The University of Maine Digital Commons @UMaine

Earth Science Faculty Scholarship

Earth Sciences

2009

Correction to Variations of Ice Bed Coupling Beneath and Beyond Ice Streams: The Force Balance

Terence J. Hughes *University of Maine - Main*, terry.hughes@maine.edu

Follow this and additional works at: https://digitalcommons.library.umaine.edu/ers_facpub
Part of the Earth Sciences Commons

Repository Citation

Hughes, Terence J., "Correction to Variations of Ice Bed Coupling Beneath and Beyond Ice Streams: The Force Balance" (2009). Earth Science Faculty Scholarship. 159.

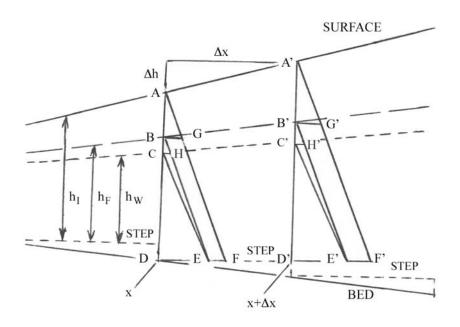
https://digitalcommons.library.umaine.edu/ers_facpub/159

This Other is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Earth Science Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.

Correction to "Variations of ice bed coupling beneath and beyond ice streams: The force balance"

T. Hughes

Received 4 March 2009; published 21 April 2009.


Citation: Hughes, T. (2009), Correction to "Variations of ice bed coupling beneath and beyond ice streams: The force balance," *J. Geophys. Res.*, 114, B04499, doi:10.1029/2009JB006426.

- [1] In the paper "Variations of ice bed coupling beneath and beyond ice streams: The force balance" by T. Hughes (*Journal of Geophysical Research*, 114, B01410, doi:10.1029/2008JB005714, 2009), Table 1 and Figure A1 are corrected and the following text corrections.
 - [2] In Figure 3 caption, change $1 < \varphi < 0$ to $1 > \varphi > 0$.
- [3] At the end of paragraph 27, change $\phi_I = w_F/w_I = P^*_W/P_I$ to $\phi = w_F/w_I = P^*_W/P_I$.
- [4] Rebreak first two rows of equations in paragraph 66 as follows:

$$F_R = 2\tau_S h_I \Delta x = F_G = (B'E'F'G' - BEFG)w_I$$

$$2\tau_S(h_I/w_I)\Delta x = B'E'F'G' - BEFG = \Delta(BEFG)$$

= $\rho_I g \Delta [h_I^2 \phi (1-\phi)]$

T. Hughes, Department of Earth Sciences, Climate Change Institute, University of Maine, 5790 Edward T. Bryand Global Science Center, Room 223, Orono, ME 04469-5790, USA. (terry.hughes@maine.edu)

Figure A1. Gravitational forces along x represented geometrically.

B04499 1 of 2

Table 1. Kinematic Stresses Linked to Floating Fraction $\phi = w_F/w_I$ of Ice and Longitudinal Gravitational Forces Numbered in Figure 7 for the Geometrical Force Balance

Effective Stress	Formula	Equation Number in Text
Basal water pressure at x, from gravity force 3	$\overline{P}_W^* = ho_W g h_W$	(3)
Ice overburden pressure at x , from gravity force $(1 + 2 + 3 + 4)$	$P_I = \rho_I g h_I$	(2)
Upslope tensile stress at x, from gravity force 4	$\sigma_T = \overline{P}_I (1 - \rho_I / \rho_W) \phi^2$	(17)
Downslope water pressure stress at x , from gravity force 3	$\sigma_W = \overline{P}_I(\rho_I/\rho_W)\phi^2$	(16)
Upslope flotation stress at x from gravity force $(3 + 4)$	$\sigma_F = \sigma_T + \sigma_W = \overline{P}_I \phi^2$	(15)
Longitudinal force balance at x from gravity force $[(5+6+7+8)-(1+2+3+4)]$	$P_I\alpha = \partial(\sigma_F h_I)/\partial x + \tau_O + 2\tau_S(h_I/w_I)$	(33)
Flotation force gradient at x from gravity force $[(7 + 8) - (3 + 4)]$	$\partial(\sigma_F h_I)/\partial x = P_I \phi(\phi \alpha_I + h_I \partial \phi/\partial x)$	(32)
Basal shear stress at x from gravity force $(5-1)$	$\tau_O = P_I (1 - \phi)^2 \alpha - P_I h_I (1 - \phi) \partial \phi / \partial x$	(28)
Side shear stress at x from gravity force (6–2)	$\tau_S = P_I(w_I/h_I)\phi(1-\phi)\alpha + \overline{P}_Iw_I(1-2\phi)\partial\phi/\partial x$	(29)
Average downslope basal shear stress to <i>x</i> from gravity force 1	$\overline{\tau}_O = \overline{P}_I w_I h_I (1 - \phi)^2 / (w_I x + A_R)$	(21)
Average downslope side shear stress to <i>x</i> from gravity force 2	$\overline{\tau}_S = P_I w_I h_I \phi (1 - \phi) / \left(2\overline{h}_I x + 2L_S \overline{h}_S + C_R \overline{h}_R \right)$	(22)
Downslope compressive stress at x due to $\overline{\tau}_{\rm O}$ and $\overline{\tau}_{\rm S}$ along x and σ_W at $x=0$	$\sigma_C = \overline{P}_I - \sigma_T = \overline{P}_I - \overline{P}_I (1 - \rho_I/\rho_W)\phi^2$	(18)
First-order floating fraction of ice at x	$\phi = h_O/h_I$	(24)