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Journal of Glaciology, Vol. 38, No. 128, 1992 

On the pulling power of ice streams 

T. HUGHES 
Department of Geological Sciences and Institute for Quaternary Studies, 

University of Maine, Orono, Maine 04469-0110, U.S.A. 

ABSTRACT. Gravity wants to pull an ice sheet to the center of the Earth,  but 
cannot because the Earth's crust is in the way, so ice is pushed out sideways instead . 
Or is it? The ice sheet "sees" nothing preventing i t  from spreading out except air, 
which is much less massive than ice. Therefore, does not ice rush forward to fill 
this relative vacuum; does not the relative vacuum suck ice into i t ,  because Nature 
abhors a vacuum? If so, the ice sheet is not only pulled downward by gravity, i t  
is also pulled outward by the relative vacuum. This  pulling outward will be most 
rapid where the ice sheet encounters least resistance. The least resistance exists 
along the bed of ice streams, where ice-bed coupling is reduced by a basal water 
layer, especially if  the ice stream becomes afloat and the floating p art is relatively 
unconfined around its perimeter and unpinned to the sea floor. Ice streams are 
t herefore fast currents of ice that develop near the margins of an ice sheet where 
t hese conditions exist. Because of these condit ions, ice streams pull ice out of 
ice sheets and have pulling power equal to the longitudinal gravitational pulling 
force multiplied by the ice-stream velocity. T hese boundary conditions beneath 
and beyond ice streams can be quantified by a basal buoyancy factor that provides 
a life-cycle classification of ice streams into inception, growth, mature, declining 
and terminal stages, during which ice streams disintegrate the ice sheet . Surface 
profiles of ice streams are diagnostic of the stage in  a life cycle and, hence, of the 
vitality of the ice sheet. 

INTRODUCTION 

The best definition of an ice stream still may be the one 
Henri Bader gave three decades ago: an "ice stream" 
is something akin to a mountain glacier consisting of a 
broad accumulation basin and a narrower valley glacier; 
but a mountain glacier is laterally hemmed in by rock 
slopes, while the ice stream is contained by slower­
moving surrounding ice. The edges of the ice stream 
are often crevassed, and the surface tends to be concave 
as the ice is "funnelled" down. Many of- the large out­
let glaciers in Greenland, particularly in the south,  are 
the narrow outlets of large ice streams which reach back 
many scores of miles into the ice sheet . The largest ones 
flowing into Disko Bay have corresponding depressions in 
t he glacier floor. An interesting question is whether the 
ice stream makes the depression or vice versa; and an in­
teresting hypothesis is that the ice stream, once started, 
is self-perpetuating because its ice mass, warmed up by 
heat of internal friction, has a lower viscosity than the 
surrounding ice (Bader, 1961 ) .  

of the  pulling force F.", and ice velocity fix at  that point ,  
both measured horizontally along direct ion x of flow: 

Insights into these ideas may be found in the pulling 
power of ice streams. As defined here, pulling power is 
postulated as the ability of an ice stream to reach deep 
into an ice sheet and pull out the ice. Formally, pulling 
power P,r; at some position on an ice stream is the product 

( 1 )  

where fix i s  averaged through an ice column of height h 
in a flow band of widt h  w. For steady-state flow, Ux is  
the equilibrium mass-balance velocity u. 

Analyzing the pulling power of ice streams involved 
both old and new concepts. These concepts will now be  
identified. 

Gravitational force, F z = Pg. The gravitational force 
is the product of the mass of ice (a scalar) multiplied by 
gravity acceleration (a vector directed toward Earth's 
center) , so F: is a vector vertically downward. 

Pulling force, P,r; = Fp. The pulling force is the product 
of lithostatic pressure in ice (a scalar) multiplied by the 
vertical area across which the pressure is relieved (a vec­
tor whose length is proportional to the area and whose 
direction is away from the ice mass) , so Fp is a vector 
directed horizontally downstream. 

Pushing force, Fx = Fp. The pushing force is the prod­
uct of l ithostatic pressure in ice (a scalar) multiplied by 
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the vertical area across which the pressure is exerted (a 
vector whose length is proportional to the area and whose 
direction is toward the ice mass) ,  so Fp is a vector dir­
ected horizontally downstream. 

Braking force, Fx = FB. Braking forces are either hor­
izontal traction forces or horizontal kinematic forces. A 
traction braking force is the product of shear stresses 
axy and axz acting against side and basal surfaces of an 
ice stream, where shear traction exists, and the areas 
of these traction surfaces. A kinematic braking force 
is the product of longitudinal deviator stress a�x that 
causes kinematic straining, and the cross-sectional area 
affected by kinematic straining. The analyses of sheet 
flow by Orowan (British Glaciological Society, 1949) and 
of shelf flow by Weertman (1957a) were classic examples 
of using traction and kinematic horizontal braking forces, 
respectively. 

HorizontaL force baLance, Fp - FB = O. The horizon­
tal force balance requires dynamic equilibrium between 
horizontal force Fp, whether pulling or pushing, both 
of which require gravity acceleration (which appears in 
the lithostatic pressure) , and braking forces FB, whether 
traction forces or kinematic forces, both of which require 
horizontal ice velocity (which causes straining) . 

Pulling stress, a�x = �(axx - ad. The pulling stress 
is an axial deviator stress in the direction of horizontal 
ice flow. It represents a deficiency of lithostatic pressure 
in the horizontal x-direction of ice flow, creating a relat­
ive vacuum in that direction that is filled by inrushing 
ice. Hence, strain rate Exx is tensile and proportional 
to pulling stress a�x' where a�x is the average difference 
between the reduced lithostatic stress axx and the full 
lithostatic stress azz, both of which are compressive, so 
that a�x is tensile. 

Pulling power, Px = F'.-r;i1x. Pulling power is the product 
of the horizontal pulling force Fp and mean ice velocity 
ux' Therefore, pulling power requires both gravity ac­
celeration (which causes the pulling force) and ice veloc­
ity (which causes the braking force). Pulling power is a 
measure of the vitality of an ice stream, which changes 
during the life cycle of an ice stream as gravitational pot­
ential energy (represented by ice elevation) is converted 
into kinetic energy (represented by ice veloci ty) as stream 
flow moves the ice mass horizontally to lower elevations. 

Basal buoyancy factor, 4> = (pwd/PI h)4>G' The basal 
buoyancy factor quantifies ice-bed coupling and ice-shelf 
buttressing, as the two sources of traction and kinematic 
braking forces that resist the pulling force. Ice-bed coup­
ling is caused by the fraction of basal lithostatic pressure 
in ice of height h and density PI that is supported by 
the bed, instead of by the basal hydrostatic pressure for 
water of depth d and density (lW. Full ice-bed coup­
ling (4) = 0) occurs when d = O. No ice-bed coupling 
(4) = 4>G ) occurs when d = (pJ/ Pw )h. Full basal buoy­
ancy (4) = 1 )  occurs when an ice stream is not coupled 
to the bed and not buttressed by an ice shelf (cPc = 1 ) .  
No basal buoyancy (4) = 0 )  occurs when a n  ice stream 
is either fully coupled to the bed (d = 0), or fully but­
tressed by an ice shelf grounded around its entire perime-
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ter (cPc = 0), or both. The p ulling force is maximized 
for full basal b uoyancy and is zero for no basal buoyancy. 
Ice-bed coupling produces traction forces and ice-shelf 
b uttressing produces kinematic forces, both of which 
constitute the braking force that balances the pulling 
force. 

Background for the concept of pulling power will be 
presented, followed by an elaboration on the distinction 
between pushing and pulling, and an elaboration upon 
ice-bed coupling and ice-shelf buttressing. Then the hor­
izontal force b alance is presented for sheet flow, shelf 
flow and stream flow. Pulling power is then related to 
four ice-stream surface profiles ,  ( 1 )  with minimal basal 
b uoyancy, (2) with basal buoyancy continuously decreas­
ing upstream, (3) with equilibrium basal buoyancy, and 
(4)  with maximum basal buoyancy. These conditions 
of basal buoyancy become the basis for postulating a 
l ife-cycle classi fication for ice s treams consisting of in­
ception, growth ,  mature, declining and terminal stages, 
with the possiblity for rejuvenation at any stage after 
inception. A way to model the ice-stream life cycle is 
p resented, and driving the life cycle by pulling p ower is 
discussed. Next , pulling power is postulated as t he mech­
anism for disintegrating marine ice sheets by its role in 
down-drawing ice sheets, discerping ice ridges between 
ice streams, controling the erosive power of ice streams, 
regulating ice-shelf buttressing, widening ice streams and 
causing ice streams to surge. Finally, ways to  initiate 
stream flow are discussed, and results for marine ice 
streams are generalized to include terrestrial ice streams. 

Backgrou nd 

Work related to  the pulling power of ice streams dates at 
least from the old dispute between Lliboutry ( 1958) and 
Nye (1958) as to why transverse crevasses open when a 
glacier enters a narrow valley. Lliboutry (1958,  fig. 4) 
maintained "To open a crevasse we need a strain ,  not a 
stress." His analog was a plastic slab being stretched bet­
ween rolls, such that transverse compression by the rolls 
causes longitudinal extension that opens pre-existing 
t ransverse cracks.  Nye (1958, fig. 1) countered ,  "I say 
a stress." His analog was a plastic slab cut i nto blocks 
and compressed between frictionless parallel plates, the 
cuts being the p re-existing transverse cracks. Transverse 
compressive stress exerted by the plates causes longitud­
inal extensional strain in the slab, but does not open 
the cracks. "If, however, we apply a (longitudinal) ten­
sile stress . . .  t he whole thing comes apart." Nye (1958) 
had proposed pulling power as a disintegration mech­
anism. His analog was for a valley glacier, but it has 
significance for ice streams in view of the observation by 
Bader (1961 )  t hat "An ice stream is something akin to 
a mountain glacier (that enters) a narrow valley . . .  " . 

Another indication that ice streams pull ice out of 
ice sheets was t he analysis by Weertman (1963) of outlet 
glaciers draining a.n ice sheet fringed by mountain ranges. 
Although his analysis was for convex surface profiles, if 
it is applied to t he concave surface of a marine ice stream 
on a horizontal bed, the longitudinal strain rate is a max­
imum across the surface-inflection line at the head of the 
ice stream and a minimum across the basal grounding 
line at the foot of the ice stream, so that basal frictional 



heat is conducted to the surface faster at the head than 
at the foot of the ice stream. Chances for a frozen bed 
are therefore greater at the head, with stream-flow slid­
ing on a thawed bed pulling sheet flow anchored to a 
frozen bed. 

The ice-stream analysis by Weertman (1974) involves 
pulling. He considered an ice stream as the transition 
zone between an ice sheet and an ice shelf in which 
the down-slope increase in a longitudinal tension stress 
allows a corresponding reduction of basal shear stress, 
and thereby produces a concave profile. Hence, concave 
"necking" of the ice stream is produced by a longitudinal 
tensile stress, just as are the transverse crevasses anal­
yzed by Nye (1958) .  A longitudinal tensile stress requires 
a longitudinal pulling force. 

The concave surface profile of West Antarctic ice 
streams can be interpreted as a "necking" phenomenon 
that was causing the maximum-slope surface-inflection 

WEST ANTARCTICA 
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line at the heads of ice streams to retreat, ultimately 
collapsing the West Antarctic ice sheet (Hughes, 1973) .  
Necking has been observed directly by Whillans and oth­
ers (1987)  in longitudinal velocity gradients at the head 
of Ice Stream B (Fig. 1 ) .  The conclusion that necking is 
caused by pulling also emerges in using slip-line theory to 
represent the transition from sheet flow to stream flow 
to shelf flow as analogous to plastic material ( ice) be­
ing successively drawn through a die, compressed bet­
ween plates and indented by a punch. Representing the 
sheet flow to stream-flow transition as being analogous 
to pushing ice through a die (Hughes, 1977, fig. 17) did 
not explain the great transverse crevasses arcing around 
the head of Byrd Glacier (Fig. 1 )  in the zone of converg­
ing flow. These crevasses would form if Byrd Glacier 
was pulling ice out of East Antarctica, and the analog 
was to ice being Ilulled through the die (Stuiver and oth­
ers, 198 1 ,  fig. 8-7) .  This observation was the basis for 
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Fig. 1 .  Location map for selected Antarctic ice streams. 
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an early attempt theoretically to quantify the concave 
profile of ice streams (Hughes, 1981a),  and to employ 
retreating ice streams as the vehicle for collapse of the 
West Antarctic ice sheet in a computer simulation (Stu­
iver and others, 1981 ,  fig. 8-7) . It can be argued that 
stream flow also pulls flanking ice into the ice stream, so 
that the proper analog with a plastic material between 
parallel plates is that extending plastic flow actively pulls 
the plates together, rather than extending flow being a 
passive response to the plates being pushed together. 

P ushing versus pulling 

Figure 2 illustrates the distinction between pushing and 
pulling. Figure 2a shows horizontal spreading of an ice 
sheet as resulting from vertical lowering caused by a 
downward pulling force F= equal to the mass of the ice 
sheet multiplied by gravity acceleration g. When the ice 
sheet is in steady-state equilibrium, the surface profile 
is unchanged because accumulation rates match the low­
ering rate and ablation rates match the spreading rate. 
Vertical pulling by gravity causes horizontal pushing. As 
seen in Figure 2b, if the ice sheet beyond distance x from 
the ice margin is removed, it can be replaced by a hor­
izontal pushing force Fx = (�PIgh)wh, which is resisted 
by basal traction force TOWX over distance x in a flow 
band of constant width w, where PI is ice density, h is 
ice height at position x and TO is basal shear stress over 
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Fig. 2. Producing stream flow from sheet flow. 
(a) In sheet flow, gravitationaL puLLing force Fz 
deforms the ice sheet from the soLid profiLe t o  
the dashed profiLe .  (b) Inner dashed part of the 
ice sheet can be repLaced by horizontaL pushing 
force Fx. (c) Outer dashed part of the ice sheet 
can be repLaced by horizontaL puLLing force F x. 
(d) HorizontaL puLLing converts the convex sur­
face of sheet flow into the concave surface of 
stream flow, with stream flow becoming a float­
ing ice shelf in terminus 1 or a grounded ice 
Lobe in terminus 2. 

distance x. Note that F.T is directed toward the remain­
ing ice mass, so that by definition Fx = Fp is a pushing 
force. If TO is constant, equating the pushing force with 
the traction force gives x = (PI9/2To)h2. This is the con­
vex surface profile of an ice sheet predicted by plasticity 
theory, in which TO is the yield stress. 

Horizontal pulling can be  induced by removing the ice 
sheet over distance x, so that Fx = �PI9Wh2 becomes a 
pulling force resisted by basal traction force Tow(L - x) 
over distance L - x where L is the length of the flow 
band from the ice divide to the margin, as shown in 
Figure 2c .  Note that F.T is  directed away from the re­
maining ice mass, so that by definition Fx = Fp is a 
pulling force. Pulling extends only to the ice divide be­
cause TO reverses sign across the ice divide. Equating the 
forces for constant TO gives L - x = (PIg/2To)h2 as the 
distance over which F.T is exerted for a given h and TO 
in Figure 2c .  With F.T a p ulling force instead of a push­
ing force, the ice surface over distance L - x is quickly 
pulled down by F; as ice is pulled forward by Fr;. A sim­
ilar result is obtained by not removing the ice sheet over 
distance x but, instead, having TO be large over L - x 
and small over x, which produces the concave surface 
of stream flow in Figure 2d.  An ice stream can end as 
a floating ice shelf, beneath which TO is zero (shown as 
terminal region 1 ) ,  or as a grounded ice lobe, beneath 
which TO increases to the ice margin (shown as terminal 
region 2 ) .  A marine ice stream supplies an ice shelf. 
A terrestrial ice stream supplies an ice lobe. Marine ice 
streams are the subject of this investigation because pre­
dictions can be tested by field studies on the numerous 
present-day marine ice streams. In Figure 2d, pulling 
force Fp at distance x from the ice-stream grounding 
line or the ice-lobe terminus will be net horizontal force 
!:J.F.T = �PIgwh2 - �pwgwcf2, where pw is water density 
and d is the depth of water that would produce the hyd­
rostatic pressure of basal meltwater at x. 

As presented in Figure 2 ,  horizontal force F.T is a push­
ing force for sheet flow and a pulling force for stream flow, 
both produced by gravity, and both inducing traction 
forces that resist gravitational motion. Hence, F.T will 
be used to represent gravitational forcing, with F.T = Fp 
causing pushing or pulling, and Fa will represent brak­
ing forces caused by stresses that resist pushing or pulling 
motion. 

Ice-bed coupling and ice-shelf buttressing 

As presented in Figure 2 ,  stream flow is generated from 
sheet flow by reducing ice-bed coupling toward the term­
inus of a flow band. If that is the case, marine ice streams 
are the major dynamic links connecting a marine ice 
sheet with its floating ice shelves, and stream flow is 
transitional between sheet flow and shelf flow. However, 
stream flow cannot develop from sheet flow if reduced 
ice-bed coupling is completely offset by increased ice­
shelf buttressing. To illustrate this, consider an ice cube 
in a pan. If water is added to the pan, an ice cube of 
height h will begin to float in water of depth d when the 
lithostatic pressure of ice and the hydrostatic pressure 
of water give the same overburden pressure ao on the 
bottom of the pan: 

(2)  



where PI is ice density, P\V is water density and g is grav­
ity acceleration. Ice-bed coupling is nil when Equation 
(2)  is satisfied. Now imagine that the ice cube is a large 
tabular iceberg and the pan is a larger lake. Elimination 
of ice-bed coupling allows pulling force Fp to spread the 
iceberg radially, in the manner analyzed by Weertman 
( 1957a) , until the iceberg grounds along the shoreline of 
the lake, thereby producing a braking force FB that com­
pletely cancels Fp. Hence, ice-bed coupling is removed 
in the center of the lake by a gain of basal buoyancy, and 
ice-shelf buttressing is attained around the perimeter of 
the lake by a loss of basal buoyancy. 

The above considerations suggest that the pulling 
power of a marine ice stream is controled by basal buoy­
ancy. Pulling p ower is increased when ice-bed coupling 
beneath an ice stream is decreased by basal buoyancy. 
P ulling power is decreased when ice-shelf buttressing be­
yond an ice stream is increased by a loss of basal buoy­
ancy around the grounded parts of the ice shelf. Both 
ice-bed coupling and ice-shelf buttressing can therefore 
be quantified by a basal buoyancy factor <P that is defined 
as follows: 

(3) 

where basal water would rise t o  a depth d in ice of height 
h in imaginary temperate bore holes along length Ls of 
an ice stream, as shown in Figure 3, and <Pc is <P at the, 
ice-stream grounding line of a floating ice shelf. In deter­
mining <P from Equation (3) , variations in dare controled 
by variations in ice-bed coupling, and variations in <Pc 
are controled by variations in ice-shelf buttressing. 

Since basal water can exist as a thin film at the ice­
rock interface, can flow in a network of subglacial chan­
nels, can be ponded in subglacial lakes and can occupy 
interstitial pores in subglacial till or sediments, depth 
d of basal water standing in imaginary temperate bore­
holes, as employed in Equation (3) ,  is a statistical av­
eraging of all these forms of basal water across width 
w of the ice stream at a distance x from its grounding 
line. In particular, it will be assumed that d = 0 where 
basal water is a thin film. This assumption is reached by 
considering a subglacial lake in  which bedrock hilltops 
penetrate temperate basal ice. A thin water film covers 
the hilltops. If the lake is now drained, the bedrock hills 
would act like pillars supporting the ceiling of basal ice. 
Therefore, even though a water film exists on the hill­
tops, the overburden of ice is supported by bedrock, not 
basal buoyancy, because bedrock is continuous whereas 
the water film exists only at the ice-rock interface on 
hilltops. This fact is incorporated into Equation (3) by 
setting d = 0 in  imaginary boreholes drilled down to the 
hilltops, even though the hydrostatic pressure of water 
in both the film and the lake equals the same lithostatic 
overburden pressure of ice before the lake was drained, 
and lake water would rise to a depth d = (pI! p\v)h in 
a borehole drilled above the lake. Another reason for 
letting d = 0 when the water layer is a film over rugged 
bedrock is that d has meaning for pulling power only 
insofar as ice-bed coupling resists stream flow. Hence, 
d = 0 for all undrowned bedrock projections because 
these resist stream flow by retaining ice-bed coupling 
that retards horizontal ice motion. This is the essence 
of the Weertman (1957b) sliding theory, in which basal 
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Fig. 3. Pulling forces defined as net horizon­
tal lithostatic and hydrostatic forces acting in 
a marine flow band of an ice sheet. Hor­
izontal lithostatic and hydrostatic forces press­
ing against imaginaT1J ice columns are shown 
for sheet flow (right) , stream flow (cent er) 
and shelf flow (left) , with the flow band hav­
ing floating length L F, grounded length L and 
streaming length L s . Averaged for' the ice col­
umn, basal water rises to depth d in imag­
inary temperate boreholes dril led through the 
flow band. Four cases analyzed in the text 
for the ice stream are no buoyancy along Ls 
(case I) , full buoyancy at the basal grounding 
line decreasing t o  no buoyancy at the surface­
inflection line (case II) , constant buoyancy 
along L s  (case HI) and ful l  buoyancy along 
Ls (case IV) . 

water pressure is not involved, only bed roughness which 
provides traction that retards sliding. This understand­
ing of d can be generalized in Equation (3) by specifying 
that d = 0 gives <P = 0 for sheet flow with no b asal 
buoyancy, d = (pI! pw)h gives <P = <Pc for shelf flow with 
full basal buoyancy, and intermediate values of d give 
o < <P < <Pc for stream flow with partial basal buoyancy. 

Ice-shelf buttressing of an ice stream is determined 
by <Pc in Equation (3) ,  such that <Pc = 0 when the ice 
shelf is grounded around its entire perimeter, <Pc = 1 
when the ice shelf is grounded only along the ice-stream 
grounding line, and 0 < <Pc < 1 when the ice shelf oc­
cupies an embayment or is pinned by islands and shoals. 
In F igure 1 ,  examples of <Pc = 0 are ice above subglacial 
lakes near the interior ice dome of Wilkes Land (Oswald 
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and Robin, 1973), and the "pseudo ice shelves" of Ice 
Stream C (Robin and others, 1 970); examples of cl>a = 1 
are the floating ice tongues o f  Thwaites, David , Ninnis 
and Mertz Glaciers; and examples of 0 < cl>a < 1 are the 
Ross and Ronne Ice Shelves. 

Refer to Figure 3, for which d changes along an ice 
stream of length Ls and cl>a = 1 for an ice shelf of length 
LF. Over length L - Ls , sheet flow with cl> = 0 exists 
when the bed is frozen, or thawed, but with only a basal 
water film. Over length Ls ,  stream flow with cl> = 0 
exists when basal water is only thick enough to drown· 
bedrock projections up to the controling obstacle size in 
the Weertman (1975b) theory of basal sliding, and cl> = 
1 when basal water saturates basal till or sediments so 
they are unable to support a b asal shear stress; otherwise 
o < cl> < 1 in the ice stream, depending on how d varies 
along Ls , where d is statistically averaged for b asal water 
conditions across a given width w of the ice s tream. 

Ice-bed coupling and ice-shelf buttressing are quan­
tified by cl> to provide a means for assessing t he pulling 
power of ice streams using Equation (1 ) .  The plan to be 
followed consists of: 

1. Presenting a force balance for stream flow t hat reduces 
to force balances for sheet flow when cl> = 0 and shelf 
flow when cl> = l. 

2. Deriving ice-stream profiles for a range o f  cl> values 
and computing pulling power along these profiles for 
steady-state equilibrium. 

3. Classifying ice streams in  a hypothetical scheme in 
which the pulling-power curve is diagnostic of the pos­
ition of an ice stream in its life cycle. 

4. Applying the concept of pulling power t o  disinteg­
ration of marine ice sheets, notably in West Antarc­
tica. 

The goal of this plan is to provide numerical models of 
ice sheets with a parameter cl> that quantifies ice-bed 
coupling and ice-shelf buttressing for the i ce streams 
that drain the ice sheet. Rapid collapse of marine ice 
sheets can then be simulated by allowing cl> to  represent 
increases in ice-stream pulling power resulting from un­
coupling and unbuttressing. 

FORCE BALANCES ALONG A FLOW BAND 

Figure 3 shows an ice sheet flow band of constant width 
on a horizontal bed. The flow band begins as sheet flow 
(right) and ends as shelf flow (left) ,  with s tream flow 
(center) , being a transition from sheet flow to shelf flow. 
Constant width and a horizontal bed are specified so the 
transitional nature of stream flow can be analyzed in 
its simplest form, without complications introduced by 
laterally converging or diverging flow and variable bed 
topography. The origin of rectilinear coordinates is the 
ice-shelf grounding line, with x horizontal and positive 
toward the ice divide and z vertical and posit ive upward. 
The flow band has floating length LF, and an ice stream 
of length Ls over grounded length L, with hG being ice 
height at the grounding line separating shelf flow from 
stream flow and hs being ice height at the inflection line 
separating stream flow from sheet flow. 

Force balances are computed for ice columns in the 
sheet-flow, stream-flow and shelf-flow parts of  the flow 
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band. Assumptions are (1 )  dynamic equilibrium exists, 
( 2 )  longitudinal gradients in stretching stress are small, 
and (3) the T-term can be neglected (Paterson ,  1981,  
p .  1 64) .  Assumption ( 1 )  is justified if pulling force Fp 
is added to braking force FB such that Fp + FB = O. 
Assumptions (2) and (3) are reasonable for a flow band 
of constant width on a horizontal bed (Muszynski, 1987; 
M uszynski and Birchfield, 1987; Van der Veen, 1987) . 
The pulling force in all cases is merely the expression 
of Newton's second law, Fp being gravity acceleration 
acting on the mass of the ice column, with Fp in the 
horizontal x-direction being an average differential pres­
sure exerted on faces of the ice column that are normal 
to t he x-direction. The braking force in all cases arises 
from motion or deformation of the ice column, with FB 
consisting of the sum of stresses resisting the motion or 
deformation multiplied by the area of the ice column 
upon which these stresses act. None of this is new, but 
i t  will now be reviewed for sheet flow and shelf flow, be­
fore analyzing stream flow as being transitional between 
these two. 

Force balance for sheet flow 

P ushing force Fp for an ice sheet on a horizontal bed 
is obtained from the horizontal l ithostatic forces shown 
in Figure 4 (right ) .  A vertical ice column has down­
slope height hand upslope height h + flh along incre­
mental length L1x over which flow-band width w is con­
stant. The pushing force per unit width is the difference 
between the areas of force triangles 1 and 2, defined as 
the mean lithostatic pressures acting on the upslope and 
downslope sides o f  the ice column, respectively. There­
fore, for an ice-sheet flow band of width w: 

Fp = - [�Plg(h + flh)] [w(h + flh)J 
+ [!Plgh] [whJ � -Plgwhflh (4) 

h+llh" 
h\. " 

Fig . 4. Horizontal forces on ice columns h av­
ing constant width and no side traction. Hor­
izontal gravitational forces per unit width are 
the areas of t riangles 1,  2 and 4, and rectangle 
3. Traction force is basal shear stress TO times 
the basal area of the ice column. PuLLing force 
is tensile deviator stress 2a�x times the trans­
verse cross-s ectional area on the landward side 
of the ice column. FoLLowing WhiLLans (1987), 
the role of basal water pressure can be emphas­
ized by distinguishing lithostatic pressure in 
triangles 1 and 2, and rectangle 3 from hydro­
static pressure in triangle 4. 



where the term containing (t:.h)2 can be ignored. Note 
that Fp is a force gradient , because it increases with 
ice-thickness change £1h. Lithostatic pressure P Ig(h + 
!£1h) >=:::; PIgh pushes against area w£1h to produce Fp. 

Pushing gravitational motion induces creep controled 
by deviator shear stress axz , where TO = axz at z = 0 
is the basal shear stress. Since resistance to creep is 
provided by basal shear stress TO acting on basal area 
w£1x, and ax: = To(l - z/h) , the braking force is: 

FB = Tow£1x = axxhw£1x/(h - z) = E��n Ahwt:.x/ (h -z) 
(5) 

where ax: is expressed in terms of the strain rate Ex: of 
ice in simple shear for the creep law 

(6) 

in  which T is the effective shear stress, n is a viscoplastic 
exponent, A is an ice-hardness parameter, A averaged 
through h is A and T = ax: for simple shear. 

When the ice column is in dynamic equilibrium, Fp = 
-Fn and (Nye, 1957): 

Ex: = [prg (h - z)£1h/ A£1xr = h(1 - z/h)/ Ar (7) 

where TO = P rgh!1h/!1x is often called the "driving 
stress" for an ice sheet. Actually, TO is a braking stress 
that resists ice motion. It t akes on the role of a driving 
stress only when Fp is equated with FB, as only Fp ex­
presses the product of ice mass and gravity acceleration. 

Force balance for shelf flow 

Pulling force Fp for an ice shelf having only longitudinal 
extension and no side traction is obtained from the hor­
izontal lithostatic and hydrostatic forces shown in Fig­
ure 4 (left) . A vertical ice column has constant height h 
and width w over incremental length !1x and floats at 
depth d in water. Ice on the side facing the calving front 
ca.n be replaced by an equivalent mass of water without 
changing the nature of this boundary, whereas ice facing 
the grounding line cannot. Hence, horizontal forces on 
opposite sides are unbalanced,  with a net seaward pulling 
force. The pulling force per unit width is the difference 
between the areas of force triangles 1 and 4, defined as 
the mean lithostatic and hydrostatic pressures acting on 
the sides of the ice column facing the grounding line and 
the calving front, respectively, of the ice shelf. Therefore, 
for an ice-shelf flow band of width w: 

Fp = - [!prgh] [wh] + [!pwgd] [wd] 
= -!PIgwh2 [ 1 - (P r/Pw)] (8) 

where d = h(P r/ pw) satisfies the buoyancy requirement 
for floating ice, <P = 1 in Equation (3) . 

Pulling gravitational motion induces creep controled 
by deviator tensile stress a�x' where Cl�x = !(axx - Clzz ) 
and axx - a:z is the deviation of longitudinal stress Clxx 
from overburden lithostatic stress Cl:: = Prg(z - h) in the 
ice column. Both axx and a:: are zero at the ice surface, 
so resistance to creep is provided by average longitudinal 
tensile stress ! (a xx - a::) acting at distance h - z below 
the surface on transverse cross-sectional area wh, which 
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is constant over length !1x. Braking force FB therefore 
results from a�x , which produces kinematic strain rate 
Exx as follows: 

(9) 

where a�x is  expressed in terms of the strain rate Exx of 
ice in longitudinal tension for the creep law: 

( 10) 

i n  which Exx is constant through h over length t:.x and 
T = a�x for constant w. 

When the ice column is  in dynamic equilibrium, F p  = 
-FB and (Weertman, 1 957a) : 

Exx = [prgh(l - pr/pw)/4Ar = [ao( 1 - pr/pw) /4Ar 
( 1 1 )  

w here Exx = - Ezz for constant w and volume conservat­
ion, and ao = Prgh is the basal lithostatic and hydrostat ic 
pressure. 

Force balance for stream flow 

P ulling force Fp for an ice stream having longitudinal ex­
tension and both basal and side traction is obtained from 
the horizontal lithostatic and hydrostatic forces shown in 
F igure 4 (center) . A vertical ice column has downslope 
height hand upslope height h + t:.h along incremental 
length £1x, over which basal water would rise in tem­
p erate bore holes to an average depth d above the bed. 
The average d is based upon the fractions of the bed in 
basal area w t:.x having no buoyancy (<p = 0) and full 
buoyancy (<p = <PG ) . The pulling force per unit width 
is the area of force triangle 1 minus the combined areas 
of force triangle 2, force rectangle 3 and force triangle 4. 
Therefore, for an ice stream of width w: 

Fp = -!PIg(h + t:.h)w(h + t:.h) 
+ !PIg [h - d(pw / Pr )] w [h - d(pw / PI )] 
+ P rg [h - d(pw / Pr )] wd(pw / Pr ) + ( �pwgd)wd 

= -prgwht:.h - !prgwh2 [1 - (P r/ pw)] <p2 ( 12) 

where <p is introduced by using Equation (3) . Note that 
Equation (12) for stream flow reduces to Equation (4) 
for sheet flow when <p = 0 and to Equation (8) for shelf 
flow when <p = 1 and t:.h = 0 along length !1x. 

In Equation ( 1 2 ) ,  downslope pulling by the first term 
is partly offset by upslope pushing by the second, third 
and fourth terms to give a net forward pulling. The first 
term is the mean lithostatic pressure exerted on column 
area w(h + £1h) to produce the horizontal pulling force 
p er unit width given by the area of triangle 1 in Figure 4. 
The second term is the mean lithostatic pressure above 
height d(pw / PI) exerted on column area w[h -d(pw / PI ) ] 
above this height to produce the horizontal pushing force 
per unit width given by the area of triangle 2 in Fig­
ure 4. The third term is the lithostatic pressure at 
height d(pw / PI ) exerted on column area wd(pw / P r ) be-
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low this height to produce the horizontal pushing force 
per unit width given by the area of rectangle 3 in Fig­
ure 4. The fourth term is the mean hydrostatic pressure 
below height d exerted on column area wd below this 
height to produce the horizontal pushing force per unit 
width given by the area of triangle 4 in Figure 4. 

Notice that the horizontal hydrostatic force per unit 
width exerted by water, the area of triangle 4 in Figure 4, 
is shown only on the seaward side of ice columns for 
which d > 0 in Figure 3. This is because a marine ice 
stream and its floating ice-shelf extension interface with 
water beyond the seaward wide of the ice column, but 
not the landward side, where only lithostatic forces exist. 
Hence, any gradient Bdj Bx along length Ls of stream 
flow, as shown in Figure 3,  need not be considered in 
balancing horizontal forces on the ice columns.  

That stream flow is  transitional between sheet flow 
and shelf flow is seen in Figure 4. Moving d(pw j PI) 
downward increases !:lh by causing triangle 2 to encroach 
upon rectangle 3 and triangle 4 until sheet flow occurs 
at d(pw j pd = 0, reducing Equation (12) to Equation 
(4) at <p = O. Moving d(pw j PI) upward decreases !:lh by 
causing triangle 4 to encroach upon rectangle 3 and tri­
angle 2 until shelf flow occurs at d(pw j PI) = h, reducing 
Equation ( 12 ) to Equation (8) at <p = 1 and /).h = O. 

Pulling gravitational motion induces creep controled 
by deviator tensile stress O'�x along !:lx and deviator 
shear stresses O'xy and (J'xz along w and h, respectively, 
with maximum values (J'xy = TS for side traction and 
(J'x: = TO for basal traction in the ice stream. Multiply­
ing these deviator stresses by the areas against which 
they act gives braking force FB. Taking It = h + �!:lh as 
the mean ice height along /).X and (J'�x = � (O'xx - (J'zJ , 
where (J'xx - (J':: is the deviation of longitudinal stress 
(J'xx from lithostatic stress (J':: = P lg(z - h) in the Robin 
( 1967) analysis: 

Fo = 2TSh/).x + ToW!:lX + 2(0'�x + !:l(J'�x)w(h + !:lh) 
= (2Tsh + Ts!:lh + TOW)/).X 

( 13) 

where !:l (J'�x is the change in O'�x along !:lx and the term 
containing /)'O'�x!:lh can be ignored. 

When the ice column is in dynamic equilibrium, Fp = 

-FB and the following expression for !:lhj /).x is ob­
tained: 

!:lh 2(hjw)TS + TO 
!:lx PIgh - (hjW)TS - 20'�x 

+ 
2h((J'�x + !:l(J'�x) - �PIgh2(1 - pI/pw)<p2 

[PIgh - (hjW)TS - 2(J'�xl /).x 

2TS TO 2/)'0'�x �-- + - + --'-' 
PIgw PIgh PIg/).X 

where PIgh - (hjW)TS - 2(J'�x � P lgh = (J'o and: 

(14) 

(15 ) 

Equations ( 14 ) and (15) apply to stream flow, which be­
gins with sheet flow at the head and ends as shelf flow 
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at the foot of a marine ice stream. Stream flow be­
comes laminar sheet flow when TS = O'�x = !:l(J'�xj /).x = 

<p = 0 , in which case Equation ( 14 ) can be combined 
with Equation (6) to produce Equation (7) . Stream 
flow becomes longitudinal shelf flow when TS = TO = 
/).O'�xj /).x = !:lhj /).x = 0 and <p = 1 ,  in which case 
Equation ( 14) can be combined with Equation ( 1 0 ) to 
produce Equation ( 1 1 ) .  

The unknown variation of <p along length Ls of stream 
flow prevents a single simple expression relating Fp to 
strain rates, such as Equation (7) for sheet flow and 
Equation ( 1 1 ) for shelf flow. Nevertheless, the pulling 
power of an ice stream can be appreciated by comparing 
Exz for sheet flow at the head of an ice stream with Exx for 
shelf flow at the foot of the ice stream using these equat­
ions. In Equation ( 7 ) , h = 2 km and !:lhj!:lx = 0 .005 
are typical at an ice-stream surface inflection line, where 
the maximum value of Ex: at z = 0 exists for sheet flow. 
In Equation ( 1 1 ), h = 1 km is typical at an ice-stream 
basal grounding line, where the maximum value of Exx ex­
ists for unconfined shelf flow. Taking PI = 0.92 Mg m -3 , 

PW = 1 .02 Mg m-3 , and n = 3, Equations (7) and ( 1 1 )  
then give Exx = 15 .6Ex: if A is the same at both locat­
ions. Hence, Exx for maximum shelf flow is an order of 
magnitude greater than Ex: for maximum sheet flow, and 
the ability of an ice stream to reach far into an ice sheet 
and pull out ice, its pulling power, is measured by the 
length Ls of stream flow and how effectively Exx at the 
grounding line is transmitted along Ls. 

The one-dimensional force balance considered here as 
pushing or pulling horizontal gravitational forces, which 
produce sheet , stream and shelf flow resisted by braking 
forces, has much in common with the two-dimensional 
force balance of driving forces and resistive forces anal­
yzed by Whillans ( 1 987) and Van del' Veen and Whillans 
( 1 989) . For example, Whillans ( 1 987) began by stat­
ing "Glaciers flow in response to the interaction of grav­
i ty, which pulls the glacier forward ,  and resistive forces, 
which hold it back. "  His table I compares the conven­
tional division of stresses into spherical and deviatoric 
components, on the one hand, with his lithostatic and 
resistive components, on the other hand, where his litho­
static force is gravitational and gradients in it produce 
his driving stress for glacial ice. In his figure 2, Whillans 
( 1 987) showed a nearly exponential decrease of his driv­
ing stress from the ice divide of West Antarctica to the 
calving front of the Ross Ice Shelf, along a flowline con­
taining Ice Stream B. This same depiction of stream 
flow as being transitional from sheet flow to shelf flow 
is shown in Figure 3 as resulting from a general increase 
in basal buoyancy from 'the surface-inflection line to the 
basal grounding line of an ice stream. Specific changes in 
basal buoyancy, as measured by the change in d along Ls 
in  F igure 3 (bottom) ,  constitute four cases in a spectrum 
of <p variations that are possible for ice streams. These 
four cases will be analyzed in detail. 

PULLING POWER AND SURFACE 
PROFILES 

P ulling force Fp given by Equation (12) applies for 
stream flow but it does not describe the pulling force 
adequately because the !:lh term depends on incremen-



tal length Llx along the ice stream, such that this term 
vanishes as Llx approaches zero, leaving only the <P term. 
Hence, the actual pulling force F.7: is the limit of Fp as 
Llx --> 0 and is: 

F.'t = �pI.gwh2(1 - PI/ Pw )<p2 

= (uxx - (J"zJwh = 2u�xwh (16) 

where pulling stress 2(J"�x' given by Equation ( 15) , acts 
on cross-sectional area who The G term in the vert­
ically integrated force balance (Paterson,  1981 , p. 164) 
is approximately the gradient of Fx. Hence, the pulling 
force can be understood in relation to vertically integ­
rated momentum conservation. Mean ice velocity u can 
be computed to a good approximation by the following 
expression for conservation of ice flux and steady-state 
equili bri um: 

hu = ushs + (a - b)(Ls - x) (17)  

where x = 0 at the grounding line of a marine ice stream, 
x = Ls at the head of the ice stream, where Us is the 
mean ice velocity, and rates of accumulation and ablation 
along Ls are a and b, respectively. Entering Equations 
( 16) and ( 1 7) into Equation ( 1 ) gives the pulling power: 

Pr; = � PIgwh(1 - pI/ pw ) [ushs + (a - b) (Ls - x)] <p2 

(18) 

Solutions of Equation ( 1 8) require knowing how h varies 
along x over length Ls of the ice stream. This requires 
knowing the ice-stream profile. 

Surface profiles and the resulting pulling power will 
be computed for four kinds of marine ice streams: 

Case 1. Stream flow with minimal basal buoyancy, 
so that <p = 0 along Ls . 

Case H. Stream flow with decreasing basal buoyancy, 
such that <p = <Pc cos2 (7rX /2Ls) along Ls . 

Case IH. Stream flow with equilibrium basal buoy­
ancy, such that <p = (hc/h)<pc along Ls . 

Case IV. Stream flow with maximum basal buoyancy, 
so that <p = <Pc along Ls · 

1 
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Fig .  5. A possibLe spectrum of <p variations 
along x for ice streams of Length Ls. The 
four cases of basal buoyancy shown in Figure 
3 (bottom) as average water depths d repres­
entative of average basaL water pressure are 
located in this spectrum as shown. 
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Fig. 6. Four  possible cases of basal. water con­
figurations shown as average d variations in 
Figure 3 (bottom) and average <p variations in 
Figure 5. Ice-stream beds are shown in p Lan 
view (top) and transverse cross-section (bot­
tom) , with thin basal water  films for which 
<p = 0 shown in white, thick basal water Layers 
for which (hc/h)<pc < <p < <Pc shown in b Lack, 
and water-saturated tilL or s ediment for which 
<p = <Pc shown as dotted. The 'verticaL is exag­
gerated. 

Subscripts S and G refer to the surface-inflection line 
and to the basal grounding line, t he respective beginning 
and end of the ice stream. 

Cases I through IV belong to a spectrum of <p variat­
ions along length Ls of stream flow, with I and IV being 
end members of the spectrum, as shown in Figure 5. At 
t his early stage in our understanding of ice streams, it 
is adventurous to speculate on bed conditions that may 
produce the <p spectrum in Figure 5, or other versions 
of a <p spectrum, but an attempt to depict possible bed 
conditions is offered in Figure 6 .  In all cases, bedrock is 
depicted as consisting of a series of ridges and troughs 
elongated along the axis of stream flow, such as mapped 
seismically beneath Rutford Ice Stream (Doake and oth­
ers, 1987) and Ice Streams A, B and C (Shabtaie and 
Bentley, 1988) i n  West Antarctica (see Fig. 1) . 

Case I shows the network of narrow water channels 
along trough bottoms, for which <p = <PG in channels re­
quires a downslope pressure-gradient current, and <p � 0 
in a water film between water channels, so that <p � 0 
averaged across width w all along length Ls of the ice 
stream. This situation exists when decreasing basal 
water (bottom freezing) and smoother bedrock topo­
graphy occur in the direction of ice flow. 

Case II shows the water channels widening in the dir­
ection of ice flow, such that averaged across w, <p = 0 
where stream flow begins at x = Ls and <p = <Pc where 
stream flow ends at x = O. T his widening can be caused 
if increasing basal water (bottom melting) and smoother 
bedrock topography occur in the direction of ice flow. 
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Case III shows wide water channels separated by nar­
row ridge crests along the entire length Ls of the ice 
stream, such that cP � (he/h)cPe averaged across w along 
Ls. This condition exists when basal water depths nearly 
match bedrock topographic variations in the direct ion of 
ice flow, and no net current exists in the water. It dif­
fers from case I only in that more basal water is present 
all along Ls, so that hydrostatic equilibrium is main­
tained in the water channels (channel water pressure 
where h > he is the same as at h = he , so there is 
no pressure-gradient current) .  

Case IV shows a pad of water-soaked till or sediments 
between basal ice and bedrock, with deformation and 
permeability of the pad being such that et> = et>e across w 
and along Le ( local basal water p ressure is that required 
for the buoyancy of local ice thickness h, whereas in case 
III it is that required for the buoyancy of ice thickness 
he at the grounding line) . This situation can exist when 
permafrost having a high ice fraction becomes thawed, 
and it requires thawing at x = Ls to produce new melt­
water as fast as pad deformation and permeability allow 
basal water to be discharged at x = O. Case IV would 
then require the surface-inflection line of the ice stream 
to retreat into the ice sheet, as i t  is a thermal boundary 
( the melting isotherm) , and this retreat collapses the ice 
sheet. 

The amount of basal water along Ls depends on basal 
melting and freezing rates in cases I through IV, and in 
other cases that could be postulated. In cases I, 11 and 
Ill ,  the basic assumption is that the ice overburden is 
mostly supported by basal water pressure above water 
channels and by bedrock between water channels (even 
though the water film between channels has the over­
burden ice pressure) . These cases require ice-stream ap­
plications of subglacial hydrology theories by Weertman 
( 1 986) ,  Kamb ( 1987) and Lliboutry ( 1987) , among oth­
ers. Case IV can be tested by theories of ice streams on 
deformable and permeable beds developed by Alley and 
others ( 1987) ,  Lingle and Brown ( 1 987) , Alley ( 1989a, b) 
and MacAyeal ( 1 989) , for example. 

Figure 7 shows an alternative to Figure 6 for pres­
enting et> variations in terms of basal water distribution. 
Bedrock hills and hollows determine the distribution in­
stead of bedrock ridges and troughs aligned in the dir­
ection of the ice stream. In case I, lakes exist only in 
the bottoms of isolated hollows, which act as slippery 
spots beneath the ice stream and a thin water film ex­
ists elsewhere, so that et> = 0 along Ls .  In case 11, basal 
water begins as lakes in isolated hollows and ends sur­
rounding isolated hilltops along Ls , with et> = cPc for ice 
above isolated lakes, et> = (hejh)cPe for ice surround­
ing isolated hills, and et> = 0 for ice in remaining areas 
where a thin water film allows bedrock to support the 
ice overburden. In case Ill, the thin water film exists 
only on isolated hilltops, which act as sticky spots where 
cP = 0, but for the ice stream in general, et> = (hcjh)et>G 
along Ls . In case IV, sediments beneath the ice stream 
have been eroded away and redeposited as t ill at the 
grounding line, leaving basal water in a bedrock trough 
dammed by a ti ll sill, so et> = cPe along Ls for ice above 
the trough. Case IV produces fore-deepened troughs in 
the inter-island channels, straits and fiords of continental 
shelves that had been glaciated by marine ice sheets. In 
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Fig. 7. A basal water configuration in plan 
view and longitudinal cross-section for the et> 
variation of case I through case I V  in Figure 
5 that is different from the basal water con­
figuration for these cases shown in Figure 6. 
The bed consists of hills and hol lows instead of 
ridges and val leys ,  with et> = 0 in white areas , 
cP = ( hG/h) et>G in connected b lack areas , and 
cP = cPe in disconnected black areas,  for which 
cPe = o .  In case IV ,  basal water is trapped in 
a glacially eroded trough dammed by glacially 
deposited sediment til l (dotted) at the ground­
ing line, situations found in the inter-island 
channels and fiords of deglaciated landscapes . 
The vertical is exaggerated. 

these cases, et>G = 0 for ice above isolated bedrock lakes, 
but cPc > 0 if the till sill is permeable. 

A water film over hilltops distributed like islands in a 
subglacial lake allows the hills to be local "sticky spots" 
where bedrock bears the ice overburden, and therefore 
retards ice flow. Applying the Weertman (1986) anal­
ysis of basal water pressure to ice streams, the sticky 
spots in Figure 7 would be the upstream side of bedrock 
hills, where a thin water film allows bedrock to resist 
stream flow. Whether this situation exists in ice streams 
is unknown, but Whillans and Johnsen ( 1983) observed 
something like it, possible frozen patches on a thawed 
bed, in sheet flow near Byrd Station in West Antarc­
tica (see Fig. 1 ) .  Vornberger and Whillans (1986) have 
postulated sticky spots in Ice Stream B (see Fig. 1 )  as 
producing bands of surface crevasses. 

Case 1. Stream flow with minimal basal 
buoyancy 

Stream flow with cP = 0 was used to produce ice-stream 



profiles in the CLIMAP reconstructions of global ice 
sheets at the last glacial maximum (Hughes, 1 98 1a) .  
Ice streams without basal buoyancy may exist as o ut let 
glaciers through fiords in coastal mountains, where i ce is 
often thick and has a high surface slope for ice streams, 
implying some traction from a bedrock floor that is rough 
and may be partly frozen. 

Considerable attention has been focused on long­
itudinal deviator stress (J�x and its downslope gradient 
o(J�x/ox in ice streams, notably by Weertman ( 1974 ) , 
Bindschadler and Gore ( 1982), Alley (1984), Alley and 
Whillans (1984) ,  M cInnes and Budd (1984), Van der 
Veen ( 1985, 1987) , Muszynski ( 1 987) , Muszynski and 
Birchfield (1987) and Whillans ( 1987) .  These studies, 
notably those of Van der Veen ( 1 987) and Muszynski 
( 1987) ,  show that o(h(J�x)ox is relatively unimportant 
in an ice stream. T hat o(h(J�x) /ox could be ignored in  
ice streams fully buttressed by an  i ce  shelf was assumed 
by Hughes (1981a) in the CLIMAP ice-sheet reconstruc­
t ions. This assumption was based on the proposition 
that (J�x at the ice-shelf grounding line is the buoyancy 
pulling stress minus a braking back-stress imposed by 
the ice shelf: 

( 1 9) 

where he and (Je are the ice thickness and the back­
stress at the grounding line. For full ice-shelf buttressing, 
Hughes (1981a) assumed that: 

( 20) 

Taking d = 0 in Equation (3) maximizes ice-bed coup­
ling beneath an ice stream and (Je given by Equation (20) 
maximizes ice-shelf buttressing beyond an ice stream. 
Equation (20) holds exactly only when grounding l ines 
completely enclose an ice shelf, making it a "pseudo ice 
shelf" above a subglacial lake (Robin and others, 1 970; 
Oswald and Robin, 1 973) . The ice stream has no p ull ing 
power in this case. 

Equation ( 19) can be related to the pulling force, 
given by Equation ( 1 6) ,  by requiring that cp = <Pc at 
the grounding line is given by: 

A reliable expression for (Je is a major problem in glaciol­
ogy, because ice shelves have complex shapes and dynam­
ics that impose both form drag and dynamic drag at the 
grounding line (MacAyeal, 1987) .  However, in the i deal­
ized case of an ice shelf having width w and thickness h 
identical to Wc and he at the grounding line, a balance of 
forces along floating length LF from the grounding l ine to 
the calving front of the ice shelf gives (Je = 2Ts (LF/we) ,  
where side shear stress TS is assumed t o  be constant along 
LF (Thomas, 1977 ) .  Values of (Je for the Ross Ice S helf 
in Antarctica have been computed from field data by 
Thomas and MacAyeal (1982) and by Jezek (1984 ) .  

The concave surface profile that i s  characteristic of 
stream flow can be produced even if cP = CPe = O. As 
seen in Equation (3 ) ,  cP -t 0 exists when d -t 0, a p hys­
ical condition in which the basal water is thick enough to 
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drown bedrock projections that control the basal sliding 
velocity, but not the large projections, which therefore 
continue to support nearly all of the ice overburden. For 
smaller projections, the ice overburden is supported by 
the water layer. Hence, the fast sliding velocity of an ice 
stream can be attained without ubiquitous basal buoy­
ancy, provided there is no ice-shelf buttressing (CPc = 1 )  
and the basal water film drowns ratc-controling bedrock 
projections (Weertman, 1 986) .  

In ice streams reconstructed for CLIMAP, the bed 
was assumed to be rigid ,  impermeable and rough in the 
manner specified in the b asal sliding theory for sheet flow 
proposed by Weertman ( 1957b). Basal sliding for stream 
flow was attained by having the bedrock projections of 
height A, that control the sliding velocity for sheet flow, 
be progressively drowned in the downslope direction by 
a basal water layer of thickness >- that increased from 
>- � 0 at x = Ls to >- = A at x = 0 along the ice stream. 
The variation of >- with x over length Ls was unknown, 
but on the assumption that o>-/fJx = 0 at both x = Ls 
and x = 0, where x = 0 was the grounding line, the 
following cosine variation was employed: 

>- = �A [1 + cos (7rx/ Ls) ] = A cos2 (7rx/2Ls) . (22) 

The undrowned height of these projections was A - A, 
and the bed-roughness factor for stream flow would then 
be: 

A - >- A [ " 2 ( 7rX ) ]  
---;:;- = A' 1 - cos 2Ls 

A . ? ( 7r�; ) = - Sln- -A' 2Ls (23) 

where A' was the distance between projections of height 
A and A/ N was a constant bed-roughness factor for 
sheet flow in the Weertman (1957b) theory. 

Basal sliding velocity Uo for sheet flow in the Weert­
man ( 1957b) theory was: 

where m = Hn + 1 ) ,  B = Bo(A/ N)2 and Ba was a 
constant that probably depended on basal water pres­
sure (Budd and others, 1 979) . In CLIMAP ice-sheet 
reconstructions, Equations (6) and (24) were used to 
compute convex surface flowline profiles characteristic of 
sheet flow from a formula proposed by Nye (1952). For 
a horizontal bed, the case considered here, his formula 
was: 

i1 h  

i1 x  
(25) 

The CLIMAP reconstructions assumed that basal shear 
stress TO had two characteristic variations for sheet flow 
from the ice divide at x = L to the ice margin at x = 0,  
one being TF for a frozen bed computed from Equation 
(6) and the other being TJl1 for a melted bed computed 
from Equation (24) .  If t he bed consisted of mixed frozen 
and thawed patches, as may exist in transition zones bet-
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ween zones where the bed is either completely frozen or 
completely thawed, then: 

TO = ITN! + ( 1  - f)TF (26) 

where I was the thawed fraction in a given L1x step of 
Equation (25 ) . 

Since A/A.' is raised to the 4 m/ (2 m+l) power in Equat­
ion (28) for sheet flow in w hich bedrock projections A 
are not drowned, progressive drowning for stream flow 
according to Equation (22) requires that A - ). replaces 
A as the undrowned height . Then, from Equations (23) 
and (28) : 

[ .  ( 7l'X ) ] 4m/(2m+l ) 
TO = 7}..1 sm2 -

L 2 s (29) Ablation in the CLIMAP ice sheets was confined to 
the first step in from the ice-sheet margin, with accumul­
ation being constant over all subsequent steps to the ice 
divide. This constraint was replaced by Hughes (1981b) ,  
and Table 1 lists the TM and TF expression for the mass­
balance expression: 

Substituting this expression for TO into Equation (25) 
gives: 

a(L - E) + bE = N (27) 
A h  [ (  ) ] �m/(2m+ l )  Ll TM . 2 7l'X 

- = -- sm --
L1x PIgh 2Ls (30) 

where the equilibrium line is at x = E, accumulation 
rate a is  constant over flow-band length L - E, ablation 
rate b is constant over flow-band length E and net mass 
balance N is zero for a steady-state ice sheet, positive 
for an advancing ice sheet and negative for a retreating 
ice sheet . 

Equation (30) converts the convex sheet-flow profile over 
length L given by TM in Equation (28) into a concave 
stream-flow profile over length Ls . This is t he concave 
profile for 4> = 0,  so that PT = 0 in Equation ( 18 ) . 

Case H .  S tream flow wit h decreasing b asal 
buoyancy 

Stream flow develops from sheet flow over a thawed 
bed, and E = hE = b = 0 in ice streams buttressed by 
ice shelves, which was the case for CLIMAP ice sheets. 
Applying these limitations to TM in Table 1 gives: 

An expression for L1h/ L1x can be derived by using the 
continuity condition to specify a�x in Equation ( 15 ) .  For 
constant w, t he continuity equation is: 

TM = 

(m + I )PI9a2 B'5m(A/ A.' )4m (L _ x) (2m+l )/m 8(hu)/8x - a = 0 (31) 

[ 
] 1/(211l+1 ) 

(2m + 1 )  [L(m+l )/m - (L - x) (m+ l ) /m] 
(28) 

where u is the average velocity of the ice column for 
mass-balance equilibrium. Integrating Equation (31) for 

Tab le 1 .  Variations of basal shear stress TO with distance x along fiow bands of length L and 
constant width for sheet fiow over frozen ( TO = TF ) and thawed ( TO = TM ) beds for constant 
surface accumulation and ablation rates a and b separated b y  an equilibrium line at dist ance 
x = E from the margin of the ice sheet (Hughes ,  1 981b) *  

For the ablation zone (0 ::::; x ::::; E) : 

A [( 1 + n/2) (N - bx)] I/n 
TF = -{-----------�-���--�---------}�I/�(n�+�l) h�n+2)/n + (2A/ PIgb) ( 1  + n/2)1/n [(N - bx) (n+l)/n - (N - bE)(n+l )/n] 

B(N - bx)l/m 
™ = -{--------------�--�------------}�I/�(2�m-+�I�) h�m+I )/m + [ (2m + I )B/ (m + I)PIgb] [ (N - bx) (m+l )/m - (N - bE) (m+ l )/m] 

For the accumulation zone (E ::::; x ::::; L ) :  
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A [( 1 + n/2) (L - x) ] I/n TF = ------------�-���-��--------��� 
{ } 1 / (n+l )  
h�n+2)/n + (2A/ Plg) (a + an/2) I /n [ (L - E)(71+1)/n - (L - x) (n+l)/n] 

B [a(L - x)] l/m 
7}..1 = -------------------��---=----------------------���� 

{ } 1/(2m+ l ) 
h�m+l )/m + [(2m + I )Ba1/m/(m + I )Plg] [ (L - E) (m+ I )/m - (L - x) (m+l )/m] 

• The sign after the hE term was incorrectly a minus in Hughes ( 1 981b). 



constant a over length Ls and noting that u is negative: 

la

x lhu 
a dx = ax = d(hu ) = hu - heue 

o hc:uc: 
(32) 

where he and Ue are values of h and u at the grounding 
line. Equation ( 3 1 ) also yields: 

a = hou/ ox + uoh/ ox = hExx + u/J.h/ .1 x (33) 

where Exx = ou/ox is the longitudinal strain-rate and 
is given by Equation (10) , in  which T is the effective 
shear stress and a�x is the longitudinal deviator stress. 
For constant width, the transverse deviator stress a�y is 
zero: 

where it = Haxx + ayy + O'=J is the depth-averaged hyd­
rostatic pressure. Solving Equation (34) for ayy yields: 

(35) 

Important stress components in T are O'xy , O'x= , axx , O'yy 
and 0'== . Using Equation (35 ) : 

2 2 2 2 T = O'xy + ay= + O'=x 
+ k [ ( axx - O'yy )2 + (ayy - 0'=0 )2 + (0'== - axx )2] 

= O'�y + a�= + HO'xx - 0'=J2 . (36) 

Using Equation (35) to express O'�x in terms of axx and 
0'== : 

O'�x = axx - it = O'xx - ± (axx + O'yy + a=z ) 
= � (axx - a=J. (37) 

Equation ( 10 ) now becomes: 

(38) 

Equations (32) and (33) can be solved for .111,/ .1 x, and 
Equation (38) can be substituted for Exx in the resulting 
expression to give: 

/J.h a - hExx h(a - hExx ) 
/J.x u heue + ax 

ha - h2 [(O'xx - a=J/2A" ] 
heue + ax 

[a�y + O'�= + ! (axx - 0'=0 )2] (n- I )/2 
heue + ax 

Equation (39) is difficult to evaluate further. 

(39) 

A major simplification of Equation (39) is possible if 
the braking effect of shear stresses O'xy and O'x= can be 
represented by a longitudinal braking stress aJ3 that red­
uces pulling by the gravity-driven longitudinal deviator 
stress O'�x = � (axx - 0'=0 ) given by Equation ( 1 5 ) .  This 
implies a longitudinal braking force FB that arises from 
side and basal traction and increases with distance x up-
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stream from the grounding line as follows: 

FJ3 = aJ3wh = 2fshx + TOWX (40) 

where TS , li  and TO are the average values of TS , h and TO 
over distance x. Equation (39) can then be replaced by: 

L'lh ha - h2 [ (a�x - O'I3 )/Aj" 
fj,x heue + ax 

? [ - ] " ha - h- a�x - 2fs (h:1;fhw) - To (x/h) /An 
hCl1C + ax 

( 4 1 ) 

There is no mathematical way t o  derive Equation ( 4 1 ) 
from Equation (39) , but physically i t  means that the 
braking effect of shear stresses O'xy and ax= in restraining 
stream flow is mimicked if O'�:J: is reduced by 0'13 . 

S ince TO results from basal traction caused by ice­
bed coupling due to the weight of ice above buoyancy 
height being supported by the bed, the effect of TO in  
Equation (41 ) i s  included if  O'�x is given by Equation 
( 1 5 ) .  Equation ( 4 1 ) then becomes: 

fj,h 
fj,x 
ha - h2 [�Plgh ( l  - PI /pw)q/ - 2Ts (h.x/hw)cp2]" /An 

hcuc + ax 
( 42) 

where cp expresses the  degree of ice-bed coupling and ice­
shelf buttressing, and is included in the TS term because 
the braking force cannot exceed the pulling force. 

The variation of TS along x can be represented as a 
smooth decrease from a maximum at the head of the 
ice stream, where converging flow has produced strain­
hardened ice having an upper viscoplastic yield stress 
(Tv ) s at x = Ls , to a minimum at the foot of the ice 
stream, where laminar flow has produced strain-softened 
ice having a lower viscoplastic yield stress (Tv)e at x = O. 
An empirical expression that represents this transition is: 

(43) 

If  strain hardening remains all along Ls, then (Tv ) s = 
(Tv )e = Tv and TS = Tv . If strain softening ends as 
shear rupture at the grounding line, (Tv le = 0 and 
TS = Tv sin2 (7l'x/2Ls) . If shear rupture occurs all along 
Ls, then (Tv ls = (Tv ) e = 0 and TS = O. This spectrum 
of TS behavior obtained from Equation (43) is  illustrated 
by the flow curves in Figure 8, in which increasing strain 
softening allows a given side shear strain Exy to be pro­
duced by decreasing side shear stresses TS · 

The average value of TS is provided by the relationship: 

r TSX = Jo TS dx. (44) 

Substituting TS from Equation (43) for TS in Equat­
ion (44) gives: 

TS = (Tv )e + [(Tv )S - Tv )e] [� - HLs/7rx)] sin(7l'x/2Ls) 
( 45) 

for which fs = 0 at  x = 0 and fs = � (T\' )s at x = S .  
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Fig . 8. Possible flow curves for' lateral shear 
in an ice stream. Strain hardening in the zone 
of converging flow at the head of an ice stream 
causes an increase in side-shear stress TS and 
transverse shear strain Exy until viscoplastic 
yield stress Tv is reached. Over l.ength Ls of 
stream flow, TS is constant if strain harden­
ing and softening rates are in balance (curve 
1 ) ,  TS decreases if strain softening dominates 
(curves 2 and 3) and TS drops to zero if strain 
softening leads to shear rupture (curve 3) . 

Strain softening along x is not necessarily described 
by Equation (45) . It can be related to the minimum 
value of TS if 11 is replaced by mean height � ( h  + he ) and 
side-strain softening controls the side-shear force such 
that : 

2fsh = (Tv) e (h + he)x. ( 46) 

Figure 9 shows the effect of Equation (46) as x in­
creases in successive llx steps. The mean side area is 
(hI + he )tlx for the first step and (hs + hc )Ls for the 
last step. The side area along x is overestimated more 
with each step if the ice-stream surface is highly concave. 
Progressive overestimation of side area offsets keeping TS 
at its minimum in a way that links strain softening to the 
concavity of the ice stream. The sooner strain softening 
develops in i ts side-shear zones, the more concave the ice 
stream becomes. This is reasonable, because the ultim­
ate strain softening is shear rupture, for w hich TS = 0 
and Equation (42) has the most concave profile. 

x 

Fig. 9. A method for approximating the side 
area of an ice stream that uses successive 
straight lines to represent the concave top sur­
face, with one line for each additional tlx in­
crement added to x. The less concave the sur­
face, the better the approximation. 
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Case II is a situation in which basal permafrost t haws 
to produce a layer of water-soaked sediments t hrough 
w hich bedrock crops out. An ice stream develops, with 
some of the ice overburden supported by these bedrock 
"sticky spots" and the remainder supported by basal 
pore-water pressure. Hence, TO exists and its variation 
along x can be represented by modifying Equation (28) , 
i n  which TO = TM for a thawed bed, to include the ef­
fec t  of basal buoyancy that arises when basal permafrost 
thaws. Since the basal permafrost consists of unconsol­
idated sediments with a high ice fraction, thawing al­
lows the basal water pressure to support the entire ice 
overburden except at those sticky spots where bedrock 
projects through the sediments and penetrates the over­
lying ice. If A is t he height of these bedrock projections 
and A' is their average separation, and if ). is the thick­
ness of thawed water-soaked sediments between these 
projections, they can be related to basal buoyancy factor 
cfJ as follows: 

( 47) 

Equation (47) requires that ). = 0 when ifJ = 0 for no 
buoyancy and ), = A when ifJ = cfJe for full buoyancy, 
with a linear variation in between .  Equation (28) can be 
modified to include this situation so that the following 
expression for TO results: 

TO = [(m + 1 )PIga2 Bgm [(AI A') 
] 1/{2m+l )  

. ( 1 - cfJNc)rm (L - x) {2m+ I)/m 

I [(2m + 1 )  [L{m+I )/m _ (L _ x) {m+l)/m] ]  1 /{2m+l )  

[ (m + 1 )prga2 B2m (L _ x) {2m+l )/m ] 1 /{2m+ l )  

(2m + 1 )  [L{m+ l)/m - (L - x) {m+I)/m] 

. 
[
1 _ 

! rm/{2m+l) 

= TM (l - cfJNc )4m/{2m+l) (48) 

w here B = Bo ( AI A')2 in the Weertman ( 1957b) theory 
of basal sliding. This assumes the large "sticky-spot" 
bedrock projections that control stream flow have a 
height A - ). penetrating ice above thawed permafrost 
t hat is comparable to the "controling obstacle height" 
for sheet flow that Weertman ( 1957b) proposed .  

An expression for tlhl llx i n  which stream flow begins 
as sheet flow and ends as shelf flow is the following: 

tlh 
tlx 
ha- h2 [�PI9h(l -PII pw) - (Tv )C (1 + helh)xlwr cfJ2nlAn 

heue + ax 
TM (l - cfJNc )4m/{2m+l ) 

+ --����------PIgh ( 49) 

where Equation ( 46) is substituted into Equation (42) , 
Equation (48) is  substituted into Equation (25) and the 
two are added.  Since braking vanishes when pulling van­
ishes, (Tv)e = 0 when ifJ = O. In  Equation (49) , sheet 



flow exists when cP = 0 and the second righthand term 
dominates, whereas shelf flow exists when cP = CPe and 
that term vanishes. S ince braking stops when pulling 
stops, the limiting ice-stream length is: 

Ls = x = 
Prghw(l  - Pr/ pw ) 
4 (Tv ) e (1 + he/h) . (50 ) 

If (Tv )e = 100 kPa, he = 1000 m, h = 2000 m and w = 
30 km, Ls = 100 km. 

Many ways to decrease cP as x increases along length 
Ls of stream flow are possible, but one for which d = 
(pr! PW ) he cos2 (7rx/2Ls) so that in Equation (3) both cP 
and dcp/dx are smooth functions is: 

(5 1 ) 

Basal water pressure decreases gradually from eTa = 
Prghe at x = 0 to eTa = 0 at x = Ls .  Equation (49 ) 
becomes: 

!:lh { 2 [ 1 ] " !:lx = ha - h ;jprgh( l - Pr/pw) - (Tv)e ( 1  + he/h)x/w 

. [cp� cos4 (7rx/2Ls )j " /An } /{hcug + ax} 

+ 7i-1 . 2 7rX 
[ ( ) ] 4mJ(2m+ 1 )  

-- sm --
Prgh 2Ls 

Case Ill. Stream flow with equilibrium basal 
buoyancy 

(52) 

If bedrock "sticky spots" cropping out in the water­
soaked sediments beneath an ice stream are small and 
widely separated, or are not even present, and if the per­
meability of the sediments allows the pore-water pressure 
to be in hydrostatic equilibrium with basal water pres­
sure at the grounding line, then d = (PI / Pw )he all along 
Ls and Equation (3) becomes: 

cP = CPc(he/h) . (53) 

This is the case of constant basal water pressure, for 
which Equation (49) becomes: 

!:lh 
!:lx 

{ha - h2 [�PI9h(1 - pr!pw) - (Tv )c ( 1  + he/h)x/wj " 
. [cpc (he/h)j " /A" } / {heue + ax} 

7i-1 (1 - he/h)4mJ(2m+l )  + -�-���---Prgh 

Case I V .  Stream flow with maximum basal 
buoyancy 

(54) 

If bedrock does not crop out in the water-soaked sed­
iments beneath an ice stream, and a till or bedrock sill 
at its grounding line is too impermeable to pore water in 
the sediments to establish hydrostatic equilibrium under 
the ice stream, then pore-water pressure supports all of 
the ice overburden. In this case, d = (pr! pw )h all along 
Ls , so no ice-bed coupling exists and cp in Equation (3) 
reduces to its value for ice-shelf buttressing: 

rp = rpe . (55) 
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This is the case of maximum basal water pressure, for 
which Equation (49) reduces to :  

!:lh 
!:lx 

{ha - h2 [ �PIgh(l - Pr! pw ) - (Tv )e ( l  + he /h)x/wj " 
. cp�'/A" } /{heue + ax} .  (56) 

PULLING P OWER AND A LIFE-CYCL E  
CLASSIFICATION FOR ICE STREAMS 

Pulling power provides an analytical foundation for clas­
sifying marine ice streams in a hierarchy in which loss of 
gravitational potential energy over time produces an ice­
stream history characterized by inception, growth,  mat­
ure, declining and terminal stages of a life cycle, but al­
lowing for rejuvenation as well. Pulling power decreases 
as an ice stream ages, and quantifies the vitality of the 
ice stream at a given stage in i ts life cycle. The life cycle 
of an ice stream must be inferred from present-day ice 
streams and from the glacial geological record of former 
ice streams. These observations support an hypothesis 
in which the pulling power of an ice stream is closely 
related to the degree of ice-bed coupling beneath the ice 
stream and the degree of ice-shelf buttressing beyond the 
ice stream. Letting numbers I ,  2 ,  3, 4 and 5 denote no, 
weak, moderate, strong and full ice-bed coupling, and 
letters A, B, C ,  D and E denote no, weak, moderate, 
strong and full ice-shelf buttressing. Table 2 presents 
a life-cycle classification of ice streams in which various 
combinations of ice-bed coupling and ice-shelf buttress­
ing are quantified as values of rp. In this classification of 
an ice-stream life cycle, cp = 1 for the inception stage, 
rp = 3/4 for growth stages, rp = 1/2 for mature stages, 
rp = 1/4 for declining stages and rp = 0 for terminal 
stages. 

The fundamental assumption underlying the ice­
stream classification in Table 2 is that marine ice streams 
begin in inter-island channels on the outer edge of broad 
polar continental shelves or in the straits where large 
continental embayments open on to polar oceans. These 
continental shelves and embayments are sedimentary 
basins floored by permafrost at the beginning of a glaci­
ation cycle, when sea ice thickens and grounds on the ice­
cemented sediments, and continued thickening produces 
marine ice domes whose terrestrial margins transgress 
on to land and whose marine margins encroach on to 
the outer continental shelf (Denton and Hughes, 1981 ;  
Hughes, 1982,  1 987a; Lindstrom and MacAyeal, 1987, 
1 989; Lindstrom, 1990) .  The life cycle of marine ice 
streams follows from this assumption. 

Since the mass balance of an ice stream changes dur­
ing its life cycle, pulling power PT should be computed 
for the actual mean ice velocity ux, not the velocity u for 
mass-balance equilibrium given by Equation ( 17 ) .  An 
equation for Ux that is based on the basal buoyancy fac­
tor rp and combines mean sliding velocity ua with mean 
creep velocity ue along length Ls of stream flow is: 

Ux = cpua + (1 - rp)ue 
( lLS ) r" r = cp Us + x Exx dx + ( 1 - rp) la la {Exz/h) dz dz 
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Table 2. A life-cycle classification for ice streams* 

Stages in life cycle Stage cp during life cycle 
bO . S � P... 

l A  lB l C  I D  l E  Inception 3/4 1 /2 1 /4 0 ;::l 
0 u 

"0 
2A 2B 2C  2D 2E Growth 3/4 3/4 1 /2 1 /4 0 0 

.D 
b 

.� 3A 3B 3C 3D 3E Mature 1 /2 1 /2 1 /2 1 /4 0 
bO .S 
'" 

4A 4B 4C 4D Declining '" 4E 1 /4 1 /4 1 /4 1 /4 0 0 ... u 
s:: ...... 5A 5B 5C 5D 5E Terminal 0 0 0 0 0 
! 

Increasing ice-shelf buttressing -+ 

*Pulling power decreases from 1 A to 5E defined as: 

1 .  Full basal buoyancy along entire length. 
2 .  Basal buoyancy slowly decreasing upstream. 
3. Basal buoyancy steadily decreasing upstream. 
4. Basal buoyancy rapidly decreasing upstream. 
5. No basal buoyancy along entire length. 

A. No ice shelf or a freely floating ice shelf. 

B .  Weak buttressing by a confined and pinned ice shelf. 
C. Moderate buttressing by a confined and pinned ice shelf. 

D.  Strong buttressing by a confined and pinned ice shelf. 
E. Full buttressing by a confined and pinned ice shelf. 

= <p [us + (Prg/4At(1 - pI !pw )n � hn.1xl 
+ (1 - <p) [ (Plgh.1h/A .1xt h/ (n + 2)] (57) 

where Exx and Exz are given by Equations ( 1 1 )  and (7) ,  
respectively. Equation (57) gives Ux for sheet flow when 
<p = 0 and Ux for shelf flow when <p = 1 and Ls = 0, 
so that Us becomes uc , the mean ice velocity across the 
grounding line and x is negative for floating ice. When 
Ux given by Equation (57) is multiplied by F.T given by 
Equation (16) , the resulting expression for pulling power 
J>T is a complex function of basal buoyancy factor <p. 

From Equation (3) , <p is a measure of ice-bed coup­
ling. From Equation (21 ) ,  <p is also a measure of ice-shelf 
buttressing. Therefore, a classification of ice streams for 
ice-bed coupling increasing from 1 to 5 and for ice-shelf 
buttressing increasing from A to E can be based on spec­
ifying <p along an ice stream. 

I nception stage of ice streams 

Marine ice accelerates as it enters inter-island channels 
and straits, where the bed is already thawed or becomes 
thawed by the increased basal frictional heat. S ince the 
thawed bed consists of water-saturated sediments, lA 
ice streams are nucleated in these channels and straits 
because ice-bed coupling is nil and only sea ice exists 
beyond the ice streams. The Wilkes Land margin of the 
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East Antarctic ice sheet has the most likely candidates 
for l A  ice streams, notably Ninnis, Mertz, Totten and 
Vanderford Glaciers in Figure 1 (Hughes, 1987b) . 

Growth stage of ice streams 

Basal frictional heat is concentrated at the heads of chan­
nels and straits, where basal traction is a maximum at 
the basal melting-point isotherm that separates frozen 
from thawed parts of the bed. This is a highly unstable 
condition because frictional heat causes the isotherm to 
retreat rapidly. A maximum-slope surface-inflection line 
marks the head of these ice streams and exists above the 
basal isotherm. Hence the ice streams retreat rapidly, 
drawing down the marine ice dome and thereby raising 
sea level. Rising sea level floats the grounding line of 
marine ice streams over the submarine sills that typically 
exist at the oceanward ends of channels and straits, caus­
ing an ice shelf to form as grounding lines retreat. The 
sills are either bedrock ridges or grounding-line moraines, 
and they form as the thawed sediments are eroded by 
the ice streams, causing bedrock to crop out on the 
bed in places where sediments were thin. This situation 
produces 1B and 2A ice streams, where grounding-line 
retreat provides increasing ice-shelf buttressing ( lB ice 
streams) and bedrock cropping out provides increasing 
ice-bed coupling (2A ice streams).  Pine Island Glacier 
and Thwaites Glacier are respective 1B, and 2A or 2B ice 
streams in the Pine Island Bay polynya of the Amundsen 



Sea embayment of the marine West Antarctic ice sheet 
(Hughes, 1 981b; Lindstrom and Hughes, 1 984) .  

Mature stage of ice streams 

Pulling power of marine ice streams increases rapidly 
as grounding lines retreat downslope into the isostat­
ically depressed marine sedimentary basins and decreases 
rapidly as grounding lines retreat upslope out of these 
basins, since the pulling force is greatest when the 
grounding line is furthest below sea level. Hence, the 
mature stage of marine ice streams exists when a floating 
ice shelf occupies the seaward half of a marine sediment­
ary basin and a grounded ice dome occupies the land­
ward half, with ice streams drawing down the marine ice 
dome and eroding thawed marine sediments beneath the 
dome. This situation produces 1C, 2C, 3C,  3B and 3A 
ice streams, depending on the degree of ice-bed coupling 
and ice-shelf buttressing for ice streams at various sites 
in the embayment. The Ross Sea and Wed dell Sea em­
bayments of the marine West Antarctic ice sheet contain 
mature ice streams (Hughes, 1 977) . 

Declining stage of ice streams 

Retreating grounding lines of marine ice streams even­
tually stabilize when they lie in water too shallow to 
sustain a significant pulling force or lie against the head­
walls of fiords through coastal mountains, while a float­
ing ice shelf fills much of the marine sedimentary basin 
beyond the grounding line. Retreating inflection lines at 
the heads of ice streams can continue to retreat, pulling 
more ice into the marine basins and drawing down ter­
restrial ice domes. Marine ice streams become terres­
trial ice streams at this stage, and they persist so long 
as accumulation over terrestrial ice domes replaces ice 
pulled out by stream flow. This loss of marine character 
is typical of ID ,  2D, 3D, 4D,  4C, 4B and 4A ice streams, 
and therefore represents the declining stage of marine 
ice streams. Outlet glaciers through the Transantarc­
tic Mountains are probably 3D, 4D and 4C  ice streams 
that drain the largely terrestrial East Antarctic ice sheet 
and are buttressed by ice shelves floating i n  the mar­
ine sedimentary basins of West Antarctica (Swithinbank, 
1963). 

Terminal stage of ice streams 

When an ice stream is no longer able to deliver ice to 
the calving front of its ice shelf fast enough to offset the 
iceberg-calving rate, the ice stream enters its terminal 
stage. Ice streams are terminal in stages lE ,  2E, 3E, 4E, 
SE, SD, SC,  5B and SA. A calving bay carves away the 
ice shelf until its calving front coincides with its ground­
ing line to produce a calving ice wall. A 5 E  ice stream 
ideally exists in a fiord floored by rugged bedrock, so 
that ice-bed coupling is optimized; and supplies an ice 
shelf grounded on all sides, so that ice-shelf buttressing is 
optimized. Lambert Glacier, which pulls terrestrial East 
Antarctic ice into the Amery Ice Shelf, may be a rejuv­
enated SE ice stream (Allison, 1979; Hughes, 1987b) . 
Rejuvenation of a SE ice stream occurs when a calving 
bay reduces ice-shelf buttressing, converting it into an 
ice stream in  stages moving from SE to SA, thereby caus­
ing a great increase of ice-stream velocity. This may be 
the case with J akobshavns Isbn!! that drains much of the 
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west-central Greenland ice sheet i nto Jakobshavns Isfjord 
and is the fastest ice stream known (Hughes, 1986) . 

Modeling ice-stream life cycles 

A bout 90% of the ice in present-day ice sheets cover­
ing Antarctica and Greenland is d ischarged by marine 
ice streams. If this was true of the marine margins 
of former ice sheets, and if terrestrial ice streams were 
prominent along their terrestrial margins, then computer 
models that simulate the advance and retreat history of 
ice sheets should i nclude any proposed life cycle for ice 
streams. The l ife cycle for ice streams proposed here 
would apply to deglaciation episodes in the history of a 
marine ice sheet ,  i f  the marine ice-transgression hypo­
thesis explains its glaciation episodes (Hughes, 1986) .  A 
marine ice sheet is postulated to form when sea ice thick­
ens and grounds i n  shallow marine embayments or on 
shallow continental shelves fringed by islands. Examples 
are Hudson Bay, Foxe Basin and inter-island channels 
of the Queen Elizabeth Islands in North America, the 
Baltic, Barents and Kara Seas in Eurasia, Byrd Sub­
glacial Basin and the Ross and Weddell Seas in Antarc­
t ica. Grounding occurs mainly on sediments in the per­
mafrost condition, so that the marine ice sheet grows 
on a frozen bed that precludes formation of marine ice 
streams. When a marine ice sheet becomes thick enough 
to thaw the basal permafrost ,  both by depressing the 
basal melting point and increasing basal-friction heat­
ing, ice streams will develop in outer inter-island chan­
nels where most marine ice is discharged. This begins 
the deglaciation history of the marine ice sheet and the 
l ife cycle of its ice streams. 

Computer models of ice sheets that include the life 
cycle of marine ice streams need to incorporate three 
boundary conditions that constrain stream flow: ( 1 )  ice­
shelf buttressing, (2)  ice-bed coupling, and (3) side-shear 
traction. As defined by Equation (3 ) ,  the basal buoyancy 
factor </> has potential for parameterizing the first two of 
these constraints, and the third constraint is made to 
depend on </> by way of Equation (46) .  The resulting 
expression for f1hl f1x is Equation (49) and it includes 
the effects of all boundary conditions for specified values 
of </>. 

An empirical expression for </> that produces a </> spect­
rum close enough to the theoretical </> curves in Figure S 
to j ustify using i t  to simulate the l ife cycle of ice streams 
in  computer models of ice-sheet dynamics is: 

</> = </>c (1 - xl Ls )C  (S8) 

where c is a constant ranging from zero to infinity. Fig­
ure 10 is a plot of Equation (S8) for comparison with 
Figure S, showing that c = 00 reproduces case I and 
c = 0 reproduces case IV, the two cnd members of the </> 
spectrum. Case Il is approximated by c = 1 .0 and case 
III  is approximated by c = 0 . 1 .  D uring the life cycle of 
an ice stream, c i ncreases from zero to infinity and </>c 
decreases from one to zero as time progresses, with c rep­
resenting ice-bed coupling and </>c representing ice-shelf 
buttressing along the various pathways depicted in Table 
2 .  

Equation (49) can be integrated numerically to pro­
duce the changing profiles of ice streams during an ice-
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Fig . 1 0 . The variation of ice-bed coupling 

N CPc with distance x upstream from the 
grounding line of a marine ice stream of length 
Ls for c values ranging from zero to infinity in 
Equation (58) . 

stream life cycle. If flowline length L is divided into i 
steps of constant length 11x over which ice elevation in­
creases by variable height I1h  = hi+1 - hi ,  where i is 
an integer and stream flow occurs over length Ls of L, 
Equation (49) can then be written: 

hi+1 = 

hi + { {hia - h� [P��1i ( 1 - ;�) - (T��X ( 1 - '�) r 
{ [  (m + 1 )plga2B2m (L _ x) (2m+l)/m 

+ 
(2m + 1 ) [L(m+l)/m - (L - x) (m+l)/m] ( ( ) 4m) ] 1 /(2m+ l ) } / } 
1 - 1 - ;s P[ghi I1x. 

(59) 

Equation (59) can be numerically integrated directly 
using the Euler method or more accurately using the 
Runge-Kutta method. Ice-bed coupling is specified for 
o :S c :S 00 and ice-shelf buttressing is specified for 0 :S 
<Pc :S 1 .  

Ice-stream surface profiles constructed on a horizon­
tal bed using Equation (59) are plotted in Figures 
1 1  through 14 for PI = 960 kg m-3, 9 = 9.8 m s-2 , 
L = 1000 km, Ls = 400 km, w = 30 km, hc 
500 m, uc = 1000 m a- 1 ,  m = 2, n = 3, (Tv)C = 

10 kPa, B = 2 kPa a� m- � (Hughes, 1981a) and A = 

470 aJ kPa (A-n = 3. 16 x 1O-16 s-1 kPa-3 ) for a mean 
temperature of -15°C through the ice thickness (Pater­
son, 1981 ,  table 3 .3) .  

Figure 11 shows the effect of ice-bed coupling for the 
midpoint value of ice-shelf buttressing, CPc = k .  Sur-
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Fig. 1 1 .  Evolution of an ice fiowline pro­
file from convex s heet flow to concave stream 
fiow as ice-bed coupling exponent c in Equat­
ion (58) decreases from infinity to zero for in­
termediate ice-shelf buttressing given by CPc = 

0 . 5 .  

face profiles are plotted for c values of 0 ,  1/10, 1/5 ,  1 /2 ,  
1 ,  2 ,  5 and 10, following the c spectrum i n  Figure 10 .  
The ice-stream surface elevation does not begin to  climb 
along distance x upstream from the grounding line un­
til c = 1/5, and the surface-inflection point separating 
lower concave parts from upper convex parts begins to 
migrate toward the grounding line when c > 1 ,  being at 
240 km for c = 2,  1 20 km for c = 5 ,  80 km for c = 1 0  
and a t  the grounding line for c = 00 . Hence, the pulling 
power of the ice stream, as represented by a down-draw 
that creates a lowered concave surface reaches further 
and more strongly into the ice sheet as ice-bed coupling, 
represented by c, decreases. 

Figure 12 shows an instability in the c spectrum when 

h (m) 

0.47 

0.49 

7/��::'-� �--,=,,......-o.so 

5 00 
4>G = l  

°0�----1�0�0-----2�0-0-----3�0�0----4�0 0  
x (km) 

Fig . 1 2. The lengthening reach of a mar­
ine ice stream into an ice s heet during the 
inception and growth stages , shown as fiow­
line profiles for various c values in Equation 
(58) when CPc = 1 specifies no ice-shelf but­
tressing. As c increases, the concave stream­
fiow profile (excluding dashed parts of surface­
elevation curves) migrates toward the ice div­
ide ,  with substantial down-draw of sheet fiow 
occurring after a surface-infiection instability 
at 0 .47  < c < 0 . 4 8 . Stream fiow steadily rev­
erts to sheet fiow for c > 1 ,  causing the fiow­
line elevation to increase and its profile to be­
come increasingly convex. 
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Fig. 1 3 . Surface profiles of marine ice streams 
for ice-shelf buttressing increasing fTom no 
buttressing ( <Pc = 1 )  to  full buttressing ( <Pc = 
0) fOT moderate ice-bed coupling (c = 1 ) . The 
lowest profiles are for moder'ate 'ice-shelf out­
tTessing (0 . 4  < <Pc < 0 . 6) . 

<Pc = 1 for no ice-shelf buttressing. The first righthand 
term in Equation (59) is the pulling term, as it contains 
O'�x ' and it takes charge as c drops from 0 .48 to 0.47. 
For higher values of c, the upper part of the ice stream 
has a convex profile that first migrates upstream and 
then migrates downstream as c increases, producing the 
wholly convex surface of sheet flow at c = 00. For lower 
values of c, the lower part of the ice stream has a con­
cave profile that moves toward the grounding line as c 
decreases, and produces a concave surface for c = 0 that 
intersects the convex surface for c = 00 at 93 km from 
the grounding line and at an ice elevation of 930 m. 

Figure 1 3 shows the effect of ice-shelf buttressing for 
the midpoint value of ice-bed coupling c = l .  Sur­
face profiles are plotted for <Pc values of a, 0.2, 0.4, 
0.6, 0.8 and l .0. All of these profiles are concave and 
they are nearly superimposed for the middle range of 
0.2 � <Pc � 0.8. The concave profiles are higher for 
<Pc = a, and especially for 4>c = I , because the surface 
elevation c limbs close to the grounding line. 

Figure 14 shows the effect of ice-shelf buttressing for 
less extensive ice-bed coupling represented by c = 4 .  
Values o f  4>c are 0, 0.20, 0.50, 0.90, 0 .95 and l .00 to 
bring out the rapid upstream increase of ice elevation 
from 4>c = 0.95 to <Pc = LOO, with a convex part devel­
oping as ice-shelf buttressing vanishes. The lowest ice­
stream profile is for <Pc = 0 .50, the midpoint of ice-shelf 
buttressing. 
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Fig. 1 4 .  Surface pTofil.es of maTine ice streams 
for ice-shelf buttressing increasing fTom no 
buttressing ( 4)c = 1 )  to  JuU butt7'essing ( 4>c = 

0) for low ice-bed coupling (c = 0 . 5 ) .  The 
concave surface of stream flow and the surface 
lowering of sheet flow develop most rapidly at 
the onset of ice-shelf buttTcssing (1 .00 < 4>c < 
0 . 95) . 

P ulling power drives the ice-st ream life cycle 

The ice-stream pulling power obtained from Equation 
( 1 8) is: 

= 2 [�prgh ( 1  - pr /pw )<p2] w(hcuc + ax) 
= �PI9hw4>� ( I - X/LS)2C ( 1 - Pr/pw ) (hcuc + ax) 

(60) 

where h is obtained from Equation (59) and disregarding 
accumulation or ablation rates along the ice stream: 

!Lux = hcuc + ax (61) 

for conservation of volume flow under equilibrium con­
ditions. Ideally, Ux should be given by Ux in Equation 
(57 ) , which also depends on 4>, but changes in height and 
length of an ice stream over time are slow enough to jus­
t ify using Equation (61 ) . Figures 15  through 1 8 plot Px 
versus x using Equation (60) and various combinations of 
ice-bed coupling and ice-shelf buttressing. For conven­
ience, p.� is plotted as being positive, although Ux would 
make it negative. 

The inception stage in the l ife cycle of an ice stream 
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is illustrated in Figure 15, for which c = 0.1 for minimal 
ice-bed coupling and ,pc decreases from unity to zero 
as ice-shelf buttressing increases. Inception of s tream 
flow begins without ice-shelf buttressing, and when basal 
meltwater is produced from thawing permafrost at the 
head of the ice stream faster than it is discharged across 
the grounding line, so that the ice stream migrates into 
the ice sheet. Ideally, this is case IV with ,pc = 1 .  Ret­
reat of the head and lengthening of the body of the ice 
stream are too rapid for hydrostatic equilibrium to be 
established beneath the ice stream and for sheet flow to 
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be down-drawn into the ice stream. Figure 1 5  shows 0.)( 

2000 r-----�------�----�------� 
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1 5 00  

h (m)  1000 

O �----_4�--��----n_+_----� 

1 0 5  

9 0  

75 
III 

� 
E 
c 0. 60 -0 0 

-
-

0.)( 45 

30  

1 5  

0 0 
0

0 1 0 0  2 0 0  300 4 0 0  

x ( km) 

Fig. 1 5 .  Pul ling power during the life cycle of 
an ice stream emphasizing the inception stage ,  
with c = 0 . 1  and ,pc decreasing from unity 
to zero . A s  the ice stream retreats without 
concomitant down-draw of the ice sheet (top) , 
pul ling power is concentrated at the head of the 
ice stream (bottom) . After down-draw begins 
for ,pc < 0 . 90 (top) , pulling power becomes 
greatest toward the foot of the ice stream (bot­
tom) . 
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Fig . 1 6 . Pulling power during the life cycle of 
an ice stream emphasizing the growth stage, 
with c = 0 .5 and ,pc decreasing from unity 
to  zero . Pul ling power decreases slowly up­
stream from the grounding line, especiul.l.y for 
the higher ,pc va'/'ues .  

concave stream-flow surface profiles as retreating and 
lengthening over the range 1 .00 ::; rPG ::; 0.90 (top ) ,  
during which pulling power Px increases with distance 
upstream from the grounding line (bottom) . The sheet­
flow surface profile, for which ,pc = 0, is undisturbed 
beyond the ice stream. However, down-draw of sheet 
flow is dramatic over the range from 0 .90 ::; ,pc ::; 0.85 
(top ) ,  during which PT changes dramatically from in­
creasing to decreasing upstream from the grounding line 
(bottom) .  The conclusion to be drawn from this is that 
a little ice-shelf buttressing goes a long way in regulating 
both ice-stream retreat and ice-sheet down-draw when h 
is formulated by Equation (59) and PT is formulated by 
Equation (60) .  In this formulation, the inception stage 
becomes the growth stage when ,pc decreases from 0 .90 
to 0 .85 and c is nil. 

An example of the growth stage in the ice-stream 
life cycle when c = 0 .5  is illustrated by Figure 16 .  
Pulling power is strongest at the grounding line and re­
mains strong farther up the ice stream than for the other 
combinations of c and rPG in Figures 1 6  through 18. Com­
pared to the inception stage, pulling p ower reaches fur­
ther into the ice sheet but pulls ice out with weaker grip 
during the growth stage. This is because hydrostatic 
equilibrium becomes established beneath the ice stream 
during the growth stage. 

The mature stage in t he ice -stream life cycle is repres­
ented by the combination c = 1, ,pc = 0 .75 in Figure 17 .  
Pulling power remains strong at the grounding line be­
cause an ice shelf is providing only moderate buttressing. 
Pulling power decreases rapidly as rPG decreases. 

Declining stages in the ice-stream life cycle are shown 
when c = 0.5, 1, 2 are combined with 0 .75 > ,pc > 0 .25  
in  Figures 16 through 18 .  The ice shelf has become some­
what confined in the embayment and pinned to islands or 
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Fig . 1 7. Put /.ing powe1' during the liJe cy de oJ 

an i ce stream entp h asizing the mcLtur-e stag e ,  

with c = 1 . 0 and CPc decreasing J1'Om unit,!) 

to zer-o . Putting po'wer decreas es steadil:!) up­

str-eam J1'Om the gr-ounding line ,  beginning at 

lower- v alues as cPc decreas es. 

shoals, so pulling power at the grounding line has been 
reduced. It reaches up the ice stream with decreasing 
strength as ice-bed coupling increases. 

Terminal stages in the ice-stream life cycle are ap­
proached most closely in Figures 16 through 18 when 
c = 0 .5 ,  1, 2 are combined with cPc < 0 .25 . The ice 
shelf is now both confined and pinned in an embayment 
studded with islands and shoals. Pulling power at the 
grounding line is so weak that the degree of ice-bed coup­
ling upstream is relatively unimportant. 

PULLING POWER D ISINTEGRATES 
MARINE ICE S H E E TS 

The concept of a life cycle for marine ice streams in which 
pulling power is initially strong and remains strong up­
stream to the inflection line, as in l A  ice streams, and be­
comes weaker and more concentrated near the grounding 
line, to terminate finally as a stagnant 5E ice stream, pro­
vides a blueprint for disintegration of marine ice sheets. 
Several mechanisms linked to pulling power contribute 
to disintegration. 

The first mechanism is down-draw, which measures 
how far longitudinal pulling power can reach up an ice 
stream and into the heart of a marine ice sheet. The 
second mechanism is discerpation of ice ridges between 
ice streams by the transverse pulling power of these ice 
streams. The third mechanism is basal erosion caused 
by the pulling power of ice streams, so that stream flow 
migrates toward the ice divide of marine ice sheets. The 
fourth mechanism is creation and destruction of ice rises 
by pulling power, thereby controling the ability of an ice 
shelf to buttress marine ice streams. The fifth mechan­
ism is widening ice streams by lateral pulling power ,  
thereby enlarging the ice-stream drainage basin. The 
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Fig. 18 .  Pul ling power during the life cycle of 

an ice stream emphasizing thc declining stage, 

with c = 2 and CPC decreasing from unity 

to zero . Pul ling powe r  decreascs rapi d ly up­

str'co,m from the grounding line for la,rg er CPc 
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sixth mechanism is ice-stream surges caused by inter­
mittent increases in pulling power. These mechanisms 
will now be examined. 

Pulling p ower down-draws marine ice sheets 

Ice streams have surface profiles that reflect how far and 
how strong pulling power can reach up an ice stream and 
down-draw the ice sheet. The length of reach is controled 
by ice-bed coupling. The strength of reach is controled 
by ice-shelf buttressing. 

The longest reach is provided by c = 0 and the great­
est strength is provided by cPc = 1 in Equations (59) and 
(60) . Pulling power reaches full strength up the entire 
length Ls of the ice stream .  This occurs during the in­
ception stage, and produces stage lA ice streams. How­
ever, as shown in Figure 1 2 ,  the concave part of stream 
flow is only about 93 km long and it is too early in the 
life cycle for interior ice to be down-drawn into the ice 
stream. Hence, the unlowered convex surface of sheet 
flow extends from there to the ice divide. There is no 
ice-bed coupling beneath the ice stream and no ice-shelf 
buttressing beyond the ice stream. 

Down-draw begins during the growth stage of ice 
streams, when some sticky spots appear beneath ice 
streams and a confined or pinned ice shelf begins to form 
seaward of retreating ice-stream grounding lines. These 
conditions exist for 0 < c < 0.5 and 0.75 < CPC < 1 .00 
in Equations (59) and (60 ) .  The reach and strength of 
pulling power are reduced, but the ice sheet is begin­
ning to lower as interior ice is down-drawn into the ice 
streams. Surface profiles illustrating this situation are 
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shown in Figure 14 .  Down-draw is greatest during the 
initial reduction of <PG . That is, when the ice shelf be­
comes confined and pinned enough to cause some initial 
buttressing, weak as it is, as seen by the drastic drop in 
ice elevation from <PG = 1 .00 to <PG = 0.95. 

Down-draw stabilizes during the mature stage of ice 
streams, when sticky spots and slippery spots beneath 
the ice stream are in approximately equal abundance and 
the ice shelf beyond the ice stream floats in a large con­
fining embayment, where it is pinned to islands or shoals 
at several points. This situation is represented by c � 1 
and <PG � 0.75 in Equations (59) and (60) . Surface pro­
files of mature ice streams are shown in Figure 13 .  The 
instability of surface profiles depicted in Figure 12 over 
the narrow range 0.47 < c < 0.48 when <PG = 1 vanishes 
quickly as <PG becomes smaller, and occurs at lower values 
of <PG for lower c values, as seen in Figure 15. Whether 
this has any physical significance is unclear. Comparing 
Figures 13 and 14 shows that surface elevations at the 
head of the ice stream can be higher for the mature stage 
than for the growth stage in many cases. This reflects 
the steady reduction of pulling power from the growth 
stage to the mature stage. With less ice being pulled out 
through ice streams, interior ice elevations can stabilize 
and even recover .  

Down-draw is  absent during the declining stage of ice 
streams because their pulling power is too weak and too 
short in reach. The bed beneath the ice streams con­
sists of slippery spots scattered in a sticky matrix and 
a confined and pinned ice shelf strongly buttresses the 
ice streams. Equations (59) and ( 60) produce these con­
ditions for 1 < c < 00 and 0 .75 < <PG < 0 .25 ,  with 
the convex surface of sheet flow extending closer to the 
grounding line as c decreases and <PG decreases. 

Sheet flow reaches the grounding line at the terminal 
stage of ice streams, for which c = 00 and <PG = 0 in 
Equations (59) and (GO) .  With full ice-bed coupling and 
ice-shelf buttressing, pulling power vanishes because <P = 
o makes F.T = 0 in Equation (60) . The ice sheet thickens 
because Ux in Equation (60) is too small to discharge ice 
as rapidly as it precipitates over the ice sheet. 

P ulling power discerps ice ridges 

Ice ridges lie between ice streams. S ince transverse pro­
files are often steeper that longitudinal profiles on ice 
ridges, flow down the flanks into ice streams is usually 
faster than flow along the crest into an ice shelf. The 
longitudinal profile of an ice ridge can be computed from 
solutions of Equation (39) at the head (x = Ls) and the 
foot (x = 0) of its flanking ice streams, since these are 
also boundaries of the ice ridge. The longitudinal profile 
is the ice divide for transverse flow into the flanking ice 
streams. 

Equation (39) has simple solutions at x = 0 and x = 
Ls. At x = 0, axy is small compared to a�x and ax: 
TO = O. Equation (39) at h = hG is then: 

Weertman (1957a) derived an expression for the long­
itudinal strain rate in freely floating ice having constant 
width, and if the ice-shelf back-stress aG at the ground-
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ing line is included (Thomas, 1977) , it becomes: 

( axx
2
�a=z ) � = [ pr:�G (1 - ;�) - �r 

(63) 

Equation (39) , making use of Equations (21 ) and (63) , 
is then: 

( tlh) =
!!:.... _ hG [pr9hG<PG (1 - .£!..) ] n (64) tlx G UG UG 4A pw 

At x = Ls , let a�x = 0 and axy «: ax: = TO = TM . 
Equation (39) is then replaced by Equation (25) with 
h = hs , because buoyancy vanishes at x = Ls: 

( tlh) 
tlx s 

(65) 

where TO is  given by Equation (28) . 
It is reasonable to assume that progressive ice-bed 

coupling from x = 0 to x = Ls causes Equation (64) 
to be replaced gradually by Equation (65 ) .  One way to 
accomplish this is to write: 

( tl h) 2 ( 7l'x ) ( tlh) . ?  ( 7l'x ) - cos -- + - sm- --
tlx G 2Ls tlx s 2Ls 

[.!!:...- _ 
hG (P[9hG<PG ) " (1 - �) n] 

UG UG 4A PW 

2 ( 7l'X ) [ TO ] . 
2 
( 7l'X ) . cos - + -- sm --2Ls P[9hs 2Ls 

-- cos -- + -- sm - . ( 2TS ) 2 ( 7l'X ) ( TO ) . 2 ( 7l'X ) 
Pr9W G 2Ls prgh s 2Ls 

(66) 

In Equation (66) , TS is evaluated at the grounding line, 
where TO = tlax,,/ tlx = 0 in Equation ( 14) , so equating 
these equations requires that: 

where TS is  the side-shear stress between an ice stream 
and its flanking ice ridge . Equation (66) is ,  of course, 
purely arbitrary. However, it has the virtue of illustrat­
ing that the pulling force F." defined by Equation (16) 
controls tl h/ tlx at x = 0, and that the contribution to 
tlh/ tlx by F.T decreases to zero at x = Ls in  the same 
way that <P decreases in Equation (51 ) .  

A feature of  the concave stream-flow profile given by 
Equation (66) is that it becomes a convex ridge-flow pro­
file if: 

I [ a  hG ( P[9hG<PG ) n ( 1 .£!..) n] TO = PI9 ts - - - -
UG UG 4A pw 

so that Equation (25) becomes: 

(68) 

Since TO is  constant along x in Equat�on (68) , Equat-



ion (69) can be integrated to give the parabolic-surface 
profile that is predicted by plasticity theory: 

[ 2 ! h =  hc + (2To/PI9)X] 2 . (70) 

Equation (70) gives a parabolic ice-ridge profile when TO 
is given by Equation (68) . 

Comparing Equation (67) for TS alongside an ice 
stream with Equation (68) for TO beneath an ice ridge 
having no basal buoyancy shows that side traction ex­
ceeds basal traction for unit traction area of an ice ridge, 
because: 

TO = 2 (hs/W)TS (71) 

where w » hs. The ice ridge will become part of its 
flanking ice streams when total side traction equals total 
basal traction for an ice ridge, so that ToLs W = 2TsLsH, 
where H is the mean side height of the ice ridge above 
its bed and W is the width  of the ice ridge. Hence, W is 
the minimum spacing between ice streams and, for equal 
basal and side traction and H � 4 (hc + hs ) :  

W = 2H(TS/TO) = (w/2hs) (hc + hs ) . (72) 

Examples of how ice-stream pulling power discerps in­
tervening ice ridges are found along the West Antarctic 
grounding l ine of the Ross Ice Shelf, particularly the Siple 
Coast, where Whillans and others (1987) have meas­
ured surface velocities and deformation, and Shabtaie 
and others ( 1 987) have mapped surface and basal topo­
graphy (see Fig. 1 ) . Ice ridge AB has a contorted sur­
face similar to that of its flanking Ice S treams A and 
13 ,  whereas ice ridge BC has a smooth surface similar to 
Ice Stream C ,  which flanks it on the north. All three 
ice streams have surfaces not far above buoyancy along 
much of their length, with Ice Stream B underlain by de­
forming sediments (Blankenship and others, 1966) , and 
much basal water along Ice Stream C (Robin and oth­
ers, 1970 ) .  Ice Streams A and 13 move rapidly, inland ice 
augments local accumulation to give ice ridge AB a mod­
erate velocity, inland ice is diverted into Ice Streams B 
and C by a local ice dome on  ice ridge BC, giving it a slow 
velocity from local accumulation only, and Ice Stream C 
scarcely moves at all (Whillans and others, 1987) . From 
these observations, Ice Streams A and B are type 1C or 
2C, whereas Ice Stream C is type lE or 2E,  being al­
most fully buttressed by the Ross Ice Shelf. Hence, Ice 
Streams A and 13 exert strong transverse pulling forces 
but Ice S tream C does not. Moreover, transverse ice vel­
ocity entering these ice streams is much higher from ice 
ridge AB than from ice ridge BC. Ice ridge AB is there­
fore discerped by pulling power, whereas ice ridge BC is 
not, so ice ridge AB has the contorted pulled-apart sur­
face of an ice stream, whereas ice ridge BC has a smooth 
surface. 

P ulling p ower measures the erosive p ower of ice 
streams 

Subglacial erosion requires a pulling force to loosen basal 
material and an ice velocity to transport the loosened 
material. P ulling power, being the product of this force 
and velocity, is a direct measure of the erosive capacity of 
an ice stream. Therefore, classifying ice streams accord-
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i ng to pulling power provides a framework for answering 
the question posed by Bader ( 196 1 )  as to whether an 
ice stream is likely to create its own subglacial depres­
sion. If stream flow develops independently of bed topo­
graphy and if pulling power can migrate upstream, the 
ice stream will erode a linear basal depression. Flow con­
verging downslope from saddles on the ice divide should 
be able to produce an ice stream without a trough in 
the bed. However, pulling power at the head of an ice 
stream co-exists with a peak in basal shear stress so 
the bed should be strongly eroded beneath the surf�ce­
inflection line. Retreat of the inflection line will be at a 
velocity that equals the erosion rate, and will produce a 
trough beneath the ice stream. The trough should form 
most rapidly for a lA ice stream, because basal erosion 
is merely a consequence of thawing ice-cemented per­
mafrost, and most slowly for a 4D ice stream, because 
basal erosion requires quarrying bedrock. In short , the 
greater its pulling power, the more easily an ice stream 
can erode a trough. 

Pulling power also allows an assessment of the hypo­
thesis by Bader ( 1961) that an ice stream is self­
perpetuating once i t  forms, because ice viscosity is low­
ered by the heat of internal friction. Frictional heat per 
unit area is generated by basal traction, and is greatest 
for a 5A ice stream, which has minimal basal buoyancy 
and ice-shelf buttressing. Frictional heat per unit vol­
ume is generated by side traction, which is greatest for a 
l A  ice stream, which has maximum basal buoyancy and 
minimum ice-shelf buttressing. Basal and side traction 
combine not only to reduce effective viscosity along these 
boundaries by generating easy-glide ice fabrics, but also 
to produce fiord-like channels by basal and side erosion. 
Both processes tend to stabilize the ice stream, making it 

�elf-perpetuating, and thereby allowing long-term eros­
lOn. 

An early stage in channel formation might be taking 
place at the head of Ice Stream B on the Siple Coast of 
West Antarctica. Whillans and others (1987) reported 
that the head of Ice Stream B is a region where "rafts" of 
inland ice are being pulled into the ice stream. This is a 
region of converging flow, where the bed may be a mosaic 
of frozen and thawed patches that constitutes a t rans­
ition from sheet flow over frozen permafrost to stream 
flow over thawed permafrost. If the "rafts" of relatively 
undeformed ice exist over frozen patches of permafrost, 
disintegration of the converging flow zone may proceed 
because pulling power is a maximum and can tear out 
these ice rafts .  Peak pulling power plucks! 

P ulling power m ay regulate ice-shelf buttressing 

Ice shelves are able to buttress ice streams because they 
exert form drag and dynamic drag (MacAyeal, 1 987) , 
largely because of ice rises, where ice shelves are loc­
ally grounded. Crary Ice Rise is a complex of local ice 
domes on the Ross Ice Shelf that has been variously 
described as becoming grounded or ungrounded from a 
ridge on the Ross Sea floor (MacAyeal and others, 1987). 
This bedrock ridge seems to continue ice ridge AB sep­
ar·ating West Antarctic Ice Streams A and 13 (Bentley, 
1 984) .  It may therefore represent an advanced stage of 
disintegration of ice ridge AB. However, it also lies im­
mediately downstream from Ice S tream 13, which is car-
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rying several "rafts" of relatively thick and undeformed 
ice on to the Ross Ice Shelf. Whillans and others ( 1 987) 
traced these "rafts" to high-stress regions at the head of 
Ice Stream B, notably the "Unicorn" where Ice Stream 
B forks into branches B1 and B2. This suggests that 
the Crary Ice Rise complex resulted from the pile-up of 
ice rafts against the bedrock ridge. In that case, Crary 
Ice Rise was created by pulling power disintegrating the 
head of Ice Stream B. Moreover ,  pulling power may be 
disintegrating Crary Ice Rise by plucking rafts of ice from 
its sides and lee end. Hence, pulling power may both cre­
ate and destroy certain kinds of ice rises. These ice rises 
are temporary docking sites for ice rafts discharged on 
to ice shelves by ice streams. Pulling power regulates 
ice-shelf buttressing for these kinds of ice rises. 

P ulling power widens ice streams 

Ice Stream A supplies the southernmost corner of the 
Ross Ice Shelf, and it forms from the confluence of East 
Antarctic ice from Reedy Glacier and West Antarctic ice 
from Horlick Ice Stream. Some East Antarctic ice also 
enters Horlick Ice Stream from Shimizu Ice Stream and 
local ice from the Wisconsin Range supplies the head of 
Ice Stream A, i n  addition to its branches into East and 
West Antarctica. 

Radio-echo sounding by Shabtaie and others ( 1987) 
showed that the lateral shear zones defining the sides 
of Ice Stream A lie about midway between two chan­
nels, a deep narrow channel along the center of a shal­
low wide channel. The deep narrow channel is presum­
ably a fiord that turns southward beneath Reedy Glacier 
into East Antarctica, where it ends at a headwall in the 
Transantarctic Mountains. The wide shallow channel 
may have been eroded in ice-cemented sediments that 
form a mantle of permafrost over the bedrock of West 
Antarctica. The deep narrow channel would have been 
cut by East Antarctic ice from Reedy Glacier at a time 
when the West Antarctic ice sheet was much smaller than 
today or was absent. The shallow wide channel would 
have formed when the West Antarctic ice sheet was much 
larger than today, so that increased discharge from Hor­
lick Ice Stream thawed the permafrost and eroded the 
sediments. 

The fact that Ice Stream A has a width today that lies 
between the deep and shallow channels suggests that it is 
narrowing as West Antarctic ice lowers from its elevation 
at the last glacial maximum. Narrowing would then be 
a consequence of decreased pulling power as Ice Stream 
A ages from a mature 3C stage to a terminal 5 E  stage. 
Renewed growth of West Antarctic ice or, conversely, 
disintegration of the Ross Ice Shelf would increase pulling 
power and widen Ice Stream A .  As Equation (72)  shows, 
ice streams widen as they steepen, since W / w decreases 
when hc/hs decreases. 

P ulling power causes ice streams t o  surge 

As Bader ( 196 1 )  observed, "An ice stream is something 
akin to a mountain glacier . . .  but a mountain glacier is 
laterally hemmed in by rock slopes, while the ice stream 
is contained by slower moving surrounding ice." Some 
mountain glaciers surge periodically, so periodic surges 
of ice streams should also be possible. Indeed, the Dib­
ble and Dalton Iceberg Tongues grounded for 100 km on 
the continental shelf beyond unimpressive present-day 
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ice streams in Wilkes Land, East Antarctica, may have 
formed when these ice streams surged, and Thwaites 
Glacier in Pine Island Bay, West Antarctica, may now 
be surging (see Fig. 1 ) .  P ulling power first increases and 
then decreases during a surge cycle, as both surface slope 
and ice velocity increase and decrease at the head of the 
mountain glacier or ice stream, where the surge begins, 
probably in phase with increases and decreases of basal 
buoyancy (Kamb and others, 1985) .  

If basal buoyancy, and therefore pulling power, con­
trols surges of marine ice streams, surges can be triggered 
by rising sea level when the grounding l ine retreats faster 
than the inflection line. Rising sea level that moves the 
grounding line closer to the inflection line, thereby in­
creasing surface slope ,  also lifts the ice shelf off its p in­
ning points, thereby decreasing buttressing. Both pro­
cesses increase the pulling power of the ice stream. As 
more ice is pulled out ,  the inflection line must retreat 
and pulling power extends its reach into the ice sheet .  
A 5E ice stream i s  most sensitive to  changing sea level 
because basal buoyancy and ice-shelf buttressing change 
most dramatically at the grounding line. In contrast, a 
lA ice stream is least sensitive to changing sea level b e­
cause no ice shelf buttresses its grounding line and full 
buoyancy extends back to its inflection line. There may 
be a natural evolution from a lA to a 5E ice stream, pro­
vided that a lA ice stream can erode its thawed basal 
sediments down to bedrock and its actively retreating 
inflection line can drag along its grounding line, to leave 
behind a buttressing ice shelf. 

Table 3 compares the surface-slope expressions for 
sheet flow and ridge flow with those for stream flow 
having ice�bed coupling conditions specified by basal 
buoyancy factor <p.  Inception, growth, mature, declining 
and terminal stages of an ice-stream surge may mirror 
these stages for the life cycle of an ice stream by having 
a similar dependence on <p through time that includes 
the <p variations in Table 3. The !1h/.1x expression 
for stream flow for minimum basal buoyancy is differ­
ent from Equation ( 30 ) ,  the tlh/.1x expression for case 
I, because their derivations were different. However, the 
.1h/!1x expressions in cases Il, III and IV in Equat­
ions (52) ,  (54) and (56)  for decreasing equilibrium and 
maximum basal buoyancy were based on the tlh/.1x ex­
pression in Table 3. Note that (Tv )C = 0 when <p = O.  

DISCUSSION 

Bader ( 1961) wondered whether "the ice stream, once 
started, is self-perpetuating because its mass, warmed 
up by heat of internal friction, has a lower viscosity than 
the surrounding ice." This lower viscosity need not exist 
in the bulk of the ice stream, only in its side and basal 
boundary zones, where frictional heating can substan­
tially decouple the ice stream from flanking ice ridges 
and the bed, and where laminar flow might produce an 
easy-glide ice fabric. A question not asked by BadeI' 
( 196 1 )  is "How do ice streams start in the first place?" 
The answer to this question is part of "Glaciology's grand 
unsolved problem" p osed by Weertman ( 1976) . 

An attempt at answering this question was to sug­
gest that ice streams were a natural consequence of ther­
mal convection in polar ice sheets, as horizontal advec-
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Table 3. Flowline surface slopes above a horizontal bed 

Sheet flow: 

Ridge flow:  
11h _ hs [� _ he ( rPG��hG ) n ( 1 - pPwi ) n] 
11x h 'UG Ue 

S tream flow: 

11h 
11x 

ha _ h2 [ ( p rgh ) ( 1 - �) ,/..2 _ (Tv)C ( 1 + he ) ,/..2 .] n 
4 A pw 'P wA h 'P X Tlvl ( rP ) 

4m/(2m+l) 
----''--'------'--------'---..:....:.:�----�--!....-�!-. + -- 1 - -

�� + � �h � 

Minimum basal buoyancy: rP = o .  
Decreasing basal buoyancy: rP = <Pc cos2 (-rrx/2Ls ) . 
Equilibrium basal buoyancy: rp = rPc (he/h) . 
M aximum basal buoyancy: rP = rPc . 
Variable basal buoyancy : rP = rPc (1 + x / Ls)c . 

t ion of ice toward the ice-sheet margin increasingly mod­
ified vertical convection of ice (Hughes, 1(76 ) .  Being 
warmed by internal frictional heat , the ice stream would 
by buoyed upward, thereby decoupling it from the bed 
and allowing stream flow. A more plausible alternative 
is that stream flow begins when the cold-ice ceiling col­
lapses into the warm-ice basement of a polar ice sheet, 
creating the concave longitudinal and transverse profiles 
that characterize stream flow. This is somewhat anal­
ogous to the cold lithosphere descending into the warm 
aesthenosphere of the Earth's mantle to produce crustal 
trenches. Polar ice sheets are like a miniature mantle in 
this respect, the major difference being that advection 
of ice from interior domes toward the margin compels 
ice-sheet "trenches" to form near the margin and move 
toward the margin as ice streams. Being partly collapsed 
"ceiling" ice, ice streams are colder than flanking uncol­
lapsed ice, but they are also thinner than flanking ice 
so that basal meltwater is driven toward ice streams by 
the hydrostatic pressure gradient . It is this continuous 
supply of meltwater beneath ice streams that uncouples 
them from the bed enough to allow stream flow to start. 
This process would actually prevent thermal convection 
in ice streams, because the return cycle of convective 
flow, which ordinarily would allow thermal convection 
cells or rolls to develop, is short-circuited by advective 
flow, so that ice is re-routed through ice streams to the 
ice margin, never to return, In a sense, this is aborted 
thermal convection of the kind that can be initiated , but 
not sustained (Hughes, 1985 ) .  

Comparing vertical temperature profiles just above 
and below the sheet-flow to stream-flow transition, and 
in the flanking ice ridges, might determine if collapse of 
ceiling ice takes place. The ratio of cold ceiling ice to 
warm basement ice should be greatest in the ice stream. 
Ice Stream B, located in Figure 1 ,  would be suitable for 
this experiment, since it is already being studied in  det­
ail . 

Although this analysis of pulling power was focused on 
marine  ice streams, i t  can be generalized to include ter­
restrial ice streams. This can be done through the basal 
buoyancy factor rP. Ice-bed coupling for marine and ter­
restrial ice streams should have the same range, perhaps 
with total uncoupling being somewhat less likely for ter­
restrial ice streams, because drainage of basal meltwater 
around the perimenter of their terminal ice lobes is poss­
ible. Ice-lobe buttressing is similar to ice-shelf buttress­
ing, w here back-stress rPc is at the grounding line for an  
ice shelf and at the minimum-slope inflection line for an  
ice lobe. 

The simplest braking force provided by an ice shelf 
of constant width w, grounded along both sides of float­
ing length LF , and pinned by an island or shoal having 
transverse diameter D, is: 

where he is grounding-line ice thickness, IL is the average 
ice-shelf thickness, TS is side-shear stress alongside LF 
and Uc is longitudinal compressive stress pushing against 
D. The simplest braking force provided by an ice lobe 
of constant width w and grounded length Lc is: 

Fa = uewhc = TowLe (74) 

where hc is the grounded ice thickness where the lobe 
qegins and TO is the basal shear stress beneath the lobe .  

Solving Equations (73) and (74) for Uc gives expres­
sions for Uc in Equation (21)  that allows rPc to be com­
puted for an ice shelf and an ice lobe having these simp le 
configurations. These values of rPc can then be used i n  
Equation (3) to compute rP for buttressing of a marine ice 
stream by an ice shelf or a terrestrial ice stream by an ice 
lobe ,  for these simple configurations. In general, there­
fore, ice-bed coupling, ice-shelf buttressing and ice-lobe 
buttressing can be used to compute the basal buoyancy 
factor <I> for any ice stream, marine or terrestrial. 
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