expanded PVC, MCP, and Kernel Folder

Figure C-8: Expanded Trot Needs, Roads and Trot Buffers, and Weather Folders

161

Appendix D. Output Windows
Tortoise Import Tool

TimeStamp and EndTime Field Creator Tool

162

Stationary Event from Table Tool

163

Road and Trot Buffer Tool

Tortoise Maximum Speed Finder Tool

164

Tortoise Potential Path Tool

Lost Tortoise Tool

	Dynamic Visualizations for the Analysis of Desert Tortoise Telemetry and Habitat in Joshua Tree National Park
	Recommended Citation

	Chapter 1 – Introduction
	1.1 Client
	1.2 Problem Statement
	1.3 Proposed Solution
	1.3.1 Goals and Objectives
	1.3.2 Scope
	1.3.3 Methods

	1.4 Audience
	1.5 Overview of the Rest of this Report

	Chapter 2 – Background and Literature Review
	2.1 Physical Environment and Survivability
	2.2 Movement Tracking
	2.3 Summary

	Chapter 3 – Systems Analysis and Design
	3.1 Problem Statement
	3.2 Requirements Analysis
	3.2.1 Non-Functional Requirements
	3.2.2 Functional Requirements

	3.3 System Design
	3.4 Project Plan
	3.4.1 Initial Project Plan
	3.4.2 Changes to the Initial Project Plan

	3.5 Summary

	Chapter 4 – Database Design
	4.1 Conceptual Data Model
	4.2 Logical Data Model
	4.2.1 Tortoise Geodatabase
	4.2.1.1 Tortoise Locations Feature Dataset
	4.2.1.2 Minimum_Convex_Polygons Feature Dataset
	4.2.1.3 Percent_Volume_Contours Feature Dataset
	4.2.1.4 Kernel_by_Year Feature Dataset

	4.2.2 Joshua Tree Features Geodatabase
	4.2.2.1 Foundation Feature Dataset
	4.2.2.2 Roads Feature Dataset

	4.2.3 Weather Geodatabase
	4.2.3.1 Daily Cumulative Precipitation Feature Class
	4.2.3.2 Average Daily Temperature Feature Class
	4.2.3.3 Daily High and Daily Low Temperature Feature Classes

	4.2.4 Summary of Data Sources

	4.3 Data Collection Methods
	4.4 Data Scrubbing and Loading
	4.5 Summary

	Chapter 5 – Implementation
	5.1 TimeStamp and EndTime Field Creator
	5.1.1 Formatting Time
	5.1.2 Populating TimeStamp (Start Time)
	5.1.3 Populating EndTime

	5.2 Road and Trot Buffer Tool
	5.3 Stationary Event from Table Tool
	5.3.1 Event Table
	5.3.2 Geometry for the Stationary Event
	5.3.3 Options for Creating Event Tables
	5.3.4 Metric/English Units

	5.4 Tortoise Import Tool
	5.4.1 Options for Importing Data
	5.4.2 Naming Feature Classes

	5.5 Tortoise Maximum Speed Finder
	5.5.1 Methods to Calculate the Maximum Speed
	5.5.2 Finding Maximum Tortoise Speed with Python

	5.6 Tortoise Potential Path Tool
	5.6.1 Building the Ellipse
	5.6.2 Tool Options
	5.6.2.1 Tortoise Speed Options
	5.6.2.2 Limiting Potential Distance Options

	5.7 Lost Tortoise Tool
	5.8 Priority Trot Needs Tool
	5.9 Export to KML
	5.10 Summary

	Chapter 6 – Results and Analysis
	6.1 Installation of Components
	6.1.1 Custom-Built Tools
	6.1.2 Military Analyst Extension
	6.1.3 Export to KML 2.5.5
	6.1.4 Google Earth
	6.1.5 ArcGIS Explorer

	6.2 Use-Cases and Results
	6.2.1 What are the danger zones near roads?
	6.2.1.1 Process
	6.2.1.2 Results

	6.2.2 Where have the tortoises been?
	6.2.2.1 Process
	6.2.2.2 Results

	6.2.3 How fast are the tortoises?
	6.2.3.1 Process
	6.2.3.2 Results

	6.2.4 What area could a tortoise cover between positions?
	6.2.4.1 Process
	6.2.4.2 Results

	6.2.5 How to prioritize where new curbing should be implemented
	6.2.5.1 Results

	6.2.6 How to locate a lost tortoise
	6.2.6.1 Process
	6.2.6.2 Results

	6.2.7 Does a changing weather condition affect tortoise movement
	6.2.7.1 Process
	6.2.7.2 Results

	6.2.8 Animation of Hawth’s Tools results
	6.2.8.1 Process
	6.2.8.2 Analysis

	6.3 Issues
	6.4 Process Times
	6.5 Summary

	Chapter 7 – Conclusions and Future Work
	Works Cited

