
University of Redlands University of Redlands 

InSPIRe @ Redlands InSPIRe @ Redlands 

MS GIS Program Major Individual Projects Theses, Dissertations, and Honors Projects 

10-2011 

Burgundy Terroir: A Regional GIS Comparison Between the Burgundy Terroir: A Regional GIS Comparison Between the 

Burgundy and the Willamette Valley Wine Regions Burgundy and the Willamette Valley Wine Regions 

Anthony Hewitt 
University of Redlands 

Follow this and additional works at: https://inspire.redlands.edu/gis_gradproj 

 Part of the Agricultural and Resource Economics Commons, and the Geographic Information Sciences 

Commons 

Recommended Citation Recommended Citation 
Hewitt, A. (2011). Burgundy Terroir: A Regional GIS Comparison Between the Burgundy and the Willamette 
Valley Wine Regions (Master's thesis, University of Redlands). Retrieved from 
https://inspire.redlands.edu/gis_gradproj/102 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This material may be protected by copyright law (Title 17 U.S. Code). 
This Thesis is brought to you for free and open access by the Theses, Dissertations, and Honors Projects at 
InSPIRe @ Redlands. It has been accepted for inclusion in MS GIS Program Major Individual Projects by an 
authorized administrator of InSPIRe @ Redlands. For more information, please contact inspire@redlands.edu. 

https://inspire.redlands.edu/
https://inspire.redlands.edu/gis_gradproj
https://inspire.redlands.edu/etd
https://inspire.redlands.edu/gis_gradproj?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/317?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:inspire@redlands.edu


University of Redlands 
 
 
 
 
 
 
 
 
 

Burgundy Terroir: 
A Regional GIS Comparison between the Burgundy and the 

Willamette Valley Wine Regions 
 
 
 
 
 
 
 
 

A Major Individual Project Report submitted in partial satisfaction of the requirements 
for the degree Master of Science in Geographic Information Systems 

 
 

by: 
Anthony Hewitt 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Committee in Charge: 
Mark Kumler, Ph.D., Chair 

Bryan Baker, Ph.D. 
Tim Krantz, Ph.D.



 ii 

Burgundy Terroir: 
A Regional GIS Comparison between the Burgundy and the Willamette Valley Wine 

Regions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © October 2011 
by 

Anthony Hewitt 
 
 
 
 

 
 
 



 iii 

 
 
 
 



 iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v 

Acknowledgements 
 
I would first like to thank my family, especially my wife for her patience and 
encouragement through this whole process.   
 
I would like to thank Professor Kumler for rescuing my project and daring to become 
my third advisor. 
 
I would also like acknowledge Cohort 8 as the best cohort ever! 
 
And most importantly, I would like to thank God, the original Cartographer and creator 
of Geography.  Without whom we would not be able to make sense of this world.  “For 
from him and through him and for him are all things.  To him be the glory forever. 
Amen.” Romans 11:36    
 
 
 
 
 

“I am the vine; you are the branches. If you remain in me and I in you, you will bear 
much fruit; apart from me you can do nothing.” John 15:5 

 
 



 vi 



 vii 

Foreword 
 
This project was completed in 2006 while Anthony was a student in the University of 
Redlands MS GIS Program.  Completion of this report and the defense of his work 
were delayed while Anthony supported the U.S. Government’s intelligence efforts in 
Iraq and Afghanistan. 
  
Most of the technical work was completed using software that was at the time, state-
of-the-art (ArcGIS 9.1).  Although there are some technical differences in how this 
work would be completed with the current version, ArcGIS 10, the significance of the 
project and its results are unchanged.  That alone attests to its value.  The advisory 
committee gave him the highest possible grade. 
 
 
 

Mark Kumler, Ph.D. 
Chair of the Advisory Committee 

Professor of Geographic Information Sciences 
October 17, 2011 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 viii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix 

Abstract 
 

 
Burgundy Terroir: 

A Regional GIS Comparison between the Burgundy and the Willamette Valley Wine 
Regions 

 
 

by 
Anthony Hewitt 

 
 
This project examines the concept of Terroir as a wine varietal’s physical habitat.  The 
famous European wine regions were assumed to represent the mother habitat 
characteristics for optimum varietal growth.  This project specifically examined the 
Burgundy region of France in order to determine the physical characteristics required 
to grow the Pinot Noir varietal.  Once these characteristics were determined, they were 
used to rate the suitability of the Willamette Valley, Oregon, to grow similar quality 
Pinot Noir grapes.  The test region was found to be suitable, although did not match 
the source region suitability one hundred percent.  Finally, a logit regression model 
was explored to ascertain the viability of this approach to rate an area as a vineyard or 
non-vineyard, and to further define the influence of individual physical aspects in rating 
a varietal area.  The results indicated the logit regression model as a viable approach 
for varietal rating given higher resolution data. 
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1.0 INTRODUCTION 
No other food or drink has played such a pivotal role in the history of humanity as 
wine.  Wine is a symbol of life in many religions and cultures.  The Romans and 
Greeks had Dionysus and Bacchus, the gods of wine, showing the important role wine 
had in those ancient civilizations.  In the Judeo-Christian belief, wine is very symbolic 
and plays an important role.  Jesus’ first miracle was to turn water into wine, and later 
used wine as a symbol at the Last Supper, as an example.  Human cultures also saw 
wine as an important dietary and medicinal substance.  Romans perfected the mass 
production and trade of wine owing to the massive size of the empire.  As the empire 
spread, so did the need for wine resulting in the diffusion of vineyards throughout 
Europe (see Figure 1).  After the main grape varietals were established in Europe, 
western civilization spread throughout the globe, colonizing wild foreign lands and 
taking their vines with them.  European settlers took vines with them for religious, 
medicinal, and culinary purposes.  In those new locations, some of the cuttings 
succeeded while others failed, and in this way; the settlers incrementally created the 
new world wine regions.  

 
Figure 1 Expansion of Viticulture (de Blij, 1983, p. 115) 

 
1.1. Terroir 
The reason vines succeeded in certain areas is because those areas possessed the 
right terroir.  No discussion of vineyards can be complete without addressing the 
concept of Terroir.  Jacques Fanet defines terroir as the “Subtle interaction of natural 
factors and human skills that define the characteristics of each wine growing 
area”(Fanet, 2004).  Put another way, it is the geographic thumbprint left on a wine 
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from a particular region which influences taste and quality.  This study will define 
terroir as the physical or natural growing conditions of the wine region such as climate, 
soils, elevation, and latitude.  This kind of definition more readily lends itself to GIS 
analysis, whereas the human factor is much more difficult to define and analyze.  This 
project will look at Terroir in terms of natural habitat - where a particular varietal will 
thrive given the right natural conditions.   
 
1.2. Client and Problem Statement 
The classic wine regions of Europe are often seen as the ideal natural habitat for 
particular grape varietals:  Burgundy, France for Pinot Noir, La Rioja, Spain for 
Tempranillo, and Rheingau, Germany for Riesling, are just three examples.  As the 
Europeans spread and colonized the new world, they took their vines with them.  The 
new world regions in which the varietals produced excellent wines closely match the 
terroir, or habitat, of the source varietals in mother Europe.  This is the theory of the 
project client, Dr. Tim Krantz, an environmental sciences professor at the University of 
Redlands and a wine enthusiast.  Dr. Krantz would like to explore his theory using 
Geographic Information Systems (GIS) analysis.  The project’s charge is to use GIS to 
analyze source varietals’ terroir to model the critical geographic elements necessary to 
produce excellent wines, and to rate the suitability of new areas to grow similar quality 
wines.  This study will analyze the pinot noir region of Burgundy, France, and apply it 
to the Willamette Valley of Oregon.  To accomplish this, the project will produce a 
database to support analysis and cartography for the client’s book. 
 
1.3. Literature Review 
Modern geographical studies of Terroir started in the 1930’s, when Amerine and 
Winkler used degree days to distinguish ripening capacity areas in California (Amerine 
& Winkler, 1944).  Their study initiated the modern era of varietal selection and 
growing based upon climate and geographic location ("Viticulture & Enology", 2007).  
In the 1950’s, Olmstead created a U.S. scale inventory map of Orchards and 
Vineyards, using agricultural census data.  He used the maps to explain current trends 
and factors influencing agricultural distribution (Olmstead, 1956).  Tukey and Clove 
evolved grape suitability study farther with an early GIS-like analysis, using tables of 
attributes to determine grape suitability in Washington State.  They used factors such 
as frost-free days, heat units, soil attributes, and precipitation in their study (Tukey & 
Clove, 1973).  The published studies of the 1980’s laid the groundwork for the 
application of GIS to viticulture.  Geographic works, like de Blij’s, summarized key 
viticultural geographic features, thereby inadvertently forecasting data needs for GIS 
analysis (de Blij, 1983).  This time period also saw geographic factor refinement.  
Researchers determined latitude related variables as useful in regional separation of 
cultivars (Jackson & Cherry, 1988, p. 22).  The use of GIS in the 1990’s took viticulture 
studies to the next level.   Practitioners started to use GIS in all aspects of oenology 
study: from site suitability analysis to micro vineyard disease and maintenance 
analysis.  A pertinent example includes Watkins’s work on ‘Vineyard Site Suitability in 
Eastern California’.  This study looked at the potential for GIS use in viticultural land 
suitability analysis for a Zinfandel growing area of California, by examining the 
significance of several vineyard and non-vineyard site variables (Watkins, 1997, p. 
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230).  Watkins uses topographic, soil, and geology variables in his study, but did not 
include climate factors (Watkins, 1997, p. 234).  Vineyard site suitability analysis 
continued to evolve into the present decade with Jones, Snead, and Nelson’s GIS 
study of the Terroir Potential of the Umpqua Valley, Oregon, being a prime example 
(Jones, Snead, & Nelson, 2004, p. 170).  This analysis incorporated factors from three 
important elements: topography, soil/geology, and climate.  The authors filtered the 
data with accepted academic and local vintner expertise in determining potential 
vineyard sites in the Umpqua valley. 
 
This study will draw on previous literature, but will differ in three significant ways.  The 
study will use sample data from the ‘mother’ Pinot Noir terroir region, Burgundy 
France, to determine suitable characteristics for measuring against a test area, instead 
of expert opinion and accepted values.  At the client’s request, this study will examine 
soil-water balance as a suitability factor, an element which has been absent in 
previous research, except in irrigation calculation studies.  Finally, this study will 
explore using logit regression in separating vineyard regions from non-vineyard 
regions, a somewhat novel approach in vineyard suitability studies. 
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2.0 DATA METHODOLOGY 
 
Three factors influenced the project’s data requirements analysis: literature review, the 
client’s direction, and freely available data.  The client specifically wanted to use the 
soil water balance as an important wine growing factor.  The client believes that the 
vines must suffer during the latter part of the growing season to produce quality 
grapes.  The soil water balance will show if and when the soil contains a surplus or 
deficit of water available for plant use.  The client had no data for the execution of the 
project.  Because of this, much of the time spent early on in the project focused on 
finding free data, and determining what analysis could be done with it.  Finding free 
GIS data in Europe is a challenge, because most European national level mapping 
agencies charge for data access and licensing.   Data discovery becomes even more 
of challenge with the language barrier.  A few national level agencies may have limited 
English translations for a few of the basic introductory web pages, but the pages 
containing the data, deep within the websites, are usually in the native language.  A 
very useful tool in the search for data is Google’s Language tools which translate web 
pages and words to and from a number of languages.  Free data covering the Oregon 
Willamette Valley area was much easier to find and access.  The data discovered 
determined this study would be a regional analysis using the following  important 
physical geographical terroir elements of climate, soil, soil water balance, and 
topography.      
  
2.1 Climate Data 
Climate plays an extremely important role in growing wine grapes, especially in France 
where irrigation is prohibited by the Institut National des Appellations d’Origine (INAO) 
(Gade, 2004, p. 852).  The Bordeaux area, being on the coast, enjoys a temperate 
maritime influenced climate.  Burgundy, however, experiences a slightly more extreme 
climate as it lies in a transition area between the continental and maritime climate 
zones.  “Climatic factors are essential for the growth of the vine and the final ripening 
of the grapes, irrespective of other environmental factors” (Pomerol, 1986, p. 73).  The 
sun (temperature and latitude) is vital to grape vine health and fruit maturation 
(Bohmrich, 1996).  Precipitation provides the necessary water to sustain the vine (Van 
Leeuwen & Seguin, 2006, p. 7).  Climate is an important factor of Terroir and should 
be incorporated into any regional wine study.          
  
Raw climate data used in this study consisted of temperature and precipitation data 
collected at multiple weather stations and averaged over a period of 20 years.  The 
intended use for the climate point data was to interpolate temperature and precipitation 
surfaces over the areas of study. 
 
French climate data came from Meteo France, www.meteo.fr; France’s national Weather 
and Climate service.  The standard French climate product used for the project is 
entitled “Fiche Climatologique, Statistiques 1971 – 2000 et records”.  See Appendix D 
for an example fiche.  The project digital data files will include all fiches acquired and 
used in the study.  The French data came in either a PDF or text fiche style format and 
included the following common attributes:  weather station name and coordinates; 

http://www.meteo.fr/
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precipitation in millimeters; maximum, minimum, and mean temperatures in Celsius.  
Other attributes which the fiche may include are:  record temperature and precipitation 
events, degree days, solar radiation, potential evapotranspiration, wind speed and 
direction, and number of days with fog, hail, or snow.  These other attributes were far 
less complete on the fiches, with only a few weather stations actually recording data 
for them.  The temperature and precipitation data was by far the most complete, and 
the only data the study used because of the spatial extent needed to cover the wine 
growing regions.  Normally Meteo France charges for the climatology fiches; however 
data was acquired at no charge for a student’s academic project from Olivier Mestre, 
Olivier.Mestre@meteo.fr.  Normally, Meteo charges €8.20 per station for an academic 
research license; commercial use is even more costly. 
  
Climate data for the American test areas came from the Western Regional Climate 
Center (WRCC), http://www.wrcc.dri.edu/index.html.  NOAA funds and administers these 
regional climate centers.  The WRCC offers a plethora of daily and monthly data 
organized by station discovered through a clickable map interface for free.  Even 
though an overabundance of data attributes exist per weather station, only monthly 
precipitation, and monthly mean, maximum, and minimum temperature data were 
used for the study in order to match the data layers collected and created for France.     
     
2.1.1 Climate Data Preparation  
The French data was copied straight from the electronic fiches and pasted into a 
master Excel document consisting of records of climate stations by rows, monthly 
attributes and coordinate information in columns (Table 2.1).     

 
Table 2.1 Excerpt of Climate Data Spreadsheet  

Station P_Jan P_Feb P_Mar P_Apr P_May P_Jun P_Jul P_Aug P_Sep P_Oct P_Nov P_Dec
BAZAS 79.60 76.80 70.60 76.60 84.00 62.20 54.30 56.80 69.50 75.00 86.60 87.30
LE BARP 99.10 81.30 71.40 84.90 79.10 69.90 53.60 53.20 89.10 104.70 119.80 121.70 

 
Data were organized this way to facilitate the creation of interpolation surfaces for 
each month, using Geostatistical Analysis.  The spreadsheet was saved as a database 
IV file (.dbf) to enable ingest by ArcGIS.  Once the .dbf file was added to an ArcMap 
document, the table was converted to a feature class using the ‘Add XY’ event tool 
and exported to the appropriate feature dataset within the France Geodatabase. 
 
The U.S. climate data was handled in much the same way as the French climate data, 
except that instead of copying the data from a fiche, the data were copied straight from 
the website and pasted into a spreadsheet. 
       
2.1.2 Geostatistical Analysis for Climate Surfaces 
To generate the climate surfaces, the ArcGIS Geostatistical Analysis extension tool 
was used.  This tool was chosen because of its data exploration tools and wizard to 
assist in the process, as well as the tool’s ability to produce error statistics, along with 
the results, to give a measure of confidence.  Steve Lynch of ESRI, a product engineer 
who works with the Geostatistical Analyst extensions, recommended Kriging (Lynch, 
2006)  because of its sophistication and ability to produce smother surfaces than 
Inverse Distance Weighting (IDW).  The study used the following surface fitting 

mailto:Olivier.Mestre@meteo.fr
http://www.wrcc.dri.edu/index.html
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methodology:  Represent Data, Explore Data, Fit a Model, Perform Diagnostics, and 
Compare the Models (ESRI, 2004, p. 18).  The following sections will show examples 
from each step in the surface fitting methodology 
 
2.1.2.1 Represent Data: The data are initially represented as points, given the real-
world phenomena are collected as points at each weather station location. 
  
2.1.2.2 Exploring Data: Data is explored using the Geostatistical Analyst Data 
Exploration tool.  The first step in data exploration is to check to see if the data are 
normally distributed.  The Geostatistical Analysis extension gives two exploration 
techniques to determine the distribution: the Histogram and the QQ plot.  The QQ plot 
(Figure 2.1) is a check to see how close the data are to a normal distribution.  The 
closer the points fit the straight line, the more the data is normally distributed (ESRI, 
2004, p. 20).  As you can see from figure 2.1, the precipitation data example is nearly 
normally distributed.  If the data are not normally distributed, then the analyst may 
perform a transformation on the data before generating the interpolated surface in 
order to get it closer to a normal distribution.  This is accomplished as a step in the 
Geostatistical Analyst wizard. 
 

 
Figure 2.1 Normal QQ plot for Bordeaux Precipitation  

 
Trend Analysis 
Trend analysis is done to look for global trends which may dominate the distribution 
and over-ride or minimize the affect of spatial autocorrelation of local points.  Using the 
Trend Analysis tool, one can look for global trends in two direction planes, North-South 
(Y) and East-West (X).  The tool plots a best fit curve between the points.  If the curve 
is relatively flat, then no trend exists.  If there is a pattern, such as an upward trend, 
downward trend, or a curve, then a global trend may exist across the data set.   
 
In the Burgundy Figure 2.2 below, we see a trend from the outlying data points in the 
four cardinal directions.  This is most likely due to the outlying points being from a 
different data set.  These points were brought in to stretch the interpolation outside the 
study area and should not affect the interpolation around the main data point core.  
This trend exists in all of the precipitation and temperature fields.     
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Figure 2.2 Trend analysis for Burgundy’s precipitation 

 
The Geostatistical Analysis tools provide the Semivariogram to look for outliers and 
anisotropy within the data.  The Semivariogram depicts pairs of points with distance 
between them plotted on the X axis and value difference plotted on the Y.  This pairing 
shows the spatial autocorrelation of the data.  Global outliers would appear as a 
separate cluster strata of data points above the main point cloud.  Local outliers would 
appear as just a couple of dots above the main cloud.  Anisotropy is local directional 
variation in the data which cannot be explained by outside processes.  Anisotropy is 
found by using the search direction function of the Semivariogram tool.  The tool lets 
you look at the data in different directions on the semivariogram surface.  If there is a 
rapid change in the variance (data cloud) in one direction versus another, then you 
have anisotropy.  Figure 2.3 below shows an example of the tool’s semivariogram 
exploration.   
  
 

 
Figure 2.3 Burgundy August precipitation 

 
No outliers were discovered in the data; however, some of the months did show 
anisotropy.  The anisotropy was compensated for by checking the anisotropy box 
during the Geostatistical wizard process.   
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2.1.2.3 Fit a Model 
Two models were fit initially to compare them.  They were Inverse Distance Weighting 
(IDW) and Ordinary Kriging. 
   
2.1.2.4. Perform Diagnostics 
In performing Diagnostics, the goal is to get the most accurate surface.  The 
Geostatistical Wizard’s last page produces a measure of the accuracy of the surface 
and provides statistics and a chart upon which the accuracy is based.  The goal is to 
get the Mean Error as close to 0 as possible and to get the Root Mean Square 
Standardized Error as close to 1 as possible.  To achieve or improve accuracy, a 
number of parameters can be adjusted through-out the Geostatistical Wizard.  One 
parameter is the Transformation parameter (Step 1 of the wizard), which transforms 
the data using a Log or a Box-Cox transformation to make the data more normally 
distributed.  During data exploration, one would determine the need of this parameter.  
Another parameter used to improve accuracy was the Anistropy checkbox in the Semi-
Variogram page of the wizard (Step 2 of the wizard).  Checking this box removes any 
non-attributed directional trending of the data.  Again, the need to do this comes from 
data exploration phase of Geostatistical Analysis.  The last parameter adjusted was 
the size and shape of the searching neighborhood (Step 3 of the wizard) used to 
compare and estimate values.  Dependant upon the data exploration and initial results, 
all, some, or none of these three parameters were adjusted to improve the accuracy of 
each surface generated.   
           
2.1.2.5 Compare the Models 
Both the Inverse Distance Weighting (IDW) and Ordinary Kriging models were 
generated using the Geostatistics wizard.  IDW produced similar prediction results, but 
the surface was not as clean or smooth as the Kriging (Figure 2.4).  Not only did 
Ordinary Kriging yield a more realistic surface, given that the data are continuous, but 
it also produces uncertainty statistics. 
 

    
Figure 2.4 with IDW on the left and Ordinary Kriging on the right 
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2.1.2.6 Results 
The result of the Geostatistical process was monthly surfaces generated for 
precipitation and mean average temperature using Ordinary Kriging.  Separate 
surfaces were created for each area of study from the acquired weather station data.  
The precipitation surfaces were generated for each month of the growing season (April 
through October).  The Potential Evapotranspiration model requires mean average 
temperature; therefore, mean temperature surfaces were generated for every month of 
the year.  All months were required for the Potential Evapotranspiration model to 
generate the heat index used in equations.  The following section explains Potential 
Evapotranspiration in further detail.  The interpolation resulted in surfaces with a cell 
size of 818 meters for the Burgundy region of France and the cell size for the Oregon 
surfaces was approximately 1000 meters.          
 
2.2 Soils 
Soils are an important part of the Terroir concept (Gade, 2004, p. 849) and can 
influence vine health and wine flavor (Van Leeuwen & Seguin, 2006, pp. 5,6).  The 
traditional wine grape growing countries, France, Italy, and Germany, all consider soil 
an “essential factor” in appellation boundary delineation (Berry, 1990).   
 
2.2.1 European Soils Database 
Soils Data for Europe came from the European Union’s Joint Research Center’s 
European Soils Database found at: http://eusoils.jrc.it/Data.html.  The point of contact was 
Marc Van Liedekerke.  The Soils database covers most of Europe (Figure 2.5) at 1km 
resolution.   

http://eusoils.jrc.it/Data.html
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Figure 2.5 European Soils Database Coverage 

 
2.2.1.1 European Soils Database Organization 
The database is in raster format with Soil Mapping Units (SMU) as the raster value.  
Multiple tables are related to the SMUs via Soil Typological Units (STU) (Figure 2.6) 
containing multiple attributes such as soil type, parent material, and obstacle to roots.   
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Figure 2.6 Soil Database Organization (Land Management & Natural Hazards Unit, 2006) 

 
 
2.2.1.2 European Soil Data Extraction Methodology 
The attributes extracted from the European Soils Database included Available Water 
Holding Capacity (AWC) in millimeters, Texture (TEXT1), Depth to Rock (DR) in 
millimeters, and Food and Agriculture Organization 1985 (FAO 85) soil type.  Water 
holding capacity was chosen because of its importance to vine growth and fruit 
production affecting the quality and quantity of wine produced (Berry, 1990).  Rice 
argues that “Texture is soil’s most important physical property for grape growing, since 
it influences water holding capacity, root growth, and overall vine vigor” (Rice, 2002).  
Depth to Rock is a good attribute that captures a number of desirable soil qualities 
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including root depth and drainage (Tukey & Clove, 1973, p. 7).  The study looked at 
soil type to see if it was important in growing similar grapes in other regions or if only 
the soil attributes matter.  These attributes were chosen because of their importance in 
wine growing, as stated by the literature, and because these attributes also exist in the 
State Soil Geographic (STATSGO) database of the United States.  The European Soil 
database raster of the Soil Mapping Units was first clipped to the France feature class 
using the Extract by Mask tool located in the Extraction toolbox of the Spatial Analyst 
Tools resulting in producing only the Soil Mapping Unit raster file of France.  The soil 
attribute tables are linked to the soil raster file through the Soil Mapping Unit value 
given each raster cell.  With vector data, one could easily perform a Join and then 
export the data as a new file.  A relate is possible with raster data, but exporting the 
related table to a new data set is not.  To get around this problem, a reclassification 
was done using the ‘Reclass by Table’ tool located in the ‘Reclass toolbox’ within the 
Spatial Analyst tools.  The result was a separate raster data set for each desired 
attribute over the area of interest with 1000 m cell size.  The Soil-Water balance 
equation used the soil Available Water Holding Capacity raster as an input.  The 
remaining soil attribute raster surfaces were inputs into the Sample tool, the next step 
of the analysis, to determining the dominant terroir values of the Burgundy area.  
            
Soil attributes and definitions followed the convention shown in Tables 2.2 and 2.3. 
 

Table 2.2 Texture Attributes 
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Table 2.3 Depth to Bedrock Attributes 

 
 
The following table lists the possible attribute codes for the soil types found in the 
France subset of the European Soils Database, using the FAO 85 soil type coding and 
the value assigned in the raster (Table 2.4). 
 

Table 2.4 FAO 85 Attribute codes for France 
Value Fao85_full 

1 Re 37 Jd 
2 Dd 38 Poh 
3 Je 39 Wd 
4 Jcg 40 Plh 
5 Lc 41 Gev 
6 Be 42 Zg 
7 Jc 44 444 
8 111 45 Dg 
9 Lo 46 Bv 
10 Bk 47 Bh 
11 Eo 48 De 
12 Oe 49 Bcc 
13 Jeg 50 Rd 
14 Qc 51 Bkh 
16 333 52 Ic 
17 Gh 54 Ich 
18 D 55 555 
19 U 56 Bg 
20 Bd 57 Hc 
21 Po 58 Gd 
22 Lg 59 Qcd 
23 Ql 60 E 
24 Bec 61 Id 
25 Od 62 Th 
26 Ge 63 I 
27 Beg 64 La 
28 Pg 65 To 
29 Lgs 66 Jcf 
30 Bkv 67 Ph 
31 Bvc 68 Ie 
32 Bc 69 Qld 
33 Bev 70 Zo 
34 Bgv 
35 Pl 
36 Vp 



 15 

 
A conversion table exists to convert the FAO soil types into the US STATSGO soil 
types (Deckers, Nachtergaele, & Spaargaren, 2003). 
 
2.2.2. State Soil Geographic (STATSGO) database 
The STATSGO GIS soil database of Oregon came from the United States Department 
of Agriculture’s (USDA) Natural Resources Conservation Service (NRCS) website 
http://www.soils.usda.gov/survey/geography/.  This website is a valuable resource for soil data 
of the continental United States.  This website offers both the STATSGO GIS data and 
the Soil Survey Geographic (SSURGO) GIS data.  The STATSGO GIS dataset was 
used because it is a regional scale (1:250,000 scale) dataset more in line with the 
scale of the European Soils.  The STATSGO database covers the entire US and is 
broken up by state.  All are available at the 1:250,000 scale, except Alaska which is at 
the 1:2,000,000 scale.   
 
2.2.2.1 STATSGO Database Organization 
The STATSGO database comes in ESRI Shapefile vector format from the NRCS 
website with several attribute tables.  The tables are related to the spatial vector 
through the MUID (Map Unit ID) attribute, much like the SMU (Soil Mapping Unit) of 
the European Soils database (Figure 2.7).  Some tables relate directly to the MUID, 
such as the Component table, because they describe the SMU as a whole.   
 

 
Figure 2.7 STATSGO Organization (USDA, 1995, p. 9) 

 
Other attributes must be aggregated and then related to the MUID, such as the 
Component Properties or Layer Property tables, because they represent sub-strata (or 
layer) within the SMU.  The layer tables represent the lowest level in the database 
schema, and must be aggregated in order to relate them to the map unit (MUID). 
           

http://www.soils.usda.gov/survey/geography/
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2.2.2.2 STATSGO Data Extraction Methodology 
The attributes from the STATSGO tables which most closely approximated the 
European Soil Database attributes were the following:  ‘awcl/awch’ (Available Water 
Capacity Low/High) from the Layer table, ‘SURFTEX’ (Surface Texture) from the 
Comp (Component) table, ‘ROCKDEPL/ROCKDEPH’ (Rock Depth Low/High) from the 
Comp (Component) table, and ‘ORDER’ (Soil Order) from the ‘TAXCLASS’ 
(Taxonomy) table. 
 
To get an Available Water Holding Capacity for the whole map unit (muid), the ‘awcl’ 
and ‘awch’ had to be aggregated over the layer and then summed for each sequence 
of layers.  To perform the calculations, the layer table was brought into MS Excel.  
First the weighted average for the soil layer is calculated using the following equation:  
 

2
)()( awchawcllaydepllaydephwtavg +

×−=  
 

Equation 2.1 Weighted Water Holding Capacity for Each Layer (USDA, 1995, p. 11) 
 
Where laydepl and laydeph represent the lower and upper limit of the layer’s depth, 
awcl and awch represent the low and high measure of the water holding capacity, and 
wtavg is the total inches of water available in each soil layer.  Laydepl, laydeph, awcl, 
and awch are fields in the layer table, standard in STATSGO data.  Once the wtavg is 
found, it is summed over each layer sequence to find the available water holding 
capacity for the map unit (muid) (USDA, 1995, p. 11 & 12).  Since over 9000 records 
are involved and the sequence varies, a Visual Basic macro was written within the 
excel framework to calculate the sum (Equation 2.2).        

 

 
Equation 2.2 VB code to sum soil layer sequences 

 
Once the sum was calculated, it was converted to millimeters from inches and then 
brought into the comp table for relation to the MUID.  The available water holding 
capacity was converted to millimeters to match the units of the European Soils data 
base.  To create the available water holding capacity surface, the comp table was 
joined to the STATSGO shape using the ‘MUID’ field and then exported to the 
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geodatabase to retain all of the joined attributes.  The actual water holding capacity 
raster surface was created by using the ‘Feature to Raster’ tool found in the 
‘Conversion’ toolbox, nominating the ‘AWHC_MM’ field in the tool parameters.  The 
soil water balance model required the available water holding capacity surface as an 
input to create surfaces for the suitability and logical regression analysis.  
 
Surface texture represents the texture in the first horizon of the soil; from the surface 
down to the next horizon.  Surface texture (SURFTEX) is an attribute which resides in 
the comp table and is directly related to the ‘MUID’.  However, surface texture in the 
STATSGO table is categorized differently than the surface texture of the European 
Soils database.  Where the European Soils database classifies surface texture from 
‘Very Fine’ to ‘Coarse’, the STATSGO database uses a material description following 
the ‘clay-silt-loam-sand’ texture categorization.  For example, where the European 
database would have ‘Coarse’ as an attribute, STATSGO would have something like 
‘very stony loam’ as a surface texture attribute.   One can use the USDA’s texture 
triangle to equate the STATSGO surface texture to the European soils texture (Figure 
2.8).    

 
Figure 2.8 USDA soil texture triangles (USDA, 1951, p. 18) 

 
In the USDA soil texture triangle, only three texture categories exist and they do not 
match the granularity of the European soil texture categorization of ‘Very Fine’, ‘Fine’, 
‘Medium Fine’, ‘Medium’ ‘Coarse’, and ‘No Texture’.  The STATSGO database 
‘SURFTEX’ attributes do contain descriptive modifier codes in conjunction with the 
texture class codes; Table 2.5 lists all of the possible modifiers and classes used in the 
‘SURFTEX’ attribute field.   

 
 
 
 
 
 

Table 2.5 Texture Modifies (USDA, 2005, pp. Exhibit 618-615) 
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These modifier codes were used in conjunction with the soil triangles to equate and 
convert the STATSGO ‘SURFTEX’ attributes to the same semantic granularity as 
those of the European Soils Database.  This is a potential source of error because the 
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semantic equivalent was based on one particular interpretation of the texture 
modifiers, and whether or not it further defined or changed the texture category.  For 
example, looking at the triangles, a SL (Sandy Loam) falls in the ‘Medium’ texture 
category.  However, if the SL is preceded by an STX (Extremely Stony) modifier, it 
may bump the texture equivalent to a ‘Coarse’ classification.  Once the textures were 
equated, a new texture class field was created in the ‘comp’ table using the same 
classification as the European Soils database, Table 2.2.  The texture surface was 
created by, again, using the ‘Feature to Raster’ tool, with the ‘Text_Clas’ field as the 
parameter from which to create the raster values.  The Suitability Analysis and the 
logistic regression analysis both used the texture surface.    
 
Depth to bedrock is the number of inches from the soil surface to the bedrock below.  
One can find this attribute in the ‘comp’ table of the STATSGO database, labeled as 
‘ROCKDEPL’ and ‘ROCKDEPH’, denoting rock depth low and rock depth high 
respectively.  Rock depth low, or ‘ROCKDEPL’, represents the minimum value for the 
range in depth to bedrock.  Rock depth high, or ‘ROCKDEPH’, represents the 
maximum value for the range in depth to bedrock (USDA, 1995, p. 56).  Using the 
‘ROCKDEPL’ and ROCKDEPH’ attributes, the average was calculated to find the 
depth to bedrock by adding each set of records together and dividing them by two.  
The results were converted to centimeters and then inserted into a new column field 
entitled ‘AVGRCKDPTH’ within the ‘comp’ table.  The results were converted to 
centimeters to match the measurement units of the European Soils Database ‘DR’ 
(Depth to Rock) attribute.  Once in centimeters, the values were classified into the 
same categories as those of the European Soils Database ‘DR’ attribute where each 
class represents a range of depths.  These classes were inserted into a new field 
entitled ‘RCKDPTH_cls’.  The ‘rockdepth’ raster layer was created using the ‘Feature 
to Raster’ tool, and the ‘RCKDPTH_cls’ field as the parameter from which to create the 
raster values.  Again, the suitability and logistic regression analysis used the rock 
depth surface as an input. 
 
Without being a soil expert, Soil Type is hard to equate between FAO soil types and 
USDA soil type.  The most understandable thing to do was to keep the soils at the 
most general soil order level.  In Table 2.6 below, the possible general soil orders are 
listed from the STATSGO database.  
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Table 2.6 STATSGO Soil Order Attributes (USDA, 1995, p. 87) 
 

 
 
The soil order attributes are found in the ‘TAXCLASS’ table of the STATSGO soils 
database.  The STATSGO database gets very specific, going down to the sub-order 
and class level of soil classification, but the more specific the soil classification, the 
more difficult the translation to the FAO soil classification system.  The analysis portion 
of this document will further explain the soil type translation process.  The 
methodology to rasterize the soil order was the same as the previous attributes; the 
‘order’ field was used as the parameter in the ‘Feature to Raster’ tool to provide the 
raster values.  The resulting raster layer was used in the Suitability Analysis and 
logistical regression analysis.     
 
2. 3 GEOLOGY 
Closely related to soils, Geology is also recognized by experts as an important factor 
in growing quality wine grapes and can influence such factors as mineral intake and 
thermal conditions of the root zone (Courjault-Radé, Munoz, Maire, & Hirissou, 2007).   
 
The geology data for both Europe and the United States came from the United States 
Geological Service (USGS).  Both data sets depict the general lithology and geologic 
ages of the bedrock found in each area.  This was the only common geologic data that 
could be found between the two regions.        
 
The geologic data for Europe came from the USGS’s Energy Resources Program 
website: http://certmapper.cr.usgs.gov/data/we/ofr97470i/spatial/shape/geo4_2l.zip.  The scale of 
the European data is 1/5,000,000 and is in shapefile format.  The data was clipped to 
the France shape using the France feature class and the ‘Clip’ tool found in the 
‘Analysis Tools’ toolbox in order to obtain the geologic portion of just France to keep 
the file size small.  The data was then imported into the France geodatabase as a 
feature class.    
 
The geologic data for Oregon came from the USGS Western Region’s website: 
http://wrgis.wr.usgs.gov/docs/geologic/or/oregon.html.  The scale of the Oregon data is 

http://certmapper.cr.usgs.gov/data/we/ofr97470i/spatial/shape/geo4_2l.zip
http://wrgis.wr.usgs.gov/docs/geologic/or/oregon.html
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1/500,000 and was in Arc/Info export (e00) format.  This file was converted to a 
coverage file using the ‘Import from Interchange’ tool located in the ‘Coverage Tools’ 
toolbox.  Once in coverage format, the data were imported into the Oregon 
geodatabase as a feature class. 
 
Both data sets originally came from the sites with codes representing the age of each 
record.  For example, Js represented the Jurassic age or TRPv stood for Triassic and 
Permian.  Each dataset came with a chart which defined each code.  These charts 
were converted to Database files and then joined with the shapefiles using the code as 
the common field between the two files.  The file was then imported into the 
geodatabase so it would contain both the code and the code description for 
clarification and ease of use. 
 
To make the data sets easier to use in analysis, a more generalized time period was 
applied to each record.  The database, as is, describes the Epoch or Epochs the 
bedrocks were thought to have spanned.  This led to several possible combinations of 
epochs, making any kind of comparison between regions very difficult.  To simplify the 
data for easier comparison, the codes were generalized to Periods, one level higher 
than Epochs.  For example, an epoch code of ‘Qf’ meaning ‘Holocene, Pleistocene’ 
would be re-categorized by the Period each Epoch belonged to into a new field as 
‘Quaternary’.  This process was done using the 1999 Geologic Time Scale, Appendix 
B, as a guide (Palmer & Geissman, 1999).  
 
Raster datasets were created from the geology feature classes using the ‘Feature to 
Raster’ tool.  These datasets were used as inputs into the Suitability Analysis and the 
logistical regression analysis. 
 
2.4 Soil-Water Balance           
The soil-water balance is a measure of water surplus or deficit in the soil available for 
the plants to draw upon.  “Growing a successful vintage requires a precarious balance 
between these two factors over the growing season, a balance which can determine 
the varietal grown” (Wilson, 1998, pp. 5, 10).  The soil-water balance is an important 
factor because it incorporates essential elements for grape growing such as climate, 
potential evapotranspiration and soil properties (Milly, 1994, p. 2143).  In France, 
irrigation is not allowed on appellation vineyards (Gade, 2004, p. 852), so calculating 
the soil-water balance truly captures the land and climate’s ability to support the 
grape’s water needs.  Given that various regions within France grow distinct varietals, 
soil-water balance can be calculated for each region and therefore each distinct 
varietal grown in that region.  In view of the fact that Meteo France provided monthly 
precipitation and temperature data, the Thornthwaite water balance model (McCabe & 
Markstrom, 2006) was used to accommodate the acquired data.  Thornthwaite 
developed the Potential Evapotranspiration index used in this model, which some 
experts claim as “better than the degree days system since it includes the effect of 
Latitudinal day length differences” (Jackson & Cherry, 1988, p. 19) Seeing as the data 
was monthly, the growing season was assumed to be April through October; therefore, 
Soil-Water balance surfaces were created for each month of the growing season.  It 
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was also assumed that Soil-Moisture capacity was at its maximum level in April.  
Growing season soil water balance surfaces were created for both the Burgundy and 
the Willamette Valley regions.  
 
2.4.1 Soil-Water Balance Calculation 
The soil-water balance is usually calculated in a simple bucket method where the soil 
is the bucket, precipitation as an addition to the bucket, and runoff and 
evapotranspiration (potential/actual) as subtractions from the bucket (Figure 2.9).     

 

Figure 2.9 Water Balance Model (McCabe & Markstrom, 2006) 
 
Any excess moisture above the soil-moisture capacity is surplus runoff, and any 
negative difference between the evapotranspiration and the soil-moisture storage is a 
deficit.  The above model is outlined on the following USGS webpage: 
http://wwwbrr.cr.usgs.gov/mms/thorn/, and was adapted for GIS to calculate water balance 
surfaces.  A Model Builder model (Figure 2.10) was developed to create the Soil Water 
balance surface for one month.  
  
2.4.2 Water Balance Model 

http://wwwbrr.cr.usgs.gov/mms/thorn/
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Figure 2.10 Soil Water Balance Model Builder Model for One Month 
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The following section will explain each part of the Soil Water balance model in detail in 
order to explain the equations and data used in calculating the Soil Water balance for 
each month of the growing season. 
 
2.4.3 Water Input into the Bucket 

 
The blue ‘Precipitation’ surface was simply the surface created as a result of the 
Geostatistical Analysis tool process using the raw climate station data, see the Climate 
section.  The precipitation surface used matched the month of the Soil Water balance 
surface calculation.  The “Run Off Subtraction” is a Single Output Map Algebra 
equation (SOMA):  
 

Precipitation - (Precipitation * 0.05) 
 

Equation 2.3 Run Off Subtraction 
 

This equation adjusts the precipitation or water input and accounts for any initial run-
off water loss caused by impervious surfaces and or rapid over-saturation from heavy 
rainstorms.  The result was the green ‘Water’ surface.  As a point of interest, if the Soil 
Water balance was being calculated for a winter month in an area which receives 
snow precipitation, a snow adjustment calculation would also have to be made.  This 
snow adjustment is outlined in the procedure page of the mentioned USGS website.   
The unit of measurement of both the ‘Precipitation’ and ‘Water’ surfaces is millimeters.       
 

2.4.4 Potential Evapotranspiration Calculation 

 
Pidwirny defines Potential evapotranspiration as “a measure of the ability of the 
atmosphere to remove water from the surface through the processes of evaporation 
and transpiration assuming no control on water supply” (Pidwirny, 2006, p. ch. 8).  In 
the model terms, Potential Evapotranspiration is the atmosphere subtracting water 
from the ‘bucket’.  The blue ‘PET’, or Potential Evapotranspiration, surface was 
created using the Thornthwaite Potential Evapotranspiration calculation method.  The 
Thornthwaite method was used for consistency (the Thornthwaite method was used 
for the Soil Water balance calculation), and because of the nature of the monthly data 
acquired from Meteo France.  The Thornthwaite method is relatively simple, requiring 
only temperature data and the latitude of the study area.  Other PET calculation 
methods require additional parameters such as radiation, as in the Priestley-Taylor 
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method (Priestley & Taylor, 1972, p. 90) or humidity and wind speed, such as in the 
FAO-24 method (Jensen, Burman, & Allen, 1990).  Temperature and precipitation data 
points were the only consistent climate data parameters provided, so the Thornthwaite 
method was chosen to accommodate the available data.  A separate Model Builder 
model was used to apply the Thornthwaite method and calculate the PET surfaces for 
each month. 
 
Thornthwaite’s PET equations: 
  Step One:  Heat Index Calculation 

 
Equation 2.4 Heat Index Calculation 

 
T is the average monthly temperature in Celsius 

 
  Step Two:  Sum the Heat Index Over the Whole Year 

 
Equation 2.5 Annual Heat Index 

 
  Step Three:  Calculate the Exponent ‘m’ 
 

 
Equation 2.6 Exponent m Calculation 

 
  Step Four:  Calculate the Un-adjusted PE 

 
Equation 2.7 Un-adjusted Potential Evaporation 

 
  Step Five:  Adjust the PE with the Daylight Correction Table (2.7): 
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Table 2.7 Daylight Correction Table 

 
  To get PE Multiply the Un-adjusted PE by the correction factor  
 relevant for your latitude (GLOBE, 2003, pp. 11-14; Xu & Chen, 2005, p. 3723). 
 
Thornthwaite’s Method Applied in a Model Builder Model  
 
All of the Thornthwaite steps outlined in the previous section were executed using a 
model (Figure 2.11) to build PET surfaces for each month of the growing season (April 
– October). 
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Figure 2.11 Model to Calculate Potential Evapotranspiration 

 
Step 1: Heat Index Calculation 

 
 

 

 
Heat Index Portion of the Model 1 
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Calculate the ‘Temperature Index’ or ‘i’ for each average monthly temperature surface 
(‘avgt_jan’) using the following SOMA equation:  
 

POW((avgt_apr div 5), 1.514) 
 

The average monthly temperature surfaces were created using the raw station data.  
The model calculated a temperature index for each month.  The Thornthwaite PET 
method requires the summary heat index for all months of the year. 
 
Step Two:  Sum the Heat Index Over the Whole Year 

 
 
 

 
Sum all of the Heat Indexes Portion of the Model 

 
 
The ‘Summary Temperature Index’ simply sums all of the individual monthly index 
surfaces together using the following SOMA equation: 
 

iJan + iFeb + iMar + iApr + iMay + iJune + iJuly + iAug + iSep + iOct + iNov + iDec 
 
The result is the ‘isum’ total temperature index surface. 
 
Step Three:  Calculate the Exponent m 
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Calculate Exponent ‘m’ Portion of the Model 

 
The ‘Exponent m’ was solved using the ‘isum’ surface and the following SOMA 
equation: 
 

(6.75e-7) * POW(iSum, 3)) - ((7.71e-5) * POW(iSum, 2)) + (1.79e-2 * iSum) + 0.492 
 
The result of this step is the ‘a’ surfaces which are the intermediate parameters 
needed to calculate the un-adjusted PE in the next part of the model.   

 
Step Four:  Calculate the Un-adjusted PE 

 

 
Unadjusted PE Portion of the Model 

 
The ‘Unadjusted PE’ is calculated for each month using the average temperature 
surface (‘avgt_apr’), the summary heat index (‘isum’) and the exponent ‘m’ in the 
following SOMA equation: 
 

(POW(((10 * avgt_apr) / isum), m)) * 16 
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The result is an un-adjusted PET surface for each month.  Only the middle un-adjusted 
PET equation was used because no average temperature surface was below 0º 
Celsius or above 26.5º Celsius.  
 
Step Five:  Adjust the PET with the Daylight Correction Table: 

 
 

 
 

 
Adjust PE Portion of the Model 

 
The correction factors for 40º N were chosen as the Burgundy and the Williamette 
Valley wine regions both reside in this latitude band.  The un-adjusted PE surfaces for 
each month were multiplied by the corresponding daylight correction factor from the 
table.  The result was the PET surface for each month.  The unit of measurement for 
PET is millimeters.  These PET surfaces were input parameters into the Soil Water 
balance model.  Continuing with the Soil Water Balance model, PET becomes an 
important input into three functions.   

 
 

2.4.5. Subtract the PET Outtake from the Water Input 
 

 
In this step, water loss which occurs from ‘PET’ is subtracted from the ‘Water’ input 
using the following SOMA: 

Water – PET 
 

Equation 2.8 Water loss from Potential Evapotranspiration 
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This calculation accounts for the real world potential of the sun to ‘sweat’ the water out 
of the plant and soil.  The ‘model uses the Diff’ surface in the calculation of the Soil 
Moisture Withdraw, Actual Evapotranspiration, and the Water Balance surface itself. 
 
2.4.6 Calculate the Soil Moisture Withdraw 

 
The ‘Diff’ surface was created in the previous step.  The ‘WHC’ or Water Holding 
Capacity, was created from the attributes of the soil data (see Section 2) and 
represents the maximum amount of water the soil can hold in millimeters.  The 
‘SoilBucket’ is the soil’s current amount of water it is holding in millimeters.  For the 
first calculation of the Soil Water Balance for the month of April, it was assumed that 
the soil was at maximum water holding capacity.  In model terms, ‘SoilBucket’ = ‘WHC’ 
for the month of April calculation.  The ‘Soil Moisture Withdraw’ is calculated using the 
following SOMA equation:     

 
CON(Diff < 0,  (SoilBucket - (ABS(Diff) * (SoilBucket / WHC))), (SoilBucket + Diff)) 

 
Equation 2.9 Soil Moisture Withdraw Calculation 

 
This equation basically states that if the ’PE’ is greater than the ‘Water’ (‘Diff’ cell < 0) 
then the amount of ‘Withdraw’ for that cell is a percentage of the ‘Diff’ subtracted from 
the soil bucket (‘Soilbkt’), otherwise there is no ‘Withdraw’ and the ‘Withdraw’ becomes 
positive, meaning extra water recharges the soil bucket for the next month’s 
calculation. 
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2.4.7 Calculate the Actual Evapotranspiration (AET) 

 
Actual Evapotransporation or AET, represents the actual amount of water removed 
through evapotranspiration (Pidwirny, 2006).  AET is calculated using the following 
SOMA equation: 
 

CON(Diff < 0, (Water + (-1 * (WithDraw - SoilBucket))), PET) 
 

Equation 2.10 Actual Evapotranspiration Calculation 
 
This equation states that for every cell if the ‘PET’ is greater than the ‘Water’, then 
AET is equal to the ‘Water’ plus the amount of moisture which can be withdrawn from 
the soil (‘WithDraw’ - ‘SoilBucket’); otherwise if amount of ‘Water’ exceeds ‘PET’, then 
AET cell is equal to ‘PET’(McCabe & Markstrom, 2006, p. 4). 
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2.4.8 Calculate the Soil Water Balance Surface 

 
The ‘Water Balance’ is negative, or at a deficit when the ‘PET’ is greater than the AET.  
If there is a surplus of water then the excess goes to fill up the soil up to ‘WHC’, any 
excess after that results in a positive ‘Water Balance’ which can also be categorized 
as run-off.  If there is not enough water to fill to WHC, then the ‘Water Balance’ goes to 
zero, because there is no run-off or deficit.   The ‘Water Balance’ was calculated using 
the following SOMA equation: 
 

CON(Diff < 0, (AET - PET), CON(WithDraw > WHC, (WithDraw - WHC), 0)) 
 

Equation 2.11 Water Balance Calculation 
 
  In Figure 2.12 below, we see an example surplus and an example deficit ‘Water 
Balance’ surface calculated for the months of April and August respectively. 
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Figure 2.12 Water Balance Surface for April and August 
 

The April surface is mainly affected by the climate input surfaces, because there is a 
surplus of water.  In August, effects of the soil attributes upon the water balance 
process influence the soil water balance surface, because evapotranspiration is 
greater than the precipitation coming in, so the soil has to use its water holding 
capacity.  Before moving on to the next month’s calculation, the new soil bucket or 
’SoilBucket2’ must be calculated to use as next month’s ‘SoilBucket’. 
 
2.4.9 Calculate the New Soil Bucket 

 
If the ‘WithDraw’ is negative then there is no soil moisture left and the ‘SoilBucket2’ 
cell is put at zero, otherwise the positive ‘WithDraw’ or excess water is used to fill up 
the ‘SoilBucket2’ cells up to water holding capacity (WHC).  The following SOMA 
equation was used to calculate the ‘SoilBucket2’ surface: 
 

CON(WithDraw < 0, 0, CON(WithDraw > WHC, WHC, WithDraw)) 
 

Equation 2.12 Soil Bucket Calculation for the Next Month 
 

The ‘SoilBucket2’ surface is carried over to the next month to be used as the 
‘SoilBucket’ surface for calculation of that month’s soil water balance. 
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Using this model, ‘Water Balance’ surfaces were created for each month of the 
growing season.  The Suitability Analysis and Logistical Regression Analysis both 
used the ‘Water Balance’ surfaces created. 

 
2.5 Elevation Data 
 
Two elevation characteristics are very important in grape growing, slope and aspect.  
Slope is important because a gentle slope allows for good drainage of both water and 
cold air.  Good drainage of water keeps the roots from getting water logged.  Good 
drainage of the cold air helps keep the grapes slightly warmer than the valley floor and 
helps protect from frost damage (Berry, 1990).  In Burgundy it is said that the best 
vineyards, the Grand Cur, are located on gentle slopes (see Figure 2.13).  
 

 
 

Figure 2.13 Slopes of Burgundy, France ("Fondvigne", 2001) 
 

Aspect is the direction a slope faces and is important as it can impact the amount of 
sun the grapes receive (Jones, Snead, & Nelson, 2004, p. 170).  Both factors work 
together to affect the microclimate of a viticulture area (Van Leeuwen & Seguin, 2006, 
p. 5). 
 
A Digital Elevation Model (DEM) dataset was used to calculate the slope and aspect 
for each area of interest.   
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2.5.1 Elevation Data Source 
The DEM data for this project came from the Shuttle Radar Topography Mission 
(SRTM) data sets.  These raster data sets were obtained from the Consultative Group 
on International Agricultural Research-Consortium for Spatial Information (CGIAR-CSI) 
website: http://srtm.csi.cgiar.org/.  The data sets were downloaded using a Google 
Earth interface, Figure 2.14. 
 

 
 

Figure 2.14 CGIAR-CSI Google Earth Interface for Data Acquisition (Consultive Group on 
International Agricultural Research - Consortium for Spatial Information (CGIAR-CSI); Google) 

 
CGIAR-CSI divided the SRTM data into 5º x 5º tiles, the extents of which are laid out 
on Google Earth as a grid.  The user simply selects the hyperlink in the middle of the 
desired grid and a window pops up with information and a hyperlink to download the 
selected tile.  The data are approximately 90m resolution and come in a geographic 
coordinate system, WGS84 datum.  The data can be downloaded in GEOTIFF or 
ESRI ASCII file formats (Consultive Group on International Agricultural Research - 
Consortium for Spatial Information (CGIAR-CSI)).  The elevation data for Burgundy, 
France and the Williamette Valley, Oregon were both obtained through this interface.      
 
2.5.2 Slope and Aspect Data Methodology 
 
To create the slope and aspect datasets, the DEM for each region was used as input 
into ESRI’s ‘Spatial Analyst’ tools.  Both the ‘Aspect’ and ‘Slope’ tools are found in the 
‘Surface’ toolbox of the ‘Spatial Analyst’ tools (ESRI, 2005).  The result of each tool is 
shown in Figure 2.15, overlaid onto a hillshade.   
 

http://srtm.csi.cgiar.org/
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Figure 2.15 Slope and Aspect Example Products from the Burgundy Region 
 
The slope surface shows different ranges of degree slopes, with the steepest slope 
range in dark red.  The aspect model colors the compass directions; green represents 
the Southeast aspect.  The analysis portion of the project used both the slope and 
aspect datasets.   
 
The elevation data were also used for cartographic products, see section 2.7. 
 
 
2.6 Vineyard Location Data 
 
Vineyard Location data became quite important to obtain as it would provide the 
boundaries from within which sample data could be taken for analysis.  It would also 
prove important to check the accuracy of the Suitability Analysis.  Finally, the Vineyard 
location data was useful for cartographic products in the areas of interest. 
 
2.6.1 French Vineyard Location Data 
 
The French Vineyard delineation data proved very difficult to obtain.  The Institut 
National des Appellations d’Origine (INAO), which manages the French Wine Law 
(Appellation d’Origine Controlee (AOC)), was the first place searched because the 
AOC system is based on ‘distinct geographical locations’(Institut National de l'Origine 
et de la qualite (INAO), 2011).  However, as mentioned before, the French national 
organizations charge for GIS data and the INAO was unwilling to give the data for 
academic purposes.  After much searching, the data were discovered in the form of 
land cover, at the European level.  The European Environment Agency (EEA) provides 
free environmental data for Europe, to include the Corine 2000 European Land Cover 
dataset available at EEA’s website: 
http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=667.  Once permission is 

http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=667
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obtained from the EEA, both vector and raster versions are freely available.  Table 2.7 
gives us a sample of the land cover codes and categories, to include code 221 for 
Vineyards. 
 

Table 2.8 Corine Land Cover Data Dictionary (The European Topic Centre on Terrestrial 
Environment, 2000) 

 
 
Figure 2.16 shows the whole Corine land cover dataset over France; Vineyards are 
colored red.  The data’s scale is 1:100,000.   

 
Figure 2.16 Corine Land Cover Data of France 

 
The vineyard land cover data was extracted in ArcMap by selecting the code ‘221’ 
attribute and then exporting the selected features as a separate shapefile (Figure 
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2.17).  This was accomplished by using the ‘Select by Attributes’ and ‘Data Export’ 
functions within ArcMap.  The data was then clipped to the areas of interest using the 
‘Clip’ tool and another feature class as the outline (ESRI, 2005).  
 

 
 

Figure 2.17 Burgundy Vineyard Land Cover with Hill shade 
 
Ancillary data from Wines of the World (Dorling Kindersley Publishers, 2004) further 
categorized the vineyard land cover data by main grape varietal grown.  This ancillary 
data was used to sub-type the feature in the geodatabase which allowed for color 
variation based upon subtype. 
 
2.6.2 Oregon Vineyard Location Data 
Oregon Vineyard location data was not as easy to obtain.  Land Cover data over the 
Willamette Valley was obtained from the Pacific Northwest Ecosystem Research 
Consortium website: http://www.fsl.orst.edu/pnwerc/wrb/access.html.  This data comes in ESRI 
GRID raster format at 30m resolution.  This data only partially met the requirement as 
the category of interest was number 73, Berries & Vineyards Table 2.9, Figure 2.18. 
 

Table 2.9 Williamette Valley Land Cover Categories 
66 Hybrid Poplar
67 Grass Seed
68 Row Crops
71 Grains
72 Nursery Crops
73 Berries & Vineyards (Blueberries, caneberries, and wine grapes)
74 Double Cropping (grains in spring and row crops in late summer)
75 Hops

      
    

     
    

        
    

          
 

 

http://www.fsl.orst.edu/pnwerc/wrb/access.html
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Figure 2.18 Willamette Valley Oregon Land Use Land Cover Data 

 
There are quite a few Berry and Vineyard cells in the Willamette Valley region.  In an 
effort to get better location data about the vineyards themselves, a list of Oregon 
wineries and addresses was obtained from the Oregon Wines website:  
http://www.oregonwines.com/.  These addresses were then Geo-Coded using ESRI’s Street 
Network data, Figure 2.19. 

 
Figure 2.19 Winery Locations in Yellow 

 

http://www.oregonwines.com/
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Two potential problems with the Winery data is that one, the list is probably not 
comprehensive, and two, the winery may not be physically collocated with the vineyard 
itself.  Using both the Land Use/Land Cover and the Winery data, while still not a 
100% solution, was considered sufficiently accurate to compare with the analysis 
results.  
 
2.7. Base Map Data 
Base Map Data was used for the creation of cartographic products and included things 
such as cities, roads, political boundaries and Hill Shades. 
 
2.7.1 France Base Map Data 
France Base Map data came from a variety of sources and was used to make 
cartographic products of the Burgundy region. 
 
2.7.1.1 Transportation and Hydrological Data 
Transportation and hydrological data for France came from the National Geospatial-
Intelligence Agency’s (NGA) Vmap level 0 data.  This data was downloaded in 
shapefile format from the FAO’s GeoNetwork website: 
http://www.fao.org/geonetwork/srv/en/main.home.  Since the downloaded data is worldwide 
extent, the data was clipped to the outline of France using the ArcGIS Clip tool. 
 
2.7.1.2 City Data 
The point city data was obtained from the NGA’s Geonames server at 
http://gnswww.nga.mil/geonames/GNS/index.jsp.  The Geonames files contain names for 
numerous point features, separated by country, including populated places, 
administrative, hypsographic, vegetation, and hydrographic features.  The country file 
was downloaded as a tab delimited text file.  This file was saved as a dBase IV (.dbf) 
file using Microsoft Excel, because ArcGIS can read .dbf table files.  The file was then 
brought into ArcMap and plotted using the ‘Add XY data’ tool.  Once the data was 
displayed in ArcMap, it was saved in Shapefile format.  The populated places features 
were extracted from the shapefile and saved as a separate feature class to use as city 
data. 
 
The urban polygons for major cities were acquired from the European Environmental 
Agency’s (EEA) website http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=720.  
The ‘Urban Morphological Zones’ are a derived dataset from the Corine Landcover 
dataset; the same one used to determine vineyard locations.  This dataset covers all of 
Europe, and was clipped to France using the ArcGIS Clip tool. 
 
2.7.1.3 Administrative Boundaries 
The Administrative Boundaries were obtained from the French Institute Geographic 
National (IGN): http://www.ign.fr/rubrique.asp?lng_id=EN.  The polygon shapefile contains 
the level one department boundaries.  This shapefile was used to create a good 
country boundary for France from the ArcGIS ‘Dissolve Tool’.  The France boundary 
polygon was used to clip many data sets and also to display France itself. 
 

http://www.fao.org/geonetwork/srv/en/main.home
http://gnswww.nga.mil/geonames/GNS/index.jsp
http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=720
http://www.ign.fr/rubrique.asp?lng_id=EN
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2.7.2 Oregon Base Map Data 
All of the Oregon base map data were collected from the State of Oregon’s Geospatial 
Enterprise Office (GEO) website: http://www.oregon.gov/DAS/EISPD/GEO/alphalist.shtml.  This 
data included the transportation, hydrologic, administrative, and city shapefiles.  This 
base data was used to create cartographic products for the project. 
      
2.7.3 Base Map Hill Shade 
The SRTM DEMs, of both France and Oregon, were also used to make a ‘Swiss Hill 
shade’ effect for cartographic products.  The Swiss Hill shade method (Buckley & 
Barnes, 2004) and model ("Hillshade Tools for Base Map Data Model", 2004), Figure 
2.20, were obtained from the ESRI Knowledge Base: 
http://support.esri.com/index.cfm?fa=downloads.dataModels.filteredGateway&dmid=3.  All of the 
model parameters were followed. 

 
Figure 2.20 Swiss Hill Shade model  

 
Some custom color ramps were applied to achieve the final effect (Figure 2.21) 
 

 
 

Figure 2.21 Swiss Hill Shade Result 
 
Hill Shade products were used in cartographic products for both France and Oregon. 

http://www.oregon.gov/DAS/EISPD/GEO/alphalist.shtml
http://support.esri.com/index.cfm?fa=downloads.dataModels.filteredGateway&dmid=3
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3.0 DATABASE IMPLEMENTATION 
With so many files downloaded, extracted, and created, a database was needed to 
organize all of the data needed for each region.  ESRI’s Geodatabase format was 
used for the project to store and organize the vector data.  The Geodatabase allows 
the creation of Feature datasets where like features can be stored and maintained in 
the same projection, providing greater efficiency and consistency when working with 
the data.  The Geodatabase also stores any custom tools created for the project, 
making it easy to package the project and to share data and methodologies.  Separate 
Geodatabases were created for France and Oregon, in order to avoid confusion and to 
allow space for any future data additions. 
 
3.1 France Geodatabase 
The France Geodatabase consists of four feature datasets:  ‘Burgundy’, 
‘Climate_Burg’, ‘Dirt’, and ‘France’.  ‘Burgundy’ contains a subset of France feature 
classes, clipped to regional size.  ‘Cities’ for example was extracted from the 
‘GeoNames’ feature class, and ‘VineCover’ was extracted from the ‘LandCover’ 
feature class.  The ‘Burgundy’ feature dataset also contains the ‘Pinot_ Smpl’ point 
feature class which contains the sample points taken for the analysis.  The regional 
boundary polygons, used for clipping and reference, are also located in the ‘Burgundy’ 
feature dataset.  ‘VineCover’ takes advantage of the geodatabase subtypes ability, 
which uses codes to allow similar features to reside in the same feature class thereby 
saving space and allowing the features to be symbolized uniquely.  ‘VineCover’ 
contains three different grape varietal subtypes: Pinot Noir, Gamay, and Chardonnay; 
all differentiated by codes in the database.   
 
The ‘Climate_Burg’ feature dataset includes the ‘Climate_stns’ point feature class, 
which holds the location and climate data for the Burgundy weather stations.  This 
feature class was used to generate the climate surfaces from the Geostatistical 
Analysis process.  The contour line features generated from the Geostatistical 
procedures also reside in this feature dataset.   
 
The ‘Dirt’ feature dataset contains the soil and geology polygon feature classes.  The 
Domains function of the geodatabase was utilized for some of the soil attributes.  Two 
of the auxiliary soil tables reside in the database for reference.  The ‘France’ dataset 
holds all of the country wide feature classes, such as ‘Roads’, ‘Rail’ and ‘LandCover’.  
It also contains the administrative boundaries for France and for surrounding 
countries.  The ‘Burg’ raster catalog resides in the geodatabase point to all of the 
raster datasets used in the analysis or for cartographic purposes.   
 
The ‘France’ Geodatabase includes the ‘Model’ toolbox which contains three tools 
used in the project: soil water balance model, potential evapotranspiration model, and 
a samples model.  It may seem redundant, but the ‘Burgundy’ dataset was created 
specifically for efficient cartographic operations.   The ‘France’ dataset exists in the 
geodatabase to hold the master country wide features, and as a contingency in case 
other wine regions of France were added to the study, Figure 3.1.  Lambert Conformal 
Conic is the projection and Réseau Géodésique Français (RGF) 93 is the datum used 
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for all datasets.  This projection and datum are the ones recommended by France’s 
Institute Geographic National (IGN) (Institut Geographique National, 2005, p. 6) for the 
proper display of maps of France. 

 
Figure 3.1 France Geodatabase 

 
3.2 Oregon Geodatabase 
The Oregon Geodatabase consists of three feature datasets:  ‘Base’, ‘Climate’, and 
‘Soils’.  The ‘Base’ feature dataset contains all of the base feature classes, such as 
‘State’ boundary, ‘Cities’, and ‘Rivers’.  The ‘Climate’ dataset contains the ‘climate_stn’ 
point feature class which includes the location and climate attribute data for all of the 
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study area weather stations.  This feature dataset also contains the contour lines 
generated from the Geostatistical Analyst process.  The ‘Soils’ dataset contains the 
‘Soils’, ‘Geology’, and ‘LandUse’ polygon feature classes used in the study.  A raster 
catalog resides in the database to point to all of the Oregon raster sets used in the 
project.  Attached to the geodatabase is the toolbox holding all of the models used in 
data preparation and analysis, including the Soil Water balance, Potential 
Evapotranspiration, and Overlay models, Figure 3.2.  Lambert Conformal Conic is the 
projection, with the North American Datum 1983 (NAD 83) used for all three feature 
datasets.  This is the projection and datum used by the state of Oregon for all of their 
data.   
 

 
Figure 3.2 Oregon Geodatabase 
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4.0 ANALYSIS 
The goal of the analysis was to determine the dominant physical characteristics of the 
Pinot Noir source region, the Cote D’Or and Cote Chalonnaise regions of Burgundy, 
and apply those values to rate another known Pinot Noir growing region, Willamette 
Valley, Oregon.  The purpose was to determine if physical characteristics alone 
account for grape quality and to discover key Pinot Noir growing characteristics.   
 
The first step in the analysis consisted of sampling the datasets to determine those 
dominant characteristics (Kleyer, 2002, p. 167).  A suitability analysis applied the 
dominant values to a test area.  Finally, a Logistical Regression was performed in 
order to determine key variables and to compare the results with that of the suitability 
analysis.   
 
The analysis used the following derived raster layers: aspect, slope, temperature, 
precipitation, soil-water balance, soil type, soil texture, soil depth to rock, and 
underlying geologic age.  The monthly climate and water balance raster surfaces were 
aggregated into three time periods, each representing a sub-section of the growing 
season in order to capture the unique characteristics of each period.  The time periods 
are Budding, April through May; Growing, June through August; and Maturation, 
September through October (Wilson, 1998, p. 120).  Budding represents the period 
where the new shoots of the vine are sprouting.  The Growing period of the season 
models the plant growth.  Finally, the Maturation period represents the grapes’ cluster 
formation and maturation until ripe for picking.    
 
4.1 Determine Dominant Characteristics 
The first step of the analysis was to determine the dominant physical characteristics of 
the Pinot Noir source region, Burgundy, France.  Once determined, these physical 
traits will reclassify the data layers over the Willamette Valley test area in a Suitability 
Analysis.  This was achieved through the use of the Sample tool, found within the 
Extraction toolbox of the Spatial Analyst tools, Figure 4.1.      

 
 

 
Figure 4.1 Sample Tool Illustration 
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To utilize the Sample tool, a feature class or shapefile of all sample points (X, Y 
locations) must exist over the study area.  Sample points were placed randomly within 
the vineyard land cover polygon feature (‘VineCover’) Pinot Noir boundaries, Figure 
4.2, to create the feature class.   
 

 
 

Figure 4.2 Pinot Noir Sample Points 
 
This ensured the sample points were taken within vineyard boundaries.  The Sample 
tool requires nomination of all the relevant raster datasets and the sample point file as 
parameters.  As the tool runs, it takes data points from each raster layer pixel which 
coincides with the x,y location of the sample points.  The Sample tool packages the 
sample point data values into a database table as an output, Table 4.1. 
   

Table 4.1 Excerpt of Sample Tool Output 
 

 
 
The generated data table then can be brought into MS Excel where statistical tools are 
used to determine the dominant range of values for each raster dataset.  A Frequency 
Distribution analysis was completed to determine the dominate data range of the 
sample points from each dataset.  For numerical dataset types, such as temperature, 
the data must be binned into ‘mutually exclusive sub-groupings’ (Kaboudan, 2005, ch 
2) before the Frequency Distribution can be done.  These bins were determined using 
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the ‘power of two rule which states that one should select the number of classes as the 
first power of 2 that just equals or exceeds n’ (Kaboudan, 2005, ch. 2), where n is the 
number of sample points.  The number of samples taken from the Burgundy area is 
327.  The power of 2 which equals or exceeds 327 is 29, or 512; therefore, the number 
of classes to group the data into is 9.  To determine the width of classes, the following 
formula is used:  “Class Width = Range / c, where Range = Highest observed value - 
Lowest observed value, and c = number of classes.  Class width is always an integer 
and any number that is not one must be rounded upwards” (Kaboudan, 2005, ch2).  
For example: if the range of the dataset was 89, and the class size taken from above 
is 9, the Class Width = 89/9 = 9.89, rounding up would be 10.  Once the bins were 
determined, the MS Excel Histogram tool (Tools>Data Analysis>Histogram) was 
employed to determine the frequency of the bins and to plot the histogram graph, 
Figure 4.3. 
         

 
Figure 4.3 Histogram of Aspect Data Samples 

 
Figure 4.3 is an example of Frequency Distribution of the Aspect sample data values.  
The 100 -140 degree (South East) Aspect data range is the most frequent, occurring 
104 times in the Burgundy sample set. 
 
For the Nominal data, such as Soil Type or Texture, the bins were determined by 
simply using each unique data value.  This was done because the data was nominal, 
and therefore no data values would fall between ranges.  The Excel Data Filter tool 
(Data>Filter>Advanced Filter) determined the unique data value from each sample.  
Once the bins were determined, again the histogram tool was used to chart and plot 
the Frequency Distribution, Figure 4.4.   
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Figure 4.4 Rock Depth Frequency Distribution 
 
In the Depth to Rock sample dataset, the 40-80 cm range bin is the most frequent 
value in the Burgundy sample set.  All the datasets sampled were analyzed in this 
way; all resulting Frequency distributions can be found in Appendix C.  Table 4.2 
displays the approximate range of dominant values from the datasets. 
 

Table 4.2 Approximate Burgundy Dataset Dominant Value Ranges 

 
 
 

According to the samples, the most frequent Aspect is the South East facing range 
(100º -140º).  These results agree with the experts that state “better Vineyards are 
placed on slopes which face south to south west” (Hancock, 1999, p. 76).  A slight 
slope of 0 to four degrees seems to occur the most often among the vine covered 
lands of Burgundy.  Budding Temperature, the first two months of the growing season, 
averages between 23º and 24º Celsius in all of the samples.  Growing and Maturation 
also only vary a degree during their respective time periods.   Of note, the warmest 
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period is during the Growing part of the season.  The wetter months of the season, 
tends to be during the Budding and Maturation periods, with a majority of the samples 
receiving 135-152 mm of precipitation.  As far as soil-water balance goes, a majority of 
the samples have a slight surplus of water during the Budding season, and large 
deficit of water during the summer growing season with up to -52 mm, and then only a 
slight deficit throughout the Maturation part of the season.  The dominant sample Soil 
Type is Inceptisols.  The most common Geologic age of the samples is the Mesozoic 
structure.  The most common Rock depth is in the 40-80 cm range.  Finally, the 
Medium Fine texture dominates the Burgundy samples.  In Figure 4.5, both the most 
dominant range for each dataset is displayed.     
 

 
 
 

Figure 4.5 Graphic of the Burgundy area’s most frequent data ranges 
 
4.2 Suitability Analysis 
 
4.2.1 Reclassify 
The Burgundy data ranges were used to reclassify the Willamette Valley, Oregon data.  
The most frequent Burgundy data range was assigned a high number of 3, with 
subsequent data ranges given 2, 1 and 0.  This was done to model levels of suitability, 
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assuming the most frequent data range represented the most suitable data range.  
Data availability forced this assumption and methodology.  The preferred method 
would involve using some sort of spatially referenced vineyard quality data to guide the 
suitability rating.  Since this kind of data was unattainable, the simpler ‘dominant is 
best’ approach was adopted.   This system was used as a guideline to reclassify the 
Oregon datasets.  For example, 23.1º – 24º C was the most frequent temperature 
range for the Burgundy Budding Season.  The corresponding data range in the 
Willamette Valley Budding Temperature dataset, was reclassified to a 3, the most 
suitable.  The Reclassify tool from the Spatial Analyst tools was used to reclassify the 
Oregon raster datasets.  To account for the fact that the Burgundy samples did not 
capture the full data range, a suitability value of 1 was assigned to the Oregon data, 
which may not have fallen within the Burgundy sample range, but did fall within the 
Burgundy minimum/maximum data range of the original data. 
 
4.2.2 Suitability Overlay and Results 
Once all of the Oregon data layers were reclassified, they were added together, using 
the Single Output Map Algebra tool.  This created a simple suitability surface from all 
of the reclassified data sets, with the higher numbers representing the most suitable 
areas.  Fifteen data layers in total were added together, so the highest possible 
suitability was 45.  In the actual result below, Figure 4.6, the highest suitability value 
observed in the overlay was 27 (dark red). 
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Figure 2 Suitability Analysis Results with Winery Locations 
 

With the winery locations (green points) overlaid, we see that in fact the wineries are 
generally located in the most suitable areas of the Willamette Valley.  Looking at the 
land use, Figure 4.7, ‘berries and vineyards’ category in green, one can observe that it 
lies within some of the most suitable parts of the Willamette Valley as well.  However, 
27 out of 45 is only 60% suitable.  Sample points from both regions can be used to 
compare like datasets to determine similarities and differences.  By observing the 
similarities, it may be possible to determine key physical elements common to both 
geographical locations; elements which could be important in indicating good pinot noir 
terroir in new regions. 
 

 

Study Area 
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Figure 4.7 Land Use Overlaid on Suitability 
 
Box-plots visually compare the numerical attributes.  In Figure 4.8, Aspect and Slope 
are shown to be similar between the regions.   

  
 

Figure 4.8 Aspect and Slope Comparison 

 

Study Area 
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Both Burgundy and the Willamette Valley have a dominant East to Southeast aspect, 
and both show a gentle slope in a majority of the vineyard locations sampled. In the 
precipitation box plots, Figure 4.9, the Budding and Maturation periods of the growing 
season are similar, with a large difference in the Growing period of the season. 

  

 
 

Figure 4.9 Precipitation Comparison 
 
 

Although irrigation is not restricted in the Willamette Valley, as it is in France,   wine 
growers for the most part, do not irrigate (Bagnall, 2001).  Median Temperature differs 
only about 3 degrees at most, Figure 4.10, so temperature appears to be another 
attribute the two regions share.   
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Figure 4.10 Temperature Comparison 
 
The Willamette Valley and the Burgundy region soil-water balance differ greatly, 
especially during the last two parts of the growing season, Figure 4.11. 
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Figure 4.11 Soil - Water Balance Comparison 
 
The water differences between the two regions come from the unique interplay of the 
water holding capacity of the soil, the temperature, and rainfall throughout each part of 
the season.  The Willamette data depicts a drier soil during the last two parts of the 
growing season, explaining some of the differences between the regions. 
 
The qualitative data demanded the use of histograms to compare the data between 
the wine regions of study, Figure 4.12. 
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Figure 4.12 Soil and Geology Comparison 
 
Inceptisols dominate the Burgundy samples, whereas Mollisols seem to dominate the 
Willamette samples.  Inceptisols tend lack distinguishing features and are found in 
river valleys and forested slopes (Buol, Southard, Graham, & McDaniel, 2002, p. 293); 
whereas, Mollisols tend to be more fertile with organic matter and are generally 
located in such agricultural areas as the Great Plains of the United States (Tan, 1994, 
p. 13 & 14).  Both regions tend toward the medium textured soil, with Burgundy’s 
texture being finer.  The Mesozoic age tends to be the most common geology era in 
Burgundy, whereas the Willamette is more dominated by the Tertiary age.  It is 
interesting to note, however, that both share a secondary peak in the Quaternary 
epoch.  The Depth to Rock attribute differs between the two with the Willamette Valley 
having a deeper soil profile before hitting bedrock.   
 
By observing the comparison plots, conclusions can be drawn as to what makes the 
grape growing regions of the Willamette Valley the most suitable when compared to 
Burgundy, but also why the region does not reach the maximum suitability score.  
Elements which are similar between the regions and positively impact the suitability 
score include: aspect, slope, temperature, and precipitation.  Elements which differ 
include the Soil Water balance, Soil Type, and Texture.  Geology and the Depth to 
Rock attributes both contain some secondary similarities which would facilitate the 
suitability as well.  Despite Willamette Valley scoring only a maximum of 60% on 
suitability, both wine regions produce award winning Pinot Noir.  This apparent 
disconnect could stem from a number of possible reasons.  As the Roman poet Ovid is 
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reported to have wrote in the 1st century A.D., “Good Wine comes from vines that are 
well tended”.  The human element could help account for quality wine grapes and 
quality wine, but is hard to measure and is not included in this study.  It could indicate 
the amazing adaptability of the Pinot Noir varietal.  Or it could be that Oregon found a 
genetic strain or clone of Pinot Noir which adapted well to the physical terroir of the 
Willamette Valley.  Lack of strong suitability could also stem from the coarseness and 
lack of available data.  Whatever the reasons for the suitability outcomes, the 
differences between the regions maybe a good thing, and could possibly indicate what 
contributes to the uniqueness and distinction of Willamette Valley wines, and may 
point toward further study into Pinot Noir geographic requirements.  In the above 
analysis, no data set was weighted higher than the other, all had equal influence.  A 
regression analysis can determine how much each data element impacts the 
Burgundy region in order to develop a predictive model for determining suitable Pinot 
Noir habitats in other areas.   
    
4.3 Logistical Regression 
A logistical, or logit, regression determines the importance of the independent 
variables and develops a predictive model (Sellars & Jolls, 2007, p. 1196).  Results 
are in a binary form 1 or 0 and show the relative importance of each independent 
variable upon the dependant variable.  This analysis explored a logistical regression to 
investigate the possibility of developing a predictive model for determining suitable 
Pinot Noir habitat locations in the Oregon study area.  A model based on the Cote 
D’Or and Cote Chalonnaise Burgundy sample data.  In this instance, a result of 1 
would represent a Pinot Noir vineyard region, and a 0 result represents a non-Pinot 
Noir vineyard region.  The resulting equation from the logit regression uses the spatial 
form of the data in GIS to determine the locations of the suitable Pinot Noir vineyard 
areas (Jennie & Ferrier, 2000, p. 128). 
 
4.3.1 Logistic Methodology 
The datasets used in the Suitability Analysis, were used as independent variables in 
the logit regression.  The same sample data used to determine the dominant data 
values of the Burgundy Vineyard areas for the Suitability Analysis, became the 
independent variable values whose y or dependant value equaled 1, a vineyard 
location.  The analysis required non-Vineyard samples of the data as well, for the logit 
regression to work.  These dependant variables were given the value of 0, and their 
independent data variable values were included so that the logit could determine 
which independent variables really contribute to the Burgundy Vineyards being a 
vineyard, or a 1.  The Non-Vineyard samples were taken in the same manner as 
before, using the ‘Sample’ tool in ArcGIS.   
  
4.3.2 Logit Data Preparation  
Data preparation included assigning dummy variables for each instance of an attribute, 
of independent variables whose values were nominal.  Dummy variables allow 
statistical analysis of categorical data (Hardy, 1993, p. 2).  In the example table 
excerpt below, Table 4.3, the nominal data set ‘soil_rckd’, or Soil Rock Depth, a 
dummy variable was assigned to each possible  
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Table 4.3 Soil Rock Depth Dummy Variables 

 
 
unique nominal value and then substituted for every occurrence of that unique value in 
the samples.  The logit regression included a total of 503 vineyard and non-vineyard 
samples of the data.  Dummy variables were assigned to represent each possible 
value of the Soil Rock Depth, Soil Texture, Soil Type, and Geology independent 
datasets. 
 
Next, random numbers, generated in Excel, reordered all of the data samples in order 
to eliminate any bias inherent in the original data order.  23 of the 503 sample points, 
approximately 22%, were set aside for validation of the resulting model.  The project 
data includes a copy of the original ordered dataset and a copy of the randomly 
ordered data.   
 
4.3.3 Logit Regression Execution 
Regression Analysis of Time Series (RATS) software performed the logit regression 
computations.  The software mandates that all of the data inputs have a variable to 
replace the name.  The following table 4.4 is a variable dictionary to understand the 
software’s logit output. 
         

Table 4.4 Logit Variable Definitions 
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The RATS software ran a total of seven regression iterations; each time the variables 
were evaluated and sometimes removed, depending upon their influence in the results 
of the iteration.  The final (seventh) iteration produced the following equation, 4.1: 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) )1128.0(9081.08047.0792.2529.0
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XXXXX
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⋅−+⋅+⋅+⋅+⋅−
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+⋅+⋅+⋅+⋅+⋅+⋅+−=

 
Equation 4.1 Vineyard Logit Equation 

 
It is interesting to note which variables fell out and which remained as a result of the 
logit process.  Most of the depth to rock variables remained except for the first one, 
DVSR1.  This makes since DVSR1 represents the values where there is no 
information.  The logit process retained only the variables representing the “Fine” and 
“Medium-Fine” texture categories, DVST3 and DVST4, indicating their importance in 
indicating a Burgundy vineyard.  The final iteration kept all of the Geology variables, 
except for the one representing the Precambrian age.  Slope and Aspect both survived 
the iterations.  Variables representing the average temperatures for the Budding and 
Growing segments of the growing season remained, as well as only the precipitation 
variable representing the Maturation segment of the growing season.  It is interesting 
to note that all three seasonal variables representing the soil water balance stayed, 
which could indicate an importance in determining a Burgundy Pinot Noir type 
vineyard.  It is just as intriguing that all soil type indicator variables dropped out of the 
equation.  This fact could come from the samples indicating no difference between the 
vineyard and non-vineyard samples of the soil type, therefore making it useless to 
determine vineyard status.   
 
Before applying the equation, it was tested using the original samples to see how well 
the equation worked in predicting vineyard or non-vineyard status, the dependant 
variable.  To accomplish this, the data samples were entered into an equation in Excel, 
and then these results were run through the prediction equation, 4.2.   
 

 
 

Equation 4.2 Logit Prediction 
 

EXP is the Microsoft Excel function used to raise the constant e, the base of the 
natural logarithm, to the power of the “Equation Result”.  The Prediction equation 
forces the results to be in a range between 0 and 1.  This process was done for all 503 
sample datasets, including the 23 test samples left out of the logit process.  Once the 
Prediction values were determined from the logit equation results, they were rounded 
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to 1 or 0 based on whether or not they fell above or below 0.5.  If above the 0.5 
threshold, a 1 was assigned, indicating a vineyard.  If the outcome was below 0.5, then 
a zero was assigned, indicating not a vineyard.  The Predicted Y was compared to the 
Original Y, Table 4.5. 
 

Table 4.5 Excerpt of Predicted Y versus Original Y 

 
 

From the table excerpt above, a total of 41 samples out of the 503 were predicted to 
be a vineyard, when in fact, not an actual vineyard.  Only 12 samples were predicted 
to not be a vineyard when it actually was a vineyard.  The prediction error is about 8% 
and 2% respectively.  When observing just the 23 values kept out of the logical 
regression process, the results are similar, Table 4.6. 
 

Table 4.6 Model Validation Values Comparison  
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Only 3, or 13%, of the 23 validation sub-set were mis-categorized as vineyard and 
none were mis-categorized as a non-vineyard.  With the logit equation determined and 
validated, it can now be applied to test the logit model. 
 
4.3.4 Logistic Model Applied to Burgundy 
The resulting logistic equation was applied to the Cote D’Or and Cote Chalonnaise 
Burgundy regions to further validate the Pinot Noir logit model.  Before the Burgundy 
raster datasets can be fed through the logit equation, the nominal raster data sets 
must be converted to variable indicator grids; grids which represent the presence or 
absence of each unique attribute of the nominal data grid (Warmerdam, 2003, p. 49).  
This action matches the logit regression dummy variable methodology so that the 
unique attributes can be used in the resulting logit equation.  Figure 4.13, represents 
the indicator raster dataset of a nominal Depth to Rock attribute. 
 

.  
 

Figure 4.13 Indicator Raster for a Depth to Rock Attribute 
 
Once the indicator raster sets were prepared, the logit model (Equation 4.1) was 
applied using the Burgundy raster datasets and the Single Output Map Algebra 
(SOMA) tool found in the ArcGIS Spatial Analyst tools.  The resulting surface is then 
fed into the prediction equation (Equation 4.2) using the SOMA tool, and then the 
resulting surface was rounded to 1’s or 0’s, again using the SOMA tool.  The resulting 
grid is an indicator surface where 1 means a vineyard area and 0 means not a 
vineyard area.  Figure 4.14 depicts the logit result, where we see the 1’s, or Vineyards, 
depicted in orange. 
 
 

(No presence of attribute) 

(Presence of attribute) 
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Figure 4.14 Logit Equation Results Indicating a Burgundy Vineyard 
 
With the Vineyard landcover overlaid, Figure 4.15 below, we see that the model 
prediction matches the observed map quite well. 
 

 
 

Figure 4.15 Logit Results with Vineyard Landcover Overlaid 
 

When observing the whole region, the logit model also captures the other varietals 
growing in the region, as Figure 4.16 depicts. 



 65 

  

 
 

Figure 4.16 Logit Results for the Entire Burgundy Region 
 
The results indicate the logit model predicts whether it is a Burgundy varietal growing 
region, not just Pinot Noir.  This is probably due to the coarseness of the regional data 
which these results indicate that they may not have the resolution necessary to isolate 
the Pinot Noir varietal from the other Burgundy varietals.  The varietal data shown in 
Figure 4.16 above only shows the dominant varietal grown in each region, but in 
reality, a mix of the other local varietals grow as well.  Chardonnay and Gamay, are 
grown in the region as well, just in smaller numbers.  At a regional scale, the results 
may also indicate that Pinot Noir, Chardonnay, and Gamay varietals all share the 
same growing habitat requirements.  Regardless of the results, it is still an interesting 
exercise to apply the logit equation to the Willamette Valley in Oregon to at least see if 
that region contains the same potential to grow Burgundy varietals. 
  
4.3.5 Logistic Model Applied to Willamette Valley 
In order to apply the logistic equation to the Willamette Valley datasets, the nominal 
data grids first must be separated out into variable indicator grids; grids which 
represent the presence or absence of each unique attribute of the nominal data 
(Warmerdam, 2003, p. 49).  Figure 4.17 depicts the presence or absence of a unique 
nominal attribute of the Depth to Rock dataset.  
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Figure 4.17 Indicator Grid for a Depth to Rock Dummy Variables 

 
This step is necessary because of the dummy variable process produces a coefficient 
for each unique value of the nominal dataset in the resulting logit equation.  Once this 
step is completed for all of the dummy variables, the indicator grids, along with the 
numerical data grids, are fed through the determined logit equation (Equation 4.1) 
using the ArcGIS SOMA tool.  The resulting surface is then fed into the prediction 
equation (Equation 4.2) using the SOMA tool, and then that surface is rounded to 1’s 
or 0’s, again using the SOMA tool.  The resulting grid is an indicator surface where 1 
means a vineyard and 0 means not a vineyard.  Figure 4.18 depicts the predicted 1’s, 
vineyards, in green, overlaid on the Suitability Analysis surface created earlier in the 
study.  

 
 

(No presence of attribute) 

(Presence of attribute) 
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Figure 4.18 Logit Results Overlaid Suitability Results 
 

The figure shows very interesting results; the predicted vineyard areas, in green, 
actually being located within the Willamette Valley high suitability area, darker red.  
Overlaying the Vines and Berries category from the Land Use/Land Cover dataset in 
Figure 4.19 gives a little more validation to the results. 

 

 

Study Area 
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Figure 4.19 Logit Results with Land Cover Overlaid 
 

To explain why the logit vineyard results do not line up with a majority of the suitability 
results or the Oregon vines/berries land cover, one must examine the data sets used 
in the model.  Figure 4.20 shows the difference of data set values between a 
‘Vineyard’ classified area, and a ‘Non-Vineyard’ classified area in the Willamette 
Valley.   
 

 
 

 

Study Area 
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Figure 4.20 Data Values Comparison, a Vineyard on the Left and Non-Vineyard on the Right 
    
It looks as though Geology is the only major difference between two data points, which 
are located near each other, but classified differently.  This difference occurred, 
because the coefficients for Geology and Rock Depth are weighted the highest in the 
logit equation (Equation 4.1).  This is where the Suitability Analysis may be more 
forgiving than the logit regression.  The above geology differences are only an epoch 
off, but still would be given some weight in a Suitability Analysis; whereas, the logit 
model is pretty rigid. 
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5.0 Summary and Conclusion 
This analysis attempted to test the client’s terroir habitat concept using a traditional 
GIS Suitability Analysis and logit regression approach.  The results of the Suitability 
Analysis proved it is a viable approach to locate areas capable of growing certain 
varietals based on ideal habitat parameters.  Better data and data refinement may 
further improve the suitability results.  Results showing less than perfect suitability may 
indicate adaptability of varietal to non-ideal conditions.  The logit regression approach 
showed promise, but did not quite give the desired results.  Again, data refinement 
might lead to superior results.  The logit approach warrants further investigation.         
 
Next steps in this analysis might be to re-run the logit regression without the nominal 
data.  The nominal data turned out to have very high coefficients compared to those of 
the numerical data.  It would be interesting to separate the nominal data from the 
numerical data and run the logit regression again to compare the results.  The logit 
regression results may reflect the suitability results if run separately.  As more data 
become freely available, a future step could be to acquire higher resolution data over 
the parent and test sites and run the analysis again for specific varietal site selection.  
Once the approach is verified, it could be tested further over areas not currently 
growing grapes followed by field test growing.  Another research tangent may include 
gathering suitable characteristics from all known Pinot Noir growing areas to further 
refine suitability requirements.  
 
Other direction options one could pursue would include examining Co-Kriging to see if 
more accurate results could be obtained for the climate data interpolation.  Co-Kriging 
with the SRTM 90 elevation data set was initially tried, but this data set is too dense for 
the Geostatistical Analyst.  In the future, a 1km resolution DEM may be more 
appropriate to use.  Co-Kriging with a distance from the coast raster as a secondary 
dataset was tried, but it seemed to have no effect on the outcome of the prediction.  
The reason for this is probably due to the fact that the area covered by the weather 
station points for each area is relatively small and varies little.  Distance from the coast 
may be more appropriate at a much smaller scale where the stations vary greatly.  For 
future work in generating climate surfaces, Co-kriging could be utilized with other 
potential influencing data sets, such as wind speed and direction, or a coarse elevation 
data set.   
 
Given good data, these approaches may be useful in determining naturally occurring 
sustainable viticulture areas, where irrigation is not required.  Scientists could also use 
this methodology for climate change studies modeling impacts in current viticulture 
areas.  Finally, given higher resolution data, these methodologies could be used by 
prospective vineyard buyers to select prime locations for specific varietals.  Just as in 
the days of old, the hunt for great vineyard sites continues. 
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APPENDIX A 
The full attribute description for all possible Food and Agriculture Organization 

(FAO) 85 attributes. 
 

FAO85-FULL  
Attribute Full Description 
 No information 
A Acrisol 
Af Ferric Acrisol 
Ag Gleyic Acrisol 
Ah Humic Acrisol 
Ao Orthic Acrisol 
Ap Plinthic Acrisol 
B Cambisol 
Ba Calcaric Cambisol 
Bc Chromic Cambisol 

Bcc Calcaro-Chromic Cambisol 
Bch Humo-Chromic Cambisol 
Bck Calci-Chromic Cambisol 
Bcr Rhodo-Chromic Cambisol 
Bd Dystric Cambisol 
Bda Ando-Dystric Cambisol 
Bdg Gleyo-Dystric Cambisol 
Bds Spodo-Dystric Cambisol 
Be Eutric Cambisol 
Bea Ando-Eutric Cambisol 
Bec Calcaro-Eutric Cambisol 
Bef Fluvi-Eutric Cambisol 
Beg Gleyo-Eutric Cambisol 
Bev Verti-Eutric Cambisol 
Bf Ferralic Cambisol 
Bg Gleyic Cambisol 
Bgc Calcaro-Gleyic Cambisol 
Bge Eutri-Gleyic Cambisol 
Bgg Stagno-Gleyic Cambisol 
Bgs Spodo-Gleyic Cambisol 
Bgv Verti-Gleyic Cambisol (?) 
Bh Humic Cambisol 
Bhc Calcaro-Humic Cambisol 
Bk Calcic Cambisol 
Bkf Fluvi-Calcic Cambisol 
Bkh Humo-Calcic Cambisol 
Bkv Verti-Calcic Cambisol 
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Bm Mollic Cambisol 
Bv Vertic Cambisol 
Bvc Calcaro-Vertic Cambisol 
Bvg Gleyo-Vertic Cambisol 
Bvk Calci-Vertic Cambisol 
Bx Gelic Cambisol 
Bxs Spodo-Gelic Cambisol 
C Chernozem 
Cg Gleyic Chernozem 
Ch Haplic Chernozem 
Chp Pachi-Haplic Chernozem 
Chv Verti-Haplic Chernozem 
Ck Calcic Chernozem 
Ckb Vermi-Calcic Chernozem 
Ckc Calcaro-Calcic Chernozem 
Ckcb Vermi-Calcaro-Calcic Chernozem 
Ckp Pachi-Calcic Chernozem 
Cl Luvic Chernozem 
D Podzoluvisol 
Dd Dystric Podzoluvisol 
De Eutric Podzoluvisol 
Dg Gleyic Podzoluvisol 
Dgd Dystric Gleyic Podzoluvisol 
Dge Eutric Gleyic Podzoluvisol 
Dgs Stagno-Gleyic Podzoluvisol 
E Rendzina 
Ec Cambic Rendzina 
Eh Histic Rendzina 
Eo Orthic Rendzina 
F Ferralsol 
Fo Orthic Ferralsol 
G Gleysol 
Gc Calcaric Gleysol 
Gcf Fluvi-Calcaric Gleysol 
Gcs Stagno-Calcaric Gleysol 
Gd Dystric Gleysol 
Gdf Fluvi-Dystric Gleysol 
Gds Stagno-Dystric Gleysol 
Ge Eutric Gleysol 
Gef Fluvi-Eutric Gleysol 
Ges Stagno-Eutric Gleysol 
Gev Verti-Eutric Gleysol 
Gf Fluvic Gleysol 
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Gfm Molli-Fluvic Gleysol 
Gh Humic Gleysol 
Ghf Fluvi-Humic Gleysol 
Ghh Histo-Humic Gleysol 
Ght Thioni-Humic Gleysol 
Gi Histic Gleysol 
Gih Humo-Histic Gleysol 
Gl Luvic Gleysol 
Gls Stagno-Luvic Gleysol 
Gm Mollic Gleysol 
Gmc Calcaro-Mollic Gleysol 
Gmf Fluvi-Mollic Gleysol 
Gmv Verti-Mollic Gleysol 
Gs Stagnic Gleysol 
Gt Thionic Gleysol 
Gtz Undefined code 
Gx Gelic Gleysol 
H Phaeozem 
Hc Calcaric Phaeozem 
Hcb Vermi-Calcaric Phaeozem 
Hcf Fluvi-Calcaric Phaeozem 
Hcn Alkalino-Calcaric Phaeozem 
Hcs Saline-Calcaric Phaeozem 
Hg Gleyic Phaeozem 
Hgc Calcaro-Gleyic Phaeozem 
Hgf Fluvi-Gleyic Phaeozem 
Hgs Stagno-Gleyic Phaeozem 
Hgv Verti-Gleyic Phaeozem 
Hh Haplic Phaeozem 
Hhv Verti-Haplic Phaeozem 
Hl Luvic Phaeozem 
Hlv Verti-Luvic Phaeozem 
Ho Orthic Phaeozem 
I Lithosol 
Ic Calcaric Lithosol 
Ich Humo-Calcaric Lithosol 
Id Dystric Lithosol 
Ie Eutric Lithosol 
J Fluvisol 
Jc Calcaric Fluvisol 
Jcf Fluvi-Calcaric Fluvisol 
Jcg Gleyo-Calcaric Fluvisol 
Jd Dystric Fluvisol 
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Jdf Fluvi-Dystric Fluvisol 
Jdg Gleyo-Dystric Fluvisol 
Je Eutric Fluvisol 
Jef Fluvi-Eutric Fluvisol 
Jeg Gleyo-Eutric Fluvisol 
Jm Mollic Fluvisol 
Jmg Gleyo-Mollic Fluvisol 
Jmv Verti-Mollic Fluvisol 
Jt Thionic Fluvisol 
K Kastanozem 
Kh Haplic Kastanozem 
Khb Vermi-Haplic Kastanozem 
Kk Calcic Kastanozem 
Kkb Vermi-Calcic Kastanozem 
Kkv Verti-Calcic Kastanozem 
Kl Luvic Kastanozem 
Ko Orthic Kastanozem 
L Luvisol 
La Albic Luvisol 
Lap Plano-Albic Luvisol 
Lc Chromic Luvisol 
Lcp Plano-Chromic Luvisol 
Lcr Rhodo-Chromic Luvisol 
Lcv Verti-Chromic Luvisol 
Ld Dystric Luvisol 
Ldg Gleyo-Dystric Luvisol 
Lf Ferric Luvisol 
Lg Gleyic Luvisol 
Lga Albo-Gleyic Luvisol 
Lgp Plano-Gleyic Luvisol 
Lgs Stagno-Gleyic Luvisol 
Lh Humic Luvisol 
Lk Calcic Luvisol 
Lkc Chromo-Calcic Luvisol 
Lkcr Rhodo-Chromo-Calcic Luvisol 
Lkv Verti-Calcic Luvisol 
Lo Orthic Luvisol 
Lop Plano-Orthic Luvisol 
Lp Plinthic Luvisol 
Ls Spodic Luvisol 
Lv Vertic Luvisol 
Lvc Chromo-Vertic Luvisol 
Lvcr Rhodo-Chromo-Vertic Luvisol 
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Lvk Calci-Vertic Luvisol 
M Greyzem 
Mo Orthic Greyzem 
Nc Cambic Nitosol 
O Histosol 
Od Dystric Histosol 
Odp Placi-Dystric Histosol 
Oe Eutric Histosol 
Ox Gelic Histosol 
P Podzol 
Pf Ferric Podzol 
Pg Gleyic Podzol 
Pgh Histo-Gleyic Podzol 
Pgs Stagno-Gleyic Podzol 
Ph Humic Podzol 
Phf Ferro-Humic Podzol 
Pl Leptic Podzol 
Plh Humo-Leptic Podzol 
Po Orthic Podzol 
Pof Ferro-Orthic Podzol 
Poh Humo-Orthic Podzol 
Pol Lepto-Orthic Podzol 
Pp Placic Podzol 
Pph Humo-Placic Podzol 
Q Arenosol 
Qa Albic Arenosol 
Qc Cambic Arenosol 
Qcc Calcaro-Cambic Arenosol 
Qcd Dystri-Cambic Arenosol 
Qcg Gleyo-Cambic Arenosol 
Qcs Spodo-Cambic Arenosol 
Qh Humic Arenosol 
Ql Luvic Arenosol 
Qld Dystri-Luvic Arenosol 
Qlg Gleyo-Luvic Arenosol 
R Regosol 
Rc Calcaric Regosol 
Rd Dystric Regosol 
Rds Undefined code 
Re Eutric Regosol 
Rx Gelic Regosol 
S Solonetz 
Sg Gleyic Solonetz 
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Sm Mollic Solonetz 
So Orthic Solonetz 
Sof Fluvi-Orthic Solonetz 
T Andosol 
Th Humic Andosol 
Tm Mollic Andosol 
To Ochric Andosol 
Tv Vitric Andosol 
U Ranker 
Ud Dystric Ranker 
Ul Luvic Ranker 
V Vertisol 
Vc Chromic Vertisol 
Vcc Calcaro-Chromic Vertisol 
Vg Gleyic Vertisol 
Vgs Undefined code 
Vp Pellic Vertisol 
Vpc Calcaro-Pellic Vertisol 
Vpg Gleyo-Pellic Vertisol 
Vpn Sodi-Pellic Vertisol 
W Planosol 
Wd Dystric Planosol 
Wdv Verti-Dystric Planosol 
We Eutric Planosol 
Wev Verti-Eutric Planosol 
Wh Humic Planosol 
Wm Mollic Planosol 
Ws Solodic Planosol 
X Xerosol 
Xk Calcic Xerosol 
Xl Luvic Xerosol 
Xy Gypsic Xerosol 
Z Solonchak 
Zg Gleyic Solonchak 
Zgf Fluvi-Gleyic Solonchak 
Zo Orthic Solonchak 
Zt Takyric Solonchak 
p Plaggensol 
111 Town 
222 Soil disturbed by man 
333 Water body 

444 Marsh 
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555 Glacier 
666 Rock outcrops 
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APPENDIX B 
Geologic Time Scale 
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Appendix C 
Dominant Data Values of Burgundy France 
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