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Ice-bed coupling beneath and beyond ice streams:
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Received 11 October 2010; revised 25 March 2011; accepted 18 April 2011; published 28 July 2011.

[1] Ice sheet thickness is determined mainly by the strength of ice-bed coupling that
controls holistic transitions from slow sheet flow to fast streamflow to buttressing shelf
flow. Byrd Glacier has the largest ice drainage system in Antarctica and is the fastest ice
stream entering Ross Ice Shelf. In 2004 two large subglacial lakes at the head of Byrd
Glacier suddenly drained and increased the terminal ice velocity of Byrd Glacier from
820 m yr ' to 900 m yr '. This resulted in partial ice-bed recoupling above the lakes and
partial decoupling along Byrd Glacier. An attempt to quantify this behavior is made using
flowband and flowline models in which the controlling variable for ice height above

the bed is the floating fraction ¢ of ice along the flowband and flowline. Changes in ¢
before and after drainage are obtained from available data, but more reliable data in the
map plane are required before Byrd Glacier can be modeled adequately. A holistic sliding
velocity is derived that depends on ¢, with contributions from ice shearing over coupled beds
and ice stretching over uncoupled beds, as is done in state-of-the-art sliding theories.

Citation: Hughes, T., A. Sargent, and J. Fastook (2011), Ice-bed coupling beneath and beyond ice streams: Byrd Glacier,
Antarctica, J. Geophys. Res., 116, F03005, doi:10.1029/2010JF001896.

1. Introduction

[2] We seek to determine the strength of ice-bed coupling
beneath and beyond Byrd Glacier that decreases from sheet
to stream to shelf flow. Byrd Glacier has the largest ice
drainage system on the planet (Figure 1). It drains about ten
percent of the East Antarctic Ice Sheet [Rignot and Thomas,
2002]. Byrd Glacier occupies a fjord 100 km long through
the Transantarctic Mountains, and becomes afloat halfway
along the fjord before entering Ross Ice Shelf at 80.5°S,
160°E. Fast streamflow develops from tributaries in strongly
converging sheet flow beyond the fjord headwall. Stearns
et al [2008] reported that velocity in Byrd Glacier
increased by ten percent, from 820 m yr ' to 900 m yr ' from
December 2005 to February 2007, a time when two large
subglacial lakes in the zone of converging flow were draining,
producing a flood of water that would have reduced ice-bed
coupling beneath Byrd Glacier during this time. Previous
attempts to model basal thermal conditions along Byrd
Glacier led to the conclusion that the bed was largely or
wholly frozen, a condition that would prevent drainage of
these lakes [Scofield, 1988; Scofield et al., 1991; Whillans
et al., 1989; Van der Veen, 1999, p. 43]. Using a holistic
approach, Reusch and Hughes [2003] calculated a “floating
fraction” of ice that decreased from 1.0, where Byrd Glacier
became fully afloat, in an irregular way to a minimum of
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0.4 near the fjord headwall, before climbing to 0.6 in the
zone of converging flow where the subglacial lakes were
located.

[3] We review the database for Byrd Glacier and previous
modeling approaches. Then we further develop the model-
ing approach by Reusch and Hughes [2003] that showed the
most promise for allowing subglacial lake drainage. We
apply the treatment to Byrd Glacier and the findings by
Stearns et al. [2008]. We conclude with recommendations
for future research.

2. Background

[4] Byrd Glacier was recognized as an important ice
stream because of its size and velocity [Swithinbank, 1963],
relatively simple geometry [Hughes, 1977], and proxim-
ity to McMurdo Station, the hub of American logistical
operations in Antarctica (Figure 1). Swithinbank [1963] used
surface surveying techniques and aerial photogrammetry to
map a longitudinal velocity profile across the floating part of
Byrd Glacier. These techniques were then employed along
the full length of Byrd Glacier; the zone of converging flow
at it is head and where it merged with Ross Ice Shelf at its
foot [Hughes and Fastook, 1981]. Surveying stations were
located along the fjord walls and artificial surveying targets
were placed on the glacier. Fixed and moving targets were
observed in aerial photos. The surface survey located a
narrow grounding zone halfway up the fjord, across which
tidal motion vanished. The aerial photogrammetric survey
measured 1467 ice elevations and 601 ice velocities from
moving patterns of surface crevasses [ Brecher, 1986]. Velocity
data showed that side drag increased from a minimum as ice
entered the fjord to a maximum halfway to the ungrounding
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Figure 1. The ice catchment area of Byrd Glacier in East Antarctica. The ice elevation contour interval
is 0.1 km. BEDMAP surface and bed profiles are used along the flowline/flowband shown. Modified
from Drewry [1983] [see Hughes, 1998, Figure 3.35].

line/zone, and then vanished along lateral rifts where Byrd
Glacier was decoupled from Ross Ice Shelf [Whillans et al.,
1989; Zhao, 1990; Van der Veen, 1999, Figure 3.6].

[5s] Katabatic winds blowing down Byrd Glacier produce
a surface “ablation” zone inside the fjord due to sublimation.
Most surface meltwater refreezes in crevasses, so melting is
not true ablation. Stakes close to the centerline yielded
“ablation” rates that increased from 0.1 m yr ' at the fjord
entrance to 0.3 m yr ' at the fjord exit during the 1978-1979
austral summer, with surface accumulation replacing surface

“ablation” as katabatic winds died out on Ross Ice Shelf
[Hughes and Fastook, 1981]. About halfway through the fjord,
near the ungrounding line, surface ice took the appearance of
a dried-out streambed, with polygonal “platforms” of ice
some 10 m to 30 m across surrounded by crevasses about
20 m deep. When this ice reached the lower end of the fjord,
about 50 km downstream, surface “ablation” had converted
the platforms into conical hills about 5 m high and the
crevasses were gone. Centerline ice velocity averaged 800 m

yr ' over this 50 km distance, giving a surface “ablation
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Figure 2. The only radio echo flightline giving a nearly continuous bottom reflection for Byrd Glacier.
(a) The flightline (solid line) is shown in relation to a near-central ice flowband (dashed lines). GZ is the
grounding zone according to Scofield [1988]. (b) Top and bottom reflections along the radio echo

flightline [from Reusch and Hughes, 2003].

rate” of 20 m in 50 years, or about 0.3 to 0.4 m yr '. Basal
melting rates under floating ice inside the fjord were true
ablation. Using the Brecher [1986] data for surface veloci-
ties and elevations, and calculating ice thickness from sur-
face elevations and the buoyancy condition for floating ice,
Kenneally and Hughes [2004] calculated basal melting rates
of 12+ 2 m yr ' over this 50 km floating length.

[6] Scofield [1988] and Scofield et al. [1991] used surface
data to calculate profiles of the vertical variation of ice
velocity inside an ice flowband that bracketed the radar
flightline in Figure 2 along which a bed reflection was
obtained. A flowband lies between adjacent flowlines,
which are lines of surface ice flow drawn normal to surface
elevation contour lines (see Figure 2). For ice sliding on a
thawed bed, a basal melting rate of 8 £ 3 m yr ' satisfied
mass balance continuity. This rate is an order of magnitude
higher than could be produced by a reasonable geothermal
heat flux and strain heating of ice when basal sliding
velocities equal measured surface velocities. For ice creep-
ing over a frozen bed, ice velocities decrease from measured
surface values to zero at the bed, depending on vertical
variations of ice temperature and ice crystal orientations,
both of which are unknown. However, ice warms with depth

and tends to develop an “easy glide” ice fabric near a frozen
bed. Vertical profiles of horizontal ice velocity were there-
fore constructed that preserved mass balance continuity in
the flowband at distance of 4.5, 9.6, 16.5, 32, and 41 km
upslope from the ungrounding line. Basal sliding velocities
requiring a partly thawed bed were obtained for a linear
increase of ice temperature with depth at distances of 4.5,
9.6, and 32 km. Some internal ice deformation due to creep
above a frozen bed was required in addition to basal sliding
on a thawed bed for mass balance continuity to be preserved
at these locations. For a frozen bed with no basal sliding, ice
temperatures and fabrics were adjusted within acceptable
limits in order to obtain creep velocity variations that pre-
served mass balance continuity.

[7]1 Whillans et al. [1989] used the force-budget approach
developed by Van der Veen and Whillans [1989a, 1989D]
to calculate stresses and velocities for Byrd Glacier in
three dimensions, assuming bed topography mapped along
the flightline in Figure 2 did not vary laterally across the
glacier. They used surface elevations and velocities mapped
by Brecher [1986] and the flow law of ice to calculate
changes in velocities and stresses with depth through the
thickness of both grounded and floating ice. The gravita-
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Figure 3. A cartoon of the bed under an ice stream. Ice
flow is along incremental length Ax in plan view (top)
and at x in transverse cross section (bottom). Ice is either
floating above bedrock or supersaturated sediments and
till (undotted areas) or grounded on bedrock or unsatu-
rated sediments and till (dotted areas) for respective float-
ing flowband widths wr and grounded flowband widths
wy; — wr. Floating fraction ¢ of ice over area w;/Ax becomes
¢ = wg/w;y at x when Ax — 0.

tional driving stress was obtained from the thickness and
surface slope of ice. Surface strain rates were obtained from
surface velocity gradients in both longitudinal and trans-
verse directions. These were converted into stresses that
resisted gravitational flow using the flow law. The force-
budget approach allows resisting stresses to be calculated at
depth, with the basal shear stress obtained from the differ-
ence between the driving stress and the sum of side shear
stresses and gradients in the longitudinal and transverse
axial stresses. Vertical strain rates were obtained from the
incompressibility of ice, so that longitudinal, transverse, and
vertical strain rates sum to zero. Ice stiffness was assumed to
be constant throughout Byrd Glacier, so softening of ice
caused by higher temperatures at depth and by development
of “easy glide” ice fabrics caused by basal and side drag
were ignored. With these constraints, results were most
reliable along the flightline in Figure 2. The basal shear
stress was effectively zero for floating ice, as expected, and
high for grounded ice, with the highest values locating basal
“sticky spots.” These results indicated a bed having frozen
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and thawed regions, but Van der Veen [1999, p. 43] con-
cluded the bed was frozen.

3. Theory

[8] Calculating a “floating fraction” along Byrd Glacier
began with Reusch and Hughes [2003]. They employed a
geometrical approach to the longitudinal force balance in the
direction of ice flow that gave an ice stream “pulling power”
linked to the “floating fraction” of ice [Hughes, 1992].
Pulling power is the product of the gravitational pulling
force and the ice velocity, so it is a measure of the ability
of an ice stream to downdraw interior ice. Downdraw gives
ice streams their concave profile, in sharp contrast to the
convex profile generated by slower sheet flow. Pulling
power requires a bed similar to the one shown in Figure 3.
The floating portions of ice in basal area 4; sum to give area
A, where Ar = 0 when ice is fully grounded and 4y = A4,
when ice is fully floating. In general, these are the respective
conditions for sheet flow and shelf flow, so 0 < Ax < 4; in
streamflow represents a transition from sheet flow to shelf
flow. The physical basis for a “floating fraction” is elusive.
Is it parts of the bed where bedrock bumps that control basal
sliding in a sliding “law” of the Weertman [1957a] type are
drowned, parts of the bed where low places are filled with
water, parts of the bed where till and sediments lose cohe-
sion because they are supersaturated with water, or combi-
nations of these? We do not know, but the important point is
the “floating fraction” of the bed is the region where the bed
provides no resistance to ice flow owing to the concentration
of basal water that effectively uncouples ice from the bed.

[9] In the geometrical force balance along ice flow,
floating fraction ¢ of ice is formally defined at any location
x along a flowband of ice where wg is the floating part of
width w; in Figure 3 so ¢ = Ax/4; in area A;= w;Ax becomes

o= WE _te_(ow/ohw _ pwghw _ Py ()
wr hy hy nghl Py

Here Py = pyghy is an “effective” basal water pressure
“produced” by an “effective” water height 4y, above the bed
that would float ice of height iy, P; = p,gh; is basal ice
pressure produced by ice height 4; above the bed, py and p;
are respective water and ice densities, and g is gravity accel-
eration. Actual basal water pressure is close to P;, differing
slightly when basal water flows from sources to sinks, so Py
in equation (1) is defined as an effective water pressure
that reduces basal resistance to ice flow such that Py =
P,¢. Resistance vanishes when fully grounded ice (¢ = 0)
becomes fully afloat (¢ = 1). In Figure 4, x is horizontal
and positive against flow, with x = 0 at the ungrounding line
where ¢ = 1. An ice “flotation” height iy = (ou/p)hw = oh;
is the fraction ¢ of /4; that would be floated by “effective”
basal water pressure Py such that /= (wg/wjh; at x. For ice
streams it is useful to make flowband width w; the (average)
width of the ice stream, so side shear is included in the
longitudinal force balance.

[10] The geometrical force balance in direction x of linear
ice flow for constant flowband width w; satisfies the equa-
tion [Hughes, 2009a]

Pra = 9(ophy)/0x + 10 + 275 (hy /wr) (2)
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Figure 4. The geometrical force balance on an ice stream ending as a confined ice shelf. (top) Stresses
that resist gravitational flow along x. The bed supports ice in the shaded area. Ice in the unshaded area is
supported by “effective” basal water pressure. (middle) Gravitational forces at x represented as triangles
and a rectangle are linked to specific resisting stresses. The area inside the thick border is linked to com-
pressive stress o¢. Heights Ay, iy, and A are measured from the bed for x > 0. (bottom) Resisting stresses
and gravitational forces along Ax. Resisting and gravitational forces are balanced along x and Ax [see

Hughes, 2009a].

Here P is the gravitational driving stress, « is ice surface
slope, 0(oh;)/0x is the longitudinal force gradient, 7 is the
basal shear stress, and 7g is the side shear stress, all at x.
Table 1 from Hughes [2009a] shows how all these stresses
depend on ¢ at x, where flotation stress o = oy + o7 for

water stress o, defined by the force balance oy, = Pyhy,
and tensile stress o7 that provides pulling power. Here
Py = 1/2 pyghy is the average “effective” water pressure
in “effective” water height /. When ¢ = 1, Py, is the actual
average water pressure and /iy is the actual water height
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Table 1. Pressures and Resisting Stresses Linked to Floating Fraction ¢ of Ice and Gravitational Forces Numbered in Figure 4 for the

Geometrical Force Balance®

Equation
“Effective” basal water pressure at x, from gravity force 3 Py = pwghw
Ice overburden pressure at x, from gravity force (1 +2 + 3 +4) P;= pigh;

Upslope tensile stress at x, from gravity force 4
Downslope water pressure stress at x, from gravity force 3
Upslope flotation stress at x from gravity force (3 + 4)

Longitudinal force balance at x from gravity force [(5+6+7+8)— (1 +2+3 +4)]

Flotation force gradient at x from gravity force [(7 + 8) — (3 + 4)]
Basal shear stress at x from gravity force (5-1)

Side shear stress at x from gravity force (6-2)

Average downslope basal shear stress to x from gravity force 1
Average downslope side shear stress to x from gravity force 2

Downslope compressive stress at x due to 7o and Tg along x and o at x = 0

First-order floating fraction of ice at x

or =Pl = plpw)¢
ow = Plpdpw)¢’
op=ortoy= P
P = 0(ophp)/ox + 1o + 215(hiwy)
O(orhp)/ox = Pip(pa + hi0¢/ox)
T0=P(1 — d))za — Pih(1 — ¢)0¢/0x
Ts = Pwih)d(l — ¢y + Pwy(l — 2¢)0p/ox
To = Pwih(l — ¢ /(wpx + Ag)
Ts = Pwihp(l — ¢)/(2Epc + 2Lshs + CRZR)
oc=P;—or=Pr— Pl - plpw)¢’
¢ = holh;

“From Hughes [2009a)].

because ice is fully afloat. Figure 5 plots the stress equa-
tions in Table 1, as fractions of P; or P; = 1/2 P;, over the
range 0 < ¢ < 1.

4. Consider a Flowband Having the Nearly
Constant Width of Byrd Glacier

[11] In Figure 4 for constant w;, flotation, water, and
tensile stresses ox, oy, and o7, respectively, resist gravita-
tional driving forces represented by triangular areas 3 + 4, 3,
and 4, respectively, of triangular area 1 + 2 + 3 + 4 that
represents total gravitational driving force F; = P;A,, where
P, =1/2 P, is ice pressure averaged through %; and acting on
area A, = wsh;. Compressive stress oo = P; — o at x resists
the gravitational driving force represented by areas 1, 2, and
3. Here o¢ at x is a proxy for all downstream resistance to
ice flow caused by average basal and side shear stresses 7o
and T along x, effective and actual average basal water
pressure Py, = P;at x = 0 where ¢ = 1, and buttressing force
Fp caused by a confined and pinned ice shelf floating beyond
the ungrounding line at x = 0. Basal and side resisting shear
stresses 7o and T at x are respectively linked to gravitational
driving forces represented by the differences between areas
5and 1 for 7 and areas 6 and 2 for 7gas Ax — 0 in Figure 4.
The ¢ dependence of these stresses, given in Table 1, are
derived by Hughes [2009a].

[12] A first approximation for ¢ at x is obtained from the
linear geometrical force balance alone and is [Hughes,
2009a]

(;5 ~ ho/h] (3)

where hp is h; at x = 0 and /o at x = 0 substitutes for Ay
at x > 0 in equation (1). In equation (3), ¢ and Ay are
determined by ice-bed uncoupling beneath and beyond ice
streams, respectively. An increase in /g increases the grav-
itational driving force Fg = Pwiho = 1/2 plgwlhzo atx=20
needed to balance “buttressing” force Fz resulting from ice-
bed coupling of an ice shelf confined in an embayment,
pinned to islands and shoals, or both. If the ice stream ends
on land, F3 is caused by ice-bed coupling of its terminal ice
lobe. Equation (3) requires a finite /2, at x = 0 and finite
values of ¢ at x > 0 for stream flow. For sheet flow, ip=¢ =0
[Hughes, 2003, Figure 7]. For shelf flow, 4o = h;and ¢ = 1
[Weertman, 1957b].

[13] Ilustrating the gravitational driving force by the area
of the big triangle at x and its change in area at x + Ax in
Figure 4 (bottom) in the longitudinal force balance requires
assigning resisting forces and their associated stresses to
specific areas of the big triangles: 7o to triangle 1, 7o to
triangle 5 minus triangle 1, 7 to rectangle 2, 7 to rectangle
6 minus rectangle 2, o7 to triangle 4, o to triangle 3, and
oc to the sum of triangle 1, triangle 3, and rectangle 2, so
that P, = oy + oc at x. Here 7 and Ty are 7o and Tg
averaged downstream from x. Sectioning the large triangle
at x in Figure 4 (middle) and Figure 4 (bottom) into smaller
triangles 1, 3, and 4, and rectangle 2, in this way shows that

]0 T T T
3 ~
\ ~N
\\ \ -—
ool \\\ N oc/Py
| \
N \ To/Pia+2(h /w) /P a
08} 8 flowband
N
\ \
- \ -4
0.7 ‘\\ \ 1o/P
2 3 .
\ flowl
% \ \ owline
o 0.6} N
E;‘) \\ \
a | \
N 0.5f N \
= 3
s N\ o
2 o4l To/ha kY \ |
@ \ \
Z \\
03} WA LR
(h/wegRa SN
0.2} R
0.1 L OT/];I \\ \
or/R,
0 L i
0.2 04 0.6 0.8 1.0
¢

Figure 5. Plots of the stress equations in Table 1 over the
range 0 < ¢ < 1.
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Figure 6. A longitudinal profile of an ice sheet flowband of constant width showing components of the
mass balance for sheet, stream, and shelf flow from right to left. Ice thickness /; and mean ice velocity u,
are shown at x positions 0, x, S, and L for mean accumulation rate @ and ice thinning rate 7 averaged along

x and rates @ and r at x.

o7 “pulls” upstream ice, whereas o “pushes” downstream
ice and is a proxy for all downslope resistance to ice flow,
specifically downslope resistance from basal drag causing
To, resistance from side drag causing T, resistance due to
mean water pressure (Py)o at x = 0, and resistance due to a
buttressing ice shelf caused by side grounding along length
Lg and basal grounding beneath ice rises of circumference
Cr and ice rumples of area Ay in Figure 4 (top). Figure 4
also shows that o = oy at x = 0, where oyho = Pyhy.

[14] Equation (3) is obtained by balancing the gravita-
tional force with resisting forces: basal and side drag along
X, water buttressing at x = 0, and ice-shelf buttressing
beyond the ice stream. The greater the resistance the higher
h; becomes, and the greater the buttressing the higher 4
becomes. Equation (3) provides a “snapshot” of ice-bed
coupling linked to ¢ at any location x along a flowband. To
obtain a “motion picture” over time, the force balance must
be combined with the mass balance [Hughes, 2009b]. This
is now done.

5. Formulating the Mass Balance

[15] A more accurate determination of ¢ variations along
x is obtained by combining the linear force balance with a
linear mass balance, so the “defining” equation for ¢,
equation (1), replaces equation (3) as the “working” equa-
tion. Figure 6 shows the mass balance for a linear ice stream
that lies on a horizontal bed and supplies a floating ice shelf,
both of constant width w;, with x = 0 at the (un)grounding
line where A;= h is ice thickness and u,, is ice velocity, and
x is positive upstream where ice thickness is /; and ice
velocity is u,. Average ice surface accumulation rate @ and
ice creep thinning rate 7 along x are obtained from know
rates « and r at x. As shown by Figure 6, the mass balance
equation for ice flow beginning at x = L where h; = h; and
u, =u; =01s

(@—7)(L —x) = hyu, 4)

All quantities in equation (4) are positive.

[16] Ice streams have wet beds that allow basal sliding. Ice
sheet models generally “tune” a sliding velocity to satisfy
mass balance continuity in equation (4). We obtain mass
balance continuity separately for grounded sheet flow (¢ = 0)
and floating shelf flow (¢ = 1) and then use floating
fraction ¢ as our tuning parameter for streamflow (0 < ¢ < 1).
Consider linear sheet flow using the Weertman [1957a] sliding
“law” for grounded ice at x that links basal shear stress 7o
to sliding velocity ug as follows:

uy = ug = (10/B)"= (pr g hy a/B)" (%)

where 7, is equated with the gravitational driving stress P«
for ice surface slope « in sheet flow, B is a sliding parameter
that can be tuned to satisfy mass continuity by specifying a
variable but unknown bed roughness, and m=1/2 (n+1)=2
is a sliding exponent linked to viscoplastic exponent » =3 in
the flow law for creep of ice. For stream flow, equation (5) is
modified to replace B with ¢ as the tuning parameter. For
sheet flow, substituting equation (5) for u, in equation (4) and
solving for o when dh/dx = dh,/dx for ice height /& above sea
level and height /; above a flat horizontal bed:

dh;  Bl(@a—7)(L—x)""
Td ©

dx

Integrating equation (6) for ;= hp at x = 0 and Ay at x > 0
when B is constant because ¢ will be our tuning parameter
for ice streams:

h2+l/m

p1g|: ; 7h20+1/mi| B(ﬁ*f)l/m |:(fo)1+1/”77111+1/"1

2+ 1/m - —(1+1/m)

Solving for A; at x:

wi 2m 4+ 1\ B@—7)"" 1 wa nil
hy =4 hy 5 (L —x)%
' {O +<m+1) pig [ L= }
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Basal shear stress 7 linked to surface slope o for grounded
ice is obtained from equations (6) and (8):

To = pighiog = [B/h}/’”] [(@—7)(L —x)]'/m (9)

Substituting equation (8) for %, into equation (9) gives 7, for
ice grounded on a flat horizontal bed. Solving for ice surface
slope ag = (dh;/dx)g gives ag along x without A;:

_ (4 __7o
v ( dx ) G Pigh
_ (B/pig)l(@—7)(L —x)]'"

mtl
2mt 2 1\ B(@—7 1/m e N il
hO”’]—O—(m+ ) (@—7) LT]_(L_x)n—f‘]
m+1 pig

(10)

[17] Now consider linear shelf flow using the flow law for
floating ice at x. For shelf flow extending between x = §
where h; = hg and u, = ugto x = 0 where ;= hp and u, = up,
the mass balance equation from Figure 6 is

(ﬁ*f)(S*x) :]’lILlX*hsug (11)

Writing equation (11) so (a — r) at x replaces (@ — 7) aver-
aged along x:
(a —r) = O(hyuy)/Ox = hjOuy/Ox + uOhy | Ox = hi€y + uscrp
(12)

Here €., = Ou,/Ox is the longitudinal strain rate and oy =
(Oh/0x)r is the ice thickness gradient for floating ice.
Combining equations (11) and (12), and solving for o at
x for floating ice:

o — dhr\ (a—r)—hiéee  h(a—r) — h2é
F= dx F_ Uy - hsus + (a - ?)(S —X)

(13)

Strain rate €., is linked to tensile “pulling” stress or
through the flow law of ice for linear flow in ice floating
above the bed [Weertman, 1957b]:

éo = (7" /A") 0 = R(0i/A)"= (07 /24)" (14)
where 7 is the effective stress, 4 is an ice hardness
parameter, n is a viscoplastic exponent, o, is the longi-
tudinal deviator stress, and R is a scalar that converts 7
into strain rate ratios. Taking x horizontal against ice flow,
v horizontal transverse to flow, and z vertical and positive
upward, linear flow in floating ice requires that ¢, = €., =
€y = 0 and &, = €, = €., = 0 for incompressible ice. Then
[Hughes, 1998, pp. 169-170],

=
2
=1

(15)

R= (14 (n/20) + (B e) +Eor/eu) +ew /2]

Ozz = (U);x + ﬁl) - (Uz’z + F[)

J— ! r__ ! ! ’ — !
=Oxx — 0z = Oxx + (Uxx + O'yy) =20

OT = Oxx —

(16)

The longitudinal force balance for ice thickness 4, floating
in water of depth &y and density pyp and buttressed by
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force oph; because partial grounding causes tensile stress
or to be partly overcome by back or buttressing stress op
at x = 0 where h; = hp and p/i; = pwhy:

orh; = (Pih; — Pywhw) — osho ="}/ pight — '/ pwghy, — osho
="' pighi(1 = p1/pw) — o8ho (17)

Solving for longitudinal pulling stress o7 that gives lon-
gitudinal strain rate £,,:

(18)

or="h pr g hi(1 = pi/pw) — o3
Since op is determined at x = 0 where &; = hp:

op =13 pr g ho(1 — p1/pw)] (19)
Here f3 is a buttressing fraction such that fz = 0 for no
buttressing and fz = 1 for full buttressing. Using equations (14)
through (19) to get €,,, equation (13) is solved to get ice
thickness gradient oy = (dh;/dx)r for ice floating just above
a flat horizontal bed:

dh
v-(2),
_ {hz(a —7) = hil(pig/A4)(1 = p1/pw) (s — fiho)]"
]’lsus + (E - 7)(S —x)

(20)

[18] Now consider streamflow at x using floating fraction
¢ as a “tuning parameter” to satisfy mass balance continuity.
From Table 1, ignoring terms containing 0¢/0x, the longi-
tudinal force balance given by equation (2) applied to ice
streams, along which 0 < ¢ < 1, is satisfied when:

Pr="hPr="hpgh (21)

or = ow +or = Pi(pt/pw)®* + Pi(1 = pi/pw)¢* = P

(22)
70~ Pi(1 - ¢)’a (23)
Ts %P](W]/h1)¢)(1 fq&)a (24)

8(0Fh1)/8x = P1¢20h1/8x + F1h18¢2/8x ~ P1¢26h1/8x (25)

where d¢?/dx = 240p/dx and terms containing O¢/dx are
ignored. Substituting these equations into equation (2), with
ice surface slopes (Ah/Ax)g for floating ice and (Ah/Ax)g
for grounded ice both just above a flat horizontal bed, and

solving over discrete surface slope A#/Ax in incremental
length Ax:

Ah_ Alorhi)/Ax | 7o | 215(hi/wi) _ o (Aks
Ax P; P; P; N Ax )

Ahy Ah

c-of(F2) +200-0)%) (26)

where % is ice height above sea level and /; is ice height
above the bed.

8 of 17



F03005

[19] Equation (2) is valid in general for linear flow, so
equation (26) applies for variable bed topography. Let the
bed be represented by an up-down staircase, with ice col-
umns having incremental horizontal length Ax on steps, so
that Ah/Ax = Ah;/Ax. Then changes in bed depth below sea
level or height above sea level take place between ice col-
umns. Substituting equation (20) for (Ahy/Ax)r where ice
is floating and equation (6) for (Ah/A,)c where ice is
grounded, both along an ice stream, with /; now including
bed topography, and collecting terms containing ice surface
slope Ah/Ax:

{&} 1-2¢+ 2¢2)

— h[(pig/44)(1 = pi/pw) (ke
hsus + (@ —7)(S — x)
B

[@—7)(L — )]
_|Pig . (1_2¢+¢2)

1+L
hy

—fho)]"

¢2

=C(1-20+2¢°) — " —G(1 =20+ ¢°) =0 (27)
Here C; through C; are terms in square brackets. Writing
equation (27) as a quadratic equation:

(2C) = G, — G3)¢* — (2C1 —2C3)d + (G

—G)=0 (28)

The solutions of equation (28) are

12
. (2C, —2C3) + [(ZCI —2C3)*—4(C) — C3)(2Cy — C — Q)}

HUGHES ET AL.: ICE-BED COUPLING

2(2C1 — C> — C3)
(29)

[20] Ice height 4; above the bed in equation (8) and ice
thickness gradient dh;/dx in equation (10), with A, ignored,
both vary with surface condition (@ — 7 ), mean accumula-
tion minus thinning rates, raised to the 1/5 power for m = 2
in basal sliding equation (5). This dependence is very weak
compared to the dependence on floating fraction ¢ in
equation (27) and confirms the first-order condition that ice-
sheet heights above the bed are determined by the strength
of ice-bed coupling, quantified by the floating fraction of
ice, much more than by the surface mass balance.

6. Solution for a Flowline Down the Centerline
of Ice Streams

[21] Side shear stresses vanish along the centerlines of ice
streams, but side drag still elevates the ice surface. The radar
flightline in Figure 2 is close to the centerline of Byrd
Glacier where side shear stresses vanish. The effect of side
drag on elevating the ice surface can be included by mod-
ifying the geometrical longitudinal force balance so it applies
along the central flowline of an ice stream. Basal shear
stress 7o is augmented to carry resistance from side shear
stress Tg because 75 = 0 along the centerline. In Figure 4
gravitational driving force F is the areas 5 + 6 at x + Ax

F03005

minus the areas 1 + 2 at x when side shear (6-2) is added to
basal shear (5-1):

Fo=05+6)—(14+2)=[(5+6+7+38)
—(7+8)]—-[(14+24+3+4)—(3+4)]
~A[(1+2+3+4)— (3+4)]=A[Piny
~ A% pr g hi)hi— (fo pw g hw)hr]
~Alhprghi—"hpight *]="5hp g AR (1-¢%)]
~prghi(1—¢*)Ahy—pr g hy ¢ Ap=Fp=r10 Ax

(30)

- TJWhF}

where resisting force F = 7oAx resists Fg. Solving for 7,

To=pr g hi(1—¢*)Ah/Ax —p g hf ¢ Ap/Ax (31)

Equation (26) now becomes, ignoring the A¢/Ax terms,

Ah_A(O’th)/A)C TO Ah[ 2 Ah[
Ax Py 7_¢( )F+(17¢)(A7X)G

(32)

Rewriting equation (32) in terms of coefficients C; through Cs,

Ci—C ¢* = CG(1 = ¢*) = (C3 = C)¢* — (C3 = C1) =0

(33)

Solving for ¢, using the solution for which 0 < ¢ < 1,
¢ = i(c3 - Cl)l/z
CG -G

7. Applications to Byrd Glacier

[22] In applying equations (29) and (34) to Byrd Glacier,
we first show that surface profiles produced by specified ¢
variations along a flat horizontal bed can be used as input to
get the same ¢ variations as output. Then we apply these
equations to published surface and bed topography to calculate
the actual ¢ variations. Two data sets are used, BEDMAP data
from the grounding line to the ice divide, and radar data for
Byrd Glacier itself that has higher resolution.

[23] We produced our test solution of equations (29) and
(34) for a flat horizontal bed, using selective data from Byrd
Glacier. At the ungrounding line Where shelf flow begins,
x=0,hpo=13km, and up= 820 myr '. Streamflow begins
at x = S where h; = hg and u, = ug = up (holhg) for steady
state flow. Sheet flow begins at the ice divide, where x = L =
1250 km, /4; =3 km, and u; = 0. Values of 4, up, and L are
those for the Byrd Glacier ice dramage system Constant
quantities 1n equatlon (29)are g=9. 81 ms %, A=8barsyr'” =
250MPas ,n=3,B=0.02 baryr 12 m=2,p,=917kg
m >, and py = 1028 kg m ™ for seawater

[24] Flowband width w; = 25 km across Byrd Glacier does
not appear in equation (29), but w; is needed to obtain (@ — 7)
and (a— r) The ice drainage system for Byrd Glaciersis 115 x
10* km? in area, and begins at an ice divide that connects
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Figure 7. A test solution of equations (29) and (34) for floating fraction ¢ of ice decreasing linearly from
¢=1latx=0to ¢ =0atS<x<LinFigure 6 for ice flowing over a flat horizontal bed. Variations ¢ (solid
line) produce the ice surface (dashed curve) that, in turn, produces the ¢ variation. (top) Comparing a
flowband profile using equation (29) and S = 60 km with a flowline profile using equation (34) and S =
200 km. (bottom) Comparing profiles using S = 200 km.

three ice domes in East Antarctica (see Figure 1). Ice crosses
the ungrounding line at a flux uowoho = 26.6 km® yr '. The
average ice thickening rate from ice accumulation rates and
ice thinning rates is (@ —7) = (26.6 km® yr ")/(115 x 10* km?) =
23 x 10 myr ". A flowband 25 km wide and 1250 km long
has area 3.12 x 10* km?. The ice thickening rate in equation (29)
for all ice confined to the flowband is (@ — 7) = (a — r) = (23 x
102 myr M) [(115 x 10*km?)/(3.12 x 10* km?)] =0.85 m yr .

[25] Figure 7 is a plot of h; along x obtained from
equations (29) and (34) for a flat horizontal bed. In Figure 7
(top), ¢ decreases linearly from¢p=1atx=0to ¢ =0 atx =
S =200 km for the flowband and at x = S = 60 km for the
flowline. Then the two ice surface profiles mostly coincide.
In Figure 7 (bottom), x = S = 200 km in both cases, and

results in a lower flowband profile. Ice velocity decreases
after it crosses the ungrounding line halfway up Byrd Glacier
fjord, and then increases after ice leaves the fjord [Brecher,
1986]. Therefore, side drag is against the fjord walls and
the inertia of Ross Ice Shelf buttress ice crossing the un-
grounding line. For example, buttressing fraction fz = 0.765
gave ¢ = 1 at x = 0 in equation (29). The ice surface profile is
concave almost to x = § =200 km and convex onward to the
ice divide, with ¢ = 0 for S <x < L. Using ice height /; above
the bed calculated from equation (29) for the flowband using
this ¢ variation, the identical ¢ variation is retrieved. How-
ever, 20,000 Ax steps are required to remove a “spike” in
¢ at the surface inflection line for the flowline because
here C3 — C, in equation (34) is very small (see Figure 8).
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Figure 8. Reproducing the linear decrease in ¢ from the flowline profile in Figure 7. A “spike” in ¢ at
x = 80 km, near the surface inflection point where C; — Cj is small in equation (34), is removed when
number N of steps is increased from 100 to 20,000.

Obtaining a concave ice surface by decreasing ¢ along x, and
then retrieving ¢ from the ice surface, gives us confidence in
equations (29) and (34), especially equation (29), which
includes side shear.

[26] Applying equations (29) and (34) to a flowband or
flowline in the Byrd Glacier ice drainage system shown in
Figure 1 is confronted with two conflicting data sets, one for
Byrd Glacier itself, shown in Figure 2 along the central
portion of the glacier, and one shown in Figure 9 using
BEDMAP data along the flowline in Figure 1 from the
ungrounding line of Byrd Glacier to the East Antarctic ice
divide (hp = 463 m, L = 1352 km, and &; = 3255 m). The
subglacial lakes begin at x = § = 200 km, where sg= 1.7 km
and ug = up (ho/hs). When they drained, velocity up at x =0
increased from 820 m yr ' to 900 m yr ' [Stearns et al., 2008)].
Figure 9 shows how ¢ changes along x, using equation (29)
and the BEDMAP data for surface and bed profiles. Two
variations of ¢ are shown, one for up =820 m yr ' and § =
200 km before the subglacial lakes drained, and one for u, =
900 m yr ' and S = 65 km after they drained. Drainage
would recouple ice above the lakes to the bed, and thereby
cause length S of streamflow to decrease. We took S = 65 km
from the ungrounding line to the region of strongly con-
verging ice flow above the fjord entrance. Streaming ice
tributaries in this region converge to produce Byrd Glacier
[Jezek, 2008]. Some recoupling of ice to the bed is shown by
the lower ¢ variations for = 65 km compared to S =200 km.
No data are available to show if there was a corresponding
change in the ice surface elevation.

[27] Figure 10 shows how ¢ varies along x when
equations (29) and (34) are solved using surface and bed
reflections along the radar-sounding flightline in Figure 2.
We call this the Swithinbank flightline because it was
arranged by Charles Swithinbank, who participated in our
1978-1979 field investigation of Byrd Glacier [Hughes and

Fastook, 1981]. The LC-130 Hercules aircraft flew only 100 m
above the heavily crevassed ice surface to obtain the nearly
continuous bed reflection in Figure 2. Surface and bed
profiles over this 100 km length are significantly different
from the BEDMAP profiles, and are more reliable (BEDMAP
data points are 25 km apart). In Figure 10, the solid line shows
variation of ¢ using equation (29) for flowbands; the dotted
line shows variation of ¢ using equation (34) for flowlines.
The ¢ variations along x are more “choppy,” especially for
the flowline solution, and include patches where ¢ = 0,
allowing the possibility of a frozen bed at these places. Ice-
shelf buttressing at x =0 is specified by fz = 0.507 to give ¢p = 1
in equations (29) and (34). In general ¢ decreases along x to
minimum values in the foredeepened upper end of the fjord,
and then increases to ¢ =~ 0.6 at the top of the headwall,
before dropping to ¢ ~ 0.3 beyond the headwall. These results
are compatible with the fjord headwall acting partly like a
“dam” that impounds basal water in the vicinity of the sub-
glacial lakes, which suddenly drained in 2006, as reported by
Stearns et al. [2008]. Figure 10 was plotted using x = 463 m
from the BEDMAP ungrounding line, 4o = 1283 m, up =
820 myr ', §'= 100 km, &g = 1400 m, and us = up, (holhs) =
751 myr ', putting the beginning of streamflow just beyond
the fjord headwall and the fjord entrance, but short of the
subglacial lakes in the vicinity 200 km < x <250 km.

[28] Figures 9 and 10 present numerical solutions of
equations (29) and (34). Although exact solutions exist
using exact surface slopes « at points x along the flowline,
average slopes Ah/Ax were used for incremental steps of
constant length Ax along x, and Ah/Ax was calculated for a
running mean of three steps. Results for 86 and 1275 steps
from the ungrounding line to the ice divide using BEDMAP
data show length Ax has no significant effect on how ¢ varies
along x. Equation (34) is more sensitive than equation (29)
to large local changes in surface slope unrelated to ice-bed
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Figure 9. Variations in floating fraction ¢ along the flowband/flowline in Figure 1 before and after
drainage of the subglacial lakes reported by Stearns et al. [2008]. Dotted lines show surface and bed
profiles, solid line shows ¢ before drainage, and dashed line shows ¢ after drainage. (top) Flowband
results using equation (29). (bottom) Flowline results using equation (34). Note flowline sites where ¢

exceeds the range 0 < ¢ < 1.

coupling. Not having a mechanism for these changes causes
¢ to exceed the limits 0 < ¢ < 1 at these locations.

[29] Not resolved by BEDMAP data is a series of wave-
like terraces on the surface of Byrd Glacier (see Figures 2
and 10) with slopes « changing by an order of magnitude
from the fronts to the tops of terraces. These major slope
changes cause major changes in ¢ which may be unrelated
to changes in ice-bed coupling. Hughes [1975] found that
similar wave terraces on Meserve Glacier were produced
by differential ablation rates. Higher ablation rates on the
steeper sun-facing fronts of a slightly wavy surface trans-
formed the gentle waves into relatively flat terraces separated
by steep fronts. The steep wavefronts on Byrd Glacier also
face the sun. If differential surface ablation rates produce the
wave terraces on Byrd Glacier, it is necessary for incre-

mental length Ax in equation (27) to “step over” regions of
rapidly changing surface slope, or to employ a running mean
for surface slopes so these rapid changes are smoothed.
Otherwise they will cause rapid changes in ¢ that give a false
record of changes in ice-bed coupling.

[30] The variation of ¢ along x in Figure 10 is similar to
that found by Reusch and Hughes [2003], but ¢ is generally
smaller. In spots ¢ = 0, which is compatible with a frozen
bed, but not as extensively frozen as in the studies by
Scofield [1988], Scofield et al. [1991], and Whillans et al.
[1989]. The simple first-order ¢ variations obtained from
the geometrical longitudinal force balance alone [Hughes,
2009a], and given by equation (3), lie between the varia-
tions by Reusch and Hughes [2003] and the variations in
Figure 10.
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Figure 10. Variations in floating fraction ¢ along the “Swithinbank” radar flightline in Figure 2. Dotted
lines are surface and bed profiles. The solid and dashed lines are ¢ variations for ug= 751 m yr_1 at§=
100 km in term C, of equation (27) before drainage of the subglacial lakes, using equations (29) and (34).
The ¢ variations along the flowline sometimes exceed the range 0 < ¢ < 1, as shown.

[31] The ¢ variations along x for Byrd Glacier obtained
by Reusch and Hughes [2003] used the following expres-
sion, in which a basal sliding “law” gave 7o =B uy™ (1 — $)*:

M _ W[h% p1gh1 n . ﬂ n+l¢2n+2
Ax Wohouo 44 Pw
1/m
+h,<1—ﬂ)¢% Bus
Pw

Ax prght

Equation (35) was derived by using o7 instead of o in
equation (2). As seen in Table 1, this does not satisfy the
longitudinal force balance given by equation (2) and intro-
duces the quantity (1 — p/pw) into equation (35) at places
where it does not belong. In addition, their expression for the
longitudinal pulling stress was o7 = 1/2pgh(1 — pipw)d*
instead of equation (18), so the reduction of o7 by oz was
accomplished by a reduction of ¢. However, op is applied
only at x = 0 where ¢ = 1. Changes in ¢ occur when x > 0.
These differences reduced As/Ax in equation (35) by at least
90 percent, since (1 — p/pw) = 0.1. Also, the dependence of
Ah/Ax on C,¢* in equation (27) is a dependence on ¢*"*% =
#® in equation (35). With Ah/Ax o ¢° in the first term of
equation (35), the pulling power of ice streams decays much
too rapidly with distance x from the ungrounding line, so it
has very little reach into the ice sheet. To match the observed
ice surface profile produced by the actual reach, substantially
higher values of ¢ along x are required in equation (35)
compared to equation (29). These flaws also appear in ear-
lier work [e.g., Hughes, 1998].

[32] Ignoring terms containing 0¢/0x in Table 1 was an
assumption of convenience. The numerical solutions of
equations (29) and (34) replaced bed topography with an
up-down staircase for which changes in bed topography
take place between steps. Likewise, changes in ¢ take place
between steps, so that A¢/Ax = 0 on steps. This allowed

27 S
PIEWI

(1-¢) (35)

equations (29) and (34) to be simple quadratic equations
with equation (34) losing the ¢ dependence of 75 when side
shear is excluded. Once ¢ — 0, the primary mechanism for
weakened ice-bed coupling is linked to the thawed fraction
of an otherwise frozen bed beneath slow sheet flow [Hughes,
1998, chap. 3]. This treatment has been applied to sheet flow
in the Byrd Glacier ice drainage system by Wilch and Hughes
[2000].

8. Including “Floating Fraction” ¢ in Holistic
Basal Sliding

[33] To complete our holistic treatment, we now derive a
holistic sliding “law” for glacial ice that allows smooth
transitions from slow sheet flow through fast streamflow to
unconfined shelf flow. We keep the law simple so floating
fraction ¢ that quantifies these transitions is the only “tuning”
parameter used to satisfy mass balance continuity. These
goals are attained by including ¢ in the sliding law.

[34] Glacier sliding theory was pioneered by Weertman
[1957a, 1964] with his “tombstone” model in which bed
roughness is approximated by equally spaced cubes of
various sizes, and by Lliboutry [1958a, 1958b] who used a
“washboard” bed of sinusoidal ridges and troughs transverse
to ice motion. Nye [1969] and Kamb [1970] later decom-
posed basal structure into a roughness spectrum that could
accommodate any condition of bed roughness. Schoof and
Hindmarsh [2010] have developed a much more rigorous
treatment of glacial sliding that allows variations in ice-bed
coupling. We also allow these variations, but we begin with
the Weertman [1957a, 1964] approach in which the sliding
velocity is controlled by bedrock bumps of a critical size
that penetrate basal ice and thereby impede slow sheet flow.
We incorporate floating fraction ¢ of ice into a sliding “law”
by replacing cube-shaped bumps with rectangular-based
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SLIDING ICE

LONGITUDINAL VIEW

Figure 11. Basal sliding around bedrock pyramids. Sliding velocities due to equal rates of regelation and
enhanced creep occurs at distance Ag below pyramid peaks. Mean pyramid spacing A’ increases to Ag' as
pyramids of various sizes are progressively submerged by basal water or supersaturated sediments and till,

both of increasing thickness .

pyramids tilted in the direction of ice flow to account for
erosion by plucking on the lee side and by abrasion on the
stoss side (see Figure 11). When pyramids become pro-
gressively submerged by basal meltwater or supersaturated
sediments and till that offer no resistance to ice flow, the
unsubmerged pyramid cross section normal to ice flow
retains the same height-to-width ratio, whereas this ratio
changes for cubical bumps. This is the only reason for
replacing cubes with pyramids. Submergence reduces ice-
bed coupling, as quantified by ¢.

[35] Weertman [1957a] found a critical bump size for
cubes allowed equal rates of sliding by ice melting on the
stoss side and meltwater freezing on the lee side, a process
called regelation, and sliding by enhanced ice creep due to a
higher ice pressure on the stoss side caused by ice motion.
For bumps shaped like pyramids, the processes of regelation
and enhanced creep are equal at a critical cross section
between the pyramid base where enhanced creep dominates
and the pyramid peak where regelation dominates (see
Figure 11).

[36] Taking A as the average height and width of bedrock
pyramids and A’ as their average spacing, a longitudinal
force balance for basal shear stress 7, over area A’> when
the bed is frozen is equated with longitudinal compressive
stress o over area A% normal to ice flow when the bed is
thawed because then 7, = 0 and must be replaced by o¢:

ToA' = UcAz (36)

With bumps represented by pyramids, regelation is fastest
near pyramid tops where 4, is the cross-sectional area
normal to ice moving in direction x and A, is the mean bump
length along x. Ice pushing against 4, melts due to increased

basal pressure Pp + APy that reduces melting point tem-
perature T, by the amount

ATy = (8Ty JOP)APy = Coc = C(N /A1 (37)

where 7o = Poa basal ice pressure Py times ice surface
slope « is the gravitational driving stress, (073,/0P) = C is
constant for small AT, and AP, = 0. Meltwater flows
around the pyramid top, refreezes where ice pressure is
reduced to Pp — APy on the lee side, and latent heat of
freezing is conducted through rock distance A, to provide
latent heat of melting H,,. If K is the thermal conductivity
of rock, so that sensible heat is conducted through A, at
rate K(ATy/A)A,, regelation rate u, is obtained by
equating the rate of sensible heat conduction with rate
u,A,piHy, of latent heat production. This gives

_ K(ATy /M)A,  KATy  KC(N/A)Y’ro
" A, prHy pirHy A, prHu A,

(38)

Enhanced creep velocity u. occurs in a volume of ice
having cross-sectional area 4. normal to x and length A,
along x, where €. = u.A. is the compressive strain rate. Ice
near the base of pyramids will be most affected by &..
From the flow law of ice . = (o/4A)":

Ue = e + (oc/Ay)" A = [(TO/AM)(A'/A)Z A (39)
where A,, is the ice hardness parameter for ice at its
melting point, called “temperate” ice, and n is the visco-
plastic parameter for temperate ice.

[37] Notice that u,. varies directly with A, whereas u,
varies inversely with A,. This means that bedrock bumps
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retard sliding most for an intermediate distance A, that
avoids “runaway” regelation at the tops of pyramids and
“runaway” enhanced creep at the bottoms of pyramids.
Equating equations (38) and (39), and solving for Ao where

n—1 n 1/2
o= (3) G
A prHy TS
where A/A’ is a “bed roughness factor” that is assumed to be
constant for sheet flow. All other quantities except 7o are
constant, so Ao varies inversely with 7 for n = 3.

[38] Weertman [1957a] sets sliding velocity ug = u, = u,
but Weertman [1964] sets ug = u, + u,. without explaining
why. It remains unknown whether sliding velocity ug is the
sum of u, and u, or is equal to each one separately at Ao. Is
u, at the expense of u.. or not? Taking ug = fg (. + u..), where
fs =1 if they are added and f5 = 1/2 if they are equal:

r — tle-

(40)

us :]{S(ul + uc) = 2fS U, = 2fS Ue

T g 27" A n—1 KCAL, 1/2
Ay A N p[HMT871
n+1 1/2 N ntl
=] Gore) ()] (3)
p[HM AM A

n+l

G-

where By = (pHyAL/A4f2KC )1, B = Bo(A/A'), and m =
(n + 1)2.

[39] Equation (41) applies for sheet flow in which basal
water only wets bedrock bumps but does not drown bumps.
Length Ao along x can also be linked to the distance Ag
below pyramid peaks, from symmetry (see Figure 11). As
basal water begins to drown the smaller pyramids, basal sliding
is still resisted by larger pyramids having an undrowned
height Ag or higher. The same applies to burial of pyramids
by supersaturated sediments or till that cannot support shear
stress 7. As this process continues in the flow direction,
sheet flow becomes stream flow. Streamflow becomes shelf
flow when all pyramids become drowned except for very
large pyramids that produce ice rumples or ice rises on the
ice shelf. Progressive drowning or burying of pyramid bumps
then allows a holistic treatment of basal sliding from sheet
flow to streamflow to shelf flow.

[40] As pyramids of all sizes become progressively
drowned by basal water or buried by supersaturated basal
sediments and till that have no shear strength, the Weertman
[1957a] sliding mechanism can be modified to give the
dependence of basal sliding on floating fraction ¢ of ice for
streamflow [Hughes, 1998, chap. 4]. In the Weertman
[1957a] treatment of basal sliding for sheet flow, basal
water exists as a thin film that coats bedrock bumps having
average height A and spacing A'. For stream flow, basal water
or supersaturated sediments and till having no cohesion and
thickness A drowns or buries more bumps as A thickens.
Theories of subglacial hydrology provide a measure of A
[e.g., Johnson, 2002; Johnson and Fastook, 2002]. When
bumps are pyramids and Ag is the distance below pyramid
peaks where equal regelation and creep rates exert maxi-
mum resistance to sliding, average spacing A’ of pyramids

=2fs

70

Bo(A/N)?

(41)
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increases to Ag' as A increases. The bed roughness factor
decreases from A/A’ to Ag/Ag. Since A — ) is the average
undrowned or unburied bump height, (Ag/Ag) is an
effective bed roughness factor for streamflow such that Ag' =
NTA/(A—N)] gives Ag' = A" when A =0 and Ay’ = o when
A = A. Then, taking Ag= A when Ag becomes the variable as
A increases:

As As(A-X\y A/ A A c

where exponent ¢ allows variations in size distributions of
pyramids, ¢ = MA, and A/A’ is the bed roughness factor for
sheet flow [Weertman, 1957a]. Keeping Ag constant while
increasing Ag is the same as keeping A’ constant while
increasing A. Then streamflow becomes sheet flow when
Ag/As — A/A as ¢ — 0, and streamflow becomes shelf
flow when Ag¢/A§ — 0 as ¢ — 1. Basal shear stress 7 in the
Weertman [1957a] sliding law includes sheet flow, stream
flow, and shelf flow if:

(42)

70 = Bo(As/Ns)uy™ = Bo(A/A)(1 — ¢)* uy™

= B(1 — ) “uy" (43)
where By, collects physical constants, B = Bo(A/A') is a
sliding parameter, c is a sliding exponent, m = (n + 1)/2 is a
viscoplastic exponent that includes n in equation (39) for
creep in temperate ice, and ug is the sliding velocity.

[41] Equation (43) reduces to the Weertman [1957a] form
when A < A is small so ¢ < 1. The value of ¢ depends on
the size distribution of bumps (see Figure 12). For an ice
stream, (Ag/Ag) depends on the fraction of pyramids that
are at least Ag higher than thickness A of basal water or
supersaturated sediments and till. As thickness A increases
in Figure 12, the undrowned or unburied height A — A and
spacing Ag change slowly initially if large pyramids pre-
dominate, so ¢ < 1, but the initial change is fast and ¢ > 1 if
small pyramids predominate. The change is linear when the
size distribution is unbiased and ¢ = 1. Taking ¢ = 1 gives
7o x (1 — ¢)* in equation (43), just as in equation (23), so
that taking P; = Py gives

us = (PO O[/B)m (44)
which is the Weertman [1957a] sliding law for sheet flow,
¢ = 0, given by equation (41).

[42] Taking c =1 gives 7o o (1 — ¢)” in equation (43), just
as in equation (23). Using ¢ defined by equation (1), sliding
velocity ug in equation (43) can be written for ¢ = 1,
To :Poa,PO:P]:pIgh], andgb:PW/P]:hp/h]:

u _ 7_0 Yﬂ: POa m
: B(1 - ¢)’ B(1 — pwhw/pih1)?
_ plghla _ plgh?a (45)
B(1 — hg/hy)? B(h; — hg)?

Here h; — hp is ice height /4; above the bed in excess of ice
height /5 that would be floated by effective water height
hy and effective basal water pressure Py = pyghy with Ay,
hr, and hy shown in Figure 4. Quantity h; — hyp appears in
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Figure 12. Extending basal sliding for sheet flow to basal
sliding for stream flow. Resistance to sliding is a maximum
at distance Ag below the peaks of bedrock pyramids in
Figure 11 having average height A that are spaced average
distance A’ apart for sheet flow. As pyramids of variable
sizes are progressively drowned by basal water or buried by
supersaturated sediments or till of thickness A, distance A’
increases to A§. Progressive drowning or burial of pyramids
(bedrock bumps) increases the floating fraction ¢ of ice such
that (Ag/AL)/(A/A) = (A — N/A = (1 — ¢), where ¢ < 1
when large pyramids predominate, ¢ > 1 when small pyr-
amids predominate, and ¢ = 1 when the size distribution is
not biased.

generalized sliding laws used in ice sheet models [see Van der
Veen, 1999, p. 77], and is deemed essential by Lliboutry
[1968]. For sheet flow, h; > hp. For stream flow, h; > hp.
For shelf flow, h; = hr and a = 0 [Weertman, 1957b], so
equation (45) is indeterminate. Applying L’Hopital’s rule,
(h; — hp)* — 0 faster than o — 0 seems possible, in which
case ug has no limiting value. None of this matters because
gravitational spreading is driven by the height of ice floating
above water, not «, and is resisted by a longitudinal tensile
stress [Weertman, 1957b].

[43] Figure 4 shows how stresses in Table 1 resisting grav-
itational flow vary with ¢ as floating fraction ¢ = 0 for sheet
flow increases in streamflow to become ¢ = 1 for shelf flow.
All these stresses are normalized to either P; or P, = 1/2 P,.
Side shear stress 7 exists only for streamflow because shelf
flow is taken to be unconfined. Basal shear stress 7, varies
with (1 — ¢)? in the first approximation that ignores gradient
0¢/ox along ice flow in Table 1. Then 7, in Table 1 is
To given by equation (43) when ¢ = 1. Two completely
independent approaches both give 7 o (1 — ¢)*, one when
¢ =1 for no size bias in bedrock bumps and one when 0¢/0x
is small enough to ignore.

9. Conclusions

[44] A geometrical force balance along flow was devel-
oped to include ice streams that discharge up to 90 percent
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of ice from past and present ice sheets [Hughes, 2009a].
This approach is based on three postulates: (1) the height of
ice above the bed is determined primarily by the strength of
ice-bed coupling, (2) uncoupling takes place primary along
ice streams which can discharge up to 90 percent of the ice,
and (3) because of the first two postulates, ice sheets are the
only component of Earth’s climate system that can rapidly
self-destruct and thereby trigger rapid changes in climate
and sea level [Hughes, 2009b]. The primary variable in this
treatment is the floating fraction of ice along ice streams.

[45] A hypothesis based on the three postulates is applied
to Byrd Glacier, the largest and fastest Antarctic ice stream
supplying Ross Ice Shelf, before and after rapid drainage of
two large subglacial lakes in the zone of converging flow
just beyond the head of Byrd Glacier, accompanied by a ten
percent increase in ice discharge velocity [Stearns et al.,
2008]. The geometrical force balance was applied to a sim-
ple mass balance along a flowband for Byrd Glacier. Mea-
surable ice-bed recoupling above the lakes and decoupling
downstream was obtained using the flowband and flowline
models along the discharge route of flooding water. The
exact discharge route is unknown because the Swithinbank
flightline giving radar-derived surface and bed profiles is
neither continuous nor directly intersects the subglacial
lakes. Record of surface and bed profiles is along a single
radar flightline that does not cross the subglacial lakes.
Equation (29) and (34) can provide “motion pictures” of
changing ice surfaces over time, provided that accumula-
tion/ablation rates @ and @ are known so thinning/thickening
rates » and 7 can be calculated over time. Ideally, #;, o, and
a should be determined in the map plane.

[46] Hughes [2009b] compares our approach with more
rigorous approaches [e.g., Marshall, 2005; Schoof, 2007a,
2007b; Sayag and Tziperman, 2008; Hindmarsh, 2009; Katz
and Worster, 2010; Schoof and Hindmarsh, 2010]. For Byrd
Glacier, we were unable to calculate ice thinning/thickening
rates r and 7 in equation (27) because accumulation/ablation
rates a and @ are unreliable. Radar mapping of basal con-
ditions in the map plane [e.g., Oswald and Gogineni, 2008;
Paden et al., 2010] may link our floating fraction of ice to
subglacial hydrology. Using floating fraction ¢ to quantify
ice-bed coupling beneath ice streams might be questioned
because water is in direct contact with a vertical face of ice
only at the calving front of ice shelves where ¢ = 1, so the
back-pressure of water is direct, giving oyh; = Pyhy for
back-stress oy in ice, see Figure 4. However, oy also exists
at the grounding lines of ice shelves, where the buoyancy
requirement pyhiy = pghy still applies, so ¢ = 1 in equation (1)
even though water is no longer in direct contact with a vertical
face of ice [see Hughes, 2009a]. Furthermore, ¢ remains
just below unity hundreds of kilometers upstream from the
grounding line of Whillans Ice Stream [Engelhardt and
Kamb, 1997]. This is also the case for Kamb Ice Stream
[Robin et al., 1970], and for Mercer Ice Stream [Fricker and
Scambos, 2009], observations which now span four decades.
This is why these ice streams have the long concave profiles
observed for linear freely floating ice shelves, for which ¢ =1,
and not the convex profiles of ice ridges between these ice
streams that are produced when ¢ decreases toward zero
very quickly upslope from grounding lines[see Hughes
[2009a, Figures 4 and 9]. These ice streams have concave
profiles where they are in extending flow. Flow is resisted
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mainly by longitudinal tension and side shear. Tension is
inferred from the observed concave profile, whereas side
shear produces a convex profile, see Van der Veen [1999,
Figure 6.12]. Modeling Byrd Glacier or any other ice stream
in the map plane faces these requirements, and these models
should ideally include subglacial hydrology [e.g., Johnson,
2002] and all stresses that resist ice flow [e.g., Sargent,
2009].

[47] A sliding law of the Weertman [1957a] type used in
equations (29) and (34) can be modified to include ¢ so the
ice surface changes from convex to concave as slow sheet
flow becomes fast stream flow, with ¢ used as a tuning
parameter that satisfies mass balance continuity. Our sliding
velocity includes resistance from a basal shear stress where
ice is grounded and a longitudinal pulling stress where ice
is floating, both under ice streams. These regions corre-
spond to the thin layer of basal ice allowing two kinds of
motion, slow shearing flow over a coupled bed and fast
extensional flow over an uncoupled bed. Indeed, these two
processes have been included in the recent sliding model
by Schoof and Hindmarsh [2010].
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