
The University of Maine
DigitalCommons@UMaine

Honors College

Spring 5-2018

The Effect of Material Variability on the Deflection
of Bamboo Fly Rods
Bennett R. Scully
University of Maine

Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors

Part of the Civil and Environmental Engineering Commons

This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by
an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.

Recommended Citation
Scully, Bennett R., "The Effect of Material Variability on the Deflection of Bamboo Fly Rods" (2018). Honors College. 463.
https://digitalcommons.library.umaine.edu/honors/463

https://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/honors?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/honors?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F463&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/honors/463?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F463&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu


THE EFFECT OF MATERIAL VARIABILITY ON THE  

DEFLECTION OF BAMBOO FLY RODS  

by 

Bennett R. Scully 

 

 

 

A Thesis Submitted in Partial Fulfillment  

of the Requirements for a Degree with Honors 

 (Civil & Environmental Engineering) 

 

 

The Honors College 

University of Maine 

December 2018 

 

 

Advisory Committee:  

Edwin Nagy, Lecturer of Civil & Environmental Engineering, Advisor 

Eric Landis, Professor of Civil & Environmental Engineering 

Roberto Lopez-Anido, Professor of Civil & Environmental Engineering 

Mimi Killinger, Associate Professor, Honors College 
 

Craig Diegel, Reverence Fly Rods  



 ii 

ABSTRACT 

 This study tested and compared the theoretical effect of variability in modulus of 

elasticity versus rod taper in the “action” of bamboo fly fishing rods. Action is a rod’s 

tendency to flex in specific areas when loaded and the extent to which it deforms in that 

area. MATLAB functions were scripted to plot the large deflection of bamboo fly rods in 

order to model the action of a rod given various properties. The bamboo fly rod was 

considered to be a cantilever beam with a point load acting on the end, and large 

deflection considerations had to be made. Materials testing was performed on bamboo to 

obtain an expected distribution of modulus of elasticity values to be used within the 

function. Various rod taper dimensions were retrieved from David Ray’s Taper Library 

and used in the deflection function. This study observed strictly the static deflection of 

bamboo fly rods in the considerations of material variability’s effect on fly rod action. 

Material variability in bamboo was found to have a significant impact on the action of a 

fly rod with respect to taper.   
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CHAPTER 1: INTRODUCTION 
  

 
Fly fishermen use many terms to describe how a rod feels when in use, the most 

common term being “action.” Although action is such an important aspect of the fly rod, 

there is no industry standard for classifying and describing how a rod flexes and feels 

when in use. It is common belief that the action of a rod refers to the stiffness, tendency 

to flex in specific areas, and the speed of recovery. Rod action is affected by the taper of 

the rod and the stiffness of the materials used, however, taper is widely considered to be 

the dominating factor in action (Kretchman, 2017). Stiffness is determined by the 

properties of the bamboo that make up the rod, meaning that this stiffness can vary along 

the rod, and can even vary within the same rod depending on the direction of loading 

(Orvis). Considering that bamboo is a natural material, there can be significant variability 

in the material properties between individual bamboo culms and variability within an 

individual culm. This project aims to reveal the effect that material variability has on fly 

rod action. Particularly of interest is if material variability has a significant impact on rod 

action compared to rod taper, or if rod taper is dominant enough that material variability 

can be ignored in the design of fly rods.  

Fly rods have been constructed out of a variety of materials throughout history. 

The first material used was wood, which advanced to bamboo cane rods, and eventually 

split bamboo rods (Admin, 2009). Fiberglass rods were introduced in the 1940’s, 

followed by carbon fiber rods in 1976. Fiberglass was the most common of these 

materials because it most accurately replicated the action of bamboo rods. Graphite was 

introduced two decades later, which is now the most common material to be used in fly 
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rod manufacturing (Admin, 2009). These materials allow for fast manufacturing and 

consistent rods, however, split bamboo fly rods are considered by many to be an essential 

addition to any avid fly fisherman’s collection. Bamboo is a member of the grass family 

known for its impressive strength to weight ratio, having a larger longitudinal 

compressive strength to weight ratio than wood, concrete, or brick (Fan, H., & Fan, C.).  

A testimony to its strength, bamboo is commonly used as scaffolding during construction 

projects in parts of the world. 

Bamboo has been used as a material in fly fishing rods for centuries. Tonkin Cane 

(Arundinaria amabilis) is the most common species of bamboo used in the making of fly 

fishing rods, being one of the strongest species (Sweetgrass Rods). This can be attributed 

to its large amount of high-density fibers and flexibility in relation to other species of 

bamboo (Sweetgrass Rods).  Bamboo grows in culms, consisting of three layers - a thin 

outer wall called the enamel, a middle layer of dense fibers which give bamboo its 

strength, and an inner layer of weak pith (Monahan, 2016).  In order to form the fly rod, 

the manufacturer splits culms of bamboo into triangular sections and glues the lengths 

together to create a typically hexagonal cross section. 

 Like any other fly fishing rod, whether created using graphite or fiberglass, 

bamboo rods behave differently with respect to each other. This variability in behavior is 

due to two factors: the geometry of the rod, and the material used. The geometry of the 

rod refers specifically to the taper, or the reduction in thickness along the length of the 

rod. The other factor, the material used, is a function of the properties of the individual 

strips used to compose the rod.  
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The variability in behavior is primarily due to bamboo being a natural material. 

Each individual strip of bamboo will have different material properties based a multitude 

of factors, including the age of the culm, the longitudinal and latitudinal location on the 

culm, the presence of an imperfection such as a node along that section, the ratio of high 

density fibers to pith in that strip, the moisture content, and more (Schott, 2006). 

 
 

Figure 1.1: Bamboo culm compared to glued hexagon (Cameron) 
 

Fly rod manufacturers reduce this variability through actions such as deliberately 

orienting nodes in a variety of particular patterns, heat-treating the bamboo culms to gain 

a more consistent water content, and using strips that all originate from a single culm to 

make an individual rod. 

The action of a rod is important to the fisherman based on personal preference and 

desired use, as each rod has its advantages and disadvantages for any given application. 

Generally, a fisherman will field test a rod before buying it to ensure it has the desired 

attributes. It would be helpful for rod makers to be capable of predicting the action of a 

rod prior to building it. Therefore, it would be beneficial to understand magnitude of the 

effect of material variability on the action.  

 Fly rod action is a dynamic, multidimensional concept, however, this thesis will 

focus strictly on the static deflection of bamboo fly rods. MATLAB was used to model 
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the static large deflection of a fly fishing rod. The rod was treated as a cantilever beam 

fixed at one end, with a point load acting vertically at the tip. The point load represents 

the force acting on the tip of the rod through the loaded fishing line. The modulus of 

elasticity was measured in various bamboo samples. Rods of various tapers were 

modeled, and the deflection of these rods using elasticity values corresponding with the 

materials testing results were graphed and presented. Future work must be done to 

incorporate dynamic considerations into the modeling of bamboo action, and to gain a 

better understating on bamboo variability. This thesis is the first component of the 

project, which aims to accurately model the static motion of a bamboo fly rod in order to 

predict the action of a rod given specific components such as length, taper, and the 

modulus of elasticity of each individual strip. Given this capability, we hope to be able to 

determine the extent to which rod taper and material variability affect the dynamic action 

of a fly rod with respect to each other.  
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CHAPTER 2: MATERIALS & METHODS 
 

2.1. MATERIALS TESTING  
 
 Testing was conducted in order to gain insight on the modulus of elasticity of 

bamboo and the variability in the material to be used in the modeling of bamboo fly 

fishing rods. Tensile testing was performed on triangular bamboo strips. Bending tests 

were performed on hexagonal bamboo strips, which are created by gluing six triangular 

strips together. The purpose of this test was to collect a baseline of bamboo elasticity and 

expose a relationship between variability in bamboo strips and variability in compound 

bamboo hexagonal strips. It was predicted that the combination of six triangular strips 

into a hexagonal section would produce a smaller deviation in elasticity compared to the 

individual strips.  

2.1.1. TENSILE TESTING 
 

Tensile testing was performed on bamboo strips of triangular cross-section. This 

was done for strips with bases of two different widths, one width representing a strip that 

would be used in the middle section of a rod, and the other representing a strip that would 

be used in the butt section of a rod. All strips were heat treated by the rod manufacturer. 

The strips were likely not from the same culm. Fifteen strips of each size were tested at 

three locations along the length of each strip, resulting in forty-five readings for each 

strip size. The strips were cut to seven inches in length and marked in the middle and at 

points ¾ of an inch above and ¾ of an inch below the middle. A caliper was used to 

measure the height, H and base, B of the bamboo strips at the marked points as shown in 

Figure 2.1. 
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Figure 2.1: Cross-sectional view of triangular bamboo strip 

 

The caliper is accurate to a one-hundredth of an inch, although that does not account for 

human error. Area, A was calculated as follows: 𝐴 = !
!
𝐵𝐻. 

An Instron was used to execute these tensile tests. The bamboo samples were 

slightly too narrow for the Instron grips, so small aluminum plates with slight abrasions 

were used to fill the gap to prevent slipping.  A ½ inch long strain gauge was used at the 

three marked points along the strips. The speed of test was 0.015 mm/min. Each test ran 

for approximately 0.75 minutes. Strain readings were set to begin recording at a load of 

20 lbs to avoid initial non-linear results. Strain was measured at the middle of each strip 

for loads from 20 - 90 lbs. The test was then stopped, the strain gauge was relocated to 

the bottom mark, and the strain was measured from 90 - 120 lbs. The test was stopped 

again, and the gauge was relocated to the top mark, and the specimen was tested form 

120 - 150 lbs. A data reading was made every 0.2 seconds. The readings were observed 

and confirmed to be linear during these tests to ensure there was no slipping or yielding 

during the experiment.  
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Figure 2.2: Tensile testing setup 
 

2.1.2. 3-POINT BENDING TESTING 
 

Three-point bending tests were performed on bamboo specimens of hexagonal 

cross-section of three different sizes using an Instron 8871. WaveMatrix was the program 

used to collect the data. This hexagonal cross section is typical in split culm bamboo fly 

rods, and is created by binding six triangular strips together using resin. An experienced 

bamboo fly rod maker, Fred Kretchman of Kretchman Fly Rods, provided these samples, 

all of which were heat treated by Fred. It is likely that the strips used to make these 

hexagonal pieces originated from different culms. The specimens were untapered, having 

approximately the same width across their lengths, and had a length to width ratio of at 

least 15:1 to minimize the effect of shear deformation in relation to bending deformation 

during the test. This promotes an accurate calculation of modulus of elasticity from the 

test results. The sections were measured in the middle, and at both ends using calipers 

and the measurements were averaged. For the butt-sections, the platform was set to a 



 8 

span of 190 mm, was run until 2 mm of deflection was achieved, and was loaded at a rate 

of 1 mm of deflection per minute, resulting in a test time of approximately 2 minutes. The 

span for the middle sections was set to 142 mm, running until a deflection of 1.5 mm was 

achieved, with a rate of 1 mm/min, resulting in a test time of approximately 1.5 minutes. 

The span for the tip sections was set to 70 mm, running until a deflection of 1 mm was 

achieved, with a rate of 1 mm/min, resulting in a test time of approximately 1 minute. 

Data was recorded every quarter of a second. Fourteen tip-sections, sixteen mid-sections, 

and twelve butt-sections were tested in bending.  

2.2. MATLAB MODELLING  
 
 The program MATLAB was used to model various mathematical problems. 

Several functions were written, including code that modified the transform section 

method for determining an effective modulus of elasticity and moment of inertia of a 

hexagonal cross section, and a function the determines the large deflection of a bamboo 

fly rod with a given taper and modulus of elasticity. These models were written to gain 

insight in the effect of material variability on the action of bamboo fly rods. 

2.2.1. TRANSFORM SECTION  
 

Transform section is a method of analysis often used in structural engineering in 

order to determine an effective modulus of elasticity of a composite beam containing 

components of varying material properties. It is generally used on beams comprised of 

rectangular sections stacked upon one another. A MATLAB function was created to use 

the transform section method to produce an effective modulus of elasticity and moment 

of inertia for a hexagonal cross-section composed of six triangular strips of given base 

width and an individual modulus of elasticity for each strip.   
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Since the transform section method is meant to work for rectangular components, 

the hexagon had to be treated as a stack of rectangles that compose the general shape of 

the hexagon. The hexagon was broken into n rectangular sections, each of which was 

composed of a certain percentage of the corresponding triangles pertaining to the location 

of the rectangular strip within the hexagon. 

 

 
Figure 2.3: Hexagon orientation 

 

            
 

Figure 2.4: Hexagon when n = 8 
 

 
Figure 2.4 shows an example of a hexagon being represented by eight rectangles. 

 It is apparent that each rectangle is composed of a different percentage of each triangle, 

for example, a large percentage of the bottom rectangle in Figure 2.3 is composed of 

triangle 2, while a smaller portion is composed of triangles 1 and 3. The rule of mixtures 

was used to produce a weighted average modulus of elasticity for each layer. Through 
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this process the individual modulus of elasticity for each of the three triangles that 

compose any given rectangle were multiplied by a factor relative to the percent 

composition of that rectangle. Given percent composition, Tj, and modulus of elasticity, 

Ej, the calculation for resultant modulus of elasticity for a rectangle, Eri is as follows: 

 𝐸𝑟! = 𝐸!𝑇!!
!!! . 

Once the triangles are divided into their equivalent rectangles, the function uses 

the standard transform section method to calculate a resultant modulus of elasticity. The 

parallel axis theorem is used to calculate the moment of inertia. As the number of 

rectangles, n increases, the function calculates a modulus of elasticity and moment of 

inertia that is more representative of the hexagon. A convergence test was performed and 

it was determined that n values of 50 or greater yielded results that had insignificant 

changes as n continued to increase. We used n=50 for all models. 

Moment of inertia is calculated by first determining a transformed width, b for 

each rectangle, which is the width at the center of that section, n. These widths are 

multiplied by the height, h of each slice, resulting in transformed areas for each rectangle. 

The distance of the centroid of each rectangle to the base is calculated, and the values of 

this vector are multiplied by the respective rectangle transformed area. The neutral axis of 

the hexagon is determined by dividing the sum of the above calculation by the sum of the 

transformed areas. The neutral axis is subtracted from the distance from the base to 

centroid of each rectangle, and the result is squared. This value is multiplied by the 

tributary width for each rectangle, the product of which is II. The resultant moment of 

inertia, I, for the hexagonal shape is the sum of II  and Io , where  𝐼! =
!
!"
𝑏ℎ!.  
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2.2.2. LARGE DEFLECTION MODELS 
 

Two MATLAB functions were written to calculate and present the equilibrium 

deflected shape of a bamboo fly rod. These two functions follow much of the same 

procedure and many of the same assumptions. In order to represent this deflection, the 

rod was considered to be a cantilever beam, meaning that it was fixed on one end, while 

the other end was free. A load is applied perpendicularly to the long axis of the rod on the 

free end of the beam to simulate the static loading of a fly rod. The two models are based 

on the Euler-Bernoulli theory, which relies on small deflection assumptions. For one, it is 

assumed that the length of the beam remains constant through the deflection, and 

therefore, the load is acting at a point at a constant distance from the beam’s fixed end, 

which results in a constant moment.  It is also assumed that plane sections remain plane 

and normal to the axis. The following equation represents the relationship between 

curvature, slope, and deflection: 

 𝑘 = !!!

[!! !! !]!/!
=  !(!)/!"

[!! ! !]!/!
  [1] 

 where k is curvature, θ is the slope, and v is the deflection of each section, M(x) is the 

moment at location x along the rod, and EI is the product of modulus of elasticity and 

moment of inertia at that location on the rod. During small deflection, the slope of a given 

beam will be extremely small. Looking at equation [1], we see that if we have a very 

small value for slope, and we then square this value, the result is that element of the 

equation approaching zero. This effectively makes the denominator equal to 1, or we find 

that curvature is equal to the second derivative of deflection, or M(x)/EI. In the first 

model we created, we consider the slope to be negligibly small, so we make the 

approximation that k=M(x)/EI. The second function we made does not make the 
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assumption that slope can be considered to be zero. In this function we make an exact 

calculation of slope using equation [1].   

The functions calculate the total tip deflection, and the rod’s deflection along its 

length. It plots the final deflected shape of the beam, illustrating the rod’s tendency to 

flex at specific points along the rod. The function requires inputs for the load at the end of 

the beam, P, the number of nodes along the beam, n, a value for modulus of elasticity, E, 

and the dimensions for the taper of a given fly rod.  

The number of nodes effectively divides the beam into that amount of sections of 

equal length. Given the taper dimensions, the function uses linear interpolation to 

calculate X and Y coordinates for each node along the length of the beam. The initial 

shape of the beam is a horizontal cantilever, with y-coordinates and slope, θ, of each 

section being equal to 0. The moment of inertia for a hexagon is calculated at each node 

along the length of the beam using the following equation, where h is the height of the 

hexagon when oriented flat side down: 

 𝐼 = ! !
!""

ℎ! [2] 

The function creates a vector of values of the product of moment of inertia and the 

modulus of elasticity at each node, EI.   

A loop within the function runs, within which curvature, ρ, is calculated for each 

segment of the beam given the applied load P, the length of the segment for which the 

load is being applied (X(n) –X(i)), and EI using the following equation where P 

multiplied by the distance from the load is equal to the moment, M(x): 

 𝜌 = 𝑃 ! ! !! !
!" !

= ! !
!"

 [3] 
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The slope, θ, of each segment is calculated using the curvature from the previous 

iteration, ρ, the segment length, ds, and adding the previous slope: 

 𝑑𝑠 = !
!!!

  [4] 

 𝜃! =  𝜌!!! ∗ 𝑑𝑠 + 𝜃!!! [5] 

The coordinates of the present node is then calculated using trigonometry as 

shown below: 

 𝑋! =  𝑋!!! + 𝑑𝑠 ∗ cos 𝜃!!!  [6] 

 𝑌! =  𝑌!!! + 𝑑𝑠 ∗ sin 𝜃!!!  [7]  

The above process within the loop effectively performs a double integration of 

curvature at each node to produce the deflection at each point. The use of nodes allows us 

to have a smooth interpolation of taper along the length of the rod. The assumption that 

plane sections remain plane is satisfied due to the use of nodes because the beam segment 

between nodes, ds, has a curvature small enough that it can be considered plane when 

using a large value of n.  

Every time the loop runs, new X and Y coordinates for the nodes of the rod are 

calculated. Every iteration of the loop uses the X and Y coordinates from the previous 

iteration. The basis for the small deflection assumption that there is no change in length is 

that a change in length would result in a change in moment due to the point load being in 

a different location since the moment is equal to load times length. The change in length 

is demonstrated below: 
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Figure 2.5: Change in length during large deflection 
 
 

We can see that a change in length in the X-direction will cause a change in 

moment, and will therefore affect the calculation of deflection. This loop runs until the 

percent change in the deflection of the tip of the current iteration from the previous 

iteration is less than 0.1%, which is when the system effectively reaches equilibrium.  

Considering the first iteration, we see that the curvature should be equal to zero 

because the beam is un-deflected, however, the length of the beam is at it’s greatest, 

leading to a high calculation for the moment. This leads to an overestimation for the 

initial curvature because it should be equal to zero, leading to an overestimation of 

deflection. The new beam coordinates based on this deflection are then used in the next 

iteration. The length of the beam, based on these coordinates, is shorter than the actual 

length of the beam, leading to an under calculation of moment, leading to an under 

estimation of deflection. These coordinates are used in the next iteration, leading to an 

overestimation of deflection, however, not as much of an overestimation as in the first 

iteration. This process continues, resulting in an alternation of overestimations and 

underestimations between iterations, each iteration reaching a value more representative 

of the correct deflection of the beam. Given this mechanic, the function finds the 
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deflected shape of the rod that satisfies equilibrium of the internal moments at each node 

due to the external load and curvature. Equilibrium is when the curvatures due to 

moments based on the actual beam shape predict the actual deflected beam shape. 

           The two deflection models were run within a script that plots [𝐿 − 𝛥𝑋] by 𝑃 !!

!"
, 

as well as 𝛥𝑌 by 𝑃 !!

!"
 on the same graph. The results were compared to the published 

findings of Dado Al-Sadder. Contrary to theoretical predictions, it was determined that 

the function based on small deflection assumptions yielded results closer to Al-Sadder 

than the function containing the extra consideration in the calculation of curvature. 

 

Figure 2.6: Dado Al-Sadder large deflection theory plot (Bisshopp, 1945) 
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Figure 2.7: Rod deflection model comparison to Dado Al-Sadder (Bisshopp, 1945) 
 
 

 Values from Figure 2.6 were scribed onto the Figure 2.7, presented above. Figure 

2.2 displays the results of the two large deflection models we made to determine which 

one was more consistent with the published findings of Dado Al-Sadder. From this figure 

we can see that the model based on small deflection assumptions diverges from the 

published values slower than the model with the added large deflection considerations. 

We used the former model in our tip deflection analysis because of this. We also see that 

the large deflection function ceases to work after !!
!

!
 values of approximately 1 are 

reached, which is another reason we relied on the model based on small deflection 

assumptions.  
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CHAPTER 3: RESULTS AND DISCUSSION 
 
 Tensile and 3-point bending tests were conducted. The results from these tests 

were analyzed and used in the MATLAB models in order to draw conclusions on the 

correlation between material variability and the deflection of bamboo fly fishing rods.  

3.1. TENSILE TESTING RESULTS 
 

The tensile tests resulted in elasticity values similar to those published in Schott’s 

Bamboo in the Laboratory (2006). As stated, tensile tests were performed on two 

different sizes of bamboo, mid-section strips and butt-section strips. Fifteen of each sized 

sample were tested each at three different points along their lengths, resulting in a total of 

45 readings for each size.  A sample load-deformation curve is presented below: 

 

 

Figure 3.1: Sample tensile load-deformation curve 
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Modulus of elasticity, E is given by the quotient of stress, σ over strain, ε: 

 𝐸 = !
!
= !×!

!×!"
 [8] 

where stress is equal to the product of applied load in tension, P and the length that 

deformation was measured over, L, and strain is equal to the product of cross-sectional 

area, A and the change in length, or deformation, ΔL. 

Data sets were analyzed to determine an average elasticity of 5.67x106 psi with a 

standard deviation of 8.25x105 psi for the mid-section bamboo strips. Butt-section strips 

were determined to have a mean elasticity of 4.62x106 psi, and a standard deviation of 

1.33x106 psi.  

Table 3.1: Tensile materials testing results 

Specimen Size Mean MOE (psi) Standard Deviation of MOE (psi) 
Mid-Section 5.99x106 8.25x105 
Butt-Section 4.62x106  1.33x106 

 
Histograms of the elasticity results are presented below:  

 

 
 

Figure 3.2: Mid-section elasticity histogram 
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Figure 3.3: Butt-section elasticity histogram 
 

The histograms are asymmetric and not smooth. This may be a result of having 

too small of a sample size. We make the assumption that these data sets have a normal 

distribution. 

Analyzing this data, we found that the mid-section strips have an elasticity that is 

18.5% higher than the butt-sections.  This is likely due to the presence of a higher 

percentage of dense power fibers in the mid-section strips, and a smaller percentage of 

pith relative to area. The butt-section strips are composed of a greater percentage of pith, 

leading to a lower elasticity. The standard deviation for the butt-section strips is 38% 

greater than the standard deviation for the mid-section strips. This can likely be attributed 

to the variance in percentage in power fibers between the two sized strips as well (Schott, 

2006). 

 A t-test was conducted in order to determine the statistical significance of the 

difference in elasticity between the mid-section and the butt-section strips. A p-value of 

0.0058 was obtained, which means that this difference in elasticity between the two sized 

strips is highly statistically significant. This result means that the difference is likely to be 

valid and representative of the population.   
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 The results from this test appear accurate, however, it is recommended for future 

tests that the load be reset after every test. Instead of loading in consecutive increments 

for the three marks on a bamboo strip, the load should be reset every time the strain 

gauge is moved. Although the graphed results appeared linear, it is possible the slopes of 

these increments were affected by the increase in load throughout the three tests. This 

would certainly be avoided if the load was reset for every test. Another important 

consideration for future work is to determine the effect of the presence of a node along a 

bamboo strip. 

3.2. 3-POINTS BENDING TEST RESULTS 
 
 The bending tests yielded results that were not expected. Having analyzed the 

data, it became evident that there was vast variation between the different sized samples. 

It was predicted that the tip sections would yield the highest elasticity, due to them 

consisting of almost strictly dense power fibers. The elasticity was predicted to decrease 

slightly as the sections increased in size due to the increased percentage of the strip being 

composed of pith. Elasticity was calculated in bending using the following relationship 

between length, L, moment of inertia, I, and the slope of applied load over deformation, 

k: 

 𝐸 = !!!

!"!
 [9] 

 The calculated average and standard deviation elasticity values are as follows:  

Table 3.2: 3-point bending materials testing results	
Specimen Size Mean MOE Standard Deviation of MOE 
Tip-Section 1.51x106 2.52x105 
Mid-Section 3.05x106 5.27x105 
Butt-Section 4.25x106 3.25x105 
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Comparing this to the tensile results, these hexagonal bending results represent an inverse 

relation between size and elasticity. The calculation of the elasticity of these sections was 

corroborated using multiple methods, reducing the risk of these unexpected results being 

due to calculation error. 

A one-way ANOVA test was used to evaluate the statistical significance of these 

findings. This method is used to analyze the variance of three of more independent 

groups. An assumption that must be made to use this method is that the individual groups 

are normally distributed. The following histograms are assumed to represent normal 

distributions, but with lack of a sufficient number of samples. 

 
Figure 3.4: Tip-hexagon histogram 

 

 
Figure 3.5: Mid-hexagon histogram 
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Figure 3.6: Butt-hexagon histogram 

 
The ANOVA test resulted in a p-value of 1.05x10-19. A p-value of any less than 

0.005 is generally considered extremely statistically significant. The calculated p-value is 

sixteen orders of magnitude smaller than 0.005, meaning there is nearly no chance that 

the results are due to a statistical fluke. 

 This narrows down the potential explanations for these unexpected results. One 

possible reason is that there was a mistake in the methods of the testing, or a mistake was 

made during the testing process. Another potential explanation is that the results are 

correct, however, the fundamental reason for these results is being overlooked. For 

example, the bonding agent used to glue the strips together was considered as a potential 

influence on the results; however, this was deemed unlikely to be a large factor due to the 

coat of glue being minimal and the fact that the same glue was used on all samples.  

 It is recommended for future testing that all bamboo samples originate from a 

minimal amount of culms, and the origin of the samples is tracked so variability from the 

samples coming from different culms can be ruled out as a factor affecting the results. If 

this can be determined to be a non-factor, then any unexpected results can be associated 

with a mistake in the methodology or the results may be considered to be accurate, even 

if not expected.  
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3.3. TRANSFORMED SECTION MODEL RESULTS 
 
 The transform section function was used within a script in order to determine the 

effect that combining six individual strips into a hexagon had on the variability of the 

material. The mean and standard deviation values presented in Table 3.1 were used in this 

script. Six hundred strips were generated within the script, each of which was randomly 

assigned a modulus of elasticity within one standard deviation of the mean. These six 

hundred strips were run through the transform section function, six at a time, resulting in 

one hundred hexagonal sections with a calculated effective modulus of elasticity for each. 

The mean and standard deviation modulus of elasticity were calculated for these 

hexagons. This process was executed for the mid section strips and butt section strips. 

 When comparing the values of mean and standard deviation between mid-section 

strips and hexagons, it was found that the mean remained unchanged between having six 

hundred individual strips, and having one hundred hexagons, each containing six of the 

aforementioned strips. However, when compiled into hexagons, the standard deviation 

decreased from 8.23x105 psi to 4.85x105 psi. This represents a 41% decrease in standard 

deviation. Similarly, the mean remained constant for the butt-section strips, while the 

standard deviation decreased from 1.33x106 psi to 7.48x105 psi. This represents a 43.8% 

decrease in standard deviation.  

To explain these results, the relationship: 𝑆𝐷!"# =
!"
!
 was used to determine the 

expected standard deviation of the hexagon when combining the six individual strips, 

where n is the number of independent elements being combined, or 6, in this case, SD is 

the standard deviation of these six individual strips, and 𝑆𝐷!"# is the expected standard 

deviation of the resultant when these six strips are combined as one. This method is 
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assuming that all six strips are of equal influence, for example, if the six strips were laid 

side by side. In the situation of this hexagonal shape, the bottom and top triangles will 

have more influence on the modulus of elasticity than the other four strips. Given these 

two relationships, the hexagonal results are expected to be somewhere between the 

expected results where n=2 and n=6. When n = 6, a mid-section 𝑆𝐷!"#  of 3.37x105 psi 

and a butt-section 𝑆𝐷!"#  of 5.43x105 is expected.  When n = 2, a mid-section 𝑆𝐷!"#  of 

5.82x105 psi and a butt-section 𝑆𝐷!"#  of 9.4x105 is expected. The new standard deviation 

value produced from this function is corroborated due to it being between the expected 

new standard deviations when n = 2 and n = 6 as tabulated below:  

Table 3.3: Transform section model results 

Elasticity (psi) Mid-Section Butt-Section 
Strip Mean  5.99x106 4.62x106 

Hexagon Mean 5.98x106 4.72x106 

Strip Standard Deviation 8.23x105 1.33x106 
Hexagon Standard Deviation 4.85x105 7.48x105 
Expected Standard Deviation (n = 2) 5.82x105 9.4x105 

Expected Standard Deviation (n = 6) 3.37x105 5.43x105 

 

3.4. LARGE DEFLECTION MODEL RESULTS 
 
 The deflection model was run with the intentions of displaying the magnitude of 

the effect of material variability on the deflected shape of a bamboo fly rod. In order to 

do so, the rod deflection function was run for a variety of tapers. The three calculated 

deflections were plotted on the same graph in order to juxtapose and observe the effect 

that material variability has on the deflection of these rods. The function was run for rods 

of various tapers and various weights. All tapers were retrieved from David Ray’s Taper 
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Library (Ray). The taper for each rod can be found in the Appendix. A consistent load 

and number of nodes was used throughout section 3.4. 

3.4.1. TAPERS FOR 7.5 FT 4 WT RODS (STRIP S.D.) 
 
 Three different tapers were examined for which the rod was seven and a half feet 

in length, and was considered to be a 4-weight rod.  These rods can be considered to be 

similar, and were chosen due to their consistencies in weight and length to put emphasis 

on the effect that taper has on deflection. The tapers for these rods can be seen in the 

Appendix. For this analysis, we used mean and standard deviation modulus of elasticity 

values from the strip tensile results, presented in Table 3.1. Three rods were made for 

each individual taper. One rod was assigned the mean modulus of elasticity value. We 

will call this the “mean” rod. The second rod was assigned a modulus of elasticity value 

equal to the mean plus one standard deviation. We will refer to this as the “stiff” rod. The 

third rod was assigned a modulus of elasticity value equal to the mean minus one 

standard deviation. We will refer to this rod as the “flexible” rod. The values for elasticity 

of mean, and mean plus and minus one standard deviation were used to display the 

extreme conditions in which all six strips that composed the hexagon were of the same 

elasticity in order to display the potential variability. 

The results of this model represent significant variability in deflection in a rod of 

the same taper based on variability in material. A load of 0.05 lbs was applied to the rods. 

Observing the range of deflections for each taper, it is apparent that the larger the 

maximum deflection, the larger the range in deflections. This is true for both vertical and 

horizontal deflections observed. The range of deflections between the mean plus one 

standard deviation and the mean minus one standard deviation is 3.7 inches for the 
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Winston taper. This is significant variability considering that the average deflection under 

the 0.05 lbs is 13.8 inches. 

 As mentioned, multiple sources stated that taper is the main and most important 

factor of fly rod action. When observing the results of how taper effects the deflection of 

these rods, it is apparent that for a constant value of elasticity there is significant 

variability across the three different tapers, having a range of 3.18 inches, or 14.1% less 

than variability in deflection based on material variability. From these findings, it appears 

that material variability has a significant impact on rod deflection. It is important to re-

state that the values for elasticity used represent maximum and minimum values based on 

standard deviation. This is different from the expected elasticity in rod composed of strips 

of random elasticity within the standard deviation, which would result in a value closer to 

the mean, such as represented in the discussion of the results of the transform section 

model in section 3.3. The results are presented below: 

 

Table 3.4: Tip Deflection of 7.5’ Rods (Strip S.D.)	
   Deflection (in)  
Taper Name  Mean  Stiff Flexible 
 
Powell 

ΔX 1.79 1.42 2.33 

ΔY 13.01 11.59 14.81 

 
Bernard 

ΔX 1.91 1.52 2.46 

ΔY 12.67 11.31 14.37 
 
Winston 

ΔX 2.68 2.15 3.42 

ΔY 15.85 14.2 17.9 
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Figure 3.7: Powell taper deflection plot (Strip S.D.) 
 
 
 

 
 

Figure 3.8: Bernard taper deflection plot (Strip S.D.) 
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Figure 3.9: Winston taper deflection plot (Strip S.D.) 

3.4.2. ADDITIONAL TAPERS 

Three additional tapers were observed using the same method as was used for the 

7.5-foot long rods. The strip mean modulus of elasticity and standard deviation values 

were used. Three rods were generated for each taper, consisting of the mean, stiff, and 

flexible variation as was done in Section 3.4.1. The additional tapers consisted of two 9-

foot rods, and one 5-foot rod. These rod tapers can be found in the Appendix. The results 

are presented below: 

Table 3.5: Tip deflection for variety of tapers 
 
Taper Name 

  Deflection (in)  
 Mean Stiff Flexible 

 
Cross Bass 

ΔX 0.76 0.59 1.01 
ΔY 9.27 8.19 10.67 

 
Hardy Palakona 

ΔX 1.49 1.17 1.95 
ΔY 12.61 11.19 14.41 

 
Mystery  

ΔX 1.62 1.29 2.08 
ΔY 10.24 9.15 11.6 
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Figure 3.10: Cross Bass taper deflection plot 
 

 

 
 

Figure 3.11: Hardy Palakona The Fairy taper plot 
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Figure 3.12: Mystery taper plot 
 

Comparing the results from Table 3.4 and Table 3.5 it is evident that a similar 

relationship exists between variability in modulus of elasticity and variability in rod tip 

deflection between the six rods analyzed, even with variation in rod length and rod taper.  

3.4.3. TAPERS FOR 7.5 FT 4 WT RODS (HEXAGON S.D.) 
 
 To produce tip deflection results more representative of what we can expect based 

on expected effective modulus of elasticity, the hexagon mean and standard deviation 

values were used. These values are a result of the transform section model and can be 

found in Table 3.3. The hexagon standard deviation value is approximately half the strip 

standard deviation due to the averaging effect of the hexagons being comprised of six 

triangular strips. While the standard deviation used in section 3.4.1 represents the 

potential that material variability can have on tip deflection variability, the hexagonal 

standard deviation value should produce a range in tip deflections more representative of 
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expected results. Three rods were generated for each taper, as was done before, creating a 

mean, stiff, and flexible rod for each, but with this new standard deviation value. 

 Observing the Winston taper, we see a range in tip deflection of 2.16 inches. The 

previous range for the Winston tip deflection when using the strip standard deviation was 

3.7 inches. This represents a 41.6% decrease in tip deflection variability between strip 

standard deviation and hexagon standard deviation. We recall that the range in tip 

deflection with a constant modulus of elasticity value was 3.18 inches for the Winston 

taper. We see that taper variability has a 47.2 % greater effect on tip deflection compared 

to material variability. This is only true when making the assumption that the 2.16-inch 

range and the 3.18-inch range are accurate representations of the affect of material 

variability and taper variability on tip deflection. The calculated tip deflections are 

presented below: 

	Table 3.6: Tip Deflection of 7.5’ Rods (Hexagon S.D.)	
   Deflection (in)  
Taper Name  Mean  Stiff Flexible 

 
Powell 

ΔX 1.79 1.56 2.08 

ΔY 13.01 12.14 14.02 

 
Bernard 

ΔX 1.91 1.56 2.21 

ΔY 12.67 11.83 13.62 
 
Winston 

ΔX 2.68 1.66 3.08 

ΔY 15.85 14.84 17.00 
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Figure 3.13: Powell taper deflection plot (Hexagon S.D.) 
 

 

 
 

Figure 3.14: Bernard taper deflection plot (Hexagon S.D.) 
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Figure 3.15: Winston taper deflection plot (Hexagon S.D.) 
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 In order to demonstrate the effect of rod taper on the deflection of a bamboo fly 
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below: 
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Figure 3.16: Rod taper comparison 
 
 Shown above, it is seen that the Powell and Bernard tapers have a similar tip 

deflection, however have slightly different flexing patterns along the lengths of their rods. 

The Winston taper experiences a greater tip deflection than the other two tapers, because 

the cross-sectional area for the Winston taper decreases at a greater rate than the other 

two tapers displayed.  
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CHAPTER 4: CONCLUSIONS 
 

Materials testing was performed in order to obtain a range of values for expected 

bamboo modulus of elasticity. The tensile testing yielded reasonable values for modulus 

of elasticity, however the 3-point bending test yielded contradicting results. We used the 

modulus of elasticity values calculated from the tensile testing results in our models.  

We compared the effect of material variability and the effect of taper on rod 

action through two main methods. The first method used the standard deviation value for 

modulus of elasticity retrieved from the bamboo strip tensile results in the rod deflection 

function. The result was a range in tip deflections due to material variability 16.4% 

greater than the range in tip deflections due to taper. This finding is significant when we 

remember that taper is considered by many to be the dominating factor in rod action. The 

result of this model represents the potential for material variability to effect rod action, 

but does not represent the expected outcome. The range in tip deflections produced from 

variable moduli of elasticity represent an extreme case in which the bounds represent the 

event in which all six strips of each respective rod have a minimum or maximum 

modulus of elasticity with respect to one standard deviation based on our materials 

results. In reality, if six strips are chosen at random, the effective modulus will likely 

represent a value close to the mean of the strips. Likewise, remembering the results from 

Table 3.3, it is expected that the combination of these strips into hexagons will effectively 

reduce the standard deviation by approximately half. 

The second method was used to produce a more expected result. In this method, 

the modulus of elasticity standard deviation value used was the one generated from the 

transform section function. This is the standard deviation we expect in the hexagonal 
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bamboo sections after averaging six individual bamboo strips together. When using these 

values in the rod deflection function, we find that the range in tip deflection due to 

material variability is 47.2% less than the range in tip deflection due to taper. It is 

important to note that this is an arbitrary number based on the material testing we 

conducted, and making the assumption that one standard deviation is a good 

representation of expected variability. Similarly, the rod tapers were chosen because we 

consider them to be similar due to their equal lengths and rod weights, however, it is 

difficult to express the extent to which these rod tapers vary.  

We see that the use these two different standard deviation values has a significant 

effect on the effect of material variability. As stated, the bamboo samples tested likely did 

not originate from a single culm, however, rod makers generally construct rods out of 

strips originating from the same culm.  Given this fact, it is likely that the effect of 

material variability on fly rod action is in reality somewhere between the ranges 

discussed above. 

Although a clear relationship between the effect of taper versus the effect of 

modulus of elasticity on the tip deflection of a bamboo fly rod is not directly made, it is 

clear that both variables have a significant impact on the vertical deflection of a rod, and 

therefore, on rod action. This research on the static deflection of a bamboo fly rod 

completes the first step necessary to being able to accurately model fly rod action and to 

determine what variables effect this action the most. Future work must consider the 

dynamic action of a rod. It is also recommended for future work that larger bamboo 

samples be acquired and tested, and that these samples originate from the same culm, and 

are all heat treated and maintained at a consistent moisture content. This will give added 



 37 

insight into material variability within a single culm. The effect of the presence of nodes, 

the effect of the ratio of dense fibers to pith, the effect of strip location along the culm on 

modulus of elasticity of the individual strips, and the effect of moisture content is also 

pertinent information necessary to gaining an understanding of the effect of material 

variability on a bamboo fly rod.  Since many rod makers attempt to construct their rods 

from a single culm, this will produce more reasonable results for the effect of material 

variability.  

 We predict that the use of a single culm to construct individual fly rods will yield 

a fly rod with strips of similar properties. This would lead to a rod that should behave 

consistently based on the direction of loading. However, this would likely cause 

individual rods to be more variable with respect to one another. This is because each 

culm will have properties different from one another, but strips within a single culm 

likely have similar properties to a certain extent. Understanding the extent of this 

variability would be beneficial for rod makers. This would require extensive materials 

testing to reveal the relationship between bamboo variability within an individual culm 

versus the variability in bamboo across different culms. If this testing resulted in a clear 

relationship between the properties of strips within a single culm, the rod maker could 

use this information and test a strip from a culm and be able to say within some degree of 

certainty that the rest of the strips taken from that culm would have a properties similar to 

the tested strip to a certain extent.  The rod maker could use this test to predict the 

properties of a finished rod constructed out of bamboo from that culm.   

 The moisture content of the bamboo is predicted to be one of the greatest factors 

in the properties of bamboo. Materials testing with considerations to moisture content 
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should be done in the future to gain insight into its effect, and how we can manipulate it 

to gain desired properties. This would open many possibilities for rod makers. For 

example, if a rod maker wishes to create a rod with a very specific action, he or she 

would be able to alter the moisture content of individual strips to gain the desired 

properties. This process might not be practical or cost effective in most situations, but it 

is likely something we would be capable of given the results of the aforementioned 

testing. 

Combined with a better understanding of bamboo variability retrieved from the 

proposed materials testing, a dynamic model for fly rod action would give rod makers 

great insight into how they can alter their practices in order to construct fly rods with 

desired properties. 
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APPENDIX A – TAPER DIMENSIONS 
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APPENDIX B - MATLAB SCRIPT 
 

I. Rod Deflection Function 
 
function [X,Y,Xo,Yo,Yf,Xf] = taper_defl(p,n,E) 
%Function for finding equilibrium deflected shape of a beam 
  
taper = xlsread('taper_powell.xlsx'); 
station = taper(1:end,1);            %Length 
dimen = taper(1:end,2);              %Height 
l =station(length(station)); 
  
li = linspace(0,l,n)';                 
Hi = interp1q(station, dimen, li);   %Linear interpolation of taper     
  
for i = 1:n-1 
    I(i) = 0.0601407 * Hi(i)^4;      %Moment of inertia calculation 
end 
  
EI = E * I; 
EI = EI';                            
  
theta(1) = 0;                     
  
ds = l/(n-1);           % Length of single beam segment 
  
tol = 0.1;              % Percent change from previous iteration 
change_tip = 2*tol;     % Arbitrary value to force loop at least once 
  
X = li;                 %Initial cantilever beam shape 
Y = zeros(1,n); 
  
Xo = li;                %Initial cantilever beam shape for use in plot 
Yo = zeros(1,n); 
  
old_tip = 0;            % Initial deflection (before load applied) 
  
% using a while loop to search for equilibrium postion of beam. 
% Equilibrium is when curvatures due to moments based on actual beam 
shape 
% predict the actual deflected shape 
  
while change_tip > tol 
    %determine curvature 
    %determine slopes 
    %determine points 
   
    for i = 1:n-1 
        curv(i) = p*(X(n) - X(i))/EI(i);          
    end 
    for i = 2:n 
        theta(i) = curv(i-1)*ds + theta(i-1);      
        X(i) = X(i-1) + ds*cos(theta(i-1)); 
        Y(i) = Y(i-1) - ds*sin(theta(i-1)); 
    end 
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    new_tip = Y(n); 
    change_tip = 100*abs((new_tip-old_tip)/old_tip); 
    old_tip = new_tip; 
     
end 
  
Yf = -Y(n);   %Final X and Y coordinates of tip 
Xf = X(n); 
 
  

II. Rod Deflection Script 
 
Xbar = 5.988*10^6; 
SD = 8.23*10^5; 
p = 0.05; 
n = 100; 
    
   E = [Xbar,Xbar + SD,Xbar - SD]; 
   %RUNS taper_defl TO CREATE DEFLECTION VECTORS FOR EACH VALUE OF E 
   [X1,Y1,Xo,Yo,Yf1,Xf1] = taper_defl(p,n,E(1)); 
     [X2,Y2,Xo,Yo,Yf2,Xf2] = taper_defl(p,n,E(2)); 
      [X3,Y3,Xo,Yo,Yf3,Xf3] = taper_defl(p,n,E(3)); 
   
%PLOT 
figure(1); 
plot(Xo,Yo,X1,Y1,X2,Y2,'r:',X3,Y3,'b--','LineWidth',2); 
grid on; 
  
%LABELS 
title('Cross Bass 9063 9 ft 6 wt','fontsize',24);   
xlabel('Length (inches)','fontsize',18); 
ylabel('Vertical Deflection (inches)','fontsize',18); 
axis equal;  
%set(figure(1)); 
lgd = legend('Unloaded Rod','Mean', 'Stiff', 'Flexible'); 
lgd.FontSize = 12; 
  
%TEXT BOX 1 
dim = [0.25 0.25 0.25 0.25];       
str = {'Xbar = 5.98*10^6 psi','SD = 8.23*10^5 psi','Load = 0.05 lbs','# 
Nodes = 100','Length = 100 in'}; 
annotation('textbox',dim,'String',str,'FitBoxToText','on','FontSize',14
) 
  
%CHANGE IN X 
dX1 = 90 - Xf1; 
dX2 = 90 - Xf2; 
dx3 = 90 - Xf3; 
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III. Unused Rod Deflection Function 
 
function [large_defl,Xl] = large_defl_func(p,l,n,EI) 
% script for finding equilibrium deflected shape of a beam.  This uses 
% exact curvature instead of approximation. 
  
EI = EI*ones(1,n-1);      %Assuming E is constant 
  
ds = l/(n-1);             % length of single beam segment 
  
tol = 0.1;                % percent change from previous iteration  
change_tip = 2*tol;       % arbitrary value to force loop at least once 
  
% intial beam shape 
X = linspace(0,l,n); 
Y = zeros(1,n); 
  
old_tip = 0;              % initial deflection (before load applied) 
 
% using a while loop to search for equilibrium postion of beam. 
% Equilibrium is when curvatures due to moments based on actual beam 
shape predict the actual deflected shape 
  
yp(1) = 0;      % at root of cantilever, slope is zero. 
 
while change_tip > tol 
    %determine curvature 
    %determine slopes 
    %determine points 
    for i = 1:n-1 
        curv(i) = p*(X(n) - X(i))/EI(i); 
    end 
     ypp(1) = curv(1); 
    for i = 2:n 
        yp(i) = ypp(i-1)*ds + yp(i-1); 
        ypp(i) = curv(i-1)*(1 + yp(i)^2)^(3/2); 
         
        X(i) = X(i-1) + ds*cos(yp(i-1)); 
        Y(i) = Y(i-1) - ds*sin(yp(i-1)); 
    end 
    new_tip = Y(n); 
    change_tip = 100*abs((new_tip-old_tip)/old_tip); 
    old_tip = new_tip; 
     
end 
  
large_defl = -Y(n); 
Xl = X(n); 
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IV. Transform Section Function 

 
function [EI, Ihex] = transformsection( b, n, E1, E2, E3, E4, E5, E6 ) 
  
% Dimension analysis for triangles: [1,3,5] 
  
B=linspace(0,b,n+1);                   %B = width(base) for (1,3,5) 
H=(b*sqrt(3)/2)/n;                     %H = height of each section  
  
for i = 1:n                            %W=Effective width of rectangles 
        W(i) = (B(i+1) + B(i))/2; 
end 
  
A=W*H;                                 %A=Area for 1,3,5 
  
% Dimension analysis for triangles: [2,4,6] 
  
V=linspace(b,0,n+1);                   %V= width(base) for (2,4,6)              
  
for i = 1:n                            %C=Effective widths for 2,4,6 
        C(i) = (V(i+1) + V(i))/2; 
end 
  
S=C*H;                                 %S=Area for 2,4,6 
  
%BOT=Resultant moduli of elasticity for each section of lower half of 
hexagon 
for i = 1:n 
   BOT(i) = (A(i)*E1 + S(i)*E2 + A(i)*E3) / (2*(A(i)) + S(i));  
end 
  
%TOP=Resultant moduli of elasticity for each section of upper half of 
hexagon 
for i = 1:n 
   TOP(i) = (S(i)*E4 + A(i)*E5 + S(i)*E6) / ((A(i)) + 2*S(i));  
end 
  
%Divides each piece of BOT by selected E, giving ratios 
  
for i = 1:n 
    NBOT(i) = BOT(i)/BOT(1);         %NBOT = n value for bottom 
end 
  
%Divides each piece of TOP by selected E, giving ratios 
  
for i = 1:n 
    NTOP(i) = TOP(i)/BOT(1);         %NTOP = n value for top 
end 
  
for i = 1:n 
    TWBOT(i)=((2*W(i))+C(i))*NBOT(i);  %TWBOT=Transformed width for bot 
    TWTOP(i)=((2*C(i))+W(i))*NTOP(i);  %TWTOP=Transformed width for top 
end 
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TW=[TWBOT,TWTOP];  
  
TA=TW*H;    
        
%Standard method for finding I  
for i=1:2*n 
    Y(i)=(.5*H)+(H*(i-1)); 
end 
  
for i =1:2*n 
    AY(i)=TA(i)*Y(i); 
end 
  
YNA=sum(AY)/sum(TA); 
  
for i=1:2*n 
    Yi(i)=(Y(i)-YNA)^2; 
    Io(i)=(1/12)*TW(i)*H^3; 
    Ii(i)=TA(i)*Yi(i); 
end 
  
E=BOT(1); 
I=sum(Ii)+sum(Io); 
EI = E*I; 
  
Ihex = 0.5412659 * b^4; 
  
E = EI / Ihex; 
  
end 
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