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A New World Map on an Irregular Heptahedron 

 

 

By 

Nathan Dennis McCall 

 

Using polyhedral approximations of the globe for the purpose of creating map projections 

is not a new concept.  The implementation of regular and semi-regular polyhedra has 

been a popular method for reducing distortion.  However, regular and semi-regular 

polyhedra provide limited control over the placement of the projective centers.  This 

paper presents a method for using irregular polyhedra to gain more control over the 

placement of the projective centers while maintaining the reduced distortion quality 

found in polyhedral projections.  The method presented here uses irregular polyhedra 

based on gnomonically projected Voronoi partitions of the sphere.   
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1. Introduction 

Displaying a portion of the Earth’s curved surface on a flat surface such as a piece of 

paper or a computer screen requires the use of a mathematical transformation known as a 

map projection.  It is impossible to create an exact planar representation of a spherical 

surface such as the Earth (American Cartographic Association [ACA], 1986; Fisher & 

Miller, 1944).  J. Benítez (2005) recently presented a simple mathematical proof that “a 

length preserving projection of the Earth is impossible” (p. 944).  No map projection can 

preserve angles, areas, and distances.  Some projections preserve one of these properties; 

others preserve two, but not throughout the entire map.  Today, there are many map 

projections available to depict part of the Earth’s surface on a flat medium.  Many of 

these projections are meant to represent a single, specific portion of the Earth, and are not 

appropriate representations of the Earth as a whole.  Many projections designed to map 

the Earth as a whole are plagued by excessive distortion in parts of the map.   

This paper proposes a new method for creating polyhedral projections, using irregular 

polyhedra.  Irregular polyhedra can provide more options for the placement of the 

interruptions within a polyhedron map.  This can enhance readability while minimizing 

distortion.  This method also reduces distortion by allowing the projective centers to be 

specified explicitly rather than depending on the predetermined arrangement provided by 

the geometry of a regular or semi-regular polyhedron.  The method presented here uses 

irregular polyhedra based on gnomonically projected Voronoi partitions of the sphere. 

1.1. A perspective projection of the globe onto a plane 

One simple method of projecting the globe onto a plane is by the gnomonic projection 

(also called the central or radial projection).  The gnomonic projection can be envisioned 

as the result of a point light source at the center of the Earth that projects the Earth’s 

surface features onto a tangent plane (Figure 1). 

 

 
Figure 1.  Conceptual representation of the gnomonic projection. 
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On the gnomonic projection, the point of tangency is the only point without distortion, 

and distortion increases quickly away from this point (Snyder, 1987).  Figure 2 shows 

different aspects of the gnomonic projection.   

 Visual representation Resultant map 

Polar 

 

 

Equatorial 

 
 

Oblique 

  
Figure 2.  Aspects of the gnomonic projection. 

The software used in creating Figure 2 has a display range of 75º of spherical arc from 

the center of the projection.  This means the resultant circular map has a field of view of 

150º.  The gnomonic projection is capable of showing just short of a hemisphere (180º) 

but the distortion on such a map would make it unintelligible.   

A single gnomonic projection cannot be used for a world map, but it does have a unique 

property that allows multiple gnomonic projections to be joined together to form a world 
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map.  The gnomonic projection has the unique property of depicting all great circle paths, 

the shortest distance between two points on a sphere, as straight lines (Snyder, 1987).  

This makes the gnomonic projection particularly well-suited for creating polyhedron 

maps because the face edges of the polyhedron are straight lines.   

Theoretically, the gnomonic projection can be used to map the surface of a sphere to any 

convex polyhedron that surrounds the sphere.  Many polyhedra have faces that are not all 

tangent to the same sphere.  In these cases, a scale adjustment on the non-tangent faces is 

necessary to ensure the adjacent faces match along the edges. 

1.2. Uninterrupted projections used for world maps 

In addition to the plane, other developable surfaces include the cone and the cylinder.  

Many world maps use cylindrical projections.  The cylindrical equivalent of the simple 

central projection onto the plane is the central cylindrical.  Figure 3 shows the central 

cylindrical projection. 

 
Figure 3.  The central cylindrical projection (from 

http://www.mathworks.com/access/helpdesk_r13/help/toolbox/map/central.gif). 

The central cylindrical can be envisioned as the result of a point light source at the center 

of the Earth that projects the Earth’s surface features onto a tangent cylinder.  In Figure 3, 

the cylinder is tangent at the equator.  The poles cannot be shown (Snyder, 1993).    

Figure 4 shows the Mercator projection, which also cannot show the Earth’s poles. 
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Figure 4.  The Mercator projection. 

In 1569, Gerardus Mercator presented this projection for use in navigation (Snyder, 

1987).  It is useful to navigators because lines of constant bearing (loxodromes or rhumb 

lines) appear as straight lines, making it easier to chart courses for ships.  However, never 

intended for any use other than for navigation, it greatly distorts the land areas.  Its 

misuse as a general world map in the first half of the 1900s sparked an interest in creating 

new world maps (Cahill, 1909). 

Figure 5 shows the plate carrée projection, which is an equidistant cylindrical projection 

with the standard parallel at the equator. 

 

Figure 5.  The plate carrée projection. 



5 

The plate carrée projection is useful for showing latitudes near the equator and for correct 

scale along the meridians and the equator (Snyder, 1987), but has severe area and shape 

distortion elsewhere.   

Figure 6 shows the cylindrical equal area projection.   

 

Figure 6.  The cylindrical equal-area projection. 

Presented by Johann Heinrich Lambert in 1772, this projection is an equal-area 

(equivalent) projection, meaning that all areas are equivalent to the areas on a globe of 

the same scale.  However, there is severe shape distortion away from the equatorial 

latitudes, making its use as a world map difficult to justify.   

Figure 7 shows the Gall orthographic (sometimes called Gall-Peters) projection. 

 

Figure 7.  The Gall orthographic projection. 

Presented by James Gall in 1855, the Gall orthographic projection is similar to the 

cylindrical equal-area projection but with standard parallels set to 45º N and 45º S 
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(Snyder, 1987).  This helps reduce some of the shape distortion found on the cylindrical 

equal-area projection, but it increases the shape distortion in the equatorial latitudes.   

Figure 8 shows the uninterrupted sinusoidal projection. 

 

Figure 8.  The uninterrupted sinusoidal projection. 

In use since the mid-16
th
 Century, the sinusoidal projection is the oldest extant 

pseudocylindrical (parallels and central meridian are straight lines, all other meridians are 

curves) projection (Snyder, 1987).  The sinusoidal preserves area, but severely distorts 

shape.  Its central meridian is shown as a straight line of true scale while all other 

meridians are shown as sinusoidal curves.  The parallels are shown as parallel, equally 

spaced straight lines of true scale.  Its primary uses are for world maps and for maps of 

South America and Africa (Snyder, 1987).   

Figure 9 shows the uninterrupted Mollweide projection. 
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Figure 9.  The uninterrupted Mollweide (homolographic) projection. 

The Mollweide, created by Carl B. Mollweide in 1805, is considered to be the second 

oldest pseudocylindrical projection.  Also known as the homolographic, the Mollweide is 

an equal-area projection, but severely distorts shape throughout the map.  Its central 

meridian is a straight line and the other meridians are shown as elliptical curves, with the 

90
th
 meridians forming a circle.  Its parallels are parallel, unequally spaced straight lines 

(Snyder, 1987). 

Figure 10 shows the Robinson projection, presented by Arthur H. Robinson in 1913. 

 

Figure 10.  The Robinson projection. 

The Robinson projection is a compromise projection (ACA, 1986).  It does not preserve 

angles, areas, or distances, but attempts to lessen the distortion of all three properties. 
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1.3. Interrupted projections used for world maps 

Interrupting a map can reduce distortion (ACA, 1988).  An interrupted map is achieved 

by joining multiple projections of the same or different types with different central 

meridians or projective centers.  The purpose is to reduce distortion that is typically more 

pronounced toward the edges of the uninterrupted map. 

1.3.1. Goode’s interrupted homolosine 

In 1916, pleased with the appearance of Africa on the uninterrupted sinusoidal, John Paul 

Goode developed an interrupted form of the sinusoidal with three central meridians, 

improving the appearance of South America, Southeast Asia, and Australia (Goode, 

1925).  This minimized the distortion effect created by the sinusoidal meridians as the 

distance increased from the central meridian (Snyder, 1987).  More pleased with the way 

the uninterrupted Mollweide appeared toward the poles, he did the same with the 

Mollweide and then combined the best parts of both projections to create his interrupted 

homolosine (Figure 11), (Goode, 1925). 

 

Figure 11.  Goode's interrupted homolosine. 

Lethcoe & Klaver (1998) describe Goode’s interrupted Homolosine as an “interrupted, 

pseudocylindrical, equal-area, composite map projection” (p. 1).  Effectively, there are 12 

projections that make up the homolosine: six Mollweide projections (two in the Northern 

hemisphere and four in the Southern hemisphere) with different central meridians, and 

six Sinusoidal projections (two in the Northern hemisphere and four in the Southern 

hemisphere) with different central meridians.  When plotted at the same equatorial scale, 

the Mollweide and Sinusoidal projections match at one pair of latitudes:  approximately 

40°44’11.98”N and 40°44’11.98”S
1
 (Snyder, 1993).  Hence, Goode joined the 

projections at these latitudes.  This in turn created a visually detectable bend in the 

meridians, but still preserved the equal-area property. 

                                                 
1
 The actual value is 40°44’11.983883105076” when calculated on a sphere. 
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1.3.2. Polyhedral projections 

Another type of interrupted projection for world maps is a polyhedral projection.  

Polyhedral projections use polyhedra as the developable surfaces.  Using polyhedra 

provides a means of joining multiple projections for controlling distortion.  

A polyhedron is a closed surface or three-dimensional solid created from polygons joined 

along their edges.  They can be convex or concave, but only convex polyhedra are 

explored in this paper.  According to Eric Weisstein (2002), “a convex polyhedron can be 

defined as a polyhedron for which a line connecting any two (noncoplanar) points on the 

surface always lies in the interior of the polygon.”  Another way to describe a convex 

polyhedron is to say that it is bounded by convex polygons.  Within the GIS discipline, 

this is similar to the idea of a convex hull. 

In his article, “An equal-area map projection for polyhedral globes,” (1992), Snyder 

describes the use of polyhedra for map projections: 

Polyhedral globes have been used as approximations for spherical globes for 

centuries.  The artist Albrecht Dürer (1538) first called attention to them, although 

he did not discuss map projections.  Many innovators of the 19
th
 and 20

th
 

centuries applied the Gnomonic projection to most of the common polyhedra at 

one time or another (Snyder & Steward 1988).  Folded polyhedral globes are 

easier to assemble without special techniques than spherical globes and serve as 

instructional tools, but they are bulky and small-scale, like globes.  Unfolded and 

flattened polyhedral globes form world maps on projections which can have less 

distortion than other interrupted projections, but there are generally an increased 

number of interruptions and greater complications in plotting (p.10). 

The types of polyhedra that have been commonly used for map projections are regular 

and semiregular polyhedra and, to a lesser extent, prisms and antiprisms.  The five 

regular polyhedra, known as the Platonic solids, are the tetrahedron, hexahedron (cube), 

octahedron, dodecahedron, and icosahedron (Figure 12).   

 

Figure 12.  The platonic solids. 

The Platonic solids have regular faces of the same type with the same number of faces 

sharing each vertex (Cromwell, 1997).  Each Platonic solid also has a circumsphere, a 

sphere on which its vertices lie, and an insphere, an interior sphere which touches each 

face. 

The semiregular polyhedra are also known as the Archimedean solids.  The polyhedra in 

this group are highly symmetric arrangements of regular polygons of two or more 

different types.  The edges of the polygons are all of the same length.  The Archimedean 

solids have circumspheres but do not have inspheres (Weisstein, 2004, Insphere).  There 

are 13 Archimedean solids with number of faces ranging from 8 to 92 (Weisstein, 2004, 

Archimedean Solid).  Figure 13 shows the thirty-two faced icosidodecahedron. 
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Figure 13.  An icosidodecahedron, one of the 13 Archimedean solids. 

Another family of regular-faced polyhedra is the Johnson solids.  They are also 

arrangements of regular polygons of two or more different types but do not adhere to the 

strict symmetrical properties of the Archimedean solids.  There are 92 Johnson solids 

with the number of faces ranging from 5 to 62.  Figure 14 shows an elongated triangular 

pyramid that uses three squares and four equilateral triangles.  Different arrangements of 

the net, or unfolded polyhedron, are also shown. 

 

Figure 14.  Elongated triangular pyramid, a regular heptahedron. 

The Johnson solids can have many faces.  Figure 15 shows the sixty-two faced 

parabigyrate rhombicosidodecahedron (Weisstein, 2006).   

 

Figure 15.  The parabigyrate rhombicosidodecahedron, one of the 92 Johnson solids. 

Other types of polyhedra include the rhombic solids, which have rhomboids for faces, 

and the Catalan solids, which are the duals
2
 of the Archimedean solids.  The Catalan 

                                                 
2
 A dual of a polyhedron takes its vertices to be at the face centers of the polyhedron. 
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solids are constructed from polygons that can have different edge lengths but the faces 

are all similar polygons. 

1.3.2.1. Cahill’s map on an octahedron 

In 1909, frustrated by the misuse of Mercator’s map as a general world map, Cahill 

presented a world map on an octahedron.  Figure 16 shows the gnomonic version of 

Cahill’s map using the coordinates for the vertices as specified in his U.S. patent of 1913 

(Cahill, 1913).  

 
Figure 16.  The gnomonic version of Cahill's map. 

1.3.2.2. Snyder’s maps on polyhedra 

In 1992, Snyder presented equal-area maps on regular polyhedra.  Figures 17-21 show his 

maps. 

 
Figure 17.  Snyder's equal-area tetrahedron (Snyder, 1992). 
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Figure 18.  Snyder's equal-area hexagon (cube) (Snyder, 1992). 

 

 
Figure 19.  Snyder's equal-area octahedron (Snyder, 1992). 
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Figure 20.  Snyder's equal-area dodecahedron (Snyder, 1992). 

 

Figure 21.  Snyder's equal-area icosahedron (Snyder, 1992). 

1.3.2.3. Hafner and Zitko’s projections 

Izidor Hafner and Tomislav Zitko have produced many polyhedral world maps using the 

gnomonic projection.  Figure 22 shows the world map on a thirty-two faced 

icosidodecahedron. 
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Figure 22.  World map on a thirty-two faced icosidodecahedron (Hafner & Zitko, n.d.). 

Figure 23 shows a world map on a regular heptahedron. 

 

Figure 23.  World map on a  regular heptahedron (Hafner & Zitko, n.d.). 



15 

Figure 24 shows a world map on a parabigyrate rhombicosidodecahedron. 

 

Figure 24.  World map on a parabigyrate rhombicosidodecahedron (Hafner & Zitko, n.d.). 
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1.3.2.4. Fuller’s Dymaxion
™
 projection 

In 1954, Buckminster Fuller created the Dymaxion
™
 projection (Figure 25), using a 

regular icosahedron as its developable surface (Buckminster Fuller Institute, 2002). 

 

Figure 25.  Fuller's Dymaxion
™
 map on an icosahedron. 

A regular icosahedron approximates a sphere with 20 equilateral triangles.  Fuller 

carefully positioned the icosahedron so that all of its vertices are in water areas.  This 

allowed him to place the interruptions so that there are no breaks in the land masses when 

the 20 triangles are unfolded.  Most of the triangles remain intact, but two had to be 

interrupted to preserve the continuity of the continents.  

The transformation equations Fuller used were not published until 1995 by Robert Gray.  

Fuller had devised a new transformation that preserved length (scale) along the edges of 

each triangular face of the icosahedron.  This allowed adjacent triangles to match along a 

shared edge.  Since the surface area of a spherical triangle is greater than the area of a 

planar triangle with the same edge lengths, Fuller’s transformation averaged out this extra 

area within the planar triangle.  In the patent of an earlier, cuboctahedron version of his 

Dymaxion
™
 map, Fuller (1946) wrote:  

…it is possible to maintain uniform scale peripheral cartographic delineations and 

to distribute all subsidence distortion from the periphery toward the center.  I have 

discovered further that this system brings the subsidence distortion to an 

irreducible minimum which, without correction of any kind, is very considerably 

less than with any system of projection heretofore devised (p. 1).  

The greatest area distortion occurs towards the center of the triangle and the least amount 

of area distortion occurs towards the vertices (Gray, 1995).   Visually, however, most of 

the shape distortion occurs at the vertices of the triangles.  This result is similar to the 

gnomonic projection, in which distortion increases away from the projective center.   

Tissot’s indicatrix is a mechanism for illustrating area and angular distortion (Tissot, 

1881, as cited in Snyder, 1987).  On a perfect map, Tissot’s indicatrix would consist of 

circles of the same size throughout the map, indicating no distortion of area or angle.  
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Area distortion is illustrated by a change in circle size.  Angular distortion is illustrated 

by an elongation of the semimajor axis (Figure 26).   

   
Figure 26.  Tissot's indicatrix applied to one face using Fuller's projection (left) and the gnomonic 

projection (right). 

The triangles in Figure 26 are not of the same nominal scale.  The nominal scale for 

Fuller’s transformation describes the scale at which the edges of the spherical triangles 

are the same length as the edges of the planar triangles.  The nominal scale of the 

gnomonic projection describes the scale at the point of tangency, or the center of the 

triangle.  At the same nominal scale, the gnomonic triangle would appear larger, due to 

the distortion at the vertices.  Figure 26 shows the gnomonic triangle rescaled to the same 

size as Fuller’s for ease of visual comparison. 

Figure 27 shows the superimposed triangles to more easily detect the difference in shape 

distortion.   

 
Figure 27.  Fuller (shown in gray) and gnomonic (shown in orange). 
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Fuller’s transformation is different than a gnomonic projection onto an icosahedron, and 

shows only a slight difference in shape distortion. 

1.4. Irregular polyhedral projections 

Irregular polyhedral projections, an area left largely unexplored until now, may provide 

another means of creating low distortion world maps.  A problem with regular and semi-

regular polyhedral maps is that they allow little control over the placement of the 

projective centers for each face.  For a given polyhedron, the mapmaker is limited by its 

geometry for the placement of the projective centers.  The method presented here creates 

a polyhedron tailored to specified areas of interest. 

Irregular polyhedra are made of polygons that have different edge lengths (Figure 28). 

 

Figure 28.  Irregular heptahedron, an irregular seven-faced polyhedron. 

For the purpose of creating map projections, irregular polyhedra can provide a better fit 

to the land masses than the prearranged regular and semiregular polyhedra.  In the regular 

and semiregular cases, the projective centers are determined by the polyhedra.  This 

makes it difficult to control the distortion on the areas of interest within the map.  In the 

method presented in this paper, the polyhedra and the projected centers are determined by 

the areas of interest.  This is a better method for mapmaking since the Earth’s land 

masses are not evenly distributed at regular intervals around a sphere.  Also, a polyhedron 

map projection must be interrupted.  Again, using regular and semiregular polyhedra 

limits the control of the placement of these interruptions as they are largely determined 

by the particular polyhedron chosen for the map.  Another benefit of using an irregular 

polyhedron is that it provides more control when determining where a map will be 

interrupted. 
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2. Methodology 

The process presented here for creating an irregular polyhedron map projection involves 

creating a spherical Voronoi diagram and gnomonically projecting each spherical 

Voronoi polygon to a plane.  The planes are tangent to the sphere at the generating points 

of the spherical Voronoi diagram.  The generating points become the projective centers of 

the gnomonic projections. 

2.1. The generating points (projective centers) 

The generating points are chosen by the cartographer based on the areas of interest and 

number of faces desired in the final product.  The projection presented here uses seven 

generating points, one for each continent.  A logical choice for the generating points 

would be the continental centroids.  However, there is much debate over the locations of 

the continental centroids and no reliable published values were found.  According to 

Mitchell B. Adelson of the U.S. Geological Survey, “The concept of where a geographic 

center is located is rather a simple concept, but it’s not that easy to calculate where that 

centroid is located” (M. B. Adelson, personal communication, November 1, 2006).  For 

now, the generating points have been chosen to be central to each continent, such that the 

process works within the parameters of the software’s gnomonic projection, and with no 

claim that they are actual continental centroids (Table 1). 
 

Table 1:  The generating points (projective centers) 

Continent Longitude Latitude 

Africa 17.91º 7.46º 

Antarctica 0º -90º 

Asia 94.89º 48.61º 

Australia 133.61º -24.49º 

Europe 23.24º 56.36º 

N. America -101.66º 46.19º 

S. America -60.51º -12.39º 

2.2. The polyhedron edges 

For two gnomonic projections to match along a shared edge, the shared edge must be the 

perpendicular bisector of the line between their projective centers.  On the sphere, this 

edge is a great circle arc.  On the plane, this edge is a straight line.  The process of 

determining the locations of these edges for joining multiple gnomonic projections is the 

equivalent of creating a spherical Voronoi diagram (Voronoi, 1908, as cited in 

Augenbaum & Peskin, 1985).  The great circle arcs of the spherical Voronoi polygons 

become the edges of the gnomonically projected polyhedron.  Figure 29 shows a set of 

points and the planar Voronoi diagram they generate. 
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Figure 29.  Set of generating points in a plane (left) and the planar Voronoi diagram (right). 

Figure 30 shows a set of points on a sphere and the spherical Voronoi diagram they 

generate. 

 

Figure 30.  Set of generating points on a sphere (left) and the spherical Voronoi diagram (right). 

To define these edges we calculate the vertices, or corner points, that form the spherical 

Voronoi diagram.  

Once all the generating points are chosen, the corner points of the spherical Voronoi 

polygons can be calculated.  A corner point is equidistant from three generating points 

(Augenbaum & Peskin, 1985).  The generating points need to be expressed in terms of 

Cartesian coordinates (x, y, z).  We convert from geographic coordinates, longitude (λ) 
and latitude (φ), to Cartesian coordinates on a unit sphere by 
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(1) 

(Neutsch, 1996)
 3
.  If we let t, u, and v be the vectors of the three generating points, then 

the corner point, c, between them is calculated by 

( ) ( )
( ) ( )

tvvuut

tvvuut

tvtu

tvtu
c

×+×+×
×+×+×

=

−×−
−×−

=

 (2) 

(Augenbaum & Peskin, 1985).  This is the sum of the cross products divided by its norm, 

which ensures the resulting vector is a unit vector and, hence, describes a point on the 

surface of the unit sphere.  Depending on the ordering of t, u, and v in Equations 2 

through 5, this equation results in antipodal vertices.  The ordering we will use is 

counterclockwise when viewed from above.  

Figure 31 illustrates what is known as the “right-hand rule” (McCallum et al., 1994).  If 

we let the curled fingers on a right hand represent the ordering of the points in the above 

equations, then the thumb shows on which side of the sphere the resulting point lies. 

 

Figure 31.  The right-hand rule, showing the effects of order on the vectors. 

Using the vector components, Equation 2 becomes 

                                                 
3
 Careful attention to the angular units must be paid throughout this process.  Trigonometric functions in 

many software packages expect angles to be expressed in radians, whereas mapping software may expect 

decimal degrees. 
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Rearranging the elements we have,  
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Evaluating the norm (see Appendix A) we have, 
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Once the corner point is calculated, it can be converted back to geographic coordinates.  

To convert from Cartesian coordinates to geographic coordinates we use, 
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and then convert from radians to decimal degrees.  This process gives a shared vertex of 

three adjacent Voronoi polygons and must be repeated for all adjacent polygons.   

Once all the vertices have been calculated, creating the final projection is a matter of 

projecting each face using the generating points as the projective centers of a gnomonic 

projection and clipping along the Voronoi polygon boundaries.  The polygon boundaries 

are great circle arcs on the spherical Voronoi diagram and appear as straight lines 

between the vertices on a gnomonic projection (Figure 32).   

         

Figure 32.  Spherical Voronoi diagram and one of its "flattened" polygons. 

Figure 33 shows the assembled irregular heptahedron projection with Voronoi polygon 

boundaries and the generating points (projective centers). 

                                                 
4
 Many programming languages include the function ATAN2 which incorporates the cases in Equation 6. 
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Figure 33:  Irregular heptahedron projection with Voronoi polygon boundaries 

Figure 34 shows the assembled irregular heptahedron projection without the Voronoi 

polygon boundaries.  The equator is shown in dark gray. 

 

Figure 34.  Irregular heptahedron projection. 
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3. Discussion 

Compared to a regular heptahedron projection (Figure 23), we see a great improvement 

by using an irregular heptahedron.  Although the heptahedron-based map in Figure 23 

could have been improved by rearranging the net to eliminate some of the breaks in the 

land masses, the shape distortions would still remain excessive on some of the land 

masses.  This excessive shape distortion results from using inappropriate projective 

centers and from having to rescale faces to properly match at the edges of the adjacent 

faces.   

Polyhedra with regular faces can introduce distortion by using projective centers that may 

not be appropriate for the areas of interest being mapped.  Their geometry may not 

provide an appropriate configuration of projective centers to adequately map areas of 

interest.  The method presented here allows the projective centers to be placed anywhere 

and designs a polyhedron based on a specific arrangement of the areas of interest. 

As seen in the example of the regular heptahedron, rescaling faces also introduces 

distortion.  Using a polyhedron that does not have an insphere, meaning its faces are not 

all tangent to the same sphere, introduces distortion by requiring scale adjustments of the 

non-tangent faces.  This requires extra calculations to determine the scale of the non-

tangent faces when using the gnomonic projection.  The method presented here produces 

a polyhedron with an insphere, which we take to represent the Earth.  Since all faces are 

tangent to the same sphere, no rescaling is necessary when each face is projected 

gnomonically. 
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4. Conclusions 

The method presented here for creating a world map projection shows that irregular 

polyhedra can provide more control over distortion than projections using polyhedra with 

regular faces.  For an irregular polyhedral map, the projective centers can be specified 

according to the areas of interest, rather than relying on a prearranged geometry as is the 

case with polyhedra with regular faces.  Irregular polyhedra also allow for more control 

of interruptions within the map, making the map easier to read.  The method of creating a 

Voronoi-partitioned sphere results in a polyhedron with faces that are tangent to a sphere 

of the same size, ensuring that no scale adjustments are necessary for the assembly of 

individual projected faces.  This method of map projection shows significant potential for 

creating low distortion world maps. 
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5. Future directions 

Creating a seven-faced irregular polyhedral projection demonstrated potential for this 

method of creating map projections.  Polyhedra with more faces experience a greater 

reduction in distortion.  For example, more than one generating point could be assigned 

for South America.  How many points could one assign for South America?  Many.  The 

distortion in South America and other continents could be reduced by adding more 

generating points and by finding an optimal arrangement of these points.  Different 

versions could be constructed to minimize area or shape distortion. 
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Appendix A – Vector math 

A vector is essentially a list of numbers (Lay, 1994).  A pair of geographic coordinates 

forms a vector that describes a point on the globe.  In Cartesian coordinates, a list of three 

numbers forms a vector that describes a point on the globe.   

 

 

For vectors ( )
zyx uuu ,,=u  and ( )

zyx vvv ,,=v  that represent points on a unit sphere, the 

cross product is defined as 
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(Weisstein, 2005).  To calculate the cross product we use, 
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(Weisstein, 2005). 

The norm, or length, of a vector is given by 22

2

2

1 nmmm +++= Lm  (Lay, 1994).  In 

our case we have 222

zyx mmm ++=m .   
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Appendix B – The process in ArcGIS
®
 

A personal geodatabase was created.  Then, the continents shapefile and world15 grid 

shapefiles were imported into the newly created personal geodatabase.  In ArcMap, the  

Excel .csv file containing the x, y data for the ten Voronoi vertices was added.  The data 

were added to the map with the “Display XY Events…” command.  The vertices were 

then exported to a featureclass in the personal geodatabase.  The coordinate system for 

the data frame was then set to a polar gnomonic projection, modified to be centered at 

one of the Voronoi generating points.  A polygon feature class was created with the same 

spatial reference as the data frame.  This polygon feature class was created for the 

boundary polygon.  The boundary polygon for this face was digitized by snapping to the 

corresponding points in the Voronoi vertices feature class.  Then both the continents and 

world15 feature classes were clipped using this boundary polygon to new feature classes 

with the same spatial reference as the boundary polygon feature class.  Clipping these 

feature classes to new feature classes with the appropriate spatial reference eliminates 

printing problems, such as some data not printing.  Seven data frames were created using 

this process. 

Once all seven data frames were created, they were arranged in layout mode (Figure 34).        

 

Figure 35.  Layout view of the seven data frames in ArcMap™ 

The “Data Frame Tools” toolbar was necessary to rotate the data frames.  All data frames 

were set to the same scale.  The method presented here eliminates the need for some 
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faces to be rescaled in order to match adjacent faces which can be the case when creating 

a polyhedron map projection.  Each face was rotated and positioned to join its 

neighboring face. 
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