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JoumalojGlac;ology, Vol. 29. No. 101. 1983 

ON THE DISINTEGRATION OF ICE SHELVES: 
THE ROLE OF FRACTURE 

By T. HUGHES 

(Department of Geological Sciences and Institute for Quarternary Studies, University of Maine 

at Orono, Orono, Maine 04469, U.S. A. ) 

ABSTRACT. Crevasses can be ignored in studying the dynamics of most glaciers because they are only about 

20 m deep, a small fraction of ice thickness. In ice shelves, however, surface crevasses 20 m deep often reach sea

level and bottom crevasses can move upward to sea-level (Clough, 1 974; Weertman, 1 980). The ice shelf is 

fractured completely through if surface and basal crevasses meet (Barrett, 1 975; Hughes, 1979). This is especially 

likely if surface melt water fills surface crevasses (Weertman, 1 9 73; Pfeffer, 1 982; Fastook and Schmidt, 1 982). 

Fracture may therefore play an important role i n  the disintegration of ice shelves. Two fracture criteria which can 

be evaluated experimentally and applied to ice shelves, are presented. Fracture is then examined for the general 

strain field of an ice shelf and for local strain fields caused by shear rupture alongside ice streams entering the ice 

shelf, fatigue rupture along ice shelf grounding lines, and buckling up-stream from ice rises. The effect of these 

fracture patterns on the stability of Antarctic ice shelves and the West Antarctic ice sheet is then discussed. 

RESUME. Sur la desintegration des plateformes glaciaires: Le role de la jraclUration. Dans I'etude de la 
dynamique de la piu part des glaciers on peut negliger I'action des crevasses parce que leur profondeur, seulement 

de I'ordre de 20 m, n'est qu'une faible fraction de I'epaisseur totale de glace. Dans la plateforme glaciaire, au 

contraire, les  crevasses d e  s urface peuvent atteindre le niveau de le mer et  les crevasses de fond remonter jusqu'<i 

ce niveau (Clough, 1 9 74; Weertman, 1 980). La plateforme est fracturee de part en part si les crevasses de fond et 

de surface se rencontrent (Barrett, 1 975; Hughes, 1 979). Ceci est specialement frequent si I'eau de fusion remplit 

les crevasses de surface (Weertman, 1 973; Pfeffer, 1982; Fastook et Schmidt, 1 982). La fracturation peut donc 

jouer un role important dans la desintegration de la plateforme. On presente deux indicateurs de fracturation qui 

peuvent et re estimes experimentalement et appliques aux plateformes glaciaires. La fracturation est alors examinee 

en fonction du champ general des contraintes dans une masse de glace, des champs de contraintes locaux causes 

par les ruptures au cisaillement le long des fl uxes de glace entrant la plateforme, les ruptures dues <i la  fatigue le 

long de la ligne de decollement du sol, la poussee vers I'amont due aux domes insulaires de glace. L'effet de ces 

types de fracturation sur la stabilite des plateformes glaciaires de I' Antarctique et de la calotte glaciaire Ouest 

A ntarctique est ensuite discute. 

ZUSAMMENFASSUNG. Ober die Auj70sung von Schelfeisen: Die RoUe der Bruchbildung. Dynamische Studien 

konnen bei den meisten Gletschern deren Spalten ausser Betracht lassen, da deren Tiefe nur etwa 20 m, also einen 

kleinen Bruchteil der Eisdicke, betragt. In Schelfeisen jedoch reichen 20 m tiefe Oberflachenspalten oft bis auf das 

Meeresniveau, wahrend Spalten am Untergru n d  sich bis zum Meeresspiegel nach oben offnen konnen (Clough, 

1 974;  Weertman 1 980). Das Schelfeis bricht vollig durch, wenn sich Spalten von oben und unten treffen (Barrett, 

1 9 75; Hughes, 1 97 9). Dies ist besonders wahrscheinlich, wenn Schmelzwasser O berflachenspalten fUllt 

(Weertman, 1 973; Pfeffer, 1982; Fastook und Schmidt, 1 982). Spaltenbildung diirfte daher eine wesentliche Rolle 

bei der Auflosung von Schelfeisen spielen. Es werden zwei Bruchkriterien, die experimentell ausgewertet und auf 

Schelfeise angewandt werden konnen, dargestellt. Die Bruchbildung wird dann fiir das allgemeine Spannungsfeld 

eines Schelfeises und fiir lokale Spannungsfelder, verursacht d urch Scherbriiche liings Eisstromen, die dem 

Schelfeis zufliessen, durch Ermiidungsbriiche liings Abhublinien des Schelfeises und durch Aufwartsstromen an 

Eisaufwolbungen untersucht. Die Wirkung dieser Bruchmuster auf die Stabilitat antarktischer Schelfeise und auf 

den westantarktischen Eisschild wird diskutiert. 

INTRODUCTION 

Fracture is a process that has received little attention among glaciologists, but it may be a 
critical process in ice-shelf dynamics. Since both surface and basal crevasses exist in ice shelves. 
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and they can join to fracture the whole ice thickness (Barrett, 1975; Hughes, 1979). a fracture 
criterion that can be applied to ice shelves should be developed. Figure 1 shows the distribution 

of Antarctic ice shelves. The CLlMAP ice-sheet disintegration model predicts that the marine 

West Antarctic ice sheet would collapse were it not buttressed by ice shelves (Stuiver and others. 

1981). Disintegration of these buttressing ice shelves would probably be controlled by fracture. 

Figure 2 shows the kinds of fracture patterns that exist in Antarctic ice shelves. Shear 

rupture crevasses are shown alongside the floating tongue of Byrd Glacier (1), shear/fatigue 
rupture crevasses are shown around Crary Ice Rise (2) and in Fashion Lane along the Shirase 
Coast (3), radial crevasses are shown for bending converging flow around Minna Bluff (4) and 
for radially diverging flow in the freely-floating tongue of Stancomb-Wills Glacier (6), and 

transverse crevasses are shown in the Grand Chasms of Filchner Ice Shelf (5) .  Crevasses 
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Fig, I. Amarclic identification map. Shown are the edge oJ the continental shelf (broken line), tidewater calving 

margins (solid line), ice-shelf calving margins (halchured lines), ice-shelf grounding lines (dotted lines), ice 

divides (dashed lines), and regions oJmountain glaciation (black areas). 
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Fig. 2. Characlerislic crevasse pal/erns in Anlarclic ice shelves. Crevasses associaled with weak links include shear 
rupture alongside the jloating tongues of ice streams (J, lateral rifts oJ Byrd Glacier tongue, long. 161° E., 

lat. 80.2° S., Hughes, 1 977), Jatigue rupture around ice rises (2, "horst and graben" rifts in the lee oJ Crary Ice 

Rise, long. 171 ° w., lat. 83° S., Barrel/, 1 975), shear-J atigue rupture along lateral grounding lines (3, "Fashion 

Lane" along the Shirase Coast, long. 151° W., lat. 79.5° S., Thiel and Ostenso, 1 975). Crevasses associated with 
the general slrain field include shear crevasses Jrom bending converging jlow (4, radial crevasses around Minna 

Bluff, long. 167° E., lat. 78.5° S., see Hughes, 1 977, fig. 26J), transverse crevasses Jrom straighl parallel jlow 

(5, The Grand Chasms on the Filchner Ice Shelf, long. 40" W., lat. 78.7° S., American Geographical Society, 

1 970), and longitudinal crevasses Jrom radially diverging jlow (6, crevasses normal to the calving Jrollt oJ 

Stancomb-WiIls Glacier Tongue (long. 22° W., lat. 75.0° S., A merican Geographical Society, 1970). 

disintegrate the ice shelf along its calving front and weaken its links to the ice streams that feed it, 

to the ice rises that anchor it to the sea floor, and to the sides of the embayment where it is 
confined. 

The fracture criterion used in this paper is based on the concept of a critical fracture strain. 
Strain energy accumulated at grain boundaries in polycrystalline ice is released when a critical 
strain triggers viscoplastic instability. Strain energy is relieved rapidly by fracture and slowly by 
recrystallization. Ice moving from the grounding line to the calving front of an ice shelf passes 

through a strain field that is constantly changing as a result of both general flow and deformation 
at weak links. Strain energy in the moving ice is minimized if the ice fabric changes continuously 
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in order to be always compatible with the changing strain field, thereby obeying Neumann's 

Principle (Nye, 1960, p. 20-24, p. 104). An ice fabric that is stable for a given strain field 

becomes metastable as the strain field changes and is unstable when strain energy is maximized 
at a critical strain. Further strain causes fracture or recrystallization. Recrystallization reduces 
strain energy by creating a new ice fabric that is stable in the new strain field. Strain hardening 

and primary creep occur before recrystallization. Strain softening and tertiary creep occur 
during recrystallization. The critical strain is the strain of viscoplastic instability. If this strain 
requires a stress that exceeds the fracture stress, the ice will crack instead of recrystallizing. 

Crevasses open on ice shelves where strain energy is reduced by fracture instead of by 

recrystallization. Tertiary creep reflects both recrystallization and crack propagation. 

Figure 3 shows schematically how strain e varies with strain energy E, stress a, and time t 
during a recrystallization episode as ice moves through the changing strain field of an ice shelf. 
The flow curve shows the variation of 0 with e, where do/de is positive during strain hardening 
and negative during strain softening. Strains for which do/de = ° exist at an upper yield stress 
where recrystallization begins and a lower yield stress where recrystallization ends. Fracture and 

crevassing, if present, begin at the upper yield stress. The creep curve shows the variation of e 
with (, where strain-rate i; decreases during primary creep and increases during tertiary creep. 

Secondary creep occurs when i; is constant during stable and unstable steady-state flow. 

Unstable flow occurs when strain hardening is exactly cancelled by strain softening at the 

beginning of recrystallization, and results in slow secondary creep. Stable flow occurs after 

recrystallization is complete, and results in fast secondary creep. Crevasses that open during 
slow secondary creep propagate through the ice shelf during tertiary creep. 

Three common constitutive equations are used to relate stress a, strain e, strain-rate i;, and 

time t to each other in Figure 3. For the flow curve: 

e=(a/as)S (I ) 

where i; is kept constant (Dieter, 1961, p. 247). For the creep curve: 

e = (i;c!)C (2) 
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Fig. 3. COlldiliolls for recryslallizalion or fracture in poly· 

crystalline ice. The dependence a/strain e with strain energy E, 

stress D, and time t has critical values al the elastic limit strain 

e. when strain hardening and transiel!l creep begin, at the 

strain 0/ viscoplastic instability e. when strain softening and 

recrystallization begin, and at strain er when strain softening 
and recrystallization end. Metastable equilibrium exists until 

e., unstable equilibrium exists at e., and stable equilibrium 

exists beyond er. Fracture occurs if recrystallization is unable 

to relieve the strain energy, with briule fracture occurring 

instantaneously at e. and ductile /ractllre occurring 

progressively/rom e. onward. 
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where a is kept constant (Dieter, 1961, p. 348). For the steady-state or secondary creep: 

e = (a/A)n (3) 

where de/dl = 0 (Dieter, 1961, p. 350). Temperature T is kept constant in Equations ( I) through 

(3). as is a strength coefficient, s is a strength exponent, ec is a strain-rate coefficient, c is a creep 
exponent. A is a hardness coefficient, and n is a viscoplastic exponent. For elastic strain, as is the 

elastic modulus and s = I . For viscoplastic strain, as is a viscoplastic modulus, a = av is an upper 
yield stress when viscoplastic instability triggers recrystallization, a = ar is a lower yield stress 
when recrystallization is complete, s ---> 0 at these yield stresses, s> I during strain hardening, 
s < 0 during strain softening, 0 < c < 1 during primary creep, c= I during both slow and fast 
secondary creep, and c > 1 during tertiary creep. 

Figure 4 shows the viscoplastic spectrum for secondary steady-state creep, and illustrates the 

basis for two fracture criteria. In the viscoplastic creep spectrum, n= I and A ='70 is the fluid 

viscosity for viscous flow and n = wand A = ao is the yield stress for plastic flow. The effective 
viscosity for viscoplastic flow is obtained by differentiating Equation (3): 

da An a 170 '7v=-. = ---=-. =-. 
de na"-1 ne n 

(4) 

Equation (4) is plotted in Figure 5. 

FRACTURE CRITERIA FOR ICE 

Consider principal stresses ak where k= 1 , 2, 3 in tensor notation. Let al be the maximum 

principal stress and a2 be the minimum principal stress on the surface of an ice shelf. Fracture 
occurs when the maximum shear stress Tm = hal - a2) reaches the viscoplastic yield stress av. In 
order to specify av it is useful to rewrite Equation (3) in the form with a = Tm : 

(5) 

where ao is the plastic yield stress where viscoplastic instability, followed by recrystallization or 

(�) 
--�----

--

n::l.S 

L....-__ __ __ �) 

Fig. 4. The viscoplastic spectrum for steady-state creep and two 

criteria for viscoplastic yielding. A sharp knee develops in 

stress-strain rate curves when the viscoplastic exponent n 

increases, where em is the strain-rate at the maximum shear 

stress Tm, eo is the strain rate at the plastic yield stress ao and 
em/eO = (Tm/aO)"' Viscoplastic yielding occurs at the knee in the 

maximum stress-curvature yield criterion and at the stress 

intercept of the tangent line at eo in the critical strain rate yield 

criterion. For n = 3, ay =0.386ao at the knee and ay =O.667ao 

at the stress intercept. 
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Fig. 5. Variations of yield stress and viscosity across the 

viscoplastic spectrum of steady-state creep. Ratios of 

viscoplastic yield stress Ov and plastic yield stress 00 increase 

with the viscoplastic exponent n according fo Equation (8) for 

the maximum stress-curvature yield criterion (broken curve) 

and according to Equation (10}/or the critical strain-rate yield 
9 10 criterion (dashed curve). The ratio of effective viscosity IJv and 

fluid viscosity 1J0 decreases with increasillg n (solid curve). 

fracture, occurs at a critical strain-rate 

(6) 

If recrystallization occurs, strain softening causes rm to drop and fracture is prevented. With 
fracture, rm = ay is maintained at the tip of an opening crevasse only if the tip moves into the ice. 

Figure 4 illustrates two criteria for specifying ay. In the maximum stress-curvature criterion. 
ay is the stress at which rm changes most rapidly with respect to em. The radius of stress 
curvature obtained from Equation (5) is 

[I + 112(rm/aO)2n-2]3/2 

n(n - l)(rm/ao)"-2 

Setting dRo/d(rmlao)=0 at the maximum stress curvature where rm =ay gives 

�_[ 11 - 2 
] 

1/(2n-2) 

ao - 2(11- I)n2 

(7) 

(8) 

In the critical strain-rate criterion, ay is the value of rm at em =0 that is obtained at the stress 
intercept of straight lines that are tangent to curves of (rm/ao) versus (em leo) at critical strain-rate 
em = eo. The equation of these straight lines is 

(9) 
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Setting Im = 00 at Cm = Co and differentiating Equation (5) to obtain dIm /dcm = oo/nco gives 

00 n 
Figure 5 compares Equations (8) and (10) over the same range of 11. 

(10) 

The value of 0o is related to the value of A, which depends on the density, fabric, texture. and 
purity of glacial ice. For polycrystalline ice having maximum density PI and high purity, Baker 
(1981) has obtained the following relationship between the effective stress, and the effective 
strain rate C during steady-state creep: 

(I I) 

where B is a constant. d is crystal size, / is fabric intensity, Q is thermal activation energy, T is 
absolute temperature, and k is Boltzmann's constant. Density P increases substantially with 
depth through an ice shelf, and hardness increases with density. I f  A rx(P/PIt and K� I .  
Equation (I  I )  gives 

( P )K exp (Q/3 kT) ( p ) exp (Q/3 kT) A � p; (Bd3.I45/0.997)1/3 � P; BI/3d/I/3 . (12) 

Variations of p, d, J, and T with depth in Antarctic ice shelves can be obtained from the data 
published by Gow (1963 ). 

Laboratory fracture tests can be conducted to determine whether Equation (8) or Equation 
(10) provides the best fracture criterion for ice. Figure 4 shows that when 'm = Ov fracture occurs 
at Cm = Co for any value of n when Equation (10) is employed. The value of 00 is therefore 
obtained from Equation (6) for Co = 1(cl - 62) measured at the moment of fracture and A 
computed from Equation (12) for given values of d, J, and T, where P = PI for bubble-free ice. 
The state of stress also allows 0v = !(OI -02) to be determined at the moment of the fracture. 
Since 11=3 for ice, Equation (10) applies if (ov/oo) =0.667, as determined by fracture 
experiments. If this test fails, Equation (8) must apply. 

FRACTURE FOR SHELF FLOW 

Flow in an ice shelf is determined by the geometry of its confining embayment and by the 
number and location of the ice streams that feed it and the ice rises where it is anchored to the 
sea floor. Fracture in the ice shelf occurs when its flow pattern results in principal surface 
stresses such that 0v = 'm = �(Ol - 02). I n  tensor notation, subscripts i,j, k denote rectilinear axes 
X,)I, z in succession so that 

(13) 

where oij and oij are components of the stress and the stress deviator, oij is the Kronecker delta, 
and P = Okk/ 3 is hydrostatic pressure. The tensor form of Equation (3 ) is (Glen, 1958) 

(14) 

where ,=(� Lij og)1/2 is the effective stress. Since P->O at the surface of an ice shelf, 01 -02 = 
0'1 - 02 = (An/,n-l)(CI - 62) from Equations (13) and (14). Consequently, Ov can be determined if 
A. ,. and the principal surface strain-rates are known when a crevasse opens. 
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Since cij ccaij in Equation (14), the ratio R of surface strain-rates is 

C2 a2 a2 -j(al + a2 + (3) R=-. -=-= I . Cl ai al -,(al + a2 +(3) 
Solving Equation (15) for a2 gives 

( 2R + I) ( I -R ) 
a2 = 

2 + R al + 
2 + R a3· 

Substituting Equation (16) into the expression for r in terms of principal stresses gives 

r={i[(al -ad +(a2 -ad +(a3 -alf]}1/2 

Substituting Equation (16) into the expression for ai in terms of principal stresses gives 
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( 15) 

( 16) 

( 17) 

( 18) 

Substituting Equations (17) and (18) into Equation (14) gives the flow law for a horizontal ice 
shelf in terms of R and its principal stresses al and a3 : 

C =(I+R+R2) ( n-I)/2 1- 3 [ a a ]
n 

I 
(2 + R)A . 

Terms containing R in Equation (19) can be collected to form a constant R' defined as 

(I + R + R2) < n-I)/2 
R'= -------------

(2 + R) n 

The principal strain-rates for an ice shelf are then: 

Cl =R'(al -(3) " /An 

C2 =RcI 

( 19) 

(20) 

(21 a) 

(21 b) 

(21 c) 

where Equation (21c) expresses the first invariant of strain-rate for conservation of volume 

(Ckk =0) . 
Since hydrostatic pressure increases linearly with depth for an ice shelf having thickness hi 

and density PI, 
(22) 

where g is gravity acceleration and z = 0 at the base of the ice shelf. Substituting Equation (22) 

into Equation (21 a) and solving for al , gives 

(23) 

The base of the ice shelf is below sea-level at depth hw in water of density Pw. Balancing 
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hydrostatic pressure in a given ice column by the hydrostatic pressure of water in the column if 
the ice melted: 

JOhI jOhW 
o 01 dz= 0 Pwg(hw - z) dz. (24) 

Note that the etTect of 02 is accounted for by measuring t:2 to compute R' . Substituting Equation 
(23) for °1, integrating, and solving for t:1 gives: 

. R'(!PIgh?-!Pwgh�)" 
Cl = [J�I A dz]n 

(1 +R +R2yn-I)/2 r Pig
_

hI (I
_
�)

]n 

(2 +R)n L 2A Pw 
(25) 

where Equation (20) is substituted for R', buoyancy requires that hw = (PI/Pw)hl> and the 
average value of A is: 

1 rhI 
A =h; 

J
o A dz. (26) 

Equation (12) incorporates vertical density variations into A in Equation (26). Sanderson (1979) 
presents an alternative procedureo 

Principal strain rates t:k are obtained from strain rates t:ij using the Mohr circle construction: 

. 
_ 1(' .

) [I (. ' )2 ' 2 ] 1/2 el - 2 Cxx + eyy + 4 lOxx - lOyy + exy , 
. _ 1 (. .

) [I (. ' )2 ' 2 ] 1/2 e2 - 2 lOxx + eyy - 4 lOxx - eyy + exy , 

where c/J is the angle between coordinates x, y and 1, 2. 

(27 a) 

(27b) 

(27c) 

Most Antarctic ice shelves occupy embayments, so ice entering such an ice shelf crosses a 
grounding line perimeter that is substantially longer than the calving perimeter crossed by ice 
leaving the ice shelf. Consequently, a typical flowband is bent around the z direction and 
converges in the x direction. Figure 6 shows bending parallel flow in a flowband at distance r 
from the bending axis and having constant width I1r. Bending through angle 8 changes the arc 
length an amount I1s across the flowband, which has an average arc length along its centerline of 
x' - x". If ice converges along this distance, the flowband width decreases uniformly from y' to y" 
and the flowband velocity increases uniformly from u' to u". The strain and strain-rates for 
simple shear in the flowband are: 

Yxy =-/'o,.s//'o,.r=-8 I1r//'o,.r=-8, (28a) 

(28b) 

where the pure shear strain-rate is t:xy, the rigid body rotation rate is wxy, the velocity along x is 
u, the velocity along y is v, and dv/dx=O. Consequently, t:xy =WXy =hxy =-!O. For flow that 
bends around z and converges along x, the average horizontal strain-rate components are those 
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Fig, 6. Bending parallel jlow on an ice shelf. In a 

jlowband at distance I' from the bending axis and 

having width !'ir, simple shear deformation !'is 

increases with the angle 0/ bending () aboUl the 
bending axis and the angle 0/ shear ()' in the 

jlowband, where ()= !'is/!'ir= tan ()'. A crevasse 

(lens-shaped opening) that initially opens at 

angle I/> = 45° to the bending radius rotates such 

that <I> decreases as () increases, causing the shear 

crevasse to become a transverse crevasse, where 

()= 90" -21/>. Simple shear in bending parallel jlow 

is analogous to the shear between pages 0/ a book 

when the book is bent. Axes x, y move with thejlow

band. Axes (), r arejixed. 

when axes x, y correspond to cylindrical coordinates e, r: 

exx = eee = � ( ou + v
) � ou = u" -u' , 

r oe ox x" -x' 
, , ov ,

( 

u" + UI
) 

y" 
Cyy=crr=-=2 --- In-, or x"-x' y' 

ex =eer=!( O
U 

_�+� Ov
)�!( OU 

-�)=!(-e-�) ::::= y or r r oe ay r r 

�-2 "2 --- e+2 --- , 

'{ '
( 

u" + UI
) 

'
(

U" + UI
)} 

x"-x' r 

(29a) 

(29b) 

(29c) 

Equations (27) and (29) can be combined to give an expression relating strain eyy to u. w, 

and e, 

C =In-=2 -- ----

y" 
(

U"-U'
) 

e 
yy y' U" + u' tan 2cP' 

(30) 

If no creep thinning occurs, ezz =0 and bending converging flow is plane strain. By volume 
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Fig. 7. Bending converging flow on the R oss Ice Shelf. The 

flow-band from the Siple Coast has a centerline radius 

r, outer radius r', and inner radius rH which do not 

coincide because flow converges. Bending flow causes 

velocities along a given radial transect, such as KL, 
MN, or OP, to be relatively constant. Velocities that 
increase along a radial transect are localized near 

grounding lines and form crevasses at 90° to those in 

Figure 6, as is seen in Figure 2-4 for bending 

converging flow around Minna Bluff. Flow in Figure 7 
differs from flow in Figure 6 in that convergence causes 

ice to thicken and accelerate, according to Equation 

(30). lee velocities are from Bentley and Jezek (1981). 

conservation, {,xx = -{,yy and: 

2{,xy (,Xy e 
tan 2fj)=. . --= exx - eyy {,yy 21n (y"jy') 

Combining Equations (30) and (3 1), no creep thinning gives: 

yll ( e ) 
( ulI - U') 

eyy = In )I = - 2 tan 2fj) = -2 
u" + u' . 

(31) 

(32) 

Figure 7 shows bending converging flow on the Ross Ice Shelf related to Equation (30). Figure 8 
plots fj) versus e for various yll jy' ratios in Equation (32). 

Table I lists the principal strain-rates obtained from Equations (2 1), (25), and (30) for the 
special cases of straight parallel flow ({,2 = 0), radially diverging flow ({,I = (,2 ), simple shear flow 

({,I = -(,2 ), bending diverging flow ({,3 < 0), and bending converging flow ({,3 > 0). Surface and 
basal crevasses tend to open along directions perpendicular to principal tensile strain-rates. The 
orientation of crevasses changes along curving flowlines of the ice shelf, where axis x follows 
flowlines. 

FRACTURE ALONGSIDE ICE STREAMS 

When ice streams merge with ice shelves, fracture by shear rupture may occur alongside the 
floating tongue of an ice stream if it is moving at a surge velocity. Ice streams have a rather 
rectangular cross-section (Robin and others, 1970). If the thickness h, of an ice stream changes 
an amount !::J.hl in horizontal distance i'lx along the ice stream, where hi � i'lh, , then the down
stream hydrostatic force FH in an ice stream of width w is 

(33) 
provided that the surface slope greatly exceeds the bed slope. This hydrostatic force is resisted by 
an up-stream shear force Fs given by 

(34) 
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Fig. 8. The effect of longitudinal convergence and 

divergence on bending flow ill an ice shelf with no 

creep thickening. Crevasses initially open at angles 

r/i = 45° to the bending radius for all bending angles 

8 when convergence and divergence are absent, and 

the subsequent rotation of these crevasses is shown 

in Figure 6. Converging and diverging flow require 

that, initially, r/i < 45° and r/i > 45°. The value of r/i is 

determined by the change inflowband width fram y' 

to y" asflolV bends through angle 8. Equation (32) is 

plaited for ratios y"ly' from 0.3 to J .8, where J.O is 

bending parallel flow. 

where To is the basal shear stress, Ts is the side shear stress, and the ice stream has constant width 
wand average height h, = h, + ��h,. Balancing up-stream forces against down-stream forces 
and solving for �h, gives 

A 
[ TO W + 2 Ts h, ] 

uh, � 6.x 
PoW-Ts�X 

(35) 

where Po = p,gh, is the basal hydrostatic pressure. In ice streams, W}> h, TO decreases steadily 
from a maximum at the head to zero at the flotation/grounding line, and Ts is relatively constant 
along its sides. The deviator longitudinal stress gradient aa�x/ax is important within 3 km of the 
grounding line (Sanderson, 1979), so 6.x should exceed this distance. Equation (35) simplifies to 
give the basal shear stress for flow converging at the head of an ice stream, where Ts -> 0: 

(36) 

and the lateral shear stress alongside the floating tongue of an ice stream imbedded in an ice 
shelf, where TO = 0: 

Ts c::::. �Po(w/h,)!t.hd�x=�p,gwM,/�x. 

Sanderson (1979) has analyzed thickness gradients �h, /!t.x in floating ice. 

TABLE I. PRINCIPAL STRAIN-RATES FOR SELECTED ICE-SHELF 

FLOW CONDITIONS 

Principal strain-rates (n = 3):· 

Straight parallel flow (R =O):t 
Radially diverging flow (R = + I):t 
Pure shear flow (R = - 1 ): 

Bending diverging flow (R = - !): 
Bending diverging flow (R = + !): 
Bending converging flow (R = -i)::I: 

• From Equalion (25): S=-_- 1 --. 
. Plghl ( ,PI ) 

2A Pw 
t Weertman ( 1957). 

e2/S I/n 

o 
12 

- k 
-iT 
nk 
-1/-

el/SI!n 

-� 
-f6 

o 
-ir 

-TMo 
a 

:I: I ndeterminate for R � -2 because el -+ 00 for R = -2 and the sign of el is 

positive for even R and negative for odd R when R < -2. 

(37) 
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The effective stress for an ice stream is 

{I[ 1 2  (' I' )2 1 2  « '  ' )/' )2 12 2(' I' )2 12 = 2 0xx + Cyy cxx 0xx + -cxx -Cyy cxx 0xx + exy cxx 0xx + 
2(' I ' )2 12 2(' I' )2 12]) 1/2 + cyz Cxx 0xx + Czx cxx 0xx 

(38) 

where Ryy = (tyyltxx), Rxy = (txyltxx), Ryz = (tyzlexx), Rzx = (tzxltxx), and Ryz ';::;:',Rzx ';::;:',0, From 
Equation (14): 

tXY = (r"-I IAn)o�y 
= [(I + Ryy + R ;y + R;y)1/2(O�yIRxy )]"-1 (o�yI An) 

=RI/(o�yIA)" 

where Ryy expresses divergence of the floating ice tongue and 

RI/=[(I +Ryy +R;y +R;y)IR;y](n
-I)/2 

(39) 

(40) 

The floating tongue of an ice stream imbedded in an ice shelf should have a broad central 
width Wc where longitudinal strains are important and narrow side widths Ws where simple shear 
strains dominate, The ice hardness coefficients in these regions are Ac and A" respectively, 
where As «i Ac due to thermal and strain softening in the lateral shear zones, Taking the x-axis 
along the center-line of the ice stream, Uc as ice velocity at the center-line, Us as maximum ice 
velocity in the lateral shear zones, and a linear variation of O�y with y so that a�y = (2ylwc )Ts, the 
variation of longitudinal velocity Ux with y across We when y � We 12 is 

Since Ux = Us at y= we/2, 

Subtracting Equation (41) from Equation (42) for y� We 12 gives 

Ux - Us = [ue -us][I-(2Ylwe)"+ I], 

(41) 

(42) 

(43) 

A simple expression for Us is obtained if a constant yield stress O�y = Ts exists in lateral shear 
bands, Simple shear requires that tyy = 0 for constant Ws and txy � txx across ws' so that Ryy = 0 
and Rxy � 1 gives RI/ � 1 in Equation (40), With constant shear stress, the variation of Ux across 
Ws when y � we/2 is 

Us -Ux = f 2f:xy dy= r 2(rsIAs)n dy 
we/2 

= (rsIAs)n(2y- we)' (44) 
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If the lateral shear zones are not rifted, Ux ---t 0 at y = 1 Wc + Ws and 

Us =2ws (rs /As Y· 

III 

(45) 

If rifting occurs, Ws = rs = 0 and Us is a lateral sliding velocity equal to the ice-stream velocity. 
Rifting occurs when the maximum shear stress rm reaches the viscoplastic yield stress Ov' 

For simple shear alongside the floating tongue of an ice stream, lateral rifts open when. from the 
Mohr circle, 

_ 1 ( ) _ [ 1 ( )2 _2 ] 1/2 � _ 0v-2 01 -02 - 40xx-ayy + Uxy �axy -rs . (46) 

An ice stream punching into an ice shelf experiences compressive flow until it can punch through 
the ice shelf. Compressive flow causes the floating ice tongue to diverge laterally. so that Ryy is 
negative in Equation (40) and Us decreases in Equation (45). The lateral rifts remain open until Us 

decreases enough so that rs < av, where rs is given by Equation (37) and Ov is given by either 
Equation (8) or Equation (10). In A ntarctica, an estimate of Ov can be made at the down-stream 
end of the lateral rifts created where Byrd Glacier punches into the Ross Ice Shelf. Lateral 
divergence of the floating ice tongue of amount Ryy ;:::; -2.2 allows ice thinning of D..hI ;:::; 200 m 
over rifted length D..x;:::: 40 km and average width w;:::; 35 km (H ughes, 1977). Entering these 
values into Equation (37) gives av ;:::; 8 bars for strain-softened fracture at the ends of rifts. As 
shown in Figure 9, these rifts can allow ice streams to punch through their confining ice shelf. 

FRACTURE ALONG GROUNDING LINES 

An ice shelf cannot effectively resist the punch of a surging ice stream unless the ice shelf 
occupies a confined embayment and is pinned to bedrock at ice rises in the embayment. 
However, the links between the ice shelf and the ice rises are weak, as is the link to bedrock along 
grounding lines of the embayment. These links are weakened primarily by repeated tidal flexure 
(Swithinbank, 1955; Robin, 1958), but also by shear rupture where the ice shelf moves parallel to 
grounding lines in the embayment and alongside ice rises (Thiel and Ostenso, 196 1; Barrett. 
1975). Shear rupture alongside these grounding lines can be analyzed in much the same way as 
shear rupture alongside the floating tongues of ice streams imbedded in the ice shelf. Our analysis 
of fracture along grounding lines, therefore, will focus on fatigue rupture caused by cyclic tidal 
flexure. 

Crevasses open normal to the largest tensile principal stress, and a depression along ice shelf 
grounding lines (Swithinbank, 1955) suggests necking associated with the maximum tensile 
stress caused by tidal bending. In a tensile test, the applied force F does not change at the upper 
yield stress av when the strain of viscoplastic instability Cv is inhomogeneous. This causes 
localized recrystallization and necking, which terminates in a cup-and-cone fracture for a 
circular cross-section. An ice shelf has a rectangular cross-section. Let x be the horizontal 
distance normal to its grounding line, y be the horizontal distance along its grounding line, and z 

be the vertical distance upward, with the origin of coordinates x, y, z at the neutral axis, taken as 
midway through the ice shelf. Actually, the vertical density gradient in ice shelves displaces the 
neutral axis toward the base (Gow, 1963). Necking along the grounding line is caused by the 
maximum surface and basal tensile stresses Om during tidal bending. If tidal bending force Fx 
stretches length Lx and reduces cross-sectional area Ax normal to x, where volume LxAx is 
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Fig. 9. Ice Slreams and ice shelves on the A mundsen Sea flank of the West Antarctic ice sheet. Thwaites Glacier and 
Pine Island Glacier have punched through an ice shelf in Pine Island Bay, presumably because the length of their 

laleral r/jls is comparable 10 the distance from the calving front (hatchured lines) to the grounding line (dotted 

lines) of the ice shelf. A comparison of 1 947 trimetrogon photography with 1972 Landsat imagery shows that 

Thwailes Glacier tongue has buckled laterally in mode N = 1, and is now rotating about a probable pinning point 

about 200 km from its grounding line. This rotation wasjirst noted by Robert J. Alien (personal communication, 

May 1978). 

conserved, the necking condition for viscoplastic yielding requires that 

dFx =d(Axav)=Ax day + av dAx =0. (47) 

Separate expressions for the change in strain at the viscoplastic yield stress av are obtained from 
Equations (I) and (47), putting a=av and C=Cv in Equation (I), 

dcv = d(av/asY =sa�-l day/a; =dL x /Lx =-dAx/Ax = dav/av. (48) 

Equation (48) reduces to the following relationship between as and av: 

(49) 

By comparing Equations (1) and (49) it is clear that Cv = lis. As seen in Figure 3, however, s-->O 
at c = Cv and this requires that as --> 0 in Equation (49). Consequently, a fracture analysis for tidal 
ftexure must consider conditions of homogeneous strain that exist just prior to necking. These 
would be conditions of parabolic strain-hardening for which s = 2 is observed. 
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Bending stress axx caused by tidal ftexure varies linearly with distance ho from the neutral 
axis of the ice shelf, which is taken at the mid-point of an ice shelf having thickness hI. The 
bending strain exx at distance ho from the neutral axis is, for elastic bending: 

(50) 
where ae is the elastic modulus and RE is the radius of strain curvature for elastic bending given 
by 

d2z/dx2 d2z 
RE - [ I  + Cdz/dx)2 ]3/2 � d�· 

(5 I) 

Pinned boundary conditions along the grounding line require that z = dz/dx= 0 at x = O. and 
z = Zm as x--> 00 is the maximum vertical tidal displacement of the ice shelf. These boundary 
conditions require that the ice shelf is not in hydrostatic equilibrium except at mean tide. With 
departures from mean tide, a vertical shear stress azx is induced by shearing force Fz. where: 

azx =dFz/dx=d2M/d� =Pwg(zm -z). (52) 
By definition, Fz = dM/dx where M is the bending moment. 

During tidal ftexure resulting in elastic strain and strain-hardening, the longitudinal bending 
strain exx is related to the longitudinal bending stress axx by writing Equation (I) for the tidal 
ftexure application in the form 

(53) 

where as = ae and s = I for elastic bending, and ae > as > av and s = 2 for parabolic strain
hardening (Hughes, 1977). Using Equations (43) and (5 I), the bending moment is: 

J

.+hi/2 ·+hi/2 
M= axxhodho=J as(exx)I/shodho 

-hl/2 - h l/2 

J

.hl a h2 + I/s 
= 0 asCho/Re)l/sho dho = (2: I�S)R�/S. 

Combining Equations (44) and (52) to get the bending curvature 

d2z = [ C2+ I /S)M] S 
d� asM+ I/s 

Differentiating twice more 

d4 Z [ 2 + I/s ] [ ( dM ) 
2 

( d2 M)] 

dx4 = asM+ I/s (s 
-

l)sMS-2 
dx 

+ sMs - I 
d� 

. 

(54) 

(55) 

(56) 

The general solution for elastic strain is obtained by setting s = I and integrating. The elastic 
displacement, first solved by Robin (1958), is 

where 

(58) 
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is the elastic damping factor. The general solution for parabolic strain-hardening is obtained by 
setting s = 2 and integrating. The viscoplastic displacement is 

Zv = (K/8A� )(2 - cos 2AvX) exp (-2Avx) + Cs x + C6 (59) 

where Av is the viscoplastic damping factor and 

K =(6pwgz� oe/htav). (60) 

Since elastic and viscoplastic strains are additive, the total bending displacement is the sum of 
Equations (57) and (59): 

Z = Ze + Zv � Zm - [(Zm + K/8A�) cos AeX] exp (-AeX)-

- [(Zm - K/8�) sin AeX] exp (-Aex) + (K/8A�)(2 - cos 2Avx) exp (-2AvX) (61) 

where Cl = C2 = Cs = 0 since Z is finite, C6 = 0 since Z = Zm as x--+ 00, C3 = Zm + K/8� since 
Z = 0 at x = 0, and C4 = Zm - K/8A� since dz/dx = 0 at x = O. Equation (59) results from an 
attempt to involve strain-hardening in tidal flexure (Hughes, 1977; Lingle, unpublished; Lingle 
and others, 1981). 

Lingle and others (1981) studied the tidal flexure of lacobshavn Isbrae in Greenland. By 
setting Av =Ae and Zm =K/8A� in Equation (61), a good fit to flexure data was obtained. 
Equation (61) then reduces to: 

Z = Zm [1 -2 cos AeX exp (-Aex) + (2 - cos 2Aex) exp (-2Aex)]. (62) 

Lingle and others (1981) computed am � 5 bars at the side grounding line and am � 1 bar at the 
second stress maximum for ice in which fatigue fracture has given an uncrevassed ice thickness 
of 160 ± 48 m in floating ice 750 m thick, where ae/os = 247 ± 37 for strain-hardened fracture. 

BUCKLING UP-STREAM FROM ICE RISES 

An ice rise most effectively pins an ice shelf by  resisting up-stream flow, rather than lateral or 
down-stream flow. Since an ice shelf is thin compared to its width and length, pushing against an 
ice rise may cause the ice shelf to buckle instead of thickening uniformly. If so, the compressive 
force should be analyzed in terms of buckling in a thin sheet. Consider an ice rise having radius r 

and resisting an up-stream longitudinal force Fx from the ice shelf. Buckling begins with a small 
vertical displacement z, possibly due to tidal changes. Bending stress axx varies linearly with 
distance ho. The bending moment M, where a xx = am at the surface and the base, is 

(63) 

From Equations (50) and (51) the maximum bending strain is 

(64) 

Substituting for am from Equation (63), 

(65) 
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where the compressive stress is ac =Fx/2rhl and 

K2 = 12Fx/rhf ae = 24ac/ae hf. (66) 

The solution of Equation (65) is 

Z = Cl sin (Kx) + C2 cos (Kx) = Cl sin (Nnx/L) (67) 

where L is the length of the ice shelf which buckles, N is the number of bends that occur in that 
length, K = Nn/L from the boundary condition that z =0 at X= Land C2 = 0 from the boundary 
condition that z = 0 at x = O. The compressive stress needed to cause buckling is 

(68) 

Vertical buckling must overcome a body force due to gravity, and vertical displacement z is 
reduced if N is large. However, increasing N increases ac. Lateral buckling is not retarded by the 
body force, so it occurs for N = I and ac is minimized. However, lateral buckling is possible only 
if the ice rise pins the floating tongue of an ice stream that is not imbedded in a confined ice shelf. 
In Antarctica, the floating tongue of Thwaites Glacier seems to have punched through an ice 
shelf and it has buckled laterally in the mode N = I ,  seen in Figure 9 ,  and the Brunt Ice Shelf has 
buckled vertically in the mode N �  10 up-stream from an ice rise (Thomas, 1973, plate IlIa). 
Taking ae -;::;:; 9.7 x 104 bars in Equation (68), L -;::;:; 200 km and hi -;::;:; 500 m gives ac -;::;:; 0.23 bar for 
Thwaites Glacier, and L -;::;:; 70 km and hi -;::;:; 170 m gives ac -;::;:; 23.5 bars for the Brunt Ice Shelf. 
Converging flow in an ice shelf confined in an embayment may also cause transverse buckling 
that would create longitudinal undulations (Hughes, 1972, p. 53-55). 

DISCUSSION 

The reason for studying the role of fracture in ice-shelf dynamics is better to understand the 
stability of Antarctic ice shelves, particularly those that buttress the marine West Antarctic ice 
sheet, which is believed to be inherently unstable (Hughes, 1972; Weertman, 1974). An ice shelf 
is probably metastable; it can survive small temporary perturbations but not large prolonged 
ones. For a given surface and basal mass balance, it exists so long as the supply of ice crossing 
its grounding lines is able to replace ice lost along its calving front. 

Ice rises and islands typically pin an ice shelf along its calving front, and actually determine 
the position of the calving front along a line across which the ice discharge velocity matches the 
iceberg calving rate (Swithinbank, 1955). Any process, such as rising sea-level or surface and 
basal melting, that floats the ice shelf free from its pinning points reduces the ice discharge 
velocity by increasing the calving perimeter. A calving bay will then carve away the ice shelf until 
other ice rises establish a new calving front where ice discharge again matches iceberg calving. 

If the new calving front is too close to the grounding line of the ice shelf, ice streams can 
punch through the ice shelf and surge (see Figures 2-6 and 9). This has two consequences. First, 
deprived of ice input from these surging ice streams, the mass balance of the ice shelf will turn 
strongly negative so that the discharge velocity at the calving front falls behind the iceberg 
calving rate. This allows the calving bay to migrate past the array of ice rises and continue to 
carve away the ice shelf. Second, being no longer buttressed by the ice shelf, the ice streams will 
not only be able to surge, the surges can be more vigorous and prolonged so that more interior 
ice will be drawn down into the ice streams. This compels the grounding line to retreat into the 
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ice sheet at the same time that the calving bay is advancing into the ice shelf. Survival of the ice 
shelf depends upon which retreat rate is greatest. 

The consequences of fracture on the stability of an ice shelf, and ultimately on the stability of 
the West Antarctic ice sheet, may even now be unfolding. Most of the ice draining from the 
northern fl ank of the West Antarctic ice sheet is drawn down into Pine Island Bay through 
Thwaites and Pine Island Glaciers, two huge ice streams that have apparently punched through 
a confined and pinned ice shelf and are now surging. The disintegration scenario outlined here for 
ice shelves may have already been played out in Pine Island Bay (Stuiver and others, 1981; 
Hughes, 1981). 
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