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Abstract

Long-term trends of dissolved silicon (Si) concentrations in five glacial lakes in the Bohemian Forest, Czech Republic, recovering from

acidification show higher mobility of Si from the soil to surface waters despite lower atmospheric deposition of acids. Si increased by 0.95 to
1.95 umol yr! (36 to 51%) from 19862004 and with increasing pH. A change in soil solution conditions because of a sharp decrease in
acidic deposition has led to marked decline in Al mobility and to considerable decreases in dissolved Al, especially AI**. The increase in Si
may be related to: (1) unblocking of the inhibitory effect of dissolved Al on weathering of aluminosilicates, (2) biogenic opal (phytoliths)
dissolving faster, and/or (3) lower Si precipitation as secondary aluminosilicates in soil. The change in Al speciation on the dissolution rate

of biogenic silica is critical. A lack of change in Si at sites outside central Europe may be explained by small or no decline in mobility of

dissolved Al. The effect of a long-term increase in temperature was probably minor.
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Introduction

Changes in silicon (Si) concentrations and fluxes of Si from
terrestrial systems may reflect changes in chemical
weathering. On a geological time scale of millions of years,
changes in weathering rates affect the CO, concentration in
the atmosphere through weathering of silicate minerals and
transfer of CO, from the atmosphere to the lithosphere,
primarily as CaCO, (Berner, 1994; Conley , 2002). Silicic
acid may moderate Al toxicity in acidic soil (Lumsdon and
Farmer, 1995; Hodson and Sangster, 1999; Exley et al.,
2002) and the biological availability of phosphorus in the
presence of aluminium (Exley et al., 1993; Kopacek et al.,
2000; Krivtsov et al., 2000). Si may inhibit Al-induced
reduction of bioavailable phosphorus by binding Al
preferentially. Short-term variability of Si concentrations
in streams relates to hydrology (Johnson et al., 1969), season
(Norton ef al., 1999; Geérard et al., 2002; Soulsby et al.,
2001) and diatom utilisation (Clarke, 2003).

The chemical weathering of silicate minerals is the primary
source of Si in the environment (Oliva et al., 2003; White

and Blum, 1995) but biogenic silica (BSi = phytoliths +
diatoms fossils) may be the principal immediate source of
Si in soil solution (Farmer et al., 2005). Si is not conservative
during weathering. Vegetation causes higher soil acidity
through the production of organic acids and elevated
carbonic acid (Marchetto et al., 1995), both of which
accelerate chemical weathering. Plants play a major role in
the recycling of soluble silica. Vegetation produces
phytoliths, which return Si to soil with litter (Bartoli and
Wilding, 1980; Conley, 2002; Farmer, 2005). Soils may have
several percent of phytoliths. Wood species produce a high
proportion of phytoliths containing Al (Cartelli ez al., 2002).
Dissolution rates of phytoliths may vary by 1-2 orders of
magnitude, depending on coatings and Al concentration
(Iler, 1973; Van Bennekom et al., 1989). Lake sediment
contains up to tens of percent of diatoms and sponge spicules
(Clarke, 2003). Interstitial water of lake sediment is enriched
with dissolved Si that diffuses back into water (House e
al., 2000; Rickert ef al., 2002), increasing Si in the water
column in the lake. In streams and lakes, dissolved Si
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originates considerably from the dissolution of biogenic
silica (Farmer et al., 2005). Determination of Ge/Si ratios
(Derry et al., 2005) enables determination of the relative
contribution of two main sources of Si (BSi and non-
biogenic (soil minerals)) to Si cycling.

Here, 18-year trends in Si concentrations in five lakes
and their principal inlets in the Bohemian Forest, Czech
Republic, have been examined. This central European area
has been recovering rapidly from atmospheric acidification
(Vesely et al., 1998a; Kopacek er al., 2001) with a
subsequent decrease in dissolved Al in streams and lakes
(Vesely et al., 1998b) and is experiencing a significant
increase in average annual air temperature (Kettle et al.,
2003; Vesely et al., 2003). The effects of increased
temperature and decreased Al concentrations on the long-
term increases of Si concentrations have also been evaluated.

Sites and Methods

Small lakes of glacial origin (Plesné, Certovo, Cerné, and
Prasilské) are situated in the Bohemian Forest of the south-
western Czech Republic between 13°11" and 13°52" E, and
48°47" and 49°11° N at elevations of 1008 to 1090 m a.s.I.
Their water residence times are less than 20 months. Bedrock
is granite in the Ple$né Lake catchment and predominantly
schist in the catchments of the other lakes (Vesely, 1994).
Soils are acidic (pH,,, of 2.5-4.5) and shallow (< 0.2 m
deep) leptosol or < 0.5 m deep spodo-dystric cambisol and
podzol. Base saturation is low (9-15 %) (Kopacek et al.,
2002). All but the Prasilské catchment are forested with 90
to 150-year old Norway spruce. During the present
monitoring, the Prasilské catchment was ~50 % deforested
by gales and bark beetle infestation.

Lake water samples were collected each year from the
epilimnion of each lake and a principal inlet to the lake near
the end of July and in the second half of October. Four to
six water samples were collected during each sampling.
Numerical average concentrations for each sampling were
used for this analysis. During thermal stratification in July,
samples were also collected from four to six depths in each
lake between the surface and bottom at the deepest points
in the lake and volume-weighted mean lake concentrations
were calculated using known bathymetry. Seventeen inlets
to Certovo, Plesné and Cerné lakes were sampled
approximately monthly from 1997 to 2003.

Analytical methods are described in Vesely et al. (1998a)
and Kopacek et al. (2000) and were identical throughout
the study. Total Si and Al in lakes were determined by ICP-
OES, and dissolved Si by the molybdate-blue technique in
filtered (0.45 um) lake samples. The difference between total
Si and in situ dialyzable Si (in true solution) in lake samples
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was < 10%. Labile (ionic) aluminium (Al) was determined
according to Driscoll (1984) and Dougan and Wilson (1974).

Data on air temperature and precipitation at Churdnov
station (at 1118 m a.s.l. among the lakes in the Bohemian
Forest) were from the Czech Hydrometeorological Institute.
Bulk precipitation during the 12-month period preceding
lake sampling ranged from 846 mm (1991/92) to 1661 mm
(2001/02) at Churanov site with no significant trend over
the study period. Changes in ground temperature, caused
by increasing air temperature, were calculated; air
temperature is a crude but reasonable surrogate for soil
temperature (Velbel, 1993). The mean air temperatures of
the individual hydrological years observed since 1961 at
Churanov were used as a forcing function at the ground
surface. Negative values of monthly air temperature
averages were substituted by 0 °C for calculation due to
snow insulation of bedrock in winter. Subsurface
temperatures at several depths and times were calculated
according to Lewis (1992) using values of thermal
conductivity of 1.0 x 10° m? s and 1.3 x 10° m™ s™' for
mica schist and granites, respectively.

Results

LONG-TERM TRENDS IN ST CONCENTRATIONS

Mean concentrations of Si in the lakes ranged from 51 to
99 umol L. The highest was Plesné Lake, situated on
coarse-grained granite. Increasing Si concentrations
occurred in all the lakes (Figs.1 and 2) and in many inlets.
The rate of Si increase in lakes ranges from 0.95 to
1.95 umol L™ yr' between 1986 and 2004, a relative increase
of 36 to 51% in 18 years. The Si increase in lakes and
tributaries was more pronounced between 1994 and 2001
(see Cerné in Fig. 1). Concentrations of Si in lakes and
residuals of Si, ASi, from a linear increase with time, do not
relate directly (p<0.05) to average air temperature or
precipitation volume in the year preceding sampling.
Concentrations of Si in the principal inlets were generally
higher and increased from 2.14 to 3.48 pmol L' yr!, i.e.
faster than in lake water (Fig.1). Because concentrations of
Si in precipitation are < 3.3 pmol Si L™, the source of the Si
increase must be terrestrial.

Concentrations of Si were regularly lower in weakly
acidified, shallow Laka Lake in summer (Fig. 2) when
surface warming supports Si and NO, depletion by
phytoplankton and uptake of Si from soil solutions by
vegetation (Farmer ef al., 2005; Soulsby ef al., 2001). This
seasonal variation occurs only in this lake and is
superimposed on the long-term increase of Si concentrations
observed for both the July and October sampling (Fig. 2).
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Fig.1. Concentrations of Si in the Bohemian Forest lakes and main inlets from 1986-2004. ® — the average concentrations of Si for lakes in
July and October; Q — Si in main inlet; dotted lines = regression; an inlet to Cerné Lake was only main inlet to lakes without a significant

(p<0.05) increase in Si concentration.
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Fig.2. Concentrations of Si in Laka Lake from 1986—2004.

The average concentrations of Si are presented separately for July
(®) and October (M), the autumn concentrations were regularly
higher in the lake suggesting seasonal variability in Si concentration
in this weakly acidic and shallow lake. However, Si concentrations
have increased both in summer and autumn.

Concentrations of total Al (Al,) were relatively low
(< 10 umol L") and Al was mostly bound to dissolved
organic matter in Laka Lake due to a higher mean pH
(pH ~5.7). In the four more acidified lakes, Si and Al_were
negatively related (Fig. 3). In these lakes, Al concentrations
were related to concentrations of strong acid anions (SAA
= sulphate + nitrate + chloride), i.e. to acidic atmospheric
deposition (Vesely et al., 2003; Vesely ef al., 1998b). The
Si concentrations were negatively related to SAA.

The linear Si—Al relationship (Fig. 3) probably represents
a connection between Si concentration and atmospheric
deposition of acids and Al may be an intermediate (Van
Bennekom et al., 1989). The logarithm of Si concentration
increased with the pH in the four strongly acidified lakes
(e.g. Prasilské Lake, Fig. 4a). The relative increase in Si,
ASi / Si, defined as the ratio between the change in Si
concentration and mean Si concentration over the study
period, ranged between 0.016 and 0.023 yr™'. ASi / Si
probably increases with mean pH in weakly acid lake water
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Fig. 4 (a) Relationship between Log Si and pH in Prdsilské Lake from1986-2004. Concentrations of Log Si have increased with pH suggesting
that the process behind the Si increase in the lakes is dependent on the acid-base status in the catchment. (b) Relationship between relative

increase of Si (A Si/ Si) and pH.

(Fig. 4b). The processes controlling change of Si in lake
water are pH-dependent (Fig. 4). However, the present
results, surprisingly, show higher mobility of Si with
increasing pH and in spite of lower deposition of acids.

Short-term variability of Si in streams

Daily and seasonal fluctuations in stream chemistry are
dependent on many processes, especially mixing of base-
and storm-flow. In most of the inlets to the lakes,
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concentrations of Si decreased exponentially with increasing
discharge (Q) (Fig. 5a). Decreases in solute concentrations
with runoff are commonly attributed to dilution of base flow
chemistry by storm- or melt-water. To separate short-term
chemical effects from hydrological control in tributaries,
residuals of Si were calculated from a linear regression of
Si against log Q. Residuals, ASi, for nine of the 17 streams
sampled from 1997 to 2003 were negatively related (p<
0.05) to stream water temperature (Fig. 5Sb). At higher stream
water temperatures, Si concentrations tended to be below
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Fig. 5 (a) Relationship between Si and log discharge (Q) from lake
tributaries. Concentrations of Si decreased exponentially with
discharge in most tributaries. (b) Residuals of Si, (ASi), from linear
regression of Si with log Q were generally more negative at higher
temperature. To separate temperature from hydrological effects,
residuals of Si, (ASi), from a linear regression of Si against log Q
were calculated at higher stream water temperatures, Si
concentrations tend to be below the regression line in most of
streams. The likely cause is increased plant uptake of Si from soil
solution during the growing season.

the Si/Log Q regression line in most of the streams. This
suggests uptake of Si by vegetation at higher seasonal
temperatures.

Discussion

Acidification of the lakes peaked in the mid-1980s (Vrba et
al.,2003; Kopacek et al., 2001; Vesely et al., 1998a). From
1986 to 2004, Si has increased, Na has remained relatively
constant and concentrations of all other major solutes have
decreased. Strong decrease of the SAA in water was
compensated mostly by reduction of inorganic (labile) Al
(Vesely et al., 1998b; Kopacek et al., 2000). The decline in
inorganic Al was enhanced by climate warming (Vesely et
al., 2003).

The concentrations of Si in the five lakes increased by 36
to 51% between the summers of 1986 and 2004. Repeated
regional surveys of freshwaters in the Czech Republic and

Increasing silicon concentrations in Bohemian Forest lakes

small catchment monitoring (Hruska et al., 2002) showed
that the increase in Si concentration is a general phenomenon
for mountainous-forested areas in that period.
Concentrations of Si have increased also in lakes of the Alps
(Sommaruga-Wograth er al., 1997; Rogora et al., 2003),
and in northern-Italian rivers (Mossello et al., 2000). In
contrast, volume-weighted concentrations of Si in the
Hubbard Brook Experimental Forest stream water show no
long-term trend over the 1965—1987 period (Driscoll et al.,
1989). Si was unchanged in a pair of acidifying streams at
the Bear Brook Watershed in Maine for the period 1987—
2003 (Norton et al., 1999). Therefore, there are regional
differences in long-term trends in Si concentrations. Two
hypotheses have been explored to explain the long-term
increase observed in Si concentrations in the Czech
Republic:

1. Effect of temperature (climate warming). The increase of
Si in lakes of the Alps was accompanied by an increase in
base cations that was explained by an increase in the rate of
weathering induced by climate warming (Sommaruga-
Wograth et al., 1997). The present study is in an area of
warming (Weber ef al., 1997; Schér et al., 2004) and a
negative effect of temperature on Al concentrations in the
same lakes has been observed. While the solubility of BSi
and weathering rate increase with temperature, the solubility
of the secondary aluminosilicates decreases. Consequently,
the possible effects of increasing temperature on Si
concentrations have been evaluated.

Average weathering rates of minerals depend on
temperature according to the Arrhenius law (White and
Blum, 1995):

K_(T) =K°_exp(—E/RT) (1)

where K_ is the rate constant (mol ha™ yr') at temperature
T (K degrees), K° is its value at a given reference
temperature, E_ is apparent activation energy of the reaction
and R is the gas constant (8.314 x 107 k] mol™' K™). Average
air temperature in the year preceding water sampling ranged
from 3.28 to 5.75 °C in the Bohemian Forest and increased
irregularly during the 18-years of observation (Kettle ez al.,
2003; Vesely et al., 2003). Long-term warming proceeds
slowly from soil into bedrock where temperature change
lags behind air temperature change substantially. Calculated
theoretical change in subsurface (bedrock) temperature with
depth over the period 2004 to 1986 was about 0.7, 0.45,
and ~ 0.35 °C at depths of 0, 10 and 20 m respectively.
From Eqn.1 for E, = 69 kJ mol™ (White and Blum, 1995) a
warming theoretically increases the weathering rate by about
8, 5, and 4% at depths of 0, 10 and 20 m, respectively.
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Concentrations of Si in the lakes have increased substantially
more.

Dissolution of amorphous (biogenic) silica also increases
with temperature. The change in equilibrium solubility of
BSi caused by long-term temperature change over the period
studied can be calculated from

Ln (K, /K,) =—-AH R [I/T -1/T ] @)

where AH? is the standard heat of dissolution for the
reaction, R is the gas constant, T, and T are temperatures in
K degrees at the beginning and end of the study. The effect
of a temperature increase of ~0.7 °C on the solubility of
amorphous silica and phytoliths suggests an increase in Si
of only about 2% for standard heats of dissolution, AH° =
15 (amorphous silica) and 22 (phytoliths) kJ mol™' (Farmer
et al.,2005; Gustafsson et al.,2001). Increased temperature
also enhances evapotranspiration and vegetative cycling of
Si. More frequent soil drying (Simonsson et al., 1999) and
less frequent soil freezing (Dietzel, 2005) may also
contribute to an increase in Si in freshwater. Nevertheless,
combined temperature effects cannot explain the relative
increase in Si observed in the lakes. Lastly, the dissolution
of forest phytoliths is independent of pH at values below 6
(Bartoli and Wilding, 1980) but the process behind the
increase in Si in lakes is pH-related.

2. Decrease in Al mobility. Atmospheric acidic deposition
has decreased sharply (Kopacek and Vesely, 2005), the pH
of lake waters has increased (Fig.4a) and, consequently, the
mobility of Al decreased substantially. Si is negatively
related to Al (Fig. 3). The relative change in Si, (ASi / Si),
may increase with mean pH of lake water in the range 4.4
to 5.7 as well as log Si concentrations with increasing pH
(Fig.4). The process behind the long-term increase in Si is
more obvious at higher pH in weakly acidic environments
where dissolved Al concentrations become especially low.
Concentrations of Al_have decreased 60 to 75% from initial
values of 41 to 18 pmol L™ and concentrations (activity) of
AP* even more. Three alternative hypotheses are proposed:

(a) less Si may be precipitated in soil as secondary
aluminosilicates (Doucet et al., 2001; Exley et al.,
2002), because of lower amounts of Al dissolved in the
soil solution. Silica that previously was precipitated as
secondary aluminosilicates may remain free, increasing
Si in soil solutions, streams and lake water;

(b) lower Al mobility means lower incorporation of Al into
and adsorption onto BSi (phytoliths and diatoms).
Aluminium on these phases dramatically slows down
BSi dissolution (Iler, 1973; Bartoli and Wilding, 1980;
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Van Bennekom et al., 1989; Dixit et al., 2001; Rickert
et al., 2002). Al-free BSi dissolution kinetics may be
much faster;

(c) lower dissolved Al means less restricted weathering
(Chou and Wollast, 1985; Gérard et al., 1998). Above
certain Al concentrations, rates of dissolution of
aluminosilicates at constant pH exhibit a negative
dependence on dissolved Al (e.g. Oelkers et al., 1994).
However, primary weathering should be related to pH
negatively, in that Si should increase with decreasing
pH; this is not what is observed. Precipitation of most
secondary aluminosilicates increases with temperature.
Therefore, from all the above options, the kinetic effect
of Al speciation on the dissolution rate of BSi, the
solubility of which is independent of pH below 6
(Bartoli and Wilding, 1980) is preferred. The increase
in Si is dependent on pH due to an acid-base limitation
of Al solubility and migration in a weakly acidic
environment.

Conclusion

Silica concentrations in five Czech lakes have increased
despite lower acid deposition. This behaviour of Si is
paradoxical because weathering (the primary source of Si)
should accelerate in more acidic environments. Yet, it seems
that a sharp decrease in soil Al mobility and dissolved Al
increases the rate of biogenic silica dissolution.
Concentrations of ionic Al decreased, primarily because of
areduction in atmospheric deposition of acids coupled with
increased soil water pH and secondarily because of
temperature increases. If correct, the effect will decline as
AP concentration becomes so low that the dissolution rate
of BSi becomes independent of free Al concentration as is
the case in many parts of the world. Climate warming adds
to the decrease in Al. The change in Si concentration in
lakes was kinetically rather than thermodynamically
induced.
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