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Abstract 

Cellulose nanofibrils is one of the future potential giants in the medical implant industry. Its unique 

properties make it the ideal material for use in both permanent prosthetic devices and non-

permanent implants such as screws and plates. To increase the usability of this material, the 

addition of super paramagnetic iron oxide nanoparticles is needed to gain MRI and X-Ray 

visibility. The methodology for how to homogenously integrate these particles into the system 

using the addition of coating agents is explored. This research demonstrates that the addition of 

coating agents to the iron oxide nanoparticles can affect both the pH flocculation behavior and the 

adhesion of the particles to fibrils. In addition, the research finds that the addition of coating agents 

affects the physical characteristics of the fibrils themselves.  
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Background of Medical implants 

In the ever-advancing field of medical implants, both temporary devices and more 

permanent inserts, there is a pressing need for more biologically suited materials.  Current medical 

implants are commonly made of cobalt-chromium-molybdenum or titanium alloys among others. 

(3) These materials are great at absorbing external forces and have been critical in the success of 

implants throughout the past century. (3)  There are three major problems with current medical 

implants; elastic moduli that are ill suited for biological contexts, the inability for implants to be 

integrated into surrounding biological tissues or completely resorbed, and the challenges that arise 

when attempting to image the implants with x-ray and magnetic resonance imaging (MRI).       

The vastly different elastic modulus of the metal implants is the underlying cause of the 

metal implants’ biggest drawback, aseptic loosening. Aseptic loosening is a process by which the  

implants become loosened by movement of the implant inside of the body. Aseptic loosening is 

the number one cause of medical implants failure.(4)  These movements are due to the bone failing 

to regrow properly and integrate with the implant. This then leads to a loss in the cortical density 

of the bone surrounding the implant. (5) One of the current goals of medical implant research is to 

incorporate a design feature into the device which would allow for bone to grow into the system. 

This would not only assist with preventing rejection but better facilitate the healing process. One 

established method for accomplishing this goal is to incorporate a porous external structure that 

bone naturally is able to grow into. (6) Other attempts have been made to use Hydroxyapatite as a 

coating on the surface of the implant to encourage regrowth. While these methods have been 

proven somewhat successful they also add an additional step to the implantation manufactur ing 

process. (7) These added steps increase both the complexity of the device, which increases the risk 

of mechanical failure and the cost of the devices. These challenges are not unique to permanent 
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implants. Medical screws, plates, and pins suffer from the same difficulties. Plates and screws 

often need to be removed after they have served their usefulness in order to facilitate proper 

healing. (8)  

Along with integration of the implant with the surrounding tissues, one possible goal of 

medical implants is the complete resorption of the device into the body. This process allows for 

implant devices to be completely taken up by the surrounding tissues preventing the need for 

removal later either by design, to complete healing processes, or to correct a damaged device. 

Conventional metal implants cannot be taken up by the body by design, these materials are often 

toxic and if they are absorbed lead to health complications.(9) Current devices designs are 

attempting to address this problem using magnesium based implants which, through design 

controls, allow for slow absorption of the implant. This is not a perfect solution however as they 

require a subcutaneous needle at the implant site to vent off hydrogen gas that is being produced 

in the decomposition and have variable break down times due to, “increased acidity in the 

environment of some fractures.”(10) The combination of a continuous port for possible infect ion 

and difficulty in controlling degradation make use of magnesium implants a daunting challenge in 

medical practice. Resorbable materials are not limited to metals. Polymers such as BioSorbFX and 

LactroSorb are being used to make resorbable screws. These devices while promising but still have 

difficulties with inflammation and monitoring through imaging, being completely transparent to 

standard techniques. (8)   

In addition to struggling to integrate the bone tissue into the structure of the implant, 

another cause of aseptic loosening is failure to allow the surrounding bone to retain the natural 

force loads that are necessary for bones to retain their strength and functionality. (11) The implants 

take much of the forces of day to day life because of significant differences in the elastic modulus 
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of the material. Common materials for implants have ratings’ from 110 – 230 GPa. This elastic 

modulus is an order of magnitude higher than that of normal human cortical bone which ranges 

from 10-30 GPa. Seeing this difference in mechanical properties and the problems that it causes a 

new generation of titanium alloys having elastic modulus 74-85 GPa. (3)  Despite the efforts to 

the replications of the innate mechanical properties the elastic moduli still dramatically exceed that 

of normal bone and do not eliminate the complications.  

Medical implants need to be monitored during their time in-vivo to both ensure that the 

material is not leaching in the body and to monitor the physical condition of the implant. Classical 

metal implants can be monitored through non-invasive techniques such as x-rays or MRI’s. While 

metal implants are capable of being imaged using these technologies due to the nature of the 

material, they are susceptible to image distortion leading to difficulties in monitoring. (12) 

Polymeric implants are radiolucent and cannot be imaged by these methods. Consequently, if a 

possible problem arises the implant needs to be visually inspected through surgical procedures. 

For implants that are designed to biodegrade the monitoring of integration of osteocytes is done 

indirectly by watching the screw sites. (8) The future of polymeric implants is dependent on the 

development of technologies that allow for their imaging.  
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Introduction 

 One obvious solution to the problems facing medical implants is to use real bone in the 

implants. This would prevent all material based rejection issues as prevent complications caused 

by the differences in the elastic modulus. Unfortunately, synthetic bone is not available. A 

potentially-viable alternative is the mimicry of the cellular component of bone, the collagen, using 

cellulose nano-fibrils (CNF). The cellulose and the collagen fibers have similar mechanica l 

properties.(13) Cellulose is one of the most plentiful polymers in nature as it is the primary 

reinforcement structure in plants as well as few bacteria. Critically cellulose has been shown to be 

biocompatible making it a viable option for in-vivo implantation. (14)  

The ubiquity of CNF is not an indicator of simplicity, Cellulose is an organic non branched 

polymer chain that contains “1–4-linked β-d-anhydroglucopyranose units”. (1)(15) It is extracted 

from wood and depending on the source material can have variable chain lengths. (1)(15) In 

addition to source determining the chain length the diameter of the native cellulose fiber, varying 

from 2.5nm to tens of nanometers is also affected. (15)(16) Along the length of the chains, 

hydroxyl groups preform intra and intermolecular hydrogen bonding. These bonds allow the 

cellulose polymers to be grouped together in highly complex crystalline structures. The collagen 

polymers are arranged in units called micro-fibrils. The prefix micro is a nomenclature error and 

does not reflect the scale of the fibers (1) as the fibers themselves are on the order of nanometers 

and add to the strength and versatility of the structure. 

  Once the wood products have been processed, these cellulose microfibrils can be isolated. 

Fibril aggregates with diameters below 100 nm are produced by subjecting them to high shear 

forces in a homogenizer. Once this process is complete, the material now falls under the 

classification of cellulose nanofibrils. (1) The finished CNF is a slurry mixture, the fibrils being 
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suspended in water. CNF is highly hydrophilic making it an ideal material to combine with other 

hydrophilic compounds. These fibrils are an ideal medium to work with because of their, “high 

strength and stiffness combined with low weight, biodegradability, and renewability.” (15) 

Another advantageous characteristic of the cellulose is its native porous structure, a large  

contributor to its high strength to weight ratio. These pores are a critical feature of CNF that can 

be exploited in medical devices allowing for tissues to interpenetrate into the structure without any 

complicated modification to the structure. In addition to being part of the native structure, the size 

of the pore is highly tunable by variations in the method of drying. (17)  

 One of cellulose’s difficulties in the medical implant field is that it is undetectable by X-

rays and MRI. This is due to the lack of the mineral hydroxyapatite found in bone which provides 

the dense media for with the X-rays or radio waves to interact with in the body. (18)(12) This 

results in a limitation of use because if there is a problem, or suspected problem with the cellulose 

based implant, the only truly diagnostic procedure to assess the situation is via invasive surgery. 

This limitation is shared by the polymeric implants and is one of the key challenges that must be 

overcome for their expanded use. 

One proposed method for adding the MRI and X-ray contrast is the addition of 

superparamagnetic iron oxide nano-particles to the cellulose fibrils.(19) There are two variants of 

iron oxide nano-particles, Fe2O3 and Fe3O4, the due to the ease of use and synthesis of the particle 

the Fe2O3 variety will be used.  The superparamagnetic nature of the Nano-particles grant them the 

ability to be seen by MRI, and the iron content of the particles allow them to be imaged through 

X-rays. (12)(18) superparamagnetic particles are characterized by their size which has to be below 

20 nm. This size causes the particles to have enhanced interaction with protons.(20) These particles 

are a not only superparamagnetic but super hydrophilic; the particles are suspended in water after 
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the synthesis and once in solution, they remain stable in solution for years as shown by the samples 

prepared in the Mason lab. Despite their high stability and hydrophilicity, the particles flocculate 

under biological conditions, most notable biological pH’s.   

 The native particles have a pH once produced of near 2.5, this low pH puts the particles in 

a safe zone far from the isoelectric point of pH 7. As the particles approach the isoelectric point  

 

the electrostatic repulsion between the particles can no longer stabilize the particles and they 

flocculate out of the solution. The electrostatic stability is quantified through the zeta-potential of 

the particles. Zeta potential is caused by the accumulation of charges around the surface of the 

particle the larger the value the higher level of stability to the colloidal system. (21) At the native 

reactor pH of 2.5, the particles zeta-potential is consistently at 60 mV; this high zeta-potentia l 

creates a high level of stability due to the electrostatic forces found between each of the particles. 

In addition, highly alkaline pH’s grant similar stability with the Zeta potential being -60mV.  As 

the system approaches a pH of seven the zeta-potential reaches zero removing the electrostatic 

stability from the system and the particles flocculate. (Figure 1)  

Figure 1 Zeta potential Curves of Naked Fe2O3 
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To overcome the lack of electrostatic stabilization steric stabilization is being explored. To 

increase the steric stability of the particles an external agent will need to be added to the surface 

of the particles. Two different groups of polymers were selected; polyethylene glycol and 

cellulosic polymers. All the polymers utilize the same mechanism to increase the colloida l 

stability, the polymer will bind at the surface of the particle and the remainder of the chain will 

reach out into the inter-colloidal space. These chains of polymers act by physical means to keep 

the particles from achieving flocculation.  There are two major processes by which the polymers 

can be added to the surface of the particles: Physisorption for polyethylene glycol molecules and 

chemisorption for cellulosic polymers. Physisorption is the process by which the polymers can 

bond to the surface of the particles by Van der Waals interactions. These are weak interactions 

typically having binding energies between 5-50 kJ/mol. (21) These are non-permanent interactions 

and do not react with the particles in a classical sense and consequently low amounts of energy are 

required to achieve binding, making the reaction rapid and easily achieved.(22)  

Chemisorption is a more energetic form of surface adsorption. The surface of the iron oxide 

particles is covered in oxygen molecules and thus is highly susceptible to hydrogen bonding. It is 

through this hydrogen bonding that the cellulosic polymers (Dextran, Galactose, and Xylose) are 

able to bind. (19) Unlike the physisorption mechanism, this is permanent interaction and thus has 

a much higher energy requirement (50-500 kJ/mole); these higher energies make it so the coating 

process takes longer to reach completion. (21)    

 To quantify the quality of bot the particle stabilization and integration into the cellulose 

five methods of data analysis are used to quantify the particle system: UV-Vis spectroscopy, 

Dynamic Light Scattering (DLS), zeta-potential analysis, scanning electron microscopy (SEM), 

and Fourier Transformed Infrared Spectroscopy (FTIR). The particles in a water suspension will 
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be characterized using UV-Vis, DLS, and zeta-potential analysis to ensure the quality of the 

particles and choose the particle and coating agents to be integrated into the cellulose fibrils. Once 

the particles have been integrated into the fibrils the quality of integration will be determined 

qualitatively by SEM and quantitatively by FTIR. 

  UV-Vis spectroscopy is used to quantify the particle flocculation in solution. The device 

used in these experiments is Ocean Optics USB4000. The device works by emitting a beam of 

light, 178 nm to 890 nm, covering both the near ultra violet and visible spectrums of light. The 

light then interacts with the sample and causes the photons at given wave lengths to be absorbed  

 

by the sample. The wave lengths that are absorbed are characteristic of the material that is being 

analyzed. The light traverses a known path length. Using the ratio of the intensities and Beer’s 

Law, the concentration of the solution can be determined. In addition to the wavelengths, the 

concentration, and opacity of the sample affect the spectral results. The instrument reads the optical 

density by calculating how much of the initial intensity of light passes through the solution. If the 

solution is too concentrated or is  opaque, UV-Vis spectroscopy cannot be used because not enough 

light can pass through the sample. (23)  Iron oxide nano-particle have an absorbance peak of 450 

nm with a bandwidth of 200 nm. When the particles flocculate, the absorbance peak shifts right to 

Figure 2 Naked Fe2O3 UV-Vis Spectra Pre-and Post Flocculation  
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530 nm and the bandwidth increase to 476 nm. Therefore, the stock solution of the particles needs 

to be adjusted to achieve viable results as stock solutions are completely unpassable to light due 

the high density of particles, at 0.0125 gm/mL. To standardize the absorbance for mult ip le 

experiments an absorbance value of one is selected. To achieve this value, a final particle 

concentration of 1.25*10-4 gm/mL is required.  

 To determine the size and distribution of particle systems dynamic light scattering (DLS) 

is needed. For these experiment, a zeta sizer nano series by Malvern instruments was used. 

Dynamic light scattering uses the subtle motion of particles in solution called Brownian motion, 

which is dependent both on the material being analyzed and the solvent, to find the size of particles. 

The instrument sends light into the sample and the particle suspension scatters the light. As the 

measurements are being made the particles continue to fluctuate in position. These fluctuations are 

time dependent. Given their location, it changes the amount of light being scattered by either 

constructive or destructive interference. These fluctuations are then correlated to a decay rate 

which can then be related to the diffusion rate. This diffusion rate can then be used in Stokes-

Einstein equation to calculate the hydraulic diameter. (24) The sizes and distributions of the 

particles are recorded for the initial record conditions to ensure the viability of the particle batch 

as well as at critical points during zeta potential sweeps.  

 To calculate the electrostatic stabilization and isoelectric point of the solution the Zeta Sizer 

Nano series by Malvern instruments is used, the same instrument used for DLS measurements. 

Zeta potential is the measure of net electrical charge of the surface layer of particles. Around the 

surface of particles three distinct layers of charge exist; the surface charge, stern charge, and the 

zeta potential; this final layer correlates to the slipping plane of the particle. This slipping plane is 

the outer most layer of charge influence on the fluid surrounding the particle. The sample is 
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introduced into the instrument and an electric charge is placed across the solution. This causes the 

particles to migrate via electrophoresis motility in the direction of the opposite charge. Different 

zeta potentials of the particles cause variance in the rate the particles migrate. As the particles 

move the instrument passes light through the solution of known intensity and wave length. As the 

light interacts with the particle solution the slight scatters, due to the motion of the particles, both 

electrophoresis as well as Brownian motion, the scatter light experiences Doppler shifting. The 

Doppler shifting is then used to calculate the zeta potential through use of the Smoluchowsk i 

equation. (21)       

 Once the particles have been added into the fibrils they need to be examined for the quality 

of the integration. A qualitative analysis of particle coverage of the fibrils is best preformed 

through visual inspection. Because of the small size of fibrils and particles, the only way to achieve 

a high enough resolution is through transmission electron microscopy (TEM) or scanning electron 

microscopy (SEM) imaging. The use of electrons as the beam source, as opposed to light is needed 

because of the resolution requirements; light is limited to 0.2 microns while electrons are capable 

of resolutions of 25 Å. Due to the samples being suspend in a three-dimensional dried matrix TEM 

is not the proper instrument to use. The SEM, however, provide a better view of three dimension 

as well as works well on dried material. The SEM works by generating and focusing an electron 

beam under vacuum conditions. Then by using electromagnetic deflection coils, the beam is passed 

over the surface of the material. The imaging of the surface exploits two different phenomena to 

achieve their images: secondary and backscattered electrons. Secondary electrons result from the 

inelastic collisions and grant resolution of 10 nm. Backscattered electrons are a consequence of 

elastic collisions and scattering of the incident electrons and the material being scanned. The 

backscattered electrons are used in resolving the surface topography of the specimen. (25)      
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 In addition to a qualitative analysis of the fibers coating of the surface a quantitat ive 

analysis is needed. The method chosen is Fourier transformed infrared spectroscopy (FTIR). This 

method is one of the analytical standards and has a long history of being used for study of cellulose 

fibrils. (26) This method utilizes the resultant intermolecular motion of atoms when they are 

exposed to infrared light. There are three types of motion that molecules can experience, vibration, 

bending, and stretching, each giving a unique FTIR energy signature. When bonds are exposed to 

light energy a fraction of the energy is absorbed, the level of energy is dependent on the type of 

bond and the location of the bond in the molecule. In Attenuated Total Reflectance (ATR) uses 

the phenomenon of total internal reflection. As the beam of light passes through the crystal, the 

beam interacts with the surface layer of the material that is in contact with the crystal. As the 

material interacts, it loses energy in discrete quantities. From the remaining energies, a spectrum 

is created and represents a fingerprint for each individual molecule and structure.(27) The structure 

of cellulose (Figure 3) grants a variety of sites for FTIR signals. The selected region of stretching 

used to quantify is a peak of 1506 cm-1, this peak corresponds to C=C aromatic symmetr ica l 

stretching. This region is chosen because of its location and its strong signal. (26) The location is 

important because the signal is far from the peaks of the iron oxide, two peaks found between 450 

cm-1and 560 cm-1 (28). The strength of the peak is also important as the goal is to correlate the 

Figure 3 Cellulose Structure (26) 
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degree of coverage of the particles on the cellulose fibrils to the intensity of the peak. Initia l 

attempts to take the spectra of the cellulose fibers were met with two challenges. First, the 

background spectra from the air makes it difficult to discern the peaks of the cellulose. To solve 

this problem, the FTIR underwent a Nitrogen gas purge to remove the ambient gases. The second 

challenge arose due to the nature of the dried CNF.  That is, the CNF dries in irregular shapes 

which make it difficult to have it evenly and reliably pressed against the surface of the crystal. 

Despite the complications of this drying method this methodology was used due to the is prior use 

in other experiments. Soaking the CNF causes the fibrils to become loose and flexible allowing 

for them to be pressed evenly against the surface of the crystal. Initial attempts to saturate the fibers 

used water, which resulted in complications due to the signature of water which obstructed all 

signs of the cellulose spectra due to the water peak found at 1643.5 cm-1. (29) This peak directly 

conflicts with the cellulose peak of interest. When the fibrils were saturated to the point of 

compliance the peak became entirely covered. Ethanol was initially selected as a replacement 

media because of its spectra. Experiments with Ethanol to soak the fibrils found that Ethanol could 

not penetrate the fibril structure and they remained brittle preventing it from being useable as the 

media. A third medium Nujol was considered. Despite having a peak located around the area of 

interest both the peaks low intensity, as well as its ability to add compliance to the fibril system, 

made it the clear choice for use.(30)       
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Methods and materials 

Particle Synthesis  

Iron oxide nanoparticles are a highly useful group of particles due to their 

superparamagnetic nature. The properties of the particles are directly related to the size and 

dispersion of the colloidal system which in turn is depended on the synthesis method that is used 

to create it. Numerous methods exist for creating the Fe2O3 particles including but not limited to; 

precipitation reactions, high-temperature, decomposition of organometallic precursors, sol-gel 

reactions, and a multitude of others(19).  For these experiments, a particle system with an average 

diameter of 9 nm and a dispersion media of water was chosen.(31) The size of the particles is 

critical as to allow the particles to easily fit into the cellulose system without congesting the pore 

structure of the fibrils. The decreased size adds additional protection against unprompted 

flocculation.  

Using water as the dispersion media is similarly important as the cellulose is also dispersed 

in water. In addition, the particles being in water assists in the integration of the particles into 

biological systems as other solvents both organic and inorganic can cause problems in-vivo. To 

achieve the desired particle properties, a synthesis using both a co-precipitation reaction and 

thermal decomposition is required. These initial synthesis steps involve the co-precipitation of two 

iron salts: iron(II) chloride tetra hydrate and iron(III) chloride hexahydrate. Both salts are dissolved 

in 380ml of DI water and allowed to mix thoroughly at room temperature. Once the particles are 

evenly dispersed, 20ml of ammonium hydroxide is added dropwise. This process causes the salts 

to precipitate into Fe304. The Fe3O4 particles are super paramagnetic but are too unstable to be 

used in this application. Once all the ammonium hydroxide is added the particles are separated by 

exploiting there newly formed paramagnetic properties. Once the particles have separated and have 
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been decanted from their solution, 60 ml of 2M nitric acid is added. Once the solution has been 

allowed to re-disperse 60 mL of iron (III) nitrate at 0.35M is added. The nitric acid allows for the 

ferric nitrate to better dissolve and promotes the oxidation of the Fe3O4. The particles are then 

placed over heat and refluxed for 1 hour, this step is critical as the surface layer of the particles 

need to oxidize to FE2O3 to increase their stability and usability. After reflux, the particles are 

made to sediment using a magnet and washed with both nitric acid and acetone. Each synthesis 

theoretically yields 2.18 gm of particles which are then re-suspended in 100mL of DI water.  It is 

critical that the particle solution is not allowed to dry as after the acetone wash as this causes the 

particles to aggregate together and are difficult to completely re-suspend in solution. (31) Once the 

particles have been synthesis the particles need to be characterized to ensure the quality of the 

synthesis. Both UV-vis and DLS are used to quantitatively access the solution as well as 

qualitatively inspecting the solution against previous successful batches for color as well as the 

solutions susceptibility to a magnetic field.     

Zeta-potential sweeps  

Once it was determined that the native particle system was inadequately distributing on the 

cellulose fibers, the immediate solution was determined to be surface functionalization using a 

coating agent. Six different coating agents were selected; 

Tri-ethylene Glycol, Polyethylene Glycol 8000, 

Polyethylene glycol 20,000, Galactose, Xylose, and Dextran. 

In addition to testing multiple molecules as coating agents, 

multiple concentrations of each coating agent were tested. Ethylene glycol was chosen as it is an 

industry standard for the stabilization of colloidal systems on both extremes of the MW’s.  (32)(33) 

The ethylene glycol interacts with the surface of the particle via a physisorption and increases the 

Figure 4 PEG Molecular 
Structure (image taken from 

public domain)  
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steric stability of the particles. In addition to increased steric stability of the particles, the PEG 

molecule has an abundance of sites for hydrogen bonding to the cellulose surface.(15) Figure 4 

demonstrates the molecular structure of PEG. The intent is that while the particles are being mixed 

into the cellulose slurry the PEG will hydrogen bond the surface of the fibrils and cause the 

particles to uniformly disperse.   To explore the effect that varying molecular weight has on both 

the colloidal system and the cellulose fibrils three different MW’s were chosen spanning from 

TEG to the PEG 20,000. Due to the increased molecular weight of the PEG 20,000 and PEG 8000, 

the highest concentration of agent added was one order of magnitude lower than the initia l ly 

purposed 0.01M.  

The cellulosic sugars were selected for both their similar ity 

to cellulose and the ability for the sugars to form hydrogen bonds. 

The three sugars chosen -- Galactose (figure 5), Dextran (figure 7), 

and Xylose (Figure 6) -- are all 5 carbon chains with alcohol 

functional groups like cellulose. The hydroxyl groups give all the 

sugars multiple sites for hydrogen bonding to both the cellulose and 

the Fe2O3 particles.(15) In addition, all the sugars listed have been 

previously demonstrated to stabilize colloidal systems. Dextran has 

been used for stabilization of Fe2O3 particles previously and for this 

reason, was selected as the first choice as the proposed stabilizat ion 

agents.(34) (19) Xylose and galactose while not having been used 

to stabilize iron oxide particles have been used to stabilize other colloidal systems. (35) The 

molecular weight of the dextran solution caused similar limitations to the larger molecular weight 

polyethylene glycol and limited the concentrations of the dextran. 

 

Figure 5 Galactose Molecular structure 

(image taken from public domain) 

Figure 6 Dextran Molecular structure 

(image taken from public domain)   

Figure 7 Xylose Molecular Structure 

(image taken from public domain) 



22 
 

A stock solution for all the solutions were made at a concentration of 0.1M for all except 

PEG 8000, PEG 20,000, and Dextran which had initial concentration of 0.01M due to increased 

molecular weight. For each of the particle solutions prepared they were diluted to have a final 

optical density of 2, for both better measurements on UV-Vis and the DLS. Once the dilution of 

the particles is made 20 µL of 1M Nitric acid is added to prevent unnecessary fluctuation of pH. 

The particles are then allowed to mix thoroughly before the stabilizing agent is aliquoted into 

solution to achieve the final concentrations seen in Table 1.  The solution is then allowed to mix 

for 24 hours to allow the particles to be thoroughly coated.  

 

Table 1 Coating agent Concentrations for addition to Particles for pH Sweeps  

No 

agent 

PEG 

8000 (M) 

PEG 20000 

(M) 

TEG (M) Xylose (M) Dextran (M) Galactose 

(M) 

Stock 0.001 0.001 0.01 0.01 0.0001 0.01 

 
0.0001 0.0001 0.001 0.001 0.00001 0.001 

   
0.0001 0.0001 

 
0.0001 

 

After 24 hours, has elapsed, the particle solutions pH is measured and recorded. The solutions pH 

is then brought down to 2.5 using 1 M nitric acid. For future analysis, 1 mL of the particle solution 

is the reserved in a cuvette. In addition, a sample is collected and reserved for zeta-potentia l 

analysis. Using 0.25M NaOH, the solution is brought up by pH increments of 0.5.  As well as 

taking a sample and finding the zeta-potential at each increment record the volume of NaOH 

aliquoted to cause the increase in pH is recorded. A final quantitative measure, when the solution 

became visually cloudy the pH was recorded. Once the solution reaches a pH of 11.5, the final 

solution is collected and the UV-Vis spectra is recorded for each sample and size the particles at 
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both the 2.5 pH point and the flocculation pH. This procedure allows for the identification of 

coating agents that grant increased pH stability as well as the ability to observe any interesting 

interaction that will be caused by the addition of the coating agent.  

 Once all the particle solutions have gone through the pH sweep eight conditions are 

selected, these solutions were selected to explore the highest variety of solutions possible, PEG  

 

8000 is omitted due to its results being similar to the PEG 20,000 and a more in-depth 

exploration of Dextran’s behaviors shown in results and Discussion (pages 24-25)   addition for 

reasoning. Each of these eight conditions are mixed into cellulose by preparing a solution totaling 

20 mL (Table 2). 

Once all the solutions have been prepared, a 10 mL aliquot is taken and combined with 10 mL of 

CNF slurry. The solution is mixed both through agitation of solution and sonication to ensure the 

solution is homogenous. Each solution is then divided equally into two gem boxes. The boxes are 

then placed with the lid open into the oven, set at 45 C, for 72 hours.   

 Volume particles (2/2/17 synthesis 

batch) 

Volume coating agent Volume DI water 

Positive 

Control 

0.800 mL 0 mL 19.2 mL 

Dextran 

0.0001M 

0.800 mL 2.00 mL (0.001M 
Dextran) 

17.2 mL 
 

Dextran  

0.00001M 

0.800 mL 0.200 mL (0.001M 
Dextran) 

19.0 mL 

TEG 0.01M 0.800 mL 2.00 mL (0.1 M TEG) 17.2 mL 

Galactose 

0.001M 

0.800 mL 0.200 mL (0.1 M 
Galactose) 

19 mL 

Xylose 0.001M 0.800 mL 0.200 mL (0.1 M Xylose) 19 mL 

PEG 20,000 

0.001M 

0.800 mL 2.00 mL (0.01 M PEG 
20,000) 

17.2 mL 

Negative 

Control 

0 mL N/A 20 mL 

Table 2 Final Coating solution for Integration into Cellulose Fibrils 
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Results  

UV-Vis data  

While preforming the pH sweeps of all particle systems, the key behavior of interest is the 

flocculation of the particles. As described previously the particles in their non-flocculated state 

have a UV-Vis absorbance peak around 450 nm. Once the particles have become destabilized this 

peak broadens and shifts rightward. This trend is clearly seen in Figure 8 where the initial curve 

of the solution collected at pH 2.38 has peak of 450 nm with a bandwidth of 91 nm. When the 

particles flocculate the absorbance peak shifts right to 530 nm and the bandwidth increase to 476 

nm.  

The key goal of this 

research is to develop methods to 

prevent the particles from 

flocculating to make them easier to 

integrate into the cellulose. 

Therefore, during the pH sweep, 

the particles were monitored for aggregation both before and after the pH sweeps. In addition to 

watching for flocculation, the pH of flocculation is recorded. Due to the innate noise of the system, 

all peaks and bandwidths are approximate, to account for this measurement error, the UV-Vis data 

5 points are average.   

While testing the three variations of polyethylene glycol at multiple concentrations, three 

cases one of each type, has been selected to exemplify the trend seen in all other cases for that 

stabilization agent.  Figure 9 is indicative of the effect that the addition of TEG had to the particle 

system in terms of prevention of aggregation; that is, little to none. The initial peak can be found  

Figure 2 Naked Particles UV-Vis Spectra During pH Sweep 
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Figure 9 PEG 8000 0.001M UV-Vis Spectra During pH Sweep 
Figure 8 TEG 0.01M UV-Vis Spectra During pH Sweep 

Figure 10 PEG 20,000 0.001M UV-Vis Spectra During pH 

Sweep 
Figure 11 Dextran 0.0001M UV-Vis Spectra During pH Sweep 

Figure 12 Galactose 0.001M UV-Vis Spectra During pH 

Sweep 
Figure 13 Xylose 0.001M UV-Vis Spectra During pH Sweep 
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at 455 nm, and the bandwidth of 188. Once the particles reach pH 7.33 they flocculate and 

have band width of 464 nm and a peak of 532 nm. Figure 10 is an indicator of the PEG 8000. The 

initial peak can be found at 450 nm and a bandwidth of 162. Once the particles reach a pH of 6.76 

the particles flocculated and the peak shifts to 488 nm and the bandwidth to 414 nm. Figure 11 is 

a representation of the PEG 20,000 results. The initial peak can be found at 454 nm and the 

bandwidth is 182 nm. When the pH reaches 6.47 the peak of 484 nm and the bandwidth increases 

to 446 nm.  

The cellulosic sugars are compared similarly, three of the experiments have been selected 

which illustrate the trends observed in the experiments preformed on each of the coating agents. 

Dextran at 0.0001M has an initial peak at 466 nm and a band width of 162 nm. Throughout the 

entirety of the pH sweep this remains constant a section at pH 8.49, past the point of floccula t ion 

for other particle systems, has been selected. At the pH of 8.49, the peak can be found at 472 nm 

and the bandwidth is 168 nm. This is the only coating agent that had any pronounced effect on the 

particles stability in solution. Particles remained not only from the perspective of the UV-Vis but 

as later will be shown the DLS. Galactose 0.001M, represented in figure 13, has an initial peak at 

461 nm and a bandwidth of 170 nm. At pH 6.01 the peak increases to 498 nm and the bandwidth 

increases to 300 nm. Xylose the final coating agent tested has an initial peak at 465 and a band 

width of 128 nm. The peak after flocculation at pH 6.19 has a peak at 508 nm and a bandwidth of 

266 nm.   

The UV-Vis results show that all the particle system resisted flocculation during the coating 

process, supported by the peak structure of all coating agents before the sweep. This makes all 

system eligible for integration onto the cellulose fibrils in later experiments. Only the Dextran 

granted any makeable increase the particles ability to resist pH changes.  
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Zeta Potential Results 

As the pH of the solution, the particle solution in slowly increased from the native 2.5 the zeta 

potential goes from a positive to negative. At values, above or below 25mV/-25mV the particles 

are highly stable. As the electrical potential approaches 0mV, the electrostatic stabilization is 

overwhelmed and the particles flocculate.(36) These near 0mV values is where the particle system 

had been experiencing flocculation. To ensure the validity of the pH sweeps preformed the zeta 

potential curve for all sweeps was collected (Figure 15-20). As seen in the Zeta Potential Curves 

Collected all particle system behaved in the same way, a sigmoidal relationship as the pH 

increases. For the TEG, PEG 8000, Galactose and Xylose zeta potential curves they all start and 

finish with approximately the same value 50mv and -50 mV. This is in keeping with the bare 

particle system (Figure 1). The similarity in curve value points to the coating agent not interfe r ing 

with charge surface of the particles and simply binding to it. Both the PEG 20,000 and Dextran 

observed a different start and finish zeta potential value much lower than the initial. (Figures 17 

and 18) In these cases, the Zeta potential starts in a region that classically would be considered a 

instable area for colloidal systems, being between 25 mV and -25 mV. Despite this, both are stable 

in solution as shown by the UV-Vis spectra (Figures 11 and 12).  
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Zeta potential curves (figures 15-20) 

 

 

 

 

 

 

Figure 14 TEG 0.001M Zeta Curve Figure 15 PEG 8000 0.001M Zeta Curve 

Figure 16 PEG 20,000 0.001M Zeta Curve Figure 17 Dextran 0.0001M Zeta Curve 

Figure 18 Galactose 0.001M Zeta Curve Figure 19 Xylose 0.001M Zeta Curve 
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DLS results    

The initial function of the DLS is to characterize the particles from the reactor to ensure the quality 

of the synthesis: the particles should have a monodisperse peak at or around 10-20 nm and no 

flocculation should have occurred. Figure 21 is the characterization of one particle batch which 

shows the graph of a useable particle batch. The large peak found at the right end of the distribution 

are aggregates that are a byproduct of the synthesis and are a small enough proportion that they do 

not affect the overall quality of the batch. It is also observed that the particles post synthesis cannot 

be allowed to dry post Acetone wash or the particles. This causes the particles to aggregate together 

and all attempts to separate via intense sonication particles failed, this is seen in the Figure 23. 

Once the particles have been characterized, the function of the DLS shifted to measure the effect 

that the coating agents had on the colloidal system as well as monitoring the system during the pH 

sweeps.  For all the coating agents, the DLS demonstrated the same trend of the UV-Vis the 

particles post synthesis, the results were consistent throughout all experiments and will be 

demonstrate in the PEG 20,000 0.001M. Post addition of coating agent the particles experience as 

slight rightward shift with the peak moving from 23 nm in the synthesis DLS measurement to 34 

nm (Figure 22). This increase in size is caused by the addition of the polymer to the surface of the 

particle, this does not seem to be an indication of flocculation supported by both the UV-Vis data 

(Figure 11) where the peak can still be found at 454 nm as opposed to the rightward shift expected 

in aggregation.  In addition, the increase in size is less than double that of the physical particle this 

doubling in diameter is the minimum size increase for flocculation behavior. The particle systems 

also behaved similarly when the particles reached the flocculation pH the particles experienced a 

dramatic rightward shift with the average size of particles being above 2000 nm (Figure 24), this 

is consistent with UV-Vis data and is indicative of aggregation.  
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Figure 20 Naked Particles Characterization 

Figure 21 PEG 20,000 0.001M DLS pH 2.24 

Figure 22 Air Dry Particle Synthesis 
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SEM Results  

The SEM is used as a qualitative analysis of 

the coverage of the particles on the fibrils. 

Due to the nature of both the particles being 

super paramagnetic they needed to be sputter 

coated in gold/palladium to allow the samples 

to be visually inspected by the SEM. In 

addition, the coating agent visual distortions 

to the image are caused both by heat of the 

SEM which causes cracking in the surface 

fibrils and image blurring caused by the 

uneven surface of the amalgam. The Figure 25 

demonstrates the fibrils without any particles 

added. It is observed that the individual fibrils 

are clearly visible and are distinct from each 

Figure 23  PEG 20,000 0.001M pH 5.76 

Figure 24 SEM Bare Fibrils (25K X) 

Figure 25 SEM Naked Particles (25K X) 

500 nm 

500 nm 

Pore Structures 

Fibril Structures 

Particle Clumps 
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of the other fibrils. The porous structure of the 

cellulose is also clearly visible; in the ideal 

coating method, these pores will remain 

viable as they are critical for osteocyte 

integration.   Figure 26 is representative of the 

naked particles being added to the surface of 

the fibrils; there are clear areas of dense 

particle (lower left hand corner) as well as 

clumps of particles, small rounded clumps 

dispersed through the fibril matrix. In 

addition, there areas where the individua l 

fibrils without any coverage of particles, 

assessed by the roughness of the area, seem 

to still be visible. Reducing these 

inconstancies in particle coverage is the 

primary goal of this experiment. The 

individual pores of the fibril structure can still be seen (left hand side middle) but are decreased in 

number, it is unknown if that is a function of the particle coating of the location that the image was 

taken. Figure 27, Dextran 0.0001M, has decreased quantities of the particle clumps and appear to 

be more evenly dispersed throughout the entire fibril as opposed to being clumped in sections. The 

lines between the induvial fibrils appear less defined suggesting that the fibrils are less defined due 

to the coating of particles smoothing the general structure. The individual pore structures remain 

visible but appear more rounded. Dextran at 0.00001M, Figure 28, has a more diminished 

Figure 26 SEM Dextran 0.0001M (25K X) 

Figure 27 SEM Dextran 0.00001M (25K X) 

500 nm 

500 nm 

Particle Clumps 

Particle Clumps 
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smoothed appearance when compared to of 

the dextran 0.0001M.  In addition, there 

appears to be a less even distribution of the 

particle clumps. In addition to a less even 

distribution the particles clumps appear more 

numerous suggesting a less though 

distribution of the particles across all fibrils. 

TEG 0.0001M, Figure 29, the particle clumps 

are increasingly numerous and unevenly 

distributed. The clumps have become so 

concentrated that in areas the particles have 

taken on a cauliflower like appearance while 

the contracts of individual fibrils are like the 

Dextran 0.00001M suggesting a decreased 

even coverage. The galactose 0.001M, Figure 

30, has a further increased cauliflower 

appearance with large clumps of particles 

covering most of the entire surface. The 

particles have clumped together in large 

sections while there are clear areas where the 

particles have not attached to fibril sections as 

the induvial fibrils remain as visible as when 

no particle system were added. Xylose 

Figure 28 SEM TEG 0.01M (25K X) 

Figure 29 SEM Galactose 0.001M (25K X) 

Figure 30 SEM Xylose 0.001M (25K X) 

500 nm 

500 nm 

500 nm 

Particle Clumps 

Pore Structures 

Particle Clumps 

Particle Clumps 

Pore Structures 
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0.001M, Figure 31, the particle clumps not in 

the large sections that is observed in TEG 

0.01M, Figure 29 and galactose 0.001M, 

Figure 30, but are more evenly dispersed. The 

Overall quantity of the particle clumps remain 

high signifying inadequate integration. The 

contrast between individual fibrils is high. 

The PEG 20,000 0.001M is the most unique 

of all the matrixes. The coating has taken on an 

entirely smooth surface. The Peg 20,000 on the fibrils 

has given a sticky, “syrup-like” appearance and the 

particles (the glowing dots within the coating) are 

evenly dispensed. The PEG 20,000 0.001M samples 

also maintained some of the native pore structure 

although it is highly probable that due to the apparent 

viscosity of the coating agent that some pores are 

covered. In addition to the differences illumined by 

the SEM the PEG 20,000 in the cellulose had other visual differences. For all other Cellulose 

samples with or with coating agent as the system dries the fibrils bend and buckle creating a 

distorted final product (figure 33A). For the PEG 20,000 the cellulose dried entirely flat (Figure 

33B). This unexpected result is most likely due to the PEG 20,000 reducing the available hydrogen 

binding sites between the fibrils. This Phenomena needs to be explored further before any true 

discussion can be had. 

2.5 cm 

A B 

Figure 32 No coating agent (A) PEG 20,000 (B) Air 

Dried Cellulose Fibrils 

Figure 31 SEM PEG 20,000 0.001M (25K X) 

500 nm 
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FTIR Results  

The purpose the FTIR is to quantitatively analysis the coverage of the iron oxide Nano-Particles 

with their coating agent onto the fibrils. The methodology used the bare cellulose FTIR signature 

was compared to the FTIR signature of all seven conditions for coating agents. The Primary area 

of interest is the cellulose aromatic peaks found at 1542 cm-1 and 1506 cm-1. (37) A reduction in 

these peaks suggests that the cellulose fibrils have become sufficiently covered in the iron particle 

system that the signature has come disguised. For each spectra, the peak value transmittance is 

standardized by using the transmittance found at 1682 cm-1 and is then compared to the bare 

cellulose peak by Percent reduction in the transmittance, these values are shown on Table 3. The 

Wave Number 1542 cm-1 1506 cm-1

Bare -0.38 -0.38

Dex 0.0001 M 9.32 16.50

Dex 0.00001 M 9.71 19.06

TEG 0.001M 6.19 5.98

Galactose 0.001M 6.80 6.73

Xylose 0.001M 6.64 6.41

PEG 20,0000 0.001M 21.0 27.0

Percent Reduction Transmittance 

Table 3 FTIR 1300-1700 cm-1 Percent Decrease 

Transmittance from Bare Cellulose 

Figure 33 Bare Cellulose vs Naked Particles FTIR (1300-1700) cm-1 
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Bare particles, figure 34, are shown to not affect the cellulose aromatic peak, having a -0.38% 

reduction in transmittance, this is consistent with the previously observed behavior of the particles 

not completely binding to the surface. The Dextran solutions, Figures 35 and 36, saw a dramatic 

percent decrease in transmittance intensity as compared to the bare cellulose. The Dextran 

0.0001M had a 9.32% decrease in the 1542 cm-1 and a 16.50% in the 1506 cm-1 peak. The dextran 

0.00001M saw an increased drop in transmittance 9.71% in the 1542 cm-1 and a 19.06% decrease 

in the 1506 cm-1 peak. These results are consistent with the SEM data in which the most 

pronounced smooth coverage and even distribution were resultant of the dextran samples. The 

remaining samples, Figures 37- 39, apart from PEG 20,000 saw near identical reductions in the 

peaks 6.5% ± 0.4% in the 1542 cm-1 and a 6.40% ± 0.4% in the 1506 cm-1 peak. These results are 

similarly consistent with the SEM images where the visually similar in coverage and particle 

distribution. The PEG 20,000 0.001M, Figure 40, saw a 21.0% in the 1542 cm-1 and a 27.0% in 

the 1506 cm-1 peak. This decrease in the transmittance intensity is expected when the SEM images 

are viewed as the entire surface of the fibrils appear to be covered in the PEG 20,000 solution. In 

addition, the radically increased mass of the PEG 20,000 coupled with the high concentration of 

material lead to a much larger amount of material being added to the fibrils which most likely had 

a profound effect on the surface characteristics.  
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Figure 34 Bare Cellulose vs Dextran 0.0001M FTIR (1300-1700) 

cm-1 
Figure 35 Bare Cellulose vs Dextran 0.00001M FTIR (1300-1700) cm-1 

Figure 36 Bare Cellulose vs TEG 0.01M FTIR (1300-1700) cm-1 
Figure 37 Bare Cellulose vs Galactose 0.001M FTIR (1300-1700) cm-

1 

Figure 38 Bare Cellulose vs Xylose 0.001M FTIR (1300-1700) cm-1 Figure 39 Bare Cellulose PEG 20,000 0.001M FTIR (1300-1700) 

cm-1 
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An addition rejoins of interest in the IR spectra collected is found in two peaks located 

between 1150 cm-1 and 1400 cm-1. These peaks correlate to hydroxyl functional groups (37), the 

anticipated result for the hydroxyl groups peak was a reduction due to the particles covering the 

surface of the cellulose which figure 3 shows is a key part of its structure. All the systems 

demonstrated an increase on the peak intensity at 1300 cm-1 as seen in table 4. After consideration, 

it became clear that the reason for the decrease in transmittance is due to the structure of the coating 

agents used. As seen in Figures 4-6 the coating agents used all have hydroxyl groups. This physical 

characteristic of the coating agents makes the decreased transmittance both an expected result and 

a useful tool to explore the success of the coating agent’s addition to the surface. These trends can 

be seen in Figures 44-46. The naked particles addition to the cellulose say the smallest decrease in 

transmittance, Figure 41. The decrease in transmittance associated with the addition of the naked 

is most likely due to either the surface layer of oxygen (19) on the particles having bonded with 

free hydrogen ions forming a hydroxide group or addition confounding effects that need further 

exploration. The Dextran solutions, figures 42 and 43 have the next smallest decrease in 

transmittance. This is in keeping with the structure of the dextran polymer which has a low number 

of hydroxyl groups when compared to the remaining cellulosic coating agents. The remaining all 

Figure 40 Bare Cellulose vs Naked Particles FTIR (1150-14000) 

cm-1 
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had further decreased peak intensities which correspond to the increased number of hydroxyl 

groups found on both the Galactose, Xylose and the Ethylene glycol polymers. Due to these 

confounding effects of the coating agent it is difficult to quantitatively say if the success coating 

agent’s addition to the fibrils can be directly correlated with the decrease in transmittance.   

 

 

 

 

 

 

Wave Number

Bare

Dex 0.0001 M

Dex 0.00001 M

TEG 0.001M

Galactose 0.001M

Xylose 0.001M

PEG 20,000 0.001M -209.63

-54.09

-129.11

-153.80

-169.37

-174.29

Percent Reduction Transmittance from cellulose 

1300 cm-1

-33.74

Table 4 Percent Reduction Transmittance from Cellulose FTIR 

1300 cm-1 hydroxyl peak 
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Figure 41 Bare Cellulose vs Dextran 0.0001M FTIR (1150-1400) 

cm-1 
Figure 42 Bare Cellulose Vs Dextran 0.00001M FTIR (1150-1400) 

cm-1 

Figure 43 Bare Cellulose vs TEG 0.01M FTIR (1150-1400) cm-1 

Figure 44 Bare Cellulose vs Galactose 0.001M FTIR (1150-1400) cm-

1 

Figure 45 Bare Cellulose vs Xylose 0.001M FTIR (1150-1400) cm-1 
Figure 46 Bare Cellulose vs PEG 20,000 0.001M FTIR (1150-1400) 

cm-1 
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A final experiment conducted is a preliminary venture into the effect that coating agents have on 

the drying process. Four separate molecular weights of PEG were chosen and a total of nine 

different conditions were created with varying Peg MW and molarities. The samples were 

integrated with the same procedure as the integration of the coated particles systems. The cellulose 

samples were then qualitatively examined for flatness and compared to the ration of mass PEG 

integrated into the system and Mass of cellulose. Primary results point to the higher the ratio of 

the PEG to cellulose causes a more pronounced flattening effect.    

PEG MW  1000 1000 6000 6000 8000 8000 8000 20000 20000 

Molarity 0.001 0.0001 0.001 0.0001 0.01 0.001 0.0001 0.001 0.0001 

MASS 
PEG: 
Mass 

Cellulose  

0.0007 0.0001 0.004 0.0004 0.0533 0.0053 0.0005 0.0013 0.0133 

 

  

Table 5 Variable PEG MW and Molarity for testing of drying phenomena 
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Discussion 

  The results for particle systems pre-integration into the cellulose indicate that the addition 

of the coating agents affects the flocculation of the particles and maintain their viability. This 

property has the potential of being exploited in the future by both using the dextran agent to resist 

flocculation and further exploration to find addition coating agents that grant other properties to 

the particles. This would allow the particles to be highly tunable in function; either by being used 

to cause flocculation in certain circumstances or controlled releases of particles under certain 

stimuli. The variability in the particle addition behavior to the fibrils with the variable coating 

agent also points to the possibility of controlled release being a possibility after future experiments. 

The coating agents effect on drying behavior, as well as possible bulk material, needs to also be 

explored as it could allow for a wider variety of uses for the material.    
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Conclusions 

Here we have shown that Iron oxide Nano particles can be successfully coating in various 

media, the coating agents can affect the flocculation behavior of the particles, the coating agents 

influence both the particles ability to coat cellulose nanofibrils as well as the cellulose Nano fibrils 

drying behavior. The ability for the particles to be coated in various materials both standard 

polymeric structures and cellulosic sugar both in monomeric and polymeric forms indicates the 

ability for these particles to be in the future functionalized with various coating agents to achieve 

specific behaviors.  For integration into the cellulose nanofibrils, the use of dextran as a coating 

agent allows for a more homogenous distribution of the particles across the surface of the fibrils 

as well as more complete coverage of the surface of the fibrils. In addition, the ability to modify 

the drying characteristics of the cellulose will allow for future exploration into potential uses for 

the material. The use of these methodologies will allow for better integration of the particles into 

the cellulose nanofibrils and will grant the cellulose the ability to be imaged by both X-ray and 

MRI technologies for future use in medical implants.  
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