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The last glacial termination (~19-11 ka) marks the end of the last ice age and the transition to modern 

interglacial conditions. The mechanisms that triggered deglaciation are unresolved. Various hypotheses 

for deglacial warming involve changes in Earth’s orbit, an 80-ppm increase in atmospheric CO2, a 

‘bipolar seesaw’ in oceanic-heat redistribution, and shifting wind belts. Here, I present a 10Be surface-

exposure chronology for a system of glacial landforms in the Tsagaan Gol-Potanin Glacier valley in the 

Mongolian Altai (49°N, 88°E) to determine the nature of the termination in interior Asia. Located near 

the center of Earth’s largest continent, the glaciers in the Mongolian Altai are well situated to test the 

roles of various climate mechanisms in driving the last glacial termination. My chronology is underpinned 

by detailed glacial-geomorphic maps made using satellite and drone imagery. The surface-exposure 

chronology reveals that moraine formation occurred at 23.24 ± 0.50 ka and 28.08 ± 0.58 ka during the 

local Last Glacial Maximum (LLGM). Glacial erratics bracketing small, discontinuous moraines are the 

youngest samples from the LLGM, ranging from 19.54 ± 0.36 ka to 22.11 ± 0.41 ka. The termination is 

documented by glacial erratics on a mid-valley bedrock mountain, Holy Mountain, and erratics next to the 

modern Potanin Glacier. The Holy Mountain samples record 253 m of ice-surface lowering between 

18.23 ± 0.34 ka and 15.69 ± 0.34 ka. Glacial erratics outboard of the Potanin Glacier form two 



 

 

 

populations, at 16.20 ± 0.09 ka and 17.71 ± 0.19 ka, indicating that the termination was underway by 

17.71 ± 0.19 ka.  I reconstructed paleo-snowlines using the accumulation-area ratio (AAR) method to 

translate the glacial record into a climate signal. From the LLGM to modern, snowline rose 1100 ± 90 m, 

equating to a temperature increase of 6.0 ± 0.5°C using a lapse rate of 0.0055°C/m. At least 640 ± 90 m of 

snowline rise, or 3.5 ± 0.5°C of warming, occurred by 17.71 ± 0.19 ka. Rising atmospheric CO2 and 

reorganization of North Atlantic oceanic circulation lag the warming documented in this study. Possible 

mechanisms for deglaciation in the Mongolian Altai include rising local summer insolation, poleward 

heat export from the tropics, or a poleward shift of the westerly wind belts.  
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CHAPTER 1 

THE PROBLEM 

At the end of the last ice age, large Northern Hemisphere ice sheets advanced to middle latitudes 

and covered large tracts of North America and Europe. In both hemispheres, mountain glaciers and ice 

fields extended beyond their modern positions, signifying a global pattern of colder conditions. The last 

ice age ended abruptly in what has been dubbed the “last glacial termination” (Broecker and van Donk, 

1970). Northern Hemisphere ice sheets and mountain glaciers retreated, sea level rose by about 130 m, 

and atmospheric CO2 increased by about 80 parts per million by volume (p.p.m.v.) (Clark et al., 2009; 

Denton et al., 2010; Shakun et al., 2012). Studying transitions from glacial to interglacial periods may 

offer important insights into the underlying drivers of Earth’s climate system. 

 Glacial periods, or ice ages, have long been associated with changes in Earth’s orbit (Adhémar, 

1842; Croll, 1867). Milankovitch (1941) suggested that Northern Hemisphere ice volume is linked with 

changes in summer insolation at 65°N because ice sheets are centered at this latitude. Milankovitch’s 

(1941) hypothesis lacked robust geological evidence until Hays et al. (1976) presented a record of global 

ice volume from oxygen isotopes (δ18O) measured on deep-sea foraminifera. Hays et al. (1976) identified 

a correlation between periodic fluctuations in deep-ocean records of δ18O, Northern Hemisphere summer 

insolation, and Southern Hemisphere winter insolation. They concluded that periodic changes in Earth’s 

orbital geometry are imprinted on Quaternary glacial cycles.  

How the orbital signal appears in glacial cycles has yet to be solved, leaving several outstanding 

questions about orbital ice-age theory. A major question is: Why do ice ages end with rapid terminations? 

The benthic δ18O record has a distinctly asymmetric or “sawtooth” shape, with each cycle containing a 

long build up to glacial ice volume followed by a relatively rapid termination (Broecker and van Donk, 

1970) (Figure 1.1). Though each termination corresponds with rising insolation, there is not a linear 

correlation between ice volume and Northern Hemisphere summer insolation, indicating that orbital 

theory alone cannot explain the asymmetric pattern of Late Quaternary ice ages (Broecker and van Donk, 
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1970; Cheng et al., 2009). Therefore, some other mechanism, or mechanisms, must explain the rapid 

warming during the transition to interglacial conditions.   

 

 

Figure 1.1. Benthic δ18O (‰) stack from 57 globally distributed records representing global ice volume. 

Note how ice volume builds up gradually at beginning of a glacial period and disappears rapidly at the 

termination, creating a “sawtooth” pattern. Modified from Lisiecki and Raymo (2005). 

 

Different hypotheses incorporate various climate drivers as mechanisms that drove deglacial 

warming.  One prominent hypothesis is from Denton et al. (2010), which builds off of  Raymo (1997)’s 

observation that terminations occur when ice sheets reached their maximum extents. The “excess” ice 

isostatically depressed the crust, creating unstable marine margins. Denton et al. (2010) suggested that 

rising Northern Hemisphere insolation triggered the collapse of these unstable ice sheets, which led to 

freshening of the North Atlantic and a decrease in Atlantic meridional overturning circulation (AMOC). 

Due to the reduced AMOC, extensive sea ice covered the North Atlantic, the Asian monsoon weakened, 

and the westerlies in both hemispheres shifted southward, pushing the thermal equator south (Cheng et 

al., 2009). A more southerly position of the southern westerlies resulted in increased upwelling in the 

Southern Ocean and degassing of CO2 (Anderson et al., 2009). By the Denton et al. (2010) hypothesis, the 

CO2 released into the atmosphere would have been large enough to lock the planet into interglacial 

conditions.  
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 Alternatively, it has been suggested that degassing of CO2 from the Southern Ocean was a 

response to the bipolar seesaw in the Atlantic Ocean from a large Northern Hemisphere meltwater event 

at 19 ka (Clark et al., 2009; Clark et al., 2012). First, rising insolation drove initial warming in the 

Northern Hemisphere between 21.5 and 19 ka (Clark et al., 2012). Then, freshwater input from the North 

Atlantic caused the Northern Hemisphere to cool and the Southern Hemisphere to warm through the 

bipolar seesaw. Last, changing the strength of the AMOC contributed to the CO2 degassing from the 

Southern Hemisphere. It is important to note that both hypotheses call on the destratification of the 

Southern Ocean and release of CO2 into the atmosphere as a fundamental factor in driving the 

termination.  

 The goal of my thesis research is to compare the chronology for deglaciation of a glacier system 

in western Mongolia with the climatic forcing mechanisms included in the above hypotheses. These 

mechanisms are: 

1) Rising Northern Hemisphere summer insolation (Milankovitch, 1941; Roe, 2006; Huybers and 

Denton, 2008). 

2) Interhemispheric heat transfer through the Atlantic bipolar seesaw (Crowley, 1992; Broecker, 

1998; McManus et al., 2004; Barker et al., 2009; Clark et al., 2009; Clark et al., 2012). 

3) Degassing of CO2 from the Southern Ocean, leading to a rise in atmospheric CO2 (Denton et 

al., 2010; Clark et al., 2012; Shakun et al., 2012). 

Tracking fluctuations of mountain glaciers is an ideal way to measure climate because summer 

temperature is a first-order control on glacier mass balance (Oerlemans, 2005). Glaciers of the Mongolian 

Altai are well situated to record climate change within the interior of the Asian continent, permitting a key 

test of prominent hypotheses for ice ages. Because these glaciers are geographically isolated from local 

oceanic influences, they are poised to record the impacts of local radiation forcing from changes in 

Earth’s orbital configuration, greenhouse gases, and heat transfer from the North Atlantic via the westerly 

wind system.  
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1.1. Northern Hemisphere summer insolation  

 The role of Northern Hemisphere summer insolation in the waxing and waning of ice sheets is the 

original pillar of orbital theory and has precipitated into many subsequent iterations of ice age hypotheses.  

Milankovitch (1941) posited that periods of summertime insolation minima coincided with glacial 

advances in Europe. Though there is a lag between global ice volume and insolation, Roe (2006) 

determined that there is a direct, zero-lag antiphase relationship between the rate of change of global ice 

volume and summertime insolation in the northern high latitudes. Huybers and Denton (2008) reasoned 

that Northern Hemisphere ice sheets should respond to summer insolation intensity as opposed to the 

duration of the seasons because in the Northern Hemisphere, much of ice sheet ablation occurs through 

surface melt atop land. The Northern Hemisphere is dominated by landmasses rather than the ocean, 

therefore the heating and cooling of the land by orbital forcing has a strong effect on the continental 

climate (McKinnon et al., 2013) and thus ice sheets. However, ice sheets have a significantly longer 

response time to changes in temperature than mountain glaciers. This study aims to examine the effect of 

local Northern Hemisphere (49°N) summer insolation on a mountain glacier in the Mongolian Altai and 

determine whether local insolation was a possible driver in deglacial warming.   

 

1.2. Bipolar seesaw 

Antiphase mean-annual warming of the Northern and Southern Hemispheres during the last 

termination, as registered in polar ice cores, led researchers to postulate a role for Atlantic thermohaline 

circulation in distributing heat between the hemispheres. This has come to be known generally as the 

‘bipolar seesaw’ hypothesis for ocean-heat redistribution. By various versions of this hypothesis, melting 

ice sheets in the Northern Hemisphere would have contributed fresh water to the high-latitude North 

Atlantic, decreasing North Atlantic deep-water (NADW) formation. Reduced NADW production and 

high-northern latitude sea-surface cooling could have impacted cross-equatorial heat transport in the 

Atlantic leading to warming in the Southern Hemisphere (Crowley, 1992). Alternatively, Broecker (1998) 

suggested that buoyancy within the interior ocean drives the bipolar seesaw. Meltwater injections from 
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Northern Hemisphere ice sheets would stratify the North Atlantic and decrease NADW formation. Less 

NADW formation would create a deep-water ‘vacuum’ within the interior of the ocean and therefore 

require more deep-water formation in the Southern Ocean, releasing heat to the atmosphere in the 

Southern Hemisphere. Therefore, by this hypothesis, an increase in Southern Ocean deep-water formation 

would warm the Southern Hemisphere middle and high latitudes while cooling the Northern Hemisphere 

extratropical regions.  

Decreasing deep-water formation in the North Atlantic would lead to a shutdown or weakening of 

the AMOC. McManus et al. (2004)  measured 231Pa/230Th ratios in North Atlantic sediment cores to track 

changes in the AMOC. Because radioactive decay of uranium produces 231Pa and 230Th in seawater and 

because 231Pa is removed more slowly from the water column than 230Th, it is possible to determine the 

residence time of water masses by measuring the ratio of these two isotopes. McManus et al. (2004) 

showed that there was preferentially more 231Pa burial in North Atlantic sediments during deglaciation, 

which they take to indicate that the AMOC shut down during the coldest periods. Sea-surface temperature 

(SST) records off the coast of Portugal indicate cold surface conditions in the Atlantic during these 

periods of reduced NADW formation (Bard, 2000). These intervals of cold, stratified conditions in the 

North Atlantic have been dubbed ‘Heinrich Stadials’ (Barker et al., 2009). However, terrestrial records 

from Greenland show that summers may have warmed during Heinrich Stadials, suggesting that the 

climate in the Atlantic was highly seasonal (Denton et al., 2005; Hall et al., 2008; Bromley et al., 2014; 

Buizert et al., 2014; Levy et al., 2016; Hall et al., 2017; Koester et al., 2017). If conditions in the North 

Atlantic were cold, then I predict that there would be a glacial advance in Mongolia until the onset of the 

Bølling-Allerød at 14.7 ka, due to the location of interior Asia downwind of the North Atlantic. If glacial 

retreat in Mongolia occurred during North Atlantic stadial conditions (i.e., Heinrich Stadial 1), then this 

would support the seasonality interpretation.   
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1.3. Atmospheric CO2 

Ice-core records document an increase in atmospheric CO2 during the last termination, showing a 

rise of about 80-ppm from 17.5 ka to 11 ka (Marcott et al., 2013). During the Last Glacial Maximum 

(LGM), CO2 was sequestered in the deep ocean until changes in the position of the westerlies, the 

biological pump, and/or sea-ice position released CO2 into the atmosphere (Stephens and Keeling, 2000; 

Toggweiler et al., 2006; Schmittner and Galbraith, 2008; Denton et al., 2010; Shakun et al., 2012). Rising 

atmospheric CO2 is a compelling mechanism to drive deglaciation because the effects of CO2 are globally 

distributed, and could help to explain why ice ages are synchronous between the two hemispheres despite 

the Northern Hemisphere orbital signal (Mercer, 1984; Broecker, 2013). If CO2 was the focal driver of 

deglaciation, then the main phase of retreat of the glaciers in Mongolia would occur after 17.5 ka, the 

time at which CO2 began to increase (Broecker, 2013; Shakun et al., 2015).  

 

1.4. Research objectives  

10Be surface-exposure dating allows for high-resolution investigations into climate research by 

enabling glacial reconstructions on the millennial timescale (Balco, 2011). In this thesis, I present a 10Be 

chronology for glacier recession in the Tsagaan Gol-Potanin Glacier valley during the last glacial cycle to 

determine millennial-scale changes. In addition to the chronology, I use paleo-glacier modeling to 

estimate changes in snowline and atmospheric temperature.  I compare the glacial record to time series of 

insolation rise, North Atlantic sea-surface temperature, and atmospheric CO2 to test possible drivers of 

Northern Hemisphere deglaciation. The glaciers of western Mongolia will provide an important test of ice 

age theories by offering a well-dated constraint on climate in the center of Asia during the termination.   
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CHAPTER 2 

BACKGROUND 

2.1. Physical setting 

The Altai Mountains of central Asia span Mongolia, China, Russia, and Kazakhstan, extending 

from the Gobi Desert to the West Siberian Plain (45-52°N to 89-94° E) (Figure 2.1). In western 

Mongolia, the Altai Mountains are dominated by the Tavan Bogd massif. The mountain range features 

five major peaks, the tallest of which is Khüiten at 4,374 m a.s.l. (Figure 2.2). The Altai Mountains were 

formed through subduction zone processes on the margins of the Eurasian continent. This mountain-

building event is considered one of the least understood Phanerozoic orogens in the world (Windley et al., 

2002). The orogeny occurred approximately from the Neoproterozoic to the Early Devonian, although 

chronologic constraints are limited and the granitic intrusions are almost entirely undated (Windley et al., 

2002). Tavan Bogd massif is composed of metamorphosed quartzo-feldspathic rhythmites and intrusive 

volcanic lithologies (Windley et al., 2002).  

The Mongolian Altai features a semi-arid continental climate characterized by extreme 

seasonality. Winter temperatures can fall to below -20°C on the Mongolian steppe. In contrast, summer 

months are warm and July temperatures can reach 20°C (Lehmkuhl et al., 2011). A weather station in the 

high Altai recorded a mean summer temperature of 3.4°C and a mean annual temperature of -8.8°C from 

2007-2008 (Konya et al., 2010). The Altai Mountains block the flow of the Northern Hemisphere 

westerlies, which deliver moisture to the region (Lehmkuhl et al., 2011). Precipitation at high elevations 

in western Mongolia is estimated to be greater than 300 mm annually and decreases to about 200 mm/yr 

on the eastern, leeward side of the mountain range (Lehmkuhl et al., 2011). Precipitation records near 

Tavan Bogd are limited to low-elevation population centers. In Khovd, about 300 km away from Tavan 

Bogd, the mean annual precipitation from 1961 to 1990 CE was 138 mm (Kadota and Gombo, 2007). 

About 70% of annual precipitation occurs in the summer, from June to August (Kadota and Gombo, 

2007).  
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Figure 2.1. Regional map of interior Asia. Red box indicates study area. Base map is World Terrain Base by Esri.  
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Figure 2.2. Google Earth satellite image of Tsagaan Gol-Potanin Glacier valley. (1) marks Bayan moraine complex, (2) marks Holy Mountain, 

and (3) marks the Potanin Glacier and moraines.
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For my thesis research, I studied the Tsagaan Gol-Potanin Glacier valley, which features the 

modern Potanin Glacier (49° 8'19"N, 87°56'36"E) at the valley head (Figure 2.2). The Potanin Glacier 

drains a high icefield of the Tavan Bogd massif and is the largest glacier in Mongolia, with a length of 

approximately 11 km and an area of 43 km2 (Kadota and Gombo, 2007). The Alexandra Glacier, a 

tributary of the Potanin Glacier, is located to the southeast and joins the Potanin Glacier in the terminal 

region. The valley trends to the east and Tsagaan Gol (transl. “White River”), fed by the meltwater of the 

Potanin Glacier, flows into Khovd Gol and eventually into Khars Us Nuur, a terminal closed-basin lake 

located in the central Mongolian great basin.  

 

2.2. Previous studies 

 Few glacial geomorphic studies have been conducted in the remote Mongolian Altai (Lehmkuhl, 

1998). The area was visited by Russian geographers in 1905 CE who photographed the Potanin Glacier 

when it stood close to its Little Ice Age moraine belt (Figure 2.3) (Sapozhnikov, 1949; Syromyatina et al., 

2015). The initial geomorphic studies from the 1980’s suggested that the Mongolian Altai experienced 

two to three phases of glaciation during Marie Isotope Stage (MIS) 2 and MIS 4  (Lehmkuhl, 1998). 

Devjatkin (1981) obtained absolute dates for glaciations in the Altai using thermoluminescence and 

radiocarbon dating. Material from glacial landforms yielded ages of 35.3 ± 0.6 14C ka [39.9 ± 0.7 ka; 

calibrated using IntCal13 (Reimer et al., 2013) and OxCal v4.3.2 (Ramsey, 2017)] and 32 ± 6 ka with 

thermoluminescence dating (TL). An older landform yielded an age of 103 ± 12 ka (TL). 

 Paleo-lake levels from the “Valley of the Lakes”, an expanse of closed-basin lakes located 

between the Khangai and Govi-Altai mountains (Figure 2.1), have also been used to infer the timing of 

Pleistocene glaciations in western Mongolia (Florensov and Korzhnev, 1982). However, there are only a 

few dates constraining the timing of Pleistocene high lake levels (Lehmkuhl, 1998). Furthermore, the 

areas of closed-basin lakes are highly sensitive to catchment-wide runoff from glacial melt, precipitation, 

and seasonal snowmelt (Broecker, 2010; Barth et al., 2016; Putnam and Broecker, 2017). Thus, any 
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impact of glacier melt on western Mongolian closed-basin lakes is likely to be obscured by changes in 

runoff related to precipitation and seasonal snowmelt. 

  

 

Figure 2.3. Terminus of Potanin and Alexandra Glaciers, vantage to the west. (A) photo by Sapozhnikov, 

taken in 1905 CE. (B) ground photo taken in 2013 CE. Modified from Syromyatina et al. (2015). 

 



 

12 

 

More recent studies have investigated the extent and timing of Late Pleistocene glaciation in the 

Altai (Klinge, 2001; Lehmkuhl et al., 2004; Lehmkuhl et al., 2011; Lehmkuhl et al., 2016). Lehmkuhl et 

al. (2007) obtained four optically stimulated luminescence (OSL) ages sampled from fluvial and aeolian 

sand and silt strata between tills related to the LGM in the Russian Altai.  Ages determined from deposits 

interbedded with multiple tills ranged from 28 -19 ka (Lehmkuhl et al., 2016). A 10Be chronology from 

the Khangai Mountains in central Mongolia concluded that ice advanced 35-40 ka, 23 ka, and 16-17 ka 

(Rother et al., 2014). The geographically closest study to the Potanin Glacier valley comes from 

Lehmkuhl et al. (2016). OSL dates on moraines around the glacial lakes, Khurgan and Khoton Nuur, have 

minimum limiting ages of 13.6 ± 1.6 ka, 57.8 ± 9.1 ka, and 85.6 ± 10.4 ka.  
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CHAPTER 3 

METHODS 

3.1. Glacial geomorphic mapping 

I mapped glacial and periglacial landforms, including moraines, rock glaciers, outwash plains, 

and alluvial deposits, using the symbology from Barrell et al. (2013). In the field, I made hand-drawn 

maps marking moraine ridges, ground moraine, and terraces. Later, I augmented these maps by 

interpreting imagery from Google Earth, Shuttle Radar Topography Mission digital elevation models 

(DEM) at 25.5 m/pixel, and processed drone imagery with ~ 0.3 m/pixel resolution. I used depositional 

and erosion features to identify landforms and cross-cutting relationships to assign relative ages.  

The drone imagery was obtained during the 2016 field season from a DJI Phantom 4 quadcopter 

(see Appendix A for more detail). I piloted the drone over the Potanin Glacier and Bayan moraine 

complexes because these two regions contain the majority of boulders sampled for surface-exposure 

dating. I flew the drone at 100-300 m elevation and set the flight path with an application called “Map 

Pilot” by Maps Made Easy for iPad. The drone took pictures with 75% overlap to ensure that there were 

enough tie points among the photographs to develop accurate orthomosaics and DEMs. I then processed 

the images using Agisoft Photoscan Professional Edition software. In Photoscan, I produced DEMs and 

orthomosaics. The maps were automatically geo-rectified in Photoscan because of the drone’s internal 

GPS. I improved the spatial accuracy by using sample locations as ground control points, which were 

measured with a differential GPS and are accurate to ± 10 cm in the horizontal and vertical directions.  

 

3.2. Sample collection 

During the summer of 2016, I collected samples from glacially deposited boulders in the Tsagaan 

Gol-Potanin Glacier valley. I sampled boulders located on glacial moraine ridges, recessional ground 

moraine, and bedrock. I targeted moraine ridges that appeared stable, showing no evidence of post-
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depositional modification, such as mass-wasting, fluvial, and/or anthropogenic processes. Glacial erratic 

boulders were sampled on ground moraine and on bedrock in regions devoid of constructional landforms. 

Boulders were selected based on their geomorphic stability. I assessed the surrounding area for 

indications of disturbance, including steep-slope angles, fluvial channels, and human activity. I sampled 

boulders that were embedded in low-angle slopes or located on crests of moraine ridges. I assessed the top 

surface of each boulder to ensure that I collected samples with minimal surface erosion. Jointed, 

fractured, exfoliating, pitted, or disintegrating surfaces were avoided in an effort to sample the original 

surface. I preferentially sampled boulders that had glacial polish, striations, and/or rock varnish because 

these features indicate minimal surface material loss. In addition, I preferentially sampled flat surfaces on 

the top of the rocks or sloping upper surfaces. Examples of boulder sampled in this study are in Figure 

3.1. 

Samples were extracted using wedges and shims (See Appendix A for more detail). This method 

involves drilling three to five 3/8” holes around the selected sample site. Two shims are inserted into each 

hole, and wedges are driven between each set of shims until the sample is dislodged from the boulder. 

After extracting the sample, I measured the geographic location of the sample site, including elevation. 

The location was measured at each sample site using a Trimble Geo7x, corrected with a Trimble Geo7x 

base station located less than 10 km away. I used the GeoID application on an iPad to measure the 

orientation of the sampled surface and a clinometer to record topographic shielding. Shielding corrections 

were determined using the CRONUS Geometric Shielding Calculator 

(http://hess.ess.washington.edu/math/general/skyline_input.php). Boulder dimensions were measured 

with a tape measure, and the boulder was documented photographically from multiple aspects and 

sketched in a notebook.   
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Figure 3.1. Examples of boulder sampled for 10Be surface-exposure dating. (A) Sample TGP-16-16 

located outboard of Potanin moraines. (B) Sample TGP-16-18 located outboard of Potanin moraines. (C) 

Sample TGP-16-30 located outboard of Potanin moraines. (D) Sample TGP-16-53 located on Bayan-I 

moraine. (E) Sample TGP-16-62 located on ground moraine outboard of Bayan-I. (F) Sample TGP-16-70 

located on Bayan-II. Photographs by Mariah Radue. 
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3.3. 10Be surface-exposure dating  

10Be surface-exposure dating relies on the accumulation of the cosmogenic isotope, 10Be, in the 

mineral quartz after it is exposed to Earth’s surface. Cosmic rays, high-energy particles from outer space, 

bombard the silica and oxygen in quartz producing cosmogenic nuclides, including 10Be (Gosse and 

Phillips, 2001). The amount of 10Be in a rock sample is compared to an independently determined 

production rate to calculate the exposure age of the sample. For glacially deposited boulders, the 

accumulation of 10Be begins when the boulder is deposited by the glacier on a moraine or as a glacial 

erratic. When dating glacial deposits, it is assumed that any previously accumulated 10Be is removed by 

erosion through glacial quarrying and/or abrasion. In other words, the cosmogenic clock is “reset” by 

glacial transport and the only exposure history recorded in the sample is post-depositional.   

I processed samples at the University of Maine’s Cosmogenic Isotope Laboratory (see Appendix 

A for laboratory procedures). First, I measured the thickness of each rock sample at 4-cm intervals using 

digital calipers and determined a mass-weighted average thickness value. Then, I crushed samples using a 

jaw crusher and pulverizer, sieving the sample to a grain size of 710-125 µm. I employed froth flotation 

to remove most of the feldspars and etched each sample in 1-5% hydrofluoric acid until only quartz 

remained. Some samples received O-phosphoric boiling treatment to remove cementation. Depending on 

the mineralogy of each sample, I performed magnetic and heavy liquids separation techniques in addition 

to hydrofluoric acid etching to further isolate the quartz from other minerals in the sample. I boiled some 

samples in HCl to remove native or precipitated fluorite. Once samples consisted of pure quartz, I 

measured the concentrations of Al, Ca, Fe, and Be using an Inductively Coupled Plasma Optical Emission 

Spectrometer (ICP-OES) to verify purity (Appendix B).  

Beryllium extraction was performed using a version of the methods detailed on the Lamont-

Doherty Earth Observatory Cosmogenic Dating Group website and included in Appendix A 

(http://www.ldeo.columbia.edu/cosmo/methods).  Beryllium ratios (10Be/9Be) were measured with the 

CAMS accelerator at the Lawrence Livermore National Laboratory using the 07KNSTD standard, 
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10Be/9Be = 2.85e-12 (Nishiizumi et al., 2007). The 10Be/9Be ratios were then corrected for residual boron 

contamination and 10Be in blanks.  

I report ages using two scaling methods: (1) the scaling method of Stone (2000) and (2) a version 

of the Stone (2000) scaling method that incorporates a high-resolution version of the Lifton et al. (2008) 

geomagnetic model, labeled ‘Lm’ (Putnam et al., 2010b). I calculated surface-exposure ages using the 

sea-level high-latitude 10Be production rate from New Zealand published by Putnam et al. (2010b) of 3.74 

± 0.08 atoms/g/yr (Lm). The New Zealand-based production rate is similar to the rate determined from 

the Swiss Alps, 3.83 ± 0.24 atoms/g/yr (Lm) (Claude et al., 2014). The production-rate calibration site in 

the Swiss Alps is at similar latitude (46°N) to the Mongolian Altai (49°N), therefore the more precisely 

measured New Zealand rate, which is also from a mid-latitude site and yields an indistinguishable rate 

from the Swiss site, should be appropriate for age calculations in the Mongolian Altai. The average 

thickness of the samples was used to correct for attenuation of cosmic rays with depth. I incorporated a 

shielding correction based on the skyline measured with a clinometer at the sample site to account for 

cosmic rays blocked by the surrounded topography.   

10Be production can be affected by the post-deposition environment, by erosion and/or snow 

cover. Erosion preferentially removes Be atoms and, if left uncorrected, would yield artificially young 

boulder ages. I did not incorporate erosion rates into the age calculations because preservation of 

striations and glacial polish on many samples indicates that no erosion had taken place. Thick, prolonged 

snow cover may also lead to artificially young ages because snow attenuates the cosmic ray flux. I did not 

apply a snow-cover correction because of the paucity of snow-depth data in the region. In addition, strong 

winter winds in the Altai would also likely scour prominent moraine features leaving thin or no snow 

cover (Konya et al., 2010).  Additionally, the effects of erosion or snow cover would probably not be 

consistent among the boulders and would therefore produce noticeable scatter in the dataset.  
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3.4. Snowline modeling  

To reconstruct configurations of the Tsagaan Gol-Potanin paleo-glacier, I employed an ArcGIS 

toolbox developed by Pellitero et al. (2016) called GlaRe. I reconstructed the paleo-glacier during two 

periods of moraine deposition, at the Potanin moraines and the Bayan moraine complex. The GlaRe 

toolbox is based on the method developed by Benn and Hulton (2010), which assumes the glacier has 

perfectly plastic flow and no basal sliding. The model constrains the glacier surface based on the 

underlying topography as well as user-defined terminal limits, center flowlines, and basal shear stress. 

The GlaRe model assumes that the reconstructed glacier is in equilibrium with climate and that the 

present-day topography represents the glacial basal topography.  

I used a 25.5 m/pixel SRTM digital elevation model as the underlying topography of the glacial 

model. The flowlines were input manually based on visual inspection of the valley center. For the Bayan 

reconstruction, the Bayan-II moraine was used as the target terminal moraine because it corresponds to 

the LLGM (see Results section below). I used the outermost moraine, Potanin-I as the terminal limit for 

the Little Ice Age reconstruction. When reconstructing the Little Ice Age paleo-ice surface, I subtracted 

the volume of the modern Potanin Glacier using the ice-subtraction tool in GlaRe because the modern ice 

significantly distorts the underlying topography. The basal shear stress was tuned to make the glacier 

surface fit with the glacial landforms and 10Be chronology. The basal shear stress for the Bayan 

reconstruction was 25 kPa in the low-angle terminal area, 50 kPa mid-valley, and 85 up-valley in the 

steep, mountainous region. The Little Ice Age reconstruction has a basal shear stress value of 50 kPa. 

Glacial surfaces were interpolated using the inverse-distance weighting method. 

The equilibrium line altitude (ELA) is the altitude on the glacier where net accumulation equals 

net ablation at the end of the melt season. Integrated over many years, the location of the ELA is dictated 

by climate and topography (Benn and Evans, 2010). The paleo-ELAs were estimated using another 

ArcGIS toolbox created by Pellitero et al. (2015). I used the accumulation-area ratio (AAR) method for 

determining the ELA because it is the most commonly used technique for ELA estimation (e.g. Porter, 

2001; Benn and Ballantyne, 2005). I chose an AAR value of 0.6 ± 0.5 because these are typical values for 
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valley glaciers (Bakke and Nesje, 2011). Also, an AAR value of 0.6 ± 0.5 is with the range of the AAR 

with of the modern Potanin Glacier (Konya et al., 2013). The ELA equates to the snowline at the end of 

the ablation season (Benn and Evans, 2010), and from here on the ELA will be referred to as the 

“snowline”. 
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CHAPTER 4 

GLACIAL GEOMORPHOLOGY 

Surface morphology reveals that during glacial periods, multiple outlet glaciers flowed from an 

icefield centered on the Tavan Bogd massif. One of the outlet glaciers flowed into the Tsagaan Gol-

Potanin Glacier valley, an eastward-trending U-shaped valley (Figure 2.2). The valley is about 300-700 m 

lower than the surrounding plateau. At the head of the valley lies the Potanin Glacier next to the Little Ice 

Age moraines. About 50 km down-valley from the Potanin Glacier is a suite of moraines located close to 

the mountain, Bayan Uul. Another major tributary from the icefield is located about 40 km to the south 

with terminal and lateral moraines bordering the lakes, Khurgan and Khoton Nuur. A contemporaneous 

study of the glacial history of the Khoton Nurr valley is being carried out by Strand et al. (in prep.) 

 I mapped and described three study areas within the valley, the Bayan moraine complex, the Holy 

Mountain region, and the Potanin Glacier moraine complex (Figure 2.2). Below I describe the glacial 

geomorphology of each study area in detail. 

 

4.1. Bayan moraine complex 

 A suite of moraines is located about 50 km down-valley of the present-day Potanin Glacier 

terminus near the mountain, Bayal Uul (Figures 4.1-2). A large composite constructional moraine belt, 

Bayan-I, marks the outermost preserved limit of glaciation in the valley (Figure 4.3). This moraine ridge 

rises about 40 m above the ice-distal outwash plain and 10 m above the moraine on the ice-proximal side. 

Graded to the Bayan-I moraine complex is a well-developed outwash plain that extends 30 km down-

valley. The outwash is composed of rounded clasts, ranging from pebble to boulder and the lithologies are 

dominated by granitoids, with few quartzites and metavolcanics. Terraces and boulder bars are preserved 

on the outwash plain. A patch of ground moraine is located outboard of the Bayan-I ridge and projects 

above the outwash plain. The ground moraine shows no signs of fluvial reworking and features embedded 

granitoid boulders. 
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Figure 4.1. Drone imagery of Bayan moraine complex. (A) Orthomosaic and (B) digital elevation model 

of Bayan moraine complex, with 33.3 cm/pi resolution.
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Figure 4.2. Glacial-geomorphic map of Bayan moraine complex, Area 1 in Figure 2.2.
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Inboard of Bayan-I, there are many small, discontinuous moraine ridges that range in height from 

1-3 m. These landforms are subtle and were difficult to map at ground level in the field. Bayan-II is the 

next continuous moraine inboard of Bayan-I and shares a similar composition to Bayan-I. Outboard of the 

moraine there is a narrow (~100 m) outwash plain that is smooth and graded to Bayan-II. Inboard of 

Bayan-II, there are several small discontinuous moraines and hummocky terrain that grades into ground 

moraine.  

 The entire sequence is cut by the Tsagaan Gol (White River in Mongolian). The river drains the 

glaciers and snowfields of Tavan Bogd and has suspended silt or “glacial flour”. The river is braided and 

has several abandoned floodplains. Colluvium from the steep hillsides both cross-cuts and is cross-cut by 

the river, indicating that they coevolved.  

 

Figure 4.3. Ground photograph Bayan moraine complex. Photograph was taken from the outboard 

outwash plain, by Aaron Putnam. 

 

4.2. Holy Mountain 

 Holy Mountain (Shiveet Khairkhan Uul in Mongolian) is a partially ice-molded bedrock hill 

located about 35 km west of the Bayan moraine complex (Figures 4.4-5). The mountain is a UNESCO 

World Heritage site because early peoples used the glacially-polished bedrock as a canvas for petroglyphs 

(Jacobson-Tepfer, 2013). The mountain rises 800 m above the valley floor to a maximum elevation of 

3200 m a.s.l.. I identified granitoid erratics on the metasedimentary bedrock at least as high as 2966 m 

a.s.l.. The mountain has a characteristic rôche moutonnée shape with a low-angled stoss side and a steep 

leeward side. To the west of Holy Mountain, there is a ridge that marks a flow divide where ice diverged 

around the mountain. North of the flow divide, the bottom of the valley features extensive ground 
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moraine littered with large granitoid boulders. On the southern side of the valley, there are three subtle 

(less than 10-m relief) benches (Figure 4.5).  

 

Figure 4.4. Glacial-geomorphic map of Holy Mountain region. Holy Mountain is Area 2 on Figure 2.2. 

 

Figure 4.5. Panoramic view of Holy Mountain and Tsagaan Gol. Photograph by Mariah Radue. 



 

25 

 

4.3. Potanin Glacier moraine complex and outboard landscape 

The Potanin Glacier is bordered by a well-developed suite of lateral and terminal moraines 

presumably formed during the culmination of multiple Little Ice Age advances (Figures 4.6-8). The 

terminal Potanin moraine is 2 km east of the modern glacial terminus. The moraine ridges extend 

approximately 40-60 m above the ice surface. There are two prominent moraine ridges in the moraine 

complex, here referred to as Potanin-I and Potanin-II. Although these ridges were sampled for surface-

exposure dating, the samples were not processed for this study. Potanin-II is about 20 m above the 

modern ice surface and 30 m below the Potanin-I ridge crest. There are also smaller, <10-m relief 

discontinuous ridges within the moraine complex. 

The Potanin moraines are composed predominately of light-gray granitoid lithologies with a few 

meta-sedimentary rocks. Clast sizes range from ~2 m-diameter boulders to sand. The moraines are poorly 

consolidated, with approximately 20° slopes dipping toward the glacier. Small, alpine vegetation sparsely 

covers the moraine and red-colored lichen covers the sides of boulders. Small lakes dot the moraines and 

have a light blue color. The moraines in the terminal area rise about 70 m above the outboard bedrock, 

with three distinct discontinuous ridges. The terminal moraines are incised by a meltwater stream, the 

headwaters of the Tsagaan Gol. The meltwater stream enters a shallow bedrock canyon about 500 m in 

front of the terminal moraines, incising bedrock composed of fine-grained volcanic lithologies. 

 The outermost Potanin moraine ridge abuts a vegetated landscape characterized by thin ground 

moraine mantling glacially-molded granitic bedrock. The ground moraine is comprised of predominately 

larger clasts ranging from cobble to boulder, and supports generally thin soil  (<1 m) and a subalpine 

steppe vegetation assemblages, including Cyperaceae, Kobresia, Artemisia, and Chenopodiaceae 

(Unkelbach et al., 2017). Exposed bedrock is frost-shattered in bands about 1-m wide and 100-m long. 

The landscape contains three distinct glacially-carved benches, 0.2-1.2 km outboard of the Potanin-I 

moraine ridge.  
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Figure 4.6. Drone imagery of Potanin moraines. (A) Orthomosaic and (B) digital elevation model of 

Potanin moraine complex, with 34.4cm/ pi resolution.
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Figure 4.7. Glacial-geomorphic map of Potanin moraines and the outboard landscape. The area is labeled “3” in Figure 2.2. 



 

28 

 

 

 
 

Figure 4.8. Ground photograph of Potanin Glacier and moraines. Photograph by Peter Strand.  
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CHAPTER 5 

RESULTS 

 I generated 41 10Be surface-exposure ages out of 76 samples collected in the field (see Appendix 

C for full sample catalog). I obtained 19 exposure ages from the Bayan complex, 7 from Holy Mountain, 

and 15 from the recessional landscape outboard of the Potanin moraine complex.  Results of 10Be analyses 

and procedural blanks are given in Table 5.1 and 5.2, respectively. Calculated sample ages are in Table 

5.3. For ages obtained from a moraine, I calculated the mean age and the standard error of the mean, 

using the production rate error of 2.1% associated with the New Zealand production rate (Putnam et al., 

2010b). For ages of glacial erratics on ground moraine or bedrock, I summarize the ages as a range. The 

results of landform statistics are found in Table 5.4. Calculated ages are plotted on glacial-geomorphic 

maps in Figure 5.1. The probability density functions, hereby called ‘camelplots’, are shown in Figure 

5.2.   

Ages marked with a single asterisk (*) are considered outliers and are not included in statistical 

analysis or age ranges. Outliers were identified in two ways. First, if the surface-exposure age did not 

agree morphologically with other samples from a sequence of glacial landforms, they are considered 

outliers. Second, I used Chauvenet’s Criterion to test for statistical outliers at the 95 % confidence of 

samples on one landform (Bevington and Robinson, 1992; Dunai, 2010).  

  

5.1. Bayan moraine complex 

 I obtained 19 ages from the Bayan moraine complex from the 28 samples collected in this region. 

Samples are located in four regions: outboard of the Bayan moraines, moraine ridges Bayan-I and II, and 

inboard of the Bayan moraines. The three analyzed samples from the glacial erratics outboard of Bayan-I 

have exposure ages of 196.1 ± 1.7 ka, 162.5 ± 1.5 ka, and 132.9 ± 1.2 ka. Seven exposure ages 

determined from Bayan-I are scattered and range from 9.28 ± 0.19 ka to 56.83 ± 0.71 ka. Five samples 

were identified as outliers (TGP-16-51, TGP-16-52, TGP-16-53, TGP-16-56, TGP-16-57)   
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Table 5.1. Results from 10Be sample analysis. In [10Be] calculations, an erosion rate of 0 and a density of 2.7 g/cm2 are assumed. The standard, 

07KNSTD3110 was used for all samples. 

LLNL 

ID 

Sample 

Name 

Latitude 

(DD) 

Longitude 

(DD) 

Elevation 

(m a.s.l.) 

Sample 

Thickness 

(cm) 

Shielding 

Correction 

Quartz 

Weight 

(g) 

Carrier 

Added 

(g) 

Carrier 

[9Be] 

(ppm) 

10Be/9Be ± 1σ  

(10-14) 

[10Be]  ± 1σ  

(104 atoms/g) 

Average 
9Be 

current 

(µA) 

(runs) 

BE43012 TGP-16-01 49.095195 88.145080 2404.6 2.226 0.99245 5.3533 0.20296 1027 22.886 ± 0.429 59.34 ± 1.11 19.3 (3) 

BE43013 TGP-16-02 49.095293 88.147502 2420.4 1.568 0.99335 5.084 0.20233 1027 15.290 ± 0.287 41.54 ± 0.78 28.4 (3) 

BE43014 TGP-16-03 49.087360 88.155554 2673.0 1.161 0.98701 5.2688 0.20184 1027 21.840 ± 0.410 57.2 ± 1.08 25.3 (4) 

BE43015 TGP-16-07 49.094106 88.173021 2591.4 1.585 0.98783 5.2186 0.20261 1027 17.800 ± 0.372 47.22 ± 0.99 27.3 (4) 

BE43016 TGP-16-08 49.094879 88.173475 2608.1 1.335 0.99392 5.0789 0.20184 1027 18.966 ± 0.340 51.51 ± 0.92 25.5 (4) 

BE43017 TGP-16-09 49.094944 88.173733 2613.0 2.174 0.99214 5.0716 0.20289 1027 17.663 ± 0.287 48.28 ± 0.79 28.5 (4) 

BE43018 TGP-16-10 49.093854 88.182758 2797.1 1.672 0.99880 5.0047 0.20263 1027 46.962 ± 0.762 130.2 ± 2.1 24.2 (3) 

BE43713 TGP-16-12 49.138686 87.963735 3008.4 1.841 0.99193 10.3404 0.59663 309.6 51.440 ± 0.956 61.29 ± 1.14 19.1 (3) 

BE43714 TGP-16-13 49.137884 87.964663 3002.8 1.581 0.99215 10.1606 0.6524 309.6 32.683 ± 0.593 43.30 ± 0.79 17.6 (4) 

BE43715 TGP-16-14 49.136582 87.969812 3013.5 2.216 0.99817 10.0056 0.65112 309.6 47.490 ± 1.065 63.81 ± 1.43 20.9 (4) 

BE42291 TGP-16-16 49.137361 87.971589 3034.8 1.936 0.99338 15.4427 0.18164 1027 89.979 ± 1.347 72.56 ± 1.09 25.3 (4) 

BE42292 TGP-16-18 49.137102 87.971777 3031.9 1.718 0.99722 15.0073 0.1809 1027 77.754 ± 0.983 64.25 ± 0.81 22.8 (5) 

BE42293 TGP-16-19 49.137217 87.972227 3034.7 2.661 0.99802 15.2598 0.18118 1027 86.803 ± 1.302 70.66 ± 1.06 24.7 (4) 

BE42294 TGP-16-30 49.136505 87.972969 3028.1 1.271 0.99880 15.0523 0.18183 1027 83.186 ± 0.996 68.89 ± 0.83 22.2 (5) 

BE42295 TGP-16-31 49.135759 87.974540 3026.1 1.941 0.99897 15.0811 0.1812 1027 93.057 ± 1.227 76.66 ± 1.01 23.6 (5) 

BE42296 TGP-16-32 49.135184 87.975229 3022.7 1.238 0.99888 15.0724 0.18158 1027 86.355 ± 1.372 71.32 ± 1.13 23.5 (5) 

BE43716 TGP-16-35 49.133516 87.977797 3014.4 2.131 0.99939 10.293 0.24574 979 44.125 ± 0.823 68.14 ± 1.27 21.4 (3) 

BE43717 TGP-16-36 49.133514 87.983721 3047.2 2.119 0.99798 10.3903 0.2447 979 217.985 ± 4.421 335.0 ± 6.8 19.9 (4) 

BE43718 TGP-16-37 49.132630 87.984612 3043.8 1.733 0.99940 11.1479 0.24473 979 275.150 ± 3.328 394.4 ± 4.8 21.2 (3) 

BE43719 TGP-16-38 49.133685 87.985873 3046.8 2.161 0.99538 10.1048 0.2448 979 97.344 ± 1.323 153.4 ± 2.09 20.8 (3) 

BE43720 TGP-16-39 49.130688 87.985177 3039.5 2.486 0.99765 10.3598 0.24498 979 62.682 ± 1.127 96.19 ± 1.73 21.2 (3) 

BE43721 TGP-16-40 49.130587 87.984755 3035.8 1.726 0.99865 9.2553 0.2455 979 41.965 ± 0.782 71.95 ± 1.34 23.5 (3) 
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Table 5.1. continued. 

LLNL 

ID 

Sample 

Name 

Latitude 

(DD) 

Longitude 

(DD) 

Elevation 

(m a.s.l.) 

Sample 

Thickness 

(cm) 

Shielding 

Correction 

Quartz 

Weight 

(g) 

Carrier 

Added 

(g) 

Carrier 

[9Be] 

(ppm) 

10Be/9Be ± 1σ  

(10-14) 

[10Be]  ± 1σ  

(104 atoms/g) 

Average 
9Be 

current 

(µA) 

(runs) 

BE43002 TGP-16-51 49.059642 88.635407 2210.0 2.23 0.99629 10.0211 0.18327 1027 30.379 ± 0.699 36.55 ± 0.85 24.6 (4) 

BE43722 TGP-16-52 49.057207 88.633698 2201.8 1.563 0.99265 12.4225 0.24404 979 44.091 ± 1.016 56.02 ± 1.29 19 (4) 

BE44023 TGP-16-53 49.054660 88.627317 2208.1 1.296 0.99616 15.7383 1.00305 203 65.334 ± 1.019 56.35 ± 0.88 20 (4) 

BE43004 TGP-16-56 49.062771 88.652138 2180.1 2.403 0.99935 10.0371 0.18284 1027 17.736 ± 0.346 20.59 ± 0.41 25.6 (3) 

BE43005 TGP-16-57 49.064419 88.653214 2172.2 1.877 0.99696 10.8032 0.18326 1027 26.275 ± 0.521 29.12 ± 0.58 18.2 (3) 

BE42297 TGP-16-59 49.065663 88.652671 2175.3 2.687 0.99843 15.2096 0.18159 1027 153.409 ± 1.887 125.6 ± 1.55 23.4 (4) 

BE43006 TGP-16-60 49.072387 88.656118 2161.7 2.024 0.99901 10.0204 0.18237 1027 91.985 ± 1.154 113.3 ± 1.42 25.7 (4) 

BE44024 TGP-16-61 49.059996 88.653505 2142.7 1.14 0.99968 15.8574 1.00264 203 489.543 ± 4.020 419.7 ± 3.45 18.9 (6) 

BE44025 TGP-16-62 49.058525 88.655264 2143.4 1.705 0.99964 15.5296 1.00469 203 327.532 ± 2.932 287.3 ± 2.57 19.7 (3) 

BE44026 TGP-16-65 49.058356 88.658480 2134.5 1.501 0.99960 11.6454 1.00414 203 296.940 ± 2.655 347.1 ± 3.1 19.5 (3) 

BE43008 TGP-16-66 49.064390 88.615017 2227.7 1.424 0.99983 10.0422 0.18265 1027 45.302 ± 0.964 54.97 ± 1.17 25.7 (4) 

BE44027 TGP-16-67 49.067667 88.623632 2218.1 2.713 0.99024 15.2689 1.00502 203 158.487 ± 1.766 141.3 ± 1.58 18.7 (3) 

BE43009 TGP-16-68 49.074052 88.629759 2193.8 1.736 0.99964 10.0095 0.18302 1027 44.806 ± 0.627 54.64 ± 0.77 24.1 (4) 

BE44028 TGP-16-69 49.075702 88.629416 2194.3 3.1 0.99523 15.6223 1.00437 203 57.499 ± 1.069 50.01 ± 0.93 17.8 (3) 

BE43010 TGP-16-70 49.067381 88.622170 2222.3 1.93 0.99788 10.2222 0.18302 1027 55.110 ± 0.769 66.16 ± 0.93 25 (4) 

BE43723 TGP-16-71 49.066025 88.620041 2220.0 1.159 0.99015 11.0333 0.24395 979 47.304 ± 0.873 67.70 ± 1.25 21.3 (3) 

BE44029 TGP-16-73 49.067227 88.604645 2227.9 2.387 0.99944 6.9589 1.00401 203 25.156 ± 0.469 48.93 ± 0.91 19 (3) 

BE44030 TGP-16-74 49.067949 88.598131 2252.9 2.526 0.99858 16.6979 1.00569 203 56.441 ± 1.047 45.99 ± 0.85 17.4 (3) 

BE44031 TGP-16-75 49.062938 88.611448 2219.5 1.546 0.97948 17.0153 0.99969 203 63.323 ± 1.175 50.34 ± 0.94 21.1 (6) 
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Table 5.2. Data from procedural blanks. The standard, 07KNSTD3110 was used for every sample.  

CAMS 

Laboratory No. 
Sample ID 

Carrier 

Added (g) 

Carrier 

[9Be] (ppm) 

10Be/9Be ± 1σ  

(10-14) 

10Be  ± 1σ  

(103 atoms) 

Average 9Be 

current (µA) 

(runs) 

BE42298 B32 0.18138 1027 0.086 ± 0.033 10.7 ± 4.1 8.6 (3) 

BE43007 B38 0.18290 1027 1.263 ± 0.066 158.5 ± 8.3 24 (2) 

BE43019 B40 0.20215 1027 0.079 ± 0.016 11.0 ± 2.2 26.5 (2) 

BE43724 B52a 0.65128 309.6 0.091 ± 0.021 12.2 ± 2.8 16.9 (2) 

BE43725 B52b 0.24451 979 0.502 ± 0.051 80.3 ± 8.2 16.1 (2) 

BE44032 B58 1.00264 203 0.155 ± 0.024 21.1 ± 3.3 25.7 (2) 

 

because they are morphologically inconsistent with inboard moraine ages. The average of the two 

remaining samples yields a tentative moraine age of 54.1 ± 0.39 ka. Six ages of Bayan-II moraine 

complex exhibit good internal consistency, with one sample identified as an outlier (TGP-16-67). 

Excluding the outlier, the five ages form two populations with arithmetic mean ages of 23.24 ± 0.50 ka 

and 28.08 ±0.58 ka. Three glacial erratics inboard of Bayan-II that bracket small, discontinuous moraine 

ridges yielded exposure ages of 22.11 ± 0.41 ka, 21.10 ± 0.40 ka, and 19.54 ± 0.36 ka. These ages all 

occur in morphologic order. 

 

5.2. Holy Mountain 

 Of the ten samples collected at Holy Mountain, seven samples were analyzed for 10Be surface-

exposure ages. Samples were collected from granitic or metasandstone erratics resting on or embedded 

within ground moraine. The boulders ranged in elevation from 2404 to 2797 m a.s.l., with an elevation 

range of 393 m. The ages are presented in Table 5.3 and they are plotted as an age vs. elevation plot in 

Figure 5.3. Exposure ages range from 15.60 ± 0.31 ka to 37.55 ± 0.76 ka, with one morphostratigraphic 

outlier of 22.67 ± 0.43 ka (TGP-16-01).  The age-elevation plot shows that 253 m of ice-surface lowering 

occurred between 18.23 ± 0.34 ka and 15.69 ± 0.34 ka.  
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Table 5.3. Calculated sample ages. Ages were calculated using the Stone scaling scheme with a 

correction for magnetic variation (Lm) and with no magnetic correction (St). Outliers marked with (*). 

Sample ID 

Lm age (ka)  

NZ 

production 

rate 

St age (ka)  

NZ 

production 

rate  

Sample ID 

Lm age (ka)  

NZ 

production 

rate 

St age (ka)  

NZ 

production 

rate 

Outboard Bayan-I erratics    Bedrock knob erratics   

TGP-16-61 196.1 ± 1.7 196.6 ± 1.7  TGP-16-36 84.04 ± 1.74 83.48 ± 1.73 

TGP-16-62 132.9 ± 1.2 132.9 ± 1.2  TGP-16-37 98.82 ± 1.23 98.43 ± 1.22 

TGP-16-65 162.5 ± 1.5 162.6 ± 1.5  TGP-16-38 38.17 ± 0.52 37.92 ± 0.52 

Bayan-I moraine    Upper Potanin outboard erratics 

TGP-16-51* 16.05 ± 0.37 15.76 ± 0.37  TGP-16-39 24.04 ± 0.44 23.8 ± 0.43 

TGP-16-52* 24.57 ± 0.57 24.32 ± 0.57  TGP-16-40 17.98 ± 0.34 17.69 ± 0.33 

TGP-16-53* 24.47 ± 0.38 24.22 ± 0.38  Middle Potanin outboard erratics 

TGP-16-56* 9.28 ± 0.19 9.04 ± 0.18  TGP-16-14 16.26 ± 0.37 15.97 ± 0.36 

TGP-16-57* 13.13 ± 0.26 12.85 ± 0.26  TGP-16-16 18.27 ± 0.28 17.98 ± 0.27 

TGP-16-59 56.83 ± 0.71 56.18 ± 0.70  TGP-16-18 16.14 ± 0.21 15.85 ± 0.20 

TGP-16-60 51.27 ± 0.65 50.81 ± 0.65  TGP-16-19 17.81 ± 0.27 17.52 ± 0.26 

Bayan-II moraine    TGP-16-30 17.25 ± 0.21 16.96 ± 0.20 

TGP-16-66 23.48 ± 0.50 23.22 ± 0.50  TGP-16-31 19.28 ± 0.26 19.00 ± 0.25 

TGP-16-67* 62.55 ± 0.71 61.91 ± 0.70  TGP-16-32 17.90 ± 0.29 17.61 ± 0.28 

TGP-16-68 23.97 ± 0.34 23.71 ± 0.34  TGP-16-35 17.31 ± 0.33 17.02 ± 0.32 

TGP-16-69 22.27 ± 0.42 22.00 ± 0.41  Lower Potanin outboard erratics 

TGP-16-70 28.49 ± 0.40 28.26 ± 0.40  TGP-16-12 15.73 ± 0.29 15.44 ± 0.29 

TGP-16-71 27.67 ± 0.52 27.43 ± 0.51  TGP-16-13 11.18 ± 0.20 10.91 ± 0.20 

Bayan inboard erratics       

TGP-16-73 21.10 ± 0.40 20.82 ± 0.39     

TGP-16-74 19.54 ± 0.36 19.25 ± 0.36     

TGP-16-75 22.11 ± 0.41 21.85 ± 0.41     

Holy Mountain erratics       

TGP-16-01* 22.67 ± 0.43 22.41 ± 0.42     

TGP-16-02 15.69 ± 0.30 15.40 ± 0.29     

TGP-16-03 18.23 ± 0.34 17.94 ± 0.34     

TGP-16-07 15.95 ± 0.34 15.66 ± 0.33     

TGP-16-08 17.06 ± 0.31 16.77 ± 0.30     

TGP-16-09 16.08 ± 0.26 15.79 ± 0.26     

TGP-16-10 37.78 ± 0.62 37.53 ± 0.62     
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Table 5.4. Statistics of landform ages. Based on the nature of the landform, different statistics are used to represent the depositional age. Bold ages 

represent the statistic used for interpretations.  

Sample ID 

Count 

(samples 

excluded) 

Age range 

(ka) 

Mean age 

(ka) 

Standard 

error of 

the mean 

(ka) 

External 

uncert. 

(ka) 

Error-

weighted 

mean 

(ka) 

Error-

weighted 

uncert. 

(ka) 

1σ 

scatter 

(ka) 

Peak 

age 

(ka) 

Median 

age (ka) 

Interpreted 

landform 

age (ka) 

Outboard Bayan-I erratics 3 (0) 133-196  163.8 18.30 18.6 157.1 0.80 18.0 132.9 162.5 133-196  

Bayan-I moraine 2 (5) 51.3 -56.8 54.05 2.78 2.98 53.83 0.48 2.77 51.27 54.05 54.05 ± 2.78 

Bayan-II moraine 5 (1) 22.3-28.5 25.18 1.22 1.32 25.04 0.19 1.20 23.87 23.97 22.3-28.5 

Bayan-II (28 ka) 2 27.7-28.5 28.08 0.41 0.70 28.18 0.32 0.40 28.35 28.08 28.08 ± 0.41 

Bayan-II (23 ka) 3 22.3-24.0 23.24 0.50 0.69 23.33 0.23 0.52 23.88 23.48 23.24 ± 0.50 

Bayan inboard erratics 3 (0) 19.5-22.1  20.92 0.75 0.86 20.80 0.23 0.76 19.54 21.10 19.5-22.1  

Holy Mountain erratics 6 (1) 15.7-37.8 20.13 3.55 3.57 17.49 0.13 2.03 15.95 16.57 15.7-37.8 

Bedrock knob erratics 3 (0) 98.8-38.2 73.68 18.26 18.32 50.14 0.46 16.35 38.17 84.04 98.8-38.2 

Upper outboard Potanin erratics 2 (0) 24.0-18.0 21.01 3.03 3.06 20.25 0.27 2.93 17.98 21.01 24.0-18.0 

Middle outboard Potanin erratics 8 (0) 19.3-16.1 17.53 0.37 0.51 17.48 0.09 0.38 17.88 17.56 19.3-16.1 

Middle erratics (18 ka) 5 17.2-18.3 17.71 0.19 0.40 17.66 0.12 0.20 17.88 17.81 17.71 ± 0.19 

Middle erratics (16 ka) 2 16.1-16.3 16.20 0.06 0.33 16.17 0.18 0.05 16.16 16.20 16.20 ± 0.06 

Lower Potanin outboard erratics 2 (0) 11.2-15.7 13.46 2.27 2.29 12.66 0.17 2.13 11.18 13.46 11.2-15.7 
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Figure 5.1. 10Be chronology of the Tsagaan Gol-Potanin Glacier valley. The chronology is annotated on glacial geomorphic maps of (A) Potanin 

moraines and outboard landscape, (B) Holy Mountain, and (C) the Bayan moraine complex. 10Be surface-exposure ages are calculated using the 

Putnam et al. (2010) production rate with the Lm scaling protocol. 
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Figure 5.2. Camel plots of selected landforms. Production-rate uncertainty of 2.1% used in error calculations and outliers are represented by 

dotted lines. See Figures 4.2 and 4.7 for locations of landforms.
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Figure 5.3. Age vs. elevation plot of samples from Holy Mountain. Ages plotted with 1 σ error. Outlier is 

in yellow. 

 

 

5.3. Boulders outboard of Potanin moraines 

 Outboard of the Potanin moraines, there are numerous glacial erratics on a hillside sloping toward 

the Potanin left-lateral moraines. Of the 21 samples collected, I obtained surface exposure ages of 16. The 

boulders range in elevation from 3,002 to 3,047 m a.s.l., spanning 45 m. I have clustered the boulders 

based on location into three groups: lower, middle, and upper erratics. Above the terraces, boulders were 

collected on the top of the ridge on a flow divide around a series of bedrock knobs.  

The lower Potanin erratics group is comprised of two samples that have exposure ages of 15.73 

ka ± 0.29 ka and 11.18 ± 0.20 ka. Nine boulders from the middle erratics range in age from 16.26 ka ± 

0.37 ka to 19.62 ± 0.26 ka. Excluding the 19.62 ± 0.26 ka age, the surface-exposure ages of the middle 

erratics create two populations, at 16.20 ± 0.06 ka and 17.71 ± 0.19 ka (Figure 5.2E). Two samples were 
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dated from the upper region and yielded ages of 24.04 ± 0.44 ka and 17.98 ± 0.34 ka. At the bedrock 

knob, the ages are older, dating to 37.78 ± 0.62 ka, 84.04 ± 1.74 ka, and 98.82 ± 1.23 ka.   
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CHAPTER 6 

SNOWLINE MODELING 

6.1. GlaRe reconstructions 

Glacier and snowline reconstruction results are shown in Figures 6.1-2. The Bayan moraine 

complex reconstruction corresponds with the LLGM, based on the surface-exposure chronology. The 

Potanin region reconstruction corresponds with the Little Ice Age, based on historical photography 

(Figure 2.3). The LLGM reconstruction has an area of 310 km2 and it has a flowline length of 65 km. The 

maximum ice thickness is 435 m. The snowline, calculated using the AAR method with inputs of 0.60 ± 

0.5 yielded a value of 2680 ± 50 m a.s.l.. The Little Ice Age reconstruction yielded a glacier surface area 

that is 41 km2 and a flowline length of 12 km. The maximum ice thickness is 444 m and the snowline 

from glacier reconstructions for the Little Ice Age was 3470 ± 50 m a.s.l..  

To verify the results of the GlaRe toolbox, I used both the surface-exposure chronology, glacial 

landforms, and modern glaciological measurements. The ice thickness of Bayan reconstruction was 

calibrated to agree with the surface-exposure chronology and moraines, giving confidence that the ice 

surface is accurate. The modeled ice inundated samples with exposure ages younger than the Bayan-II 

terminal moraine and regions with older boulders are ice-free. For the Little Ice Age reconstruction, the 

surface fits within the margins of the Potanin moraines. Also in support of the model’s accuracy, the 

modern snowline of the Potanin Glacier ranged from 3541 to 3714 m a.s.l. from 2005 to 2009 CE and the 

ELA0 is 3493 m a.s.l, which is above the modeled Little Ice Age snowline (Konya et al. 2013).  However, 

the ice surface area somewhat disagrees with modern glaciological measurements. The Little Ice Age 

reconstruction yielded a surface area of 41 km2, which is 2 km2 less than estimates of the modern Potanin 

Glacier by Kadota and Gambo (2007). Perhaps the model underestimated the extent of the glacier near the 

headwall. In addition, the Little Ice Age reconstruction ice surface has a 100-m step change, the result of 

an over-deepening formed by the modern-ice subtraction tool.    
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Figure 6.1. Glacier reconstruction and snowline results of Local Last Glacial Maximum. The red box is an inset of the Little Ice Age area shown 

in Figure 6.2. The black lines represent snowlines calculated using an AAR of 0.6. The blue line represents the elevation of the snowline located 

on the surrounding topography. 
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Figure 6.2. Glacier reconstruction and snowline results of Little Ice Age. The black lines represent 

snowlines calculated using an AAR of 0.6. The blue line represents the elevation of the snowline located 

on the surrounding topography. 

 

6.2. Sensitivity analysis 

 In the GlaRe model, basal shear stress is the main variable that will affect the resulting glacier 

surface, and therefore the snowline. When the basal shear stress increases, the glacier becomes “stickier” 

and thickens. The thickness of the glacier will affect the calculated snowline because if the glacier surface 

elevation is higher, the snowline elevation will also increase. In turn, this affects paleoclimate 

interpretations because a higher snowline suggests warmer climatic conditions. Due to the importance of 

the basal shear stress to paleoclimate interpretations, I performed a sensitivity test of the basal shear stress 

on the elevation of the snowline for the LLGM configuration of the Tsagaan Gol-Potanin Glacier valley 

and a cirque in the Italian Alps named the Ferrere valley (44°20'7.08'' N, 6°56'16.44'' E). I chose the 

Ferrere valley because the valley is a similar size to the Potanin Little Ice Age system but there is no 
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modern glacier in the valley to complicate model assumptions. The data from the Ferrere valley comes 

from tutorials in the GlaRe supplementary material (https://www.abdn.ac.uk/geosciences/departments 

/geography-environment/outcomes-442.php).   

The valleys are different in two key ways. First, the Tsagaan Gol-Potanin Glacier valley is larger, 

~650 km2 versus the 4.6 km2 of the Ferrere valley. Second, the Tsagaan Gol-Potanin Glacier is in a low-

angle valley. The average slope from the headwall to the terminal moraine is 1.1 degrees. In the Ferrere 

valley, the average slope is 13.7 degrees. 

 
Figure 6.3. Sensitivity analysis of GlaRe model results. The sensitivity of changes in basal shear stress to 

the elevation of snowline was determined in the Tsagaan Gol-Potanin Glacier system (purple) and the 

Ferrere valley in the Italian Alps (green). The snowline was calculated using the AAR method (0.6). The 

linear best fit line and equation are plotted next to the data points. 

 

I iteratively changed the basal shear stress and calculated the associated change in snowline with 

an AAR value of 0.6. The results are in Figure 6.3. I In the Ferrere system, for every 10 kPa increase in 

basal shear stress, there is a 4.4 m rise in snowline. For the Tsagaan Gol-Potanin Glacier system, the 

results changed by an order of magnitude. For every 10 kPa rise in basal shear stress, there is a 43 m rise 

in the snowline. These results show that knowing the basal shear stress is more important for low-angle 
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systems, where an equal thickening will result in a greater change in the vertical direction because of the 

geometry. This test also indicates that if the basal shear stress can be constrained to within 10 kPa, then 

the error of the snowline is about 40 m for a low-angle system. Because I was able to constrain the basal 

shear stress to 10 kPa in the Tsgaan Gol-Potanin Glacier reconstructions, I then can compound the error 

associated with an imprecise basal shear stress value and the possible range of AAR as ± 90 m for the 

LLGM reconstructions and ± 55 m for the Little Ice Age reconstruction.   

 

6.3. Snowline Changes 

I used changes in snowline to compare modern climate with the climate of the LLGM and the 

Little Ice Age. Snowline generally corresponds to the summertime 0°C isotherm in the atmosphere 

(Porter, 1979; Porter, 2001; Mackintosh et al., 2017). I calculated the modern 0°C isotherm from 

meteorological data collected at the Potanin Glacier in 2007-2008 CE by Konya et al. (2010), together 

with an adiabatic lapse rate of 0.0055°C/m (Konya et al. 2013). The average summer (June, July, August) 

temperature during the collection interval is 3.4°C at 3040 m a.s.l.. Therefore, the average-summer 0°C 

isotherm, or snowline, occurs at 3780 m a.s.l.. Comparing the GlaRe results to modern measurements, I 

found that the snowline rose 1100 ± 90 m from the LLGM to modern. This equates to a temperature 

difference of 6.0 ± 0.5°C. The snowline rose 310 ± 55 m from the Little Ice Age to modern, representing 

a 1.7 ± 0.3°C increase in temperature. It is also useful to measure the retreat from the LLGM  

to the Little Ice Age, two periods of moraine formation. Between the LLGM and Little Ice Age, snowline 

rose 790 ± 90 m, equating to a temperature increase of 4.3 ± 0.5°C 

 

Table 6.1. Glacier reconstruction results for the LLGM and Little Ice Age.  

Reconstruction Area (km2) 
Flowline 

length (km) 
Maximum 

thickness (m) 
ELA  

(m a.s.l.) 
ΔELA from 

modern (m) 
ΔT from modern 

(°C) 

LLGM 310 65 435 2680 ± 90 1100 ± 90  6.0 ± 0.5 

Little Ice Age 41 12 444 3470 ± 55 310 ± 55 1.7 ± 0.3 
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CHAPTER 7 

DISCUSSION  

7.1. Glacial chronology 

 Glacial-geomorphic mapping and 10Be surface-exposure dating show that Tsagaan Gol-Potanin 

Glacier valley stood at maximum positions within the Bayan moraine complex around 130-190 ka, ~54 

ka, and 28-19.5 ka. These periods of extensive ice relate to MIS 6, 3, 2 (Figure 7.1). The boulder ages 

show that the length of the glacier decreased from MIS 6 to MIS 2. In addition, glacial erratics were 

deposited at locations that suggest thicker ice during MIS 5 and MIS 3 than during the LLGM. 

Progressive thinning of the glacier could be the result of warmer climate conditions in MIS 2 than MIS 6, 

or the result of evolving subglacial topography (Kaplan et al., 2009; Anderson et al., 2012; McKinnon et 

al., 2012).  

 

Figure 7.1. Boulder deposition in the Tsagaan Gol-Potanin Glacier valley compared to local insolation 

(orange) and relative sea level (blue). Sea level data from Spratt and Lisiecki (2016). Boulder ages are 

plotted in terms of their relative probability. Green represents glacial erratics, interpreted to mean stagnant 

or retreating ice and blue indicates boulders on a moraine, representing the culmination of an advance.  

 

 The oldest moraine deposited in the valley is moraine ridge Bayan-I. The boulders on Bayan-I 

possibly correspond to moraine formation during early MIS 3, but these interpretations are based on only 

two exposure ages.  The remaining five ages from that moraine complex are classified as outliers because 

they do not fit morphologically with Bayan-II. I interpret the age scatter to indicate boulder exhumation 
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on Bayan-I, which is supported by observations of varying amounts of rock varnish on the boulders (see 

Appendix C). Possibly, all the boulders on Bayan-I were exhumed, even the samples not identified as 

outliers, and the 54.05 ± 2.78 ka moraine age is a minimum value for moraine deposition. Bayan-II is a 

composite moraine belt that was formed during two episodes of moraine construction at 23.24 ± 0.50 ka 

and 28.08 ± 0.58 ka. Inboard of Bayan-II, there are three exposure ages that bracket small-discontinuous 

moraines. These ages range from 19.54 ± 0.36 ka to 22.11 ± 0.41 ka and mark the last glacier resurgence 

within the Bayan moraine complex. Up-valley of these samples is unstructured ground moraine deposited 

as the glacier margin receded.   

 Exposure ages at Holy Mountain record a history of thinning of the Tsagaan Gol-Potanin paleo-

glacier. An age of 37.78 ± 0.62 ka of the highest boulder indicates that the glacier was more extensive 

during MIS 3 than MIS 2, which is similar to the age distribution at the Bayan moraine complex. From 

18.23 ± 0.34 ka to 15.69 ± 0.30 ka, the glacial erratics at Holy Mountain record 253 m of thinning. 

Sample TGP-16-02 is located on the valley floor, which indicates that the glacier terminus was near the 

base of Holy Mountain by the time of boulder deposition at 15.69 ± 0.30 ka. 

 Deglaciation of the valley is also recorded by glacial erratics outboard of the Potanin moraines. 

All boulders are erratics on bedrock or ground moraine, therefore they are interpreted as representing 

transient ice positions. The middle glacial erratics that are located about 500 m outboard and 100 m above 

the Potanin moraines form a straight line parallel to the modern ice margin. The boulders range in age 

from 16-19 ka, with two populations clustering around 16.20 ± 0.06 ka and 17.71 ± 0.19 ka. These erratic 

boulders indicate that the termination was underway by at least 17.7 ka because the glacier must have 

been retreating to deposit boulders on ground moraine. The glacial erratics outboard of the Potanin 

moraines span a small elevation range in this region, with boulders that date to 99 to 16 ka within 10-20 

meters of each other. The large age range is to be expected because the Tsagaan Gol-Potanin Glacier 

valley is low-angle, meaning that changes in the thickness near the glacier head are minimal.  

 



 

46 

 

7.2. The Last Glacial Maximum and Termination  

 My glacier reconstruction affords a constraint on the climate of central Asia during the global 

LGM,  26.5 to 19.0 ka (Clark et al., 2009; MARGO Project Members, 2009). The 10Be chronology 

indicates that the LLGM in the Tsagaan Gol-Potanin Glacier valley was achieved as early as 28.08 ± 0.41 

ka and sustained until 19.54 ± 0.36 ka (Figure 7.2). My chronology agrees with other studies in western 

Mongolia which found ice advances from 28-19 ka (Lehmkuhl et al., 2011; Rother et al., 2014). The 

chronology also agrees with mountain-glacier records from North America and Europe, where the LGM 

began at about 30 ka (Clark et al., 2009). In addition, there is correspondence with the timing of mountain 

glaciers in New Zealand, where the LLGM moraine deposition occurred at about 27 ka, 22 ka, 20 ka, and 

18 ka (Putnam et al., 2013; Doughty et al., 2015). The contemporaneous advances of mountain glaciers 

indicate that the Tsagaan Gol-Potanin Glacier valley system was tracking a global signal during the last 

ice age.  It is important to note that the Laurentide ice sheet did not reach its maximum position until 26.5 

ka (Clark et al., 2009).  Thus, an ice sheet-albedo mechanism for spreading cooling throughout the planet 

is inconsistent with the pattern of global mountain glacier advance.    

 The post-LLGM samples give clues about the nature of the last termination in two ways: first, 

erratics give limits on glacier length. Sample TGP-16-02, the lowest elevation sample from Holy 

Mountain is located at the bottom of the valley (Figure 7.2). Therefore, when the glacier deposited this 

boulder at 15.69 ± 0.30 ka, the ice must have terminated below the NW face of Holy Mountain. Second, 

erratics give us a minimum-limiting value for snowline because they must be deposited in ablation zones, 

below the snowline, where ice flow is divergent. The middle outboard Potanin erratics bear the mark of 

glacial erosion, with polish and striations preserved, indicating that they traveled through the glacier and 

were deposited in the ablation zone, below the snowline. Therefore, it is possible to take the highest 

elevation boulder at 3,334 m a.s.l. as a minimum-limiting elevation of the snowline at 17.71 ± 0.19 ka.  
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Figure 7.2. Schematic diagram of the glacial history of Tsagaan Gol-Potanin Glacier valley. At 23 ka, the glacier had achieved the LLGM position 

(Bayan-II). By 17.7 ka, the glacier had retreated from the LLGM moraine ridge and snowline increased by 640 ± 90 m. The glacier retreated to a 

mid-valley position by 15.7 ka, documented by a glacial erratic at the bottom of the valley near Holy Mountain. The position of the glacier during 

the mid-Holocene is unknown. The next period documented by glacial moraines was during the Little Ice Age (~1750 CE) when snowline was 310 

± 55 m lower than modern. Presently, the glacier has retreated from the Potanin moraines and the snowline is 3780 m a.s.l..
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Figure 7.3. Comparison of paleoclimate indicators during the last termination. (A) Local June 21 

insolation at 49°N, (B) relative sea level from Spratt and Lisiecki (2016). (C) CO2 from Marcott et al. 

(2013) (blue) and Epica Dome C from Monnin et al. (2004) (orange). (D) Results of this study: snowline 

change in Tsagaan Gol-Potanin (TGP) glacier valley. (E) Hulu Cave isotope record from Cheng et al. 

(2016). (F) Atlantic SST from Bard (2000). Pink bar delineates initial deglaciation in Tsagaan Gol-

Potanin Glacier valley. Yellow bar delineates Heinrich Stadial 1 from 14.7-17.5 ka. 
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Tracking changes in snowline is a fundamental way to use the glacial record to reconstruct past 

climate (Mackintosh et al., 2017). Here, I used three methods to determine changes in snowline during the 

termination. First, I calculated the LLGM and Little Ice Age snowlines of 2680 ± 90 m a.s.l. and 3470 ± 

55 m a.s.l., respectively using the AAR method from glacial reconstructions (Table 6.1). A minimum 

value for snowline was estimate from a cluster of five glacial erratics outboard of the Potanin moraines, 

which are located at 3,334 m a.s.l. (Figure 5.2E). Last, I estimate modern snowline of 3780 m a.s.l from a 

weather stations on the Potanin-I moraine (see Chapter 6). With these three methods, I determine 

snowline rise during the termination and Holocene, which is documented schematically in Figure 7.2 and 

graphically in Figure 7.3. The snowline rose 1100 ± 90 m from the LLGM to modern, equaling 6.0 ± 

0.5°C. Between the LLGM and Little Ice Age, snowline rose 790 ± 90 m, equating to a temperature 

increase of 4.3 ± 0.5°C. At least 640 ± 90 m of snowline rise, or 3.5 ± 0.5°C of warming, occurred by 

17.71 ± 0.19 ka, which represents up to ~60% of the snowline rise from the LLGM to modern. 

 My chronology demonstrates that the Tsagaan Gol-Potanin paleo-glacier retreated during 

Heinrich Stadial 1 (HS1) (Figure 7.3). During this period of mean-annual cooling in the North Atlantic, 

glaciers in Mongolia record summer warming. The chronology agrees with evidence that North Atlantic 

stadials were periods of strong seasonality, during which glaciers in Europe and Greenland were 

retreating in response to warming summers (Denton et al., 2005; Buizert et al., 2014; Wirsig et al., 2016). 

Like glaciers in Europe, the Tsagaan Gol-Potanin paleo-glacier registered summertime warming, despite 

cooler temperatures in the North Atlantic region.   

The moraine chronology developed in this study permits direct comparison between the timing of 

deglaciation and summertime atmospheric warming in the Mongolia Altai with the rise in atmospheric 

CO2. Deglaciation in the Tsagaan Gol-Potanin Glacier valley was well underway by 17.71 ± 0.19 ka. The 

snowline had risen by at least 640 meters, which corresponds to ~60% of the snowline rise from the LGM 

to modern, or 3.5 ± 0.5°C of warming. From 23.0 to 18.0 ka, atmospheric CO2 was about 194 ppm on 

average, fluctuating between 200 and 189 ppm (Marcott et al., 2013). CO2 rose steadily after 18.0 ka and 

was 196 ppm at 17.5 ka. The change in CO2 by 17.5 ka was only 3% of the full deglacial CO2 rise of 80 
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ppm. Thus, these results indicate that CO2 was not the primary driver of glacier recession in the 

Mongolian Altai from the LLGM to 17.7 ka (Figure 7.3).  

 

7.3 Implications 

North Atlantic warming and CO2 rise both lag the timing and rates of deglaciation and 

atmospheric warming in the Mongolian Altai from 19.5 ka to 17.1 ka. Therefore, other mechanisms are 

needed to explain the pronounced warming in the Mongolian Altai. First, let us consider rising local 

summer insolation. The termination coincides with rising summer insolation at 49°N, yet is this sufficient 

to account for 640 ± 90 m of snowline rise by 17.7 ka? Heating of large landmasses by solar radiation has 

substantial effects on the continental climates (McKinnon et al., 2013). Therefore, summer insolation may 

have had an important role in deglaciation at the beginning of the termination and needs to be explored 

further.  

Next, I consider the possibility that a shift in the position of the Northern Hemisphere westerly 

winds played a role in the deglaciation of the Potanin Glacier system. The westerlies mark the boundary 

between the sub-tropical high and sub-polar low, so a more northerly position would bring warmer air 

temperatures to the Mongolian Altai. The Tsagaan Gol-Potanin glacier could be registering a summertime 

poleward shift in the westerlies during the termination, which has also been suggested for glaciers in New 

Zealand and Scotland (Putnam et al., 2010a; Bromley et al., 2014). Last, let us turn to the tropical Pacific 

and the role it plays in Earth’s climate. The global atmosphere is very sensitive to changes in changes in 

tropical SST because tropical water masses provide heat and water vapor to higher latitudes (Visser et al., 

2003). The timing of the LLGM in Mongolia coincides with minimum Pacific SST values, reached at 38-

30 ka (Lea et al., 2000; Feldberg and Mix, 2003; Martínez et al., 2003). The coincidence of the LLGM in 

Mongolia and minimum Pacific SST values points towards a tropical mechanism as a possible component 

of glacial cycles. Deglaciation also coincides with warming Pacific water masses during the termination 

(Visser et al., 2003).  
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One major question that emerges from this research is whether summer insolation intensity alone 

could have caused deglaciation and summer warming from 19.5 ka to 17.7 ka or is it necessary to call on 

the far-field effects of the tropical Pacific and/or a shift in the Northern Hemisphere westerlies? 
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CHAPTER 8 

CONCLUSIONS  

This study of the glacial history of the Tsagaan Gol-Potanin Glacier valley in the Mongolia Altai has 

contributed to our knowledge of the climate history in central Asia, a sparsely-studied region. The key 

findings of this research are: 

1) I produced a precise, high-resolution 10Be surface-exposure chronology, composed of 41 dates on 

glacial landforms and erratic boulders, underpinned by glacial-geomorphic mapping from field 

observations and drone imagery. Moraine formation occurred at 54.05 ± 2.78 ka, 23.24 ± 0.50 ka, 

and 28.08 ± 0.58 ka. Glacial erratics were deposited at 133-196 ka and 19.5-22.1 ka in the Bayan 

region, 37.8-15.7 ka at Holy Mountain, and 98.8-11.2 ka in the Potanin region. In the Potanin 

region, boulder ages cluster into two groups, dating to 17.71 ± 0.19 ka and 16.20 ± 0.09 ka.  

2) Glacial snowline reconstructions show that the temperature during the peak of the LLGM was 6.0 

± 0.5°C lower than modern and 4.3 ± 0.5°C lower than the Little Ice Age. The temperature during 

the Little Ice Age the temperature decreased 1.7 ± 0.3°C from modern. 

3) Deglaciation in the Tsagaan Gol-Potanin Glacier valley was well underway by 17.7 ± 0.19 ka, 

with 640 ± 90 m of snowline rise occurring by this time.  This represents ~60% of the snowline 

rise from the LLGM to modern and a 3.5 ± 0.5°C temperature increase.  

4) Summer warming in the Altai occurred during Henrich Stadial 1, which is consistent with 

amplified seasonality during a period of mean annual cooling. Deglaciation in the Mongolia Altai 

preceded the rise in atmospheric CO2. Thus, CO2 is likely not the primary mechanism for driving 

the initial pulse of deglacial warming in the Mongolian Altai.   

5) I suggest that the glacial chronology can be explained by rising local summer insolation, 

increased heat export out of the tropical Pacific, and/or a northward shift of the summertime 

westerly jet. The relative importance of the above mechanisms remains to be answered.  
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APPENDIX A 

 

METHODS 

 

 A.1 Sampling Methods 

Sampling is most easily carried out in groups of 3-5 people. One person can extract the sample while 

others make observations in field notebooks. Once the sample is extracted, then the driller can make notes 

while others set up the GPS and measure boulder dimensions.  

1. Identify boulder for sampling. Boulder should be glacially deposited and show no signs of post-

depositional movement. Avoid boulders on steep slopes or at the bottom of a steep slope. Also, 

note any human and fluvial alteration near the boulder. 

 

2. Identify the sampling site on the boulder. Aim to sample from a flat surface on the top of the 

boulder, dipping less than 30°. If there is glacial polish or striations preserved on the boulder, 

then try to sample those surfaces. 

 

3. Mark the intended sample location with a permanent marker and take a picture of the unsampled 

surface with a scale. Then, measure the orientation of the sample surface. Record the dip and dip 

direction.  

 

4. Don safety protections: eyewear, gloves, and ear plugs/earmuffs. 

 
5. Drill 3-5 holes into the boulder about 10° dipping from horizontal with a carbide 3/8” drill bit, 

using a concrete-grade drill (e.g., Hilti TE-6A). Make the holes about 5 cm apart and arc around 

the desired sample location. Apply gentle pressure to the drill to guide the bit in. If drilling into a 

low-angle surface, it can help to make a small vertical divot with the drill to start the hole.  

 

6. Clean the holes with a puffer and insert wedges and shims - one wedge and two shims for each 

hole. Make the flat surface of the shims parallel to horizontal and place the shims so that the tips 

are flush with the edge of the boulder. Then insert the wedge between the shims, ensuring that the 

wedge faces are also parallel to horizontal.  

 

7. Using a hammer, drive in the shims steadily. Make sure that the wedges are going in evenly so 

that all wedges are experiencing the same amount of pressure. You will hear the wedges ring the 

same pitch if the pressure is even. Continue to hammer until the sample “pops” off the rock. If the 

sample does not come off, then you may have to remove wedges and start new holes. This 

frequently happens if the holes are drilled too steeply. Vice grips are useful when removing 

wedges and shims. If there is enough sample extracted (usually 600-1000 g), continue with the 

procedure, as outlined below. If not, repeat by drilling new holes adjacent to the extracted sample.  

 

8. Place a Trimble Geo 7x GPS (or antenna) on the sample location and let the GPS record at least 

500 points. The GPS can record positions while the remaining steps are completed. 

 

9. Sketch the boulder and surrounding geomorphic features. Make written notes of boulder features, 

such as polish, striations, exfoliation, lichen, chicken heads, etc, and proximal surface features.  

 

10. Measure the length, width, and height of the boulder (measure height from ground to sample 

surface on N, E, S, and W sides).  
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11. Measure the shielding from the sample location using a clinometer. Make sure to determine 

whether any portion of the boulder is shielding the sample. Record in notebook.  

12. All information about the boulder (dimensions, rock type, shielding) should be input into the data 

dictionary in the GPS. 

 

13. On a canvas sampling bag, write the sample name, date, location, and short description of sample 

on the bag.  

 

14. With the sample bag on the boulder, and a hammer for scale, photograph the boulder from 

multiple aspects. Then place sample into the bag (only rock fragments with the rock surface 

preserved). 

 

15. Once the sample and bag are removed, extend a measuring tape to 2 m and place on the ground 

near the base of the boulder. Then take a video of the boulder with a GoPro mounted on a 

monopod, making sure to capture every surface of the boulder.  

 

A.2 Drone Mapping and Map Generation  

A.2.1 Drone Mapping 

When drone mapping, we use a DJI Phantom 4 quadcopter with a gimble camera. We use the app “Map 

Pilot” by Maps Made Easy for iPad. Be sure to check local regulations about drone flying before you 

map.  

1. Determine area for drone mapping. While you have access to the internet, create a flight in Map 

Pilot and save map for offline use. 

 

2. In the field, determine a flying location. The drone can only survey an area with a radius of 2 km 

from the starting point, so it is most efficient to start flights in the middle of the study area. 

 

3. Set up the drone and controller. Take the case off the camera. Connect the iPad to the console. 

Put the sun shield on the iPad. Put the parabolic extenders on the console antennas. Turn on the 

console. Place the drone on the drone carrying case lid.    

 

4. Make sure that there is an SD card in the drone with sufficient memory and a fully charged 

battery. Turn on the drone and open the DJI app. Wait for the drone to connect with the iPad. 

Once it has connected, close the DJI app and open Map Pilot. 

 

5. The drone should appear as an arrow on the Map Pilot App. Create a new flight plan that is one 

battery-life long. This usually includes three transects and 1 km long for each transect (but this 

will vary depending on chosen altitude). Plan the flights so they are parallel or perpendicular to 

your entire flight swath. Tap on the iPad to create new point for flight plan, hold the point down 

to move it, and double tap to delete. Make sure that there is 70% overlap for the pictures and that 

the drone is flying at 300 m (or the regulated max height for the area in which you are flying).  

 

6. Save the flight plan. Upload the flight to the drone. Turn the console to P mode. Then clear the 

drone area and press start.  
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7. The drone flight will take about 12-14 minutes. Make sure that the wind doesn’t change and that 

it doesn’t rain. If it does start raining, bring the drone home. The drone will fly along the course 

and a dot will appear on the flight path when the drone takes a picture. Pay attention to if the 

drone misses a photograph. If there are too many missing images, you will need to re-fly that 

segment.   

8. The drone will return to the home point when the flight plan is complete. When the drone is about 

20 m above the home point, take control of the drone by toggling to the S mode on the console. 

Lower the drone to a person so that they can catch the drone above their head. They should keep 

the drone above their head until the drone is shut down (the way to shut down the drone depends 

on the initial calibrations).  

 

9. Fly as many flights as possible with the available batteries until the entire field area is covered. 

Make sure to back up flight images on another drive at the end of each day. It is also advisable to 

periodically swap out memory cards in case the drone crashes and is irretrievable. 

A.2.2 Map Generation with PhotoScan 

The manual for PhotoScan by Agisoft is found at http://www.agisoft.com/pdf/photoscan-pro_1_3_en.pdf 

and the tutorial followed when creating DEMs and orthomosaics http://www.agisoft.com/pdf/PS_1.3%20 

Tutorial%20(BL)%20%20Orthophoto,%20DEM%20(GCPs).pdf. Below is a modified version of the 

PhotoScan tutorial.  

1. PhotoScan Preferences: Open PhotoScan “Preferences” dialog using corresponding command 

from the “Tools” menu. Set the following values for the parameters on the “General” tab:  

a. Stereo Mode: Anaglyph (use Hardware if your graphic card supports Quad Buffered 

Stereo)  

b. Stereo Parallax: 1.0  

c. Write log to file: specify directory where Agisoft PhotoScan log will be stored (in case of 

contacting the software support team it could be required) 

 

2. Set the parameters in the GPU tab as following: Check on any GPU devices detected by 

PhotoScan in the dialog. Check on “Use CPU” option when less than two GPU are used. Set the 

following values for the parameters on the Advanced tab:  

a. Project compression level: 6  

b. Keep depth maps: enabled  

c. Store absolute image paths: disabled  

d. Check for updates on program startup: enabled  

e. Enable VBO support: enabled  

 

3. Add Photos: To add photos select “Add Photos” command from the Workflow menu or click 

“Add Photos” button located on Workspace toolbar. In the Add Photos dialog browse the source 

folder and select files to be processed. Click “Open” button. “Load Camera Positions”. At this 

step, the coordinate system for the future model is set using camera positions. Note: the camera 

position is included in the picture meta-data, so we do not have to add camera positions. Add all 

photos from study area into one group.  

 

4. Align Photos: At this stage PhotoScan finds matching points between overlapping images, 

estimates camera position for each photo and builds sparse point cloud model. Select “Align 

Photos” command from the Workflow menu. Set the following recommended values for the 

parameters in the Align Photos dialog:  
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a. Accuracy: High (lower accuracy setting can be used to get rough camera positions in a 

shorter time)  

b. Pair preselection: Reference + Generic (in case camera positions are unknown – only 

Generic preselection mode should be used)  

c. Constrain features by mask: Disabled (Enabled in case any areas have been masked)  

d. Key point limit: 40,000  

e. Tie point limit: 4,000  

f. Adaptive camera model fitting: Enabled (to let PhotoScan distortion parameters 

estimation).  

 

5. Click “OK” button to start photo alignment. In a short period of time (depends on the number of 

images in the project and their resolution) you will get sparse point cloud model shown in the 

Model view. Camera positions and orientations are indicated by blue rectangles in the view 

window. 

 

6. Place Markers: Markers are used to optimize camera positions and orientation data, which allows 

for better model output. Select the marker on the Reference pane. Then filter images in Photos 

pane using “Filter by Markers” option in the context menu available by right-clicking on the 

markers label in the Workspace pane. Now you need to check the marker location on every 

related photo and refine its position if necessary to provide maximum accuracy. Open each photo 

where the created marker is visible. Zoom in and drag the marker to the correct location while 

holding left mouse button. Repeat the described step for every ground control point (GCP). (Note: 

this step is much easier once an ortho photo of the area is already made. I recommend proceeding 

without entering the markers, make an orthophoto, import the orthophoto into Google Earth and 

find the boulder sample sites based on GPS data. Then redo the following steps).  

 

7. Input Marker Coordinates: Finally, import marker coordinates from a file. Click “Import” button 

on the Reference pane toolbar and select file containing GCP coordinates data in the “Open” 

dialog. The easiest way is to load simple character-separated file (*.txt) that contain markers 

name, x-, y- coordinates and height. In “Import CSV” dialog indicate the delimiter according to 

the structure of the file and select the row to start loading from. Note that # character indicates a 

commented line that is not counted while numbering the rows. Indicate for the program what 

parameter is specified in each column through setting correct column numbers in the “Columns” 

section of the dialog. Also, it is recommended to specify a valid coordinate system in the 

corresponding field for the values used for camera center data. Check your settings in the sample 

data field in “Import CSV” dialog: Click “OK” button. The data will be loaded into the Reference 

pane.  

 

8. Optimize Camera Alignment: To achieve higher accuracy in calculating camera external and 

internal parameters and to correct possible distortion (e.g. “bowl effect” and etc.), an optimization 

procedure should be run. This step is especially recommended if the GCP coordinates are known 

almost precisely – within several centimeters accuracy (marker-based optimization procedure). 

Click the “Settings” button in the Reference pane and in the Reference Settings dialog select the 

corresponding coordinate system from the list according to the GCP coordinates data. Prior to 

optimization it is also possible to remove the points with the highest reprojection error values 

using corresponding criterion in “Edit Menu” → Gradual Selection dialog. Set the following 

values for the parameters in Measurement accuracy section and check that valid coordinate 

system is selected that corresponds to the system that was used to survey GCPs: Marker accuracy: 

0.005 (specify value according to the measurement accuracy).  

a. Scale bar accuracy: 0.001  
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b. Projection accuracy: 0.1  

c. Tie point accuracy: 1  

 

9. Click “OK “button. On the Reference pane uncheck all photos and check on the markers to be 

used in optimization procedure. The rest of the markers that are not taken into account can serve 

as validation points to evaluate the optimization results. It is recommended to perform the 

optimization procedure since camera coordinates are usually measured with considerably lower 

accuracy than GCPs, also it allows to exclude any possible outliers for camera positions caused 

by the onboard GPS device failures. Click “Optimize” button on the Reference pane toolbar. 

Select camera parameters you would like to optimize. Click “OK” button to start optimization 

process. (For DJI drone cameras it is usually suggested to optimize the rolling shutter).  

 

10. Set Bounding Box: Bounding Box is used to define the reconstruction area. Bounding box is 

resizable and rotatable with the help of Resize Region and Rotate Region tools from the Toolbar. 

Important: The colored side of the bounding box indicates the plane that would be treated as 

ground plane and has to be set under the model and parallel to the XY plane. This is important if 

mesh is to be built in Height Field mode, which is reasonable for aerial data processing workflow.  

 

11. Build Dense Point: Cloud Based on the estimated camera positions the program calculates depth 

information for each camera to be combined into a single dense point cloud. Select “Build Dense 

Cloud” command from the Workflow menu. Set the following recommended values for the 

parameters in the Build Dense Cloud dialog:  

a. Quality: Medium (higher quality takes quite a long time and demands more 

computational resources, lower quality can be used for fast processing) 

b. Depth filtering: Aggressive (if the geometry of the scene to be reconstructed is complex 

with numerous small details or untextured surfaces, like roofs, it is recommended to set 

Mild depth filtering mode, for important features not to be sorted out) Points from the 

dense cloud can be removed with the help of selection tools and Delete/Crop instruments 

located on the Toolbar.  

12. Build Mesh (optional: can be skipped if polygonal model is not required as a final result): After 

dense point cloud has been reconstructed it is possible to generate polygonal mesh model based 

on the dense cloud data. Select “Build Mesh” command from the Workflow menu. Set the 

following recommended values for the parameters in the Build Mesh dialog:  

a. Surface type: Height Field  

b. Source data: Dense cloud  

c. Polygon count: Medium (maximum number of faces in the resulting model. The values 

indicated next to High/Medium/Low preset labels are based on the number of points in 

the dense cloud. Custom values could be used for more detailed surface reconstruction).  

d. Interpolation: Enabled Click “OK” button to start mesh reconstruction.  

 

13. Edit Geometry: Sometimes it is necessary to edit geometry before building texture atlas and 

exporting the model. Unwanted faces could be removed from the model. Firstly, you need to 

indicate the faces to be deleted using selection tools from the toolbar. Selected areas are 

highlighted with red color in the Model View. Then, to remove the selection use “Delete 

Selection” button on the Toolbar (or Del key) or use “Crop Selection” button on the Toolbar to 

remove all but selected faces. If the overlap of the original images was not sufficient, it may be 

required to use “Close Holes” command from the Tools menu at geometry editing stage to 

produced holeless model. In Close Holes dialog select the size of the largest hole to be closed (in 

percentage of the total model size). PhotoScan tends to produce 3D models with excessive 

geometry resolution. That's why it is recommended to decimate mesh before exporting it to a 
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different editing tool to avoid performance decrease of the external program. To decimate 3D 

model select “Decimate Mesh...” command from the Tools menu. In the Decimate Mesh dialog 

specify the target number of faces that should remain in the final model. For PDF export task or 

web-viewer upload it is recommended to downsize the number of faces to 100,000 - 200,000. 

Click “OK” button to start mesh decimation procedure.  

 

14. Build Texture (optional; applicable only to polygonal models): This step is not really needed in 

the orthomosaic export workflow, but it might be necessary to inspect a textured model before 

exporting it or it might be helpful for precise marker placement. Select “Build Texture” command 

from the Workflow menu. Set the following recommended values for the parameters in the Build 

Texture dialog: Mapping mode: Orthophoto Blending mode: Mosaic Texture size/count: 8192 

(width & height of the texture atlas in pixels) Enable color correction: disabled (the feature is 

useful for processing of data sets with extreme brightness variation, but for general case it could 

be left unchecked to save the processing time) Click “OK” button to start texture generation.  

 

15. Build DEM: Digital elevation model can be generated based on the dense cloud or mesh model. 

Usually first option is preferred, as it provides more accurate results (low-poly model, being used 

as a source data, may result in inaccurate DEM) and allows for faster processing, since mesh 

generation step can be skipped. Select “Build DEM” command from the Workflow menu: 

Coordinate system should be specified in accordance with the system used for the model 

referencing. At the export stage it will be possible to project the results to a different geographical 

coordinate system. After DEM generation process is finished, it is possible to open the 

reconstructed model in Ortho view by double-clicking on the DEM label in the chunk's contents 

on the Workspace pane. 

 

16. Build Orthomosaic: Select “Build Orthomosaic” command from the Workflow menu: Select 

desired surface for orthomosaic generation process: mesh or DEM, and blending mode. Pixel size 

will be suggested according to the average ground sampling resolution of the original images. 

According to the surface size and the input pixel size the total size of the orthomosaic (in pixels) 

will be calculated and shown in the bottom of the dialog box. Generated orthomosaic can be 

reviewed in Ortho mode similar to the digital elevation model. It can be opened in this view mode 

by double-clicking on the orthomosaic label in the Workspace pane.  

 

17. Export Orthomosaic: Select “Export Orthomosaic” → Export JPEG/TIFF/PNG command from 

File menu. Set the following recommended values for the parameters in the Export Orthomosaic 

dialog: Projection: Desired coordinate system Pixel size: desired export resolution (please note 

that for WGS84 coordinate system units should be specified in degrees. Use Meters button to 

specify the resolution in meters). Export as TIFF.  

 

18. Export DEM: Select “Export DEM” → Export GeoTIFF/BIL/XYZ command from File menu. 

Set the following recommended values for the parameters in the Export DEM dialog. Export as 

GeoTIFF with WGS84 projection.  

 

A.3 Quartz Separation 

Detailed below are methods for obtaining clean quartz from a whole rock and Be extraction. The 

preparation of the rock involves both physical and chemical separation methods. The procedure detailed 

below is a modified version of the Lamont-Doherty Earth Observatory Laboratory methods 

(http://www.ldeo.columbia.edu/cosmo/methods).  
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A.3.1 Rock Crushing 

Safety information: The crushing, grinding, and sieving of rocks produces high amounts of dust, and 

inhalation of dust particles should be avoided. Review the procedures for operating the ventilation 

systems for these pieces of equipment and procedures. ALWAYS WEAR A DUST MASK (NIOSH 

approved, N95), safety goggles, work gloves, long pants, and closed shoes. 

1. Ensure that work area and machinery are thoroughly cleaned. 

 

2. Rock samples may need to be cut using a saw to fit in jaw crusher. 

 

3. The samples are crushed into small pieces using a jaw crusher. Use a piece of wood to guide 

samples into crusher to ensure that they do not fly away. 

 

4. Samples are then crushed using a disk mill. Place the nozzle of the vent into the whole at the top 

of the box around the disk mill. This will remove the majority of the dust particles from the 

source area. Crush rock pieces into sand-sized grains (generally < 0.7mm). It is necessary to put 

the sample through the disk mill numerous times and progressively move the disks closer together 

to achieve the desired grain size without producing excess fine-grained sediment. 

 

5. The crushed rock can then be put through a column of sieves to sort the sample by grain size. Use 

125-710 µm size sieves. 

Cleaning: Saws and rock crushing machines should be thoroughly cleaned after each sample. Rinse saws 

with water and dry them completely afterward. Use methanol to protect the metal pieces from oxidation. 

Clean the disk mill using a vacuum, air compressor, and small broom or brush. After cleaning the disk 

mill, turn it on and let it run for a few seconds without putting a sample in and observe to see if grains are 

in the pan. Clean sieves with a brush and put in a small ultrasonic bath. Then, dry sieves in an oven and 

inspect them for cleanliness. If grains are still present in sieves, clean further with a brush or air 

compressor. 

A.3.2 Phosphoric Acid Boiling 

Samples are boiled in O-phosphoric acid to dissolve a whole host of minerals in many rock types. 

1. Check the beakers thoroughly for cracks and clearly label them. 

 

2. Be careful of cross contamination if you are boiling more than 1 sample. 

 

3. Set up the hotplates in the hood with the metal cages, ensuring that the hotplates are steady on 

the hood floor. 

 

4. Weigh up to 115 g of non-magnetic sample into 1000 ml beakers. Weight the sample directly 

into the beaker in the fume hood both to avoid inhaling dust and contaminating the lab with 

dust.  

 

5. While in the fume hood, add some DI-water to each beaker (to keep the dust down). Then, at 

the sink rinse them thoroughly with DI-water to wash off the fines.  
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6. In the fume hood, add up to 400 ml of concentrated (85%) O-phosphoric acid to each beaker 

and cover the beakers with a watch glass. Set the hotplate to about 325°C and bring the 

samples to a boil. The boiling can be very vigorous at first, so you must stay in the lab until it 

has reached a steady rolling boil. Make sure that vigorous boiling isn’t causing the beakers to 

“walk” off the hotplate. After about 1 hour the boiling will become gentle. Boil for 1-2 hours 

longer or until the volume reaches 300 ml. After a while, usually a total of about 2-3 hours, 

the rolling boil subsides, and the surface can become quite flat. This a good time to take off 

the samples.  

CAUTION: Sometimes when the sample has boiled too long the acid will become very thick and 

jelly-like. (It seems to happen more with samples that have a lot of fines and organics, such as lichens 

from the surface of the rocks—another reason to rinse well.) To reduce the amount of lost in thick 

gel, pour it off before stirring the sample up and suspending it in this dense liquid. If the samples boil 

for too long, a dense gel can form which can be difficult to remove without losing a lot of sample. 

1. Remove the beakers from the hotplate. You can remove the watch glasses, so they cool faster, 

but then rinse them with DI-water into a container in the hood. Do not squirt water into the 

hot acid! Let the samples cool for about an hour. The acid may form a gel around the sample 

and on the side of the beaker (this film of supersaturated silica solution), which will dissolve 

during the sodium hydroxide cleaning. 

 

2. Once the beakers are cool (lukewarm is ok), pour off the acid into the Phosphoric Acid waste 

container. In the hood, squirt down the sides of the beaker with ~200 ml of DI-water and stir 

the samples with a clean metallic spatula. Allow the samples to settle and decant the water off 

into the waste container. Then add another 500 ml of DI-water. You can now take the 

samples over to the sink without risk of inhaling acid fumes. Rinse them 3 more times with 

DI-water in the sink.  

 

3. Add 300 ml of DI-water to each beaker. In the fume hood, add 100 ml 50% NaOH (sodium 

hydroxide) to each beaker. The NaOH will dissolve the silicate coating around the quartz 

grains left by the phosphoric acid leach. Cover the beakers with the watch glasses and boil for 

ten minutes. (Use the same watch glass for the same sample as before, otherwise thoroughly 

rinse off any sample grains so as to avoid cross contamination of your samples.) 

 

4. DO NOT LEAVE THE SAMPLES! At this step the boiling is usually very vigorous and 

beakers can “walk” off the hotplate! Start the hotplate at 300°C. If the boiling is too 

vigorous, reduce the heat. One hour after the samples boil, take the samples off the hotplate. 

Allow the samples to cool, about 30 minutes. You can remove the watch glasses immediately, 

rinsing the lids directly into the beaker. Once, cool, pour off the solution into NaOH waste 

container. Rinse w/ ~100 ml DI-water and pour off into the waste container and then rinse 

three times with DI-water and in the sink.  

 

5. Either proceed directly to the HF/HNO3 leaching steps or dry the sample in the oven 

overnight. If you are drying the samples, transfer them to small beakers, combining the same 

sample into one beaker. Once the sample is dry let it cool, weigh it, and record the weight in 

the notebook. Cover the sample with parafilm. If you are going directly to the HF step, 

combine 2 beakers of the sample into each bottle for the leaching step on the shaker table. 
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Beaker Cleaning: Scrub the beakers in the sink using a brush if necessary and rinse thoroughly so that no 

sample grains remain in the beakers. If they are really filthy, you can soak them in a soapy solution. Use 

DI-water for the final rinse. Dry beakers on the drying rack. 

A.3.3 Froth Flotation 

This method is used to separate feldspar and mica from quartz. It is based on the froth flotation method 

developed at the PRIME lab (http://www.physics.purdue.edu/primelab/MSL/froth_ floatation.html). 

Grain size typically 125-710 µm but you should evaluate your sample and select a size that minimizes 

poly-mineral grains. We have successfully processed 63-125 µm. Quartz with attached feldspars or mica 

will float, in which case smaller is better. You can froth as much as 300 g in one bottle, otherwise split it 

into 2 bottles. 

Preparation and Pretreatment -- 1% HF leach 

1. Record all information in the froth flotation log.  

 

2. Weigh the sample and record the weight (weigh it directly into a tared 2000 ml leaching bottle. 

Pour the sample in the hood to reduce dust inhalation and lab contamination). 

 

3. Rinse the sample with DI-water to remove dust. 

 

4. Take a small split (<1g) of the rinsed sample with a spatula and place it in a labeled petri dish for 

examination under the microscope (it is easier to look at the minerals after the sample has been 

rinsed of dust). Set the sample aside to describe while the sample is leaching.  

 

5. Add 1% HF solution to the jar filling it approximate 2x the depth of the sample. Place it on the 

shaker table for 45-60 minutes. Do one sample at a time so the sample isn’t sitting in the HF 

solution for too long. You can start the next sample leaching when you begin frothing the current 

sample. 

 

6. Meanwhile describe the sample and record this in the log. Roughly estimate the percent 

composition of quartz and feldspar and any other significant minerals. If you don’t know the 

mineral, at lead describe color, luster, shape, etc. 

Frothing Set Up 

1. Fill the 10-liter carboy next to the carbonator with the frothing solution: the final should contain 

0.01 ml/1 glacial acetic acid and 0.01 ml/ lauryl amine (surfactant). 

 

2. A concentrated solution is stored in the cabinet below the hood. Add 10 ml of concentrate per 

liter of DI-water and mix well (this does not have to be precise). 

 

3. Rinse off the carbonator tube before placing it into the frothing solution in the carboy. Make sure 

it is completely submerged. The solution will be sucked into the carbonator after it’s been 

dispensed. Keep at lead a few liters in the carboy so the carbonator does not suck up air.  

 

4. Hard open the CO2 tank. It is pre-set to ~100 psi (it should not exceed 100 psi). 

 

5. Plug in the carbonator. There is no on/off switch.  
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Frothing Process 

1. After 45-50 minutes, decant the 1% HF solution from the sample into a labeled waste container. 

DO NOT rinse the sample. 

 

2. Keep the sample in the 2L leaching bottle and add a few drops of mineral oil to the sample and 

swirl it around. All mineral oil seems to work-pine, eucalyptus, tea tree (Do not use vegetable 

oils. Although they will work, they are impossible to clean up. Mineral oils are aromatic 

hydrocarbons and will evaporate as opposed to vegetable oils that are long chain fatty acids.  

 

3. Dispense some frothing solution onto the sample. Carefully swirl around the bottle at the same 

time. Decant the solution with the floating grains into a plastic collection jar or directly into a 

filter funnel hooked up to the pump. The first 2-3 additions might not work very well but with 

each repetition the frothing with get “foamier” and more grains will float. The floating minerals 

will look clumpy, fluffy, and bubbly and after a few repetitions of froth and decanting, the 

sinking fraction and floating fraction will look distinct. If the frothing seems to slow down yet 

you can see there is still feldspar to remove, try added more oil. (An easy granitic sample needs 5-

10 repetitions. Usually the quartz looks more grayish than the feldspar. Note that usually granite 

has much more feldspar than quartz so it is normal that the quartz fraction is smaller than the 

feldspar fraction. Use your original quartz estimate as a guide and if you are unsure, take a split 

and check under the microscope before you finish. 

 

4. When you think the separation is complete, take a split from the sinking quartz fraction and check 

under the microscope to see if any feldspar remains. Difficult samples can be deceiving, so use 

this as a guide to check what you naked eye sees. Do not finish the sample without looking at this 

split or you may quit too early.  

Once the separation is complete… 

1. Take a tiny split from the floating fraction and record what is in it. Take note of any quartz that 

floated off with the feldspar fraction. It appears that very fine grain quartz can pour off with the 

floating fraction and in some cases where the quartz yields are small, it will be important to try 

and reduce this, or to recover it. Also, poly-mineral grains of quartz and feldspars will float.  

 

2. Rinse the floating fraction in the filter with DI-water. 

 

3. Finish filter the floating fraction, neutralize it with baking soda, and pour down the sink.  

Sinking and Floating Fractions 

Quartz & Recovery: 

1. Rinse the sinking fraction with D-I water. 

 

2. Proceed to HF/HNO3 leaching 

 

3. Dry the rinsed floating fraction in the filter in the oven.  

 

4. Once dry, transfer it to a plastic bag and weigh it. Record the weight and calculate the sinking 

fraction wt. (total wt.-floating wt./floating wt.). If your original quartz estimate was good, it 

should be very close to the sinking (assuming a clean separate). 
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RECORD ALL WEIGHTS IN THE LOG 

A.3.4 Chemical Preparation Steps 

The following steps require the use of strong acids that present skin and inhalation exposure risks, and for 

HF, systemic toxicity. Review the MSDS sheets and any other documentation provided. Understand the 

risks associated with handling the chemicals you are working with, the procedures for reducing any risks, 

and emergency procedures in the event of an accident.  

• Always work in a fume hood with the sash as low as is practical.  

 

• Wear safety/splash goggles and use a full-coverage face shield if there is any risk of splashing.  

 

• Wear appropriate gloves: for work with hot acids, use heavyweight (22 mil) neoprene gloves. For 

work with HF, you must wear HF-resistant gloves- not all materials are HF resistant (for 

example, latex). Check your gloves regularly for holes and excessive wear and replace as needed.  

 

• You must wear long pants and closed shoes. Shorts, skirts, and open-toed or fabric shoes are not 

permitted when working with chemicals.  

 

• Know where the eyewash stations, safety showers, spill kits, and tubes of calcium gluconate gel 

are located. Small spills contained in a hood can be cleaned up. In the event of a large spill or 

accident, call your institution’s building manager.  

 

• All HF exposures must be treated as medical emergencies. Flush the exposed area with water 

until medical help arrives.  

 

• All chemical waste is collected in labeled containers and picked up as hazardous waste. 

Understand the procedures for collecting, labeling, and disposing of your waste.  

 

• Empty bottles must be thoroughly rinsed out. Fill the bottle with water in the hood to avoid 

breathing vapors, and then rinse out at least 3 times in the sink. Deface the label, and write very 

clearly on the bottle, “RINSED.” 

Hydrofluoric/Nitric Acid Leach: 

Samples are leached in a dilute hydrofluoric/nitric acid solution in order to dissolve minerals other than 

quartz and to remove meteoric 10Be. Samples are generally leached twice in 1000 ml of a 5% HF/HNO3 

solution and placed on the shaker table, each time for 2 day, and once in a 2% HF/HNO3 solution in a 

heated ultrasonic bath for 24 hours. Some samples require additional (4-10) leaching steps before they are 

sufficiently clean. 

Shaker Table Leach 

You can put ~150 g of sample in a bottle, though this will vary from sample to sample. Most samples 

dissolve a lot after the first leaching step, but you might want to adjust the amount of sample for samples 

that don’t dissolve as much at this step. 

• For a 5% HF+5% HNO3 solution- Add 500 ml MQ-H2O. Then, working in the fume hood, add 50 

ml concentrated (49%) HF and 35 ml concentrated (79%) HNO3, making sure to use the ACS 

grade bottles. NOTE: ALWAYS ADD WATER FIRST! NEVER ADD WATER TO ACID! 
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• Place bottles on the shaker table overnight. Make sure there are no drips of acid on the sides of 

the bottles. The samples do not need to be on for a full 24 hours. If you put them on in the 

afternoon, it is okay to change them the next morning. For a 5% HF+ 2% HNO3 solution, use 875 

ml MQ-H2O, 100 ml HF, and 25 ml HNO3. 

 

• In the hood, pour the acid solution into a properly labeled waste container being careful not to 

pour out your sample. 

 

• While working in the fume hood, add -1000 ml of MQ-H2O to each bottle. Shake them 

vigorously, and then decant the water into the sink, again being careful not to spill any sample. 

The acid is dilute enough to now work outside of the hood. Rinse the samples two more times, 

filling the bottles about a third of the way and shaking them vigorously each time. The vigorous 

shaking will work to break up weaker feldspar grains. 

 

• Repeat this shaker table leach step until the sample is clean. 

Ultrasonic Leach in 2% HF + 2% HNO3: 

•  Fill the bottle with 800 ml MQ- H2O 

 

• In the hood, add 30 ml HF and 21 ml HNO3. 

 

• Put the lids on tight when putting into the ultrasonic bath. 

 

• Fill the bath to the brim with water. 

 

• Turn on both the sonicator. You will need to check the level of the water from time to time. Even 

without the heat on, the water will evaporate. Keep it full to the brim.  

 

• Remove the bottles from the bath and allow them to cool for about 30 minutes. 

 

• Decant the acid into a waste container.  

 

• Under the hood, fill the bottles with MQ- H2O to rinse in the waster container. 

 

• As with the shaker table leach, shake these up vigorously, decant into the sink, and repeat for a 

total of 3-4 rinses. 

 

• Transfer sample into a very clean and labeled beaker for storage. Dry in oven. When sample is 

dry, cover with parafilm.  

 

• Wash your bottles. Make sure you remove all sample grains from the bottles before adding a new 

sample! Rinse the bottles thoroughly and scrub with brush. You can turn the bottle upside down 

and forcefully clean off any grains that may be stuck to the bottom and sides. Once your bottles 

are cleaned, remove all labels and put them away. 
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A.3.5. Magnetic Mineral Separation 

• An initial rough magnetic separation can be achieved by putting the sample through a chute 

magnet. The grain size generally is between 0.125-0.7 mm. If the samples have been etch, dry 

them in the oven in a small beaker. 

 

• The non-magnetic fraction attained using the chute magnet is then put through a frantz 

isodynamic separator (usually 0.5 Amps and a 5-degree tilt) until few magnetic grains remain. 

This may take two cycles through the frantz. Collect the magnetic fraction in a plastic bag and 

return the non-magnetic grains to the beaker.  

 

• Cleaning: Clean the chute magnet thoroughly after each sample. Wipe the frantz and the 

collection cups with the brush and then with the air hose.  
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A.4 Extraction of Beryllium from Quartz Method 

 

 

Version: This version was created by Peter Strand, September 2016. It is an adaptation of the following 

two procedures, modified for the University of Maine cosmogenic isotope laboratory: 

1. John Stone’s Be-10/Al-26 method (http://depts.washington.edu/cosmolab/chem) as modified by 

Brenda Hall. 

2. Roseanne Schwartz’s Lamont Doherty Be-extraction method 

(http://www.ldeo.columbia.edu/cosmo/methods). 

Where applicable, I’ve included notes from the two methods. 

 

 

The method that follows is used to separate Beryllium from pure quartz for AMS measurement. 

 

John says: The procedure described below will cope with up to ~10 mg of Fe and 3-5 mg of Ti, assuming 

the total amount of Al, Be and other metals is less than 3-5 mg. It can be modified to accommodate larger 

samples by increasing the size of vessels, ion exchange columns, etc. 

 

 

 

 

 

 

 

“ICP” Aluminum check for quartz purity: 

John says: Check the trace-element content of the quartz separate before dissolving it for 26Al-10Be 

analysis.  It is important to obtain low concentrations of Al, Ti, Mg, Ca and alkalis.  High Al levels 

decrease the 26Al/27Al ratio and limit the number of 26Al ions that can be counted.  This will reduce the 

statistical precision of the measurement.  High levels of Ti and other trace elements may complicate the 

chemical separation described below.   

Careful quartz clean-up usually (though not always) results in Al and Ti concentrations of <100 ppm.  

Higher levels of Al may indicate the presence of impurities such as feldspar, muscovite, garnet, or 

sparingly soluble fluorides from the HF treatment.  Note, a 99.5% pure quartz separate containing ~0.5% 

feldspar still has an Al concentration of ~1000 ppm. 

  

http://depts.washington.edu/cosmolab/chem)
http://www.ldeo.columbia.edu/cosmo/methods)
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“ICP” Al-Check 

o Select and label a set of small, 8ml Teflon ICP beakers, one for each sample. 

o Weigh and record the weight of each beaker with lid on. 

o With a clean spatula, transfer 0.05-0.35g of sample into the beaker. (0.1 g of sample is a good target) 

Doing this in front of the anti-static machine helps keep quartz grains from being flung about by 

static.  

o Weigh and record the weight of the beaker and sample with lid on. 

o Add a small amount of 1% HNO3 with squirt bottle, enough to wet the grains, then cap the beaker.  

o Thoroughly clean the spatula with isopropanol and a KimWipe after each sample.   

o Uncap ICP beakers and place on the large hotplate in the fume hood.  

o Don the HF safety gear and get a clean 100 ml Teflon reagent beaker. Carefully pour enough 

concentrated HF into the reagent beaker for for 2-3ml for each ICP-check beaker. 

o Add 2-3 ml of this HF to each sample with a disposable pipette. 

o Add 1 ml of 8% H2SO4 to each beaker and set hotplate to ~275 °F.  The samples will dry down to a 

droplet of H2SO4 overnight.   

o Cool the samples.   

John says:  Check the samples for solid material.  An opaque, white, crystalline material indicates that 

the quartz is not clean enough for Be/Al chemistry. Fluffy white bits may indicate garnet. Samples may 

have a dark material which is probably illmenite or organic material, both of which can be HF-resistant. 

Illmenite or organic material can be ignored as they will not interfere with the chemistry and will only 

slightly contribute to the total error via an overestimation of the quartz weight. 

o Add 5 ml of 1% HNO3 to each beaker with the repeat pipettor, and then cap beakers.  The solutions 

are now ready for ICP analysis, and should be not be weighed and recorded until immediately before 

being sent for ICP analysis. 

o Weigh and record the weight of the beaker and solution with lid on.                                Solution 

weight = weight of beaker w/ solution - beaker tare weight 

o Transfer to cleaned and labeled ICP-check centrifuge tubes once weighed. 

 

To get ppm of sample, take measured ppm of solution and multiply by weight of solution 

(here, ~5.1 g). Divide by g in sample. 

i.e., 3.6 ppm Al in ICP solution  x  5.1 g of ICP solution = ~18 micrograms of Al in ICP solution, 

obtained from dissolving 0.1 g of rock. Thus, ~180 ppm Al in rock. 

 

To calculate mg in sample, take ppm of sample (from above) and multiple by weight of quartz to be 

dissolved for chemistry. Divide by 1000. 

i.e. 180 ppm Al in sample  x  8 g quartz weight = 1.44 mg in sample 

 

Sample Weighing, Spiking & Blank Preparation 

 

o Determine the amount of quartz and carrier needed for each sample. 

 

o For a batch of 6-11 samples of similar size, prepare 1 process blank. 

 

o Label Jars with tape or Teflon marker. 
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Select a Savillex jar large enough so you only fill the beaker 1/2 full. Estimate space for 5mls HF per 

gram of sample, the sample itself, and some water. 

Roseanne says: samples <10g use 90ml Savillex, samples ≥10g use 180ml+ Savillex. 

Use the same size beaker for the blank as for the samples. Name the blank based on the batch number 

(check the master book): B25, B26, etc. 

 

o To reduce static, wrap Al foil around the beakers and use anti-static gate. 

 

o If you are not using the entire sample, make sure the sample is well mixed so that the split taken is 

representative of the entire sample.  

 

Weighing Sample 

 

METHOD 1: Weighing directly into Savillex jar. (For a sample size < 25g and Savillex jar < 180ml.)  

o Place a clean labeled Teflon jar wrapped w/ Al foil on the analytical balance (the Al foil reduces 

static). 

o Tare the balance. 

o Add desired amount of sample to the jar with clean spatula. Record the weight to 4 decimal places. 

o Remove the jar from the balance and cover grains with MQ-water. 

 

Optional weighing method: 

METHOD 2: Weight by difference. (If the Savillex beaker + Sample will be > 200g.) 

o Wrap the Savillex jar w/ Al foil. 

o Weigh the entire sample in its storage container. Record this weight as “Sample + Tare wt.”. 

o Empty the entire contents of the container into the Savillex jar. 

o Weigh the empty container. Record this weight as “Tare wt.” 

o You will calculate your sample weight – “Sample + Tare” – “Tare”. 

o Cover the sample w/ MQ-water. 

Be very careful not to spill any sample in this transfer, since your sample weight is being determined by 

weighing the amount removed from the sample container. 

 

o Clean your spatula and work area between samples!  
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Adding Carrier (9Be) 

 

Since the natural concentration of 10Be in rock is too low to be detected by AMS we add a known amount 

of 9Be to each sample.  

 

Record the initial weight of the working carrier bottle confirm that it is equal the final weight from the 

previous use. Remove all the Parafilm before weighing the bottles and invert the bottles a few times to 

homogenize the solution. When you are finished spiking all your samples, record the final weight of the 

carrier bottle. 

 

Everyone's work depends on the integrity of the carrier. NEVER RISK CONTAMINATING THE 

CARRIER!    

 

o We calculate the amount of carrier added to a sample by weighing the carrier bottle before and after 

each addition to a sample, rather than directly weighing the amount delivered to the sample.  

 

o Tare the balance. 

 

o Invert carrier bottle a few times to homogenize the solution.  Be sure drops of condensation around 

the lid are taken up and mixed in.  Weigh the carrier bottle and confirm that it equals the final weight 

from the previous use. Record this weight in both the log and your notebook.  

 

o Remove the cap and pipette 9Be carrier into your sample. Use the “Carrier only”  

100 – 1000μL pipette and MAKE SURE THE PIPET IS SET AT THE CORRECT VOLUME! 

 

o Immediately recap the carrier bottle and reweigh it. Work quickly, but carefully. Do not leave the 

carrier bottle open longer than necessary. We want to reduce evaporation as much as possible. 

 

o Check the pipette tip to ensure that the entire amount removed from the bottle, which is what we are 

weighing, is delivered to your sample and no drops were left behind in the tip. 

 

o If a drop remains in the pipette tip, remove the pipette tip and rinse it out with some MQ-H2O directly 

into the sample beaker. Discard the tip and use a new tip. 

 

o Reweigh the carrier bottle and record the weight. Calculate the amount of carrier added to your 

sample as you go along to ensure you have added the amount of carrier you think you have added. 

 

o When finished, check that the carrier bottle cap is screwed on firmly and seal with Parafilm. 
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o Record all final weights in the Log Book and in your notebook. Record which carrier you used. 

 

o All of the necessary data (sample and carrier weights) must end up in the database and a printed copy 

should be taped into the lab book.   

 

o Print the chemistry tracking sheet and tape it to the bench in the Al-Be lab. 

 

 

Blanks 

 

Roseanne says: 

The primary use of blank is to correct the sample 10Be concentration for any 10Be contamination 

occurring during the sample preparation. 

 

As a general rule, prepare 1 blank per 8-10 samples if all samples are of similar size and are spiked with 

the same amount of carrier and you expect they will go through the exact same column chemistry. If 

sample weights should vary by a factor of 3, make up 2 blanks, one to represent small samples and one 

for large samples, or if you know or even just suspect some of your samples will require more column 

chemistry, prepare an extra blank. 

 

The blanks are treated exactly like a sample. Use the same size Savillex jar as you used for your samples, 

rinse the sides down w/ MQ-water as you did for the quartz, and add the carrier in the exact same 

manner. Prepare blanks at the same time you weigh out and spike samples.  
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Sample Dissolution 

 

SAFETY INFORMATION: You will be using very large volumes of concentrated HF in this step. 

Follow all safety precautions. Do not work alone in the lab while pouring large volumes of HF. The 

sample may react upon addition of concentrated HF, so add the HF slowly and use extra caution with a 

large sample. Do not swirl your samples for a few hours. 

 

Don gloves, sleeve guards, face shield, and apron. Weighed and spiked samples are taken to the hood. In 

the fume hood, for each sample: 

 

o Add ~5 ml HF per gram of quartz from the bottle-top dispenser. (Reagent A.C.S. grade is ok)  

 

o Screw the caps on the beakers, loosely at first, to allow for any release of gas if the samples are 

reactive. After a few hours, tighten the lids. 

Roseanne says: If quartz is clean, samples will not react when HF is added. 

 

o If you have the time, just let the samples sit until they’re dissolved, rather than putting them on a 

hotplate. It’s the easiest and cleanest way to handle them.  You eliminate having to deal with 

condensation on the lids, and the deposition of silica and fluoride salts on the lid. A 5 gram sample 

will dissolve in about a day while a 50 gram sample will need several days. Swirling them several 

times/day helps. Make sure the caps are on tightly! Wear full protective gear including face shield 

when handling the bottles 

 

You can speed the dissolution up with heat, but first allow the samples to sit overnight before placing 

them on the hotplate. You can heat them initially with the lids off and at a very low temperature (~125 °F) 

for a few hours so you are sure they won’t react violently. Then, put the lids on tightly and turn the heat 

up to ~300 °F. It is the combination of heat and pressure that really speeds things up.  It is important that 

you used a large enough jar so there is enough headspace to accommodate the buildup of pressure. 

 

 

Note: Savillex Teflon melts at 260 °C (500 °F). Keep the temperature below 220 °C (420 °F). 

(The pancake griddles should not get this hot) 

DO NOT put Savillex containers on the ceramic hotplate 

 

 

If you are measuring Al, this is where you would take a split for stable Al measurement. Otherwise, 

continue with the dry down.  
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Evaporation & Dry Down w/ HCl 

 

Once the samples have dissolved, or are nearly dissolved, you will evaporate off all the HF. 

Fe, Ti, Al, Be, and other ions are left as chloride salts ready for anion exchange clean up. Drying down 

the solutions eliminates F- and Si via the reactions:  

H2SiF6(l) →(heating)→ SiF4(g) +2HF(g)     and     HF(l) →(heating)→ HF(g) 

 

o Open beakers, rinse droplets off of lids into jars with MQ-water 

o Place the vessels on the hotplate and evaporate at ~400 °F 

If leaving overnight, turn hotplate down to ~300 °F 

 

VERY IMPORTANT! Until the sample is completely dissolved, do not spill a drop! If you lose any 

solution at this point you are preferentially losing 9Be (the carrier). Once the sample has completely 

dissolved, 9Be and 10Be are in equilibrium, and a spill will not affect the 10/9 ratios.  

 

Small vessels that contain < 100 ml will dry down in a day.  Larger volumes may take two days or more. 

Sometimes there are minerals that won’t dissolve which you’ll centrifuge out later. 

Place a sign on the front lab door indicating that a HF evaporation is in progress. 

 

Chloride Conversion 

 

o Once all HF is evaporated, remove the Savillex jars from the hotplate and cool slightly before adding 

HCl. 

Note: HCl tends to splatter when added to a very hot beaker.  

 

o Add ~2-3 ml 6M HCl (amount not critical). Wet all sample and dry down again at ~275 °F. 

Use the larger amount for samples with a very large residue. Rinse down the sides of the beaker with 

the HCl addition and/or a little MQ-water. The residue should re-dissolve almost instantaneously. 

Samples can be moved to recirculating hood after first HCl conversion 

 

o Repeat the HCl addition (using ~2-3 ml 6M HCl) and evaporation step 2 more times 

(for a total of three HCl additions).  

 

o Cool the samples completely. Then add 2 ml 6M HCl to each sample. Close the lid, and allow them to 

dissolve. 

 

Roseanne says: The final solution may be a deep yellow-green color due to FeCl3. Some samples may 

also have thrown a fine, powdery white precipitate that will not re-dissolve. This is probably TiO2. No 

Al or Be is co-precipitated with the Ti and it can be removed by centrifuging before the anion 

exchange. 

Anion Exchange Columns 

 

 

o Rinse 15-ml centrifuge tubes w/ MQ-water and label them w/ sample ID and “Anion” 

 

o Transfer the samples to the labeled centrifuge tubes. You can pour it in, or transfer with a disposable 

pipette. If the sample is thick, sticky and full of residue it is easier with a pipette.  

 



 

80 

 

o Add another 1 ml of concentrated 6M HCl to the jar as a rinse and transfer to the centrifuge tube. 

There should be 3 ml in the tube. Samples are now ready for Anion columns. 

 

 

The anion exchange columns remove FeIII (and some Ti) in the sample. 

 

Resin = AG-1 X8 200-400# mesh. This procedure uses 3 ml of resin (=filled to the 4cm mark) 

 

The anion columns can be reused many times. Inspect the columns before use. When the anion resin gets 

too old it will take on a darker color and/or contains bubbles in it. If you need to repack columns, follow 

the procedure for column packing (see Appendix). 

 

*You can reuse the Savillex jars you dissolved your sample in if they are 90 ml or smaller, and if they are 

clean. Sometimes the digestion leaves black residue behind. This can be wiped out w/ a KimWipe, but 

should then be followed by a quick leach w/ some dilute HCl or HNO3 (~5% is fine) on the hotplate. Use 

a new clean KimWipe for each jar. 

 

 

Prep SAMPLES: 

 

o Centrifuge the samples for 10 minutes at 3500 RPM to remove solids. 

 

Prep COLUMNS: 

 

o Place waste containers under columns and drain water from columns. Discard water 

 

o Examine resin for bubbles and look on top for dirt from previous samples 

 

o Add 15 ml 1.2M HCl (fill headspace 1 ½ times). This washes the resin 

 

o Add 9 ml 6M HCl (fill headspace 1x). This conditions of the resin 
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Anion Exchange Columns 

 

COLLECT Beryllium fraction: 

 

o Place labeled 30 ml Savillex vials (or 90ml Savillex) under columns. 

 

o Load samples with disposable pipette. Use a new pipette for each sample. Drip the solution down the 

column wall, reaching as far as possible into the column with the pipette.  Do NOT pour the sample 

into the column.  Try not to disrupt the top surface of the resin. Allow them to drain through 

completely. 

 

(Elute the Beryllium fraction with a total of 9 ml 6M HCL added in 3 aliquots – 3x resin volume, allowing 

the acid to drain through before the next addition. 

 

o Add 1 ml 6M HCL 

o Add 4 ml 6M HCL 

o Add 4 ml 6M HCL 

 

Clean columns: 

Strip of Fe & Discard (you don’t need to keep this) 

 

o Replace waste containers 

o Add 9 ml 1.2M HCl 

o Add 9 ml MQ-water 

o fill columns with MQ-water, cap, and store 

 

 

John says: In strong HCl, Fe(III) forms a range of anionic Cl- complexes FeCl4
-, FeCl5

2- and FeCl6
3-, 

which bind tightly to the anion exchange resin.  These will form a yellow-brown band at the top of the 

resin column.  Al and Be do not form strong Cl- complexes and elute from the column with the HCl.  

Some Ti in the form of Ti(IV)Cl6
2- will bind, but most will drain through as cationic or neutral species, 

ending up with the Al + Be.   
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Sulfate Conversions 

 

o Add 1 ml of 0.5M H2SO4 to each Be/Al fraction and dry-down at ~275 °F. This will take ~ 4-6 hours. 

NEVER EXCEED THIS VOLUME OF H2SO4! The dried residue from this step may turn an 

alarming dark-brown to black color due to organics which bled from the anion resin. Don’t worry - it 

will disappear over the next couple of steps. 

Note: Do NOT add peroxide with the sulfuric acid in this step as it will form Cl gas! 

 

o Once dried down, cool the beakers and add 2 drops of ~2% H2O2 (hydrogen peroxide) (if using 30% 

H2O2, just use the smallest drop you can – though note that 30% H2O2decreases strength rapidly with 

time - we used 2 drops of 30% for a year-old bottle).  Then add 2-3 ml of MQ-water with disposable 

pipette. The cakes will begin to dissolve, taking on an amber/gold - red color (TiO[H2O2])2+) if Ti is 

present. Reheat the vials. The black charry material will disperse and disappear after a while.  Dry 

the samples down again. Red may creep up walls. 

 

o Cool, repeat the H2O2/water (2 drops ~2% H2O2+ 2-3 ml of MQ-water) addition, and dry the 

samples a second time.  At the end of this procedure, the samples should end up either as compact 

white cakes or small, syrupy droplets of involatile H2SO4. Samples may be slightly yellow. If they 

remain charry or dark-colored, repeat the peroxide/water addition and dry them down a third time.  

 

o Take the samples up in 4 ml of MQ water, containing a couple drops of 30% H2O2or trace of 2% 

H2O2. Warm them a little if necessary to get them back in solution. Don't risk evaporating too much 

water - keeping the acid strength low for column loading gives a sharper elution and cleaner Ti-Be 

cut. The samples are now in ~0.2 M H2SO4, ready for loading on the cation exchange columns. They 

can be stored indefinitely in this form.  

 

John says: Ca2+ can be problematic during sulfate conversion (before cation columns) because 

crystalline calcium sulfate (CaSO4 – same composition as gypsum) may form, which is difficult to re-

dissolve.  Also, during cation exchange, Ca2+ (and other cations) compete for adsorption sites with other 

cations and causes cations to elute faster (e.g. Ti may elute with only 4-5 ml of acid rather than 10 ml, 

and Be elutes right after Ti).   

 

John says: The cation column separates Al, Be and Ti. The column procedure using 2 ml of resin can 

handle 3-5 mg of Ti, if the total amount of Al and other metals is less than 3-5 mg. The method easily 

scales up and the volume of resin can be doubled or tripled.  
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Cation Exchange Columns 

 

COLUMN SETUP 

 

If reusing columns, simply setup and drain, if not reusing columns, follow below: 

o Place waste collection cups. Using a disposable pipette, add 2 ml of DOWEX-50 X8 200-400# cation 

exchange resin to each column. Fill the column with a little MQ-water and before it drains, slurry in 

a thin suspension of resin. This will immediately slow the dripping, and you can keep the column full 

with water while you slowly add more resin to the 2 ml mark. Tapping the column can help to get the 

dripping started.  Be very careful not to trap air bubbles. 

 

 

STRIPPING & CONDITIONING RESIN: 

 

o Strip the resin by filling each column headspace with 3 M HCl (This is 9 ml, equal to 4-5 resin-bed 

volumes.) Allow it to drain completely. 

 

o Condition first with 9 ml 1.2 M HCl. Drain completely. 

 

o Make up a beaker of 0.2 M H2SO4 containing a few drops of 30% peroxide (or trace of 2% H2O2.)  

This is 4 parts 0.5 M H2SO4 to 6 parts MQ water 

(75 ml MQ-water + 50 ml 0.5M H2SO4 + 3 drops H2O2 works well)  

John says: Can use roughly 50-50 solution. Accurate volumes are not important; the aim is to match 

roughly the acid strength of the sample solution. 

 

o Condition the columns by filling the headspace (9 ml) with above solution.  Allow it to drain through. 

 

o Discard any leftover conditioning acid in the waste container, and replace it with 0.5 M H2SO4 

containing a dash of 2% H2O2. (about 0.5 ml peroxide to 50 ml acid).  Remove waste containers and 

discard waste in acid-waste container.   
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Cation Exchange Columns 

 

ELUTE Ti: 

 

o Place labeled 60 ml Nalgene (“Ti/Al Fraction”) bottles under columns. 

 

o Load each sample onto its column using a clean disposable pipette. Ti will form a narrow brown band 

at the top of each resin bed, and then begin to move down the columns. Allow the sample to run into 

the resin completely. 

 

o Add 1 ml of 0.5 M H2SO4 w/ trace 2% H2O2 to each beaker as a rinse. Swirl the beakers to pick up 

any droplets of the original solution left over from the first load. Add the rinse solutions to the 

columns after they have drained. Allow this to run in completely. 

 

You will add 10 ml (5 bed volumes) of 0.5 M H2SO4 w/ trace 2% H2O2 to each column in three 

additions (4 ml + 4 ml + 2 ml). If Ti is present, you can see the Ti band move down the resin and elute 

from the columns. For samples containing Ti but very little Al, the Ti will elute slower and it may be 

necessary to add another 1 – 4 ml to completely remove Ti. 

 

o Add 4 ml 0.5 M H2SO4 w/ trace 2% H2O2. 

o Add 4 ml 0.5 M H2SO4 w/ trace 2% H2O2. Allow first 8 ml to drain through completely. 

o Add 2 ml 0.5 M H2SO4 w/ trace 2% H2O2. Drain. 

o Add additional 0.5 M H2SO4 w/ trace 2% H2O2 in 1 ml increments to completely remove Ti. 

o Repeat above step until columns are no longer dripping yellow and eluate is clear 

 

Roseanne says: You can safely elute until the eluate is clear. If the drips are immediately yellow, the 

column is probably overloaded with Al. Take note of this, but continue on. You will probably have to do a 

second column to clean up the sample. If you suspect an overload, still add 10 ml of 0.5 M H2SO4 w/ trace 

2% H2O2 to the columns. 

John says: 12 ml of the sulfuric acid eluent can be run through the columns without risk of losing Be. 

Yellow drips start with the first Ti - this shouldn't be immediate upon adding the acid.  Drip will go clear 

when Ti is gone. Do not add >14 ml. 

 

Make a note in your notebook how many mls is took to elute the Ti, how dark or light, narrow or broad 

the Ti band is, and when it started dripping yellow. 

 

 

o Remove Ti/Al Fraction bottles 
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Cation Exchange Columns 

 

ELUTE Be: 

 

o Place 30 ml labeled Savillex teflon vials under each column. Reuse from before. 

 

o Add 10 ml (5 bed volumes) of 1.2 M HCl (“10%” HCl). This will have to be added in 2 lots. There is 

no need to allow the first to drain completely before adding the second. Allow it to drain through 

completely. 

 

o Elute Blanks with 12 ml 1.2 M HCl (2 additional mls). With no other ions “pushing” the Be through 

the column, it takes a little more to get the Be out. 

 

 

ELUTE Al: 

 

o Replace 60 ml Nalgene (“Ti/Al Fraction”) bottles under columns. 

 

o Elute Al from the columns with 6 ml (~3 bed volumes) of 3M HCl. 

 

 

Clean Columns: 

 

o Flush columns with MQ-water 

 

o Fill columns with MQ-water, cap, and store. 

 

 

 

Tip: make sure there are clean centrifuge tubes for the next step. Tubes should be washed in dilute nitric - 

sit about a week, rinsed twice with water and dried in oven. 
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Beryllium Recovery 

 

Dry down 

 

o Add ~5 drops of 7.5 M HNO3 to each Be sample and dry on a hotplate at 275 F (will take ~8 hrs. If 

drying overnight, you can put temp slightly lower) 

 

o Label cleaned 15-ml screw cap centrifuge tubes for each sample.  

 

o Once the Be fractions have dried, cool and remove them from the hotplate. The Be fraction should 

have contracted to a tiny, clear droplet of concentrated H2SO4. Occasionally they will form a small 

white cake. This usually indicates the presence of either Ti or Al. 

 

 

John says: If the Be sample is troublesome to dissolve, even with heat, additional acid can be added as an 

aid. A lot of precipitate that won't dissolve implies a problem, likely calcium sulfate. Intractable samples 

usually can be dissolved with the addition of a lot of extra acid and heat. Such samples almost certainly 

will need to go back through cation columns again. Check the Ca ppm in the original ICP check. If the 

original Ca was low, this problem should never materialize.  

 

 

Transfer to Centrifuge Tubes 

 

o Pipette 2 ml of 1% HNO3 (TM-grade) into each vial. If pure, the Be fractions will dissolve freely. If 

they don’t, you can warm the vials for a few minutes on the edge of the hotplate with the lid on, or 

just wait a few hours.  

 

o Carefully pour the solution into a labeled centrifuge tube. Don’t worry if a last drop clings to the floor 

of the Be beaker, but if its large, you can pick it up w/ a disposable pipette.  

 

o Immediately add another 2 ml of 1% HNO3 into the vial as a rinse, and transfer to the c-tube.  

 

 

Brenda says: Precipitate, ignite, and pack Al and Be samples shortly before the accelerator run in which 

they will be measured.  Superstition among practitioners hold that Al-and Be-oxides slowly rehydrate if 

left for weeks or months after baking and will produce lower beam currents.  Cathodes packed in advance 

of a run (or cathodes which have to be stored after a cancelled run) should be stored in the desiccator 

cabinet in the Al-Be lab. 

 

  



 

87 

 

Beryllium Hydroxide Be(OH)2 Precipitations & Washes 

 

You will precipitate the samples two times, and do 3 washes with a pH adjusted water. This step cleans up 

your sample and gets rid of Boron contamination. You will see your samples get more clear and 

translucent with each step. 

 

o Add ~ 250 μl NH4OH to the centrifuge tube, cap it, and mix well on the vortex mixer. You should see 

the white Be(OH)2 precipitate swirling around. Using a clean pipette tip for each sample, remove ~ 1 

μl to check the pH. It should be close to 9. If the pH is below 8.5, add more NH4OH (add ~30 μl at a 

time until you reach the correct pH). 

Roseanne says: If you overshoot and the pH is 10, leave it. It’s better a little high than low. 

 

o Centrifuge for 10 minutes at 3500 RPM.  

 

o LOOK AT YOUR SAMPLES CAREFULLY AT THIS POINT and compare the sample Be to the 

blank Be.  They should all be the same size. 

Roseanne says: If the samples are larger than the blank, it indicates Al and you probably need to do a 

second cation column. If the sample is smaller than the blank, you may have lost Be. But, before you 

make this assumption, check the pH of the supernatant. If it is just pH 8, try adding more NH4OH and 

bring the pH to 9. Centrifuge again. If it is still small, just proceed to the 2nd precipitation. This 

always improves the clarity and often the size of the precipitate.  If the precipitate is still too big 

(indicating that there is probably Al in the Be fraction) go to the section on preparing a sample for a 

second column (Appendix). 

 

o Pour supernatants back into labeled 22-ml Savillex Teflon. Be careful not to pour out any precipitate. 

 

o Do a 2nd precipitation: Add 100μl of 7.5M HNO3 to all your samples. Swirl on the vortex mixer until 

precipitate has dissolved completely. Bring the volume up to 5-ml with MQ-water. Swirl again on 

vortex mixer. Re-precipitate Be(OH)2 by adding ~100μl TM NH4OH. Mix well on the vortex mixer. 

 

o Centrifuge for 10 minutes again at 3500 RPM. Decant supernatant into same rinse bottle. 

 

Roseanne says: After precipitating the Be(OH)2, do not let the samples sit around. Always centrifuge and 

pour off the supernatant immediately. Impurities in the supernatant may precipitate out of the solution 

over time defeating the purpose of precipitation and wash steps.  

 

pH 8 RINSES: 

Roseanne says: This step presumably gets rid of any Boron-10 contamination, an isobar of 10Be. 

o Bring solution volume up to 5 ml with the pH 8 adjusted water (pH8 water is MQ-water w/ few drops 

NH4OH). Swirl on the vortex mixer, centrifuge, LOOK!, and decant the supernatant into the rinse 

bottles. Do three pH 8 rinses in total. 
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Be(OH)2 Combustion  

 

Transfer Samples to Quartz crucibles 

 

o Set up clean crucibles in the Quartz sled, and on the sled, write the sample ID next to the crucible. If 

possible, do not fill all 10 positions on the sled, and make a diagram in your notebook with the 

position of each sample in the sled. Samples located over sled legs may take slightly longer to dry-

down on hotplate. 

 

o Dissolve the Be(OH)2 in the C-tubes with 25 μl 7.5M HNO3. 

Good place to pause overnight or longer. 

 

o Swirl on the vortex mixer. 

 

o Bring up to speed in centrifuge (3500 RPM @ 0 seconds) to ensure all liquid is collected. 

 

o Transfer to the crucible using the 200 μl pipette. 

Reach all the way into crucible with pipette tip, try not to get liquid on sides of crucible 

 

o With another pipette, add another 25 μl 7.5M HNO3 as a rinse. Pick this up w/ the same pipette you 

used for the sample transfer, and add this to the crucible. Use a new pipette tip for each sample. Cover 

all crucibles with lids except the one into which sample is being transferred. 

 

Hotplate Dry-Down 

 

After all samples have been transferred to the crucibles, place the sled on ceramic hotplate in the fume 

hood with crucible and sled covers off. Begin with a low temperature. You want the sample to dry on the 

bottom of the crucible and heating it too fast can result in it drying around the sides making it more 

difficult to get the sample out of the crucible after its been combusted. Suggested times: 

 

o 200 C for 15 minutes 

o 250 C for 75 minutes 

o 300 C for 150 minutes 

o 350 C for ~30+ minutes (until dry) 

o 400 C for 15 minutes (once dry) 

 

Samples will likely form small white cakes at the bottom of crucible. Samples may dry-down without 

forming white cakes, in which case the sample is very difficult to see. Don’t worry, it is not lost! Assuming 

all transfers went well, the Be(OH)2 will appear after combustion. 
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Cobust Samples 

 

o Fetch a propane torch from the flammable cabinet, 

 

o Set up torch, ring stand, and crucible tongs in the fume hood 

  

o Light the torch. 

 

o After removing the crucible covers from the vial, grasp the vial with the tongs about halfway up. 

Wave the crucible through the flame cautiously at first (if not completely dry, sample may sputter and 

bubble up if heated too fast). Once the sample begins to glow orange, hold it in the flame for 30 to 40 

seconds more. Some samples never glow, in which case 2 minutes is be more than sufficient. Remove 

it from the heat and place it back in the same spot in the quartz sled in the hood to cool. 

 

o Once cool enough to handle, cover with labeled crucible covers, and store in the recirculating bench 

for loading. Samples should be loaded as soon as possible after combusting. 

 

 

 

Tip: make sure your cathode loading tools are clean for the next step. The cleaning procedures are on the 

following page.  
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Loading Cathodes for LLNL 

 

Equipment List 

• Cathodes 

• Drill Rods, #55 

• Stainless Spatulas (scrapers) 

• Quartz rods 

• Niobium powder 

• Scooper 

• Cathode holder/stand 

• Hammer 

• Dust Mask 

• Ionizer 

 

Be extremely careful when working with beryllium metal (oxide form). Beryllium is a known health risk 

and all precautions must be followed when working with it. Always work in the glovebox, and wear a 

dust mask. 

 

• Label Cathodes 

o Make sure you are using cathodes that have been cleaned, and check each cathode to make sure 

the hole is centered, and is the correct size. We occasionally get cathodes with holes that are too 

small. Check this with the drill rod. 

o Label the cathode with the sample number, full sample name and LLNL BE#. 

 

• Clean Drill Rods 

o If you are starting with new drill rods, you only need to wipe them down with methanol. If you 

are reusing your drill rods, first wipe them off with methanol. You can rinse them with some 

water, but dry them off immediately, because they rust easily. Then, clean the ends off with 

some fine sandpaper (400 or 600 grit). Finally, rinse them off again and wipe them down with 

methanol. 

 

• Stainless Spatula’s (Scrapers) 

o These should be cleaned in a 10% nitric solution overnight. They should also get at least 1 hour 

in the ultrasonic bath. Pour off the cleaning acid into the 2nd spatula cleaning acid bottle, and 

then rinse the spatulas thoroughly. Wrap them well with KimWipes and dry them in the oven. 

 

•   Quartz Rods 

o These are cleaned in a 20% nitric solution. Follow the spatula instructions. They have their own 

teflon bottle labelled “glass cleaning”. 
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SET UP IN THE GLOVEBOX 

o Wipe down the glovebox with MQ-water thoroughly. 

o Place ionizer in the glovebox 

o Set up your tools on a clean KimWipe. 

o Set up the cathode holder on a KimWipe. 

o Set up the following waste containers: 

• Be-waste plastic bag for used crucibles, KimWipes, and gloves. 

• A waste cup with isopropanol for the used drill rods 

• A waste cup with MQ-water for the used spatulas, quartz rods 

• A waste cup with MQ-water for the used crucible covers 

o You will need the tiny scoop and niobium powder and a hammer. Wipe off the hammer with some 

isopropanol first.  

o Put on clean gloves and sleeves, and close the sample door from the inside. You’ll be here for a 

while, so you might want to grab a stool. 

LOADING THE CATHODE 

o Place the cathode on the holder 

o Fetch the next crucible and take the lid off. 

o Add 2 level scoops niobium. You can adjust this up or down for larger and smaller samples. 

o Using the quartz rod first, gently mix the niobium into the sample. Once the Niobium is mixed in, 

static is usually not a problem, but before that, the Beryllium can be rather flaky. 

o Grind the Niobium and Beryllium together, as you would grind something up with a mortar and 

pestle. 

o Using the stainless steel scraper, scrape together the mixture into the bottom. 

o Repeat the quartz rod grinding and scraping a few times. 

o When the sample is fully homogenized, use the scraper to collect it into the bottom. You can also tap 

the crucible on your work surface to get it to collect. 

o Carefully tilt the crucible on the edge of the cathode, at a 45 deg. angle or so, and gently tap the 

crucible, and the cathode with the scraper. This will cause it to pour down onto the cathode. If it 

doesn’t slide right into the hole, simply tap the sides of the cathode. It will. 

o Using the drill rod, hammer the sample into the hole. Hammer hard for about 20 taps, then remove the 

drill rod, take the sample off the holder and tap it a few times on the holder. Then hammer another 20 

pretty hard taps. Repeats the hammer followed by tapping a total 3 times, and finish off with about 10 

more gentle taps. ~70 total hammer taps! 

o You can gently turn the cathode upside down on the clean KimWipe to check that it isn’t going to 

spill out.  

o Store the cathode in a labeled storage vial, and double check that all your labels are correct.  

o Wipe down your work area before loading the next cathode. 

o Store samples in desiccator until they are shipped to LLNL. 

 

Notes: 

Preparing Resin and Packing Columns 

 

Resin Preparation 
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• Soak the resin in 6M HCl in the designated bottle. After a few hours, decant the HCl into a waste 

container. Fill the bottle w/ MQ-water, shake and decant after the resin has settled. This will take a 

couple of hours. Do this 2-3 more times so that it is no longer strong acid. 

 

Packing columns with resin 

o Before filling the columns with resin, fill the column with water and make sure it drips.  Usually 

tapping the column up and down a few times breaks the surface tension and it’ll begin to drip. Or, 

squirt in a few drops of methanol before adding water. 

 

o Then, fill the column with MQ-water and using a disposable pipette immediately add some resin from 

the batch soaking in MQ-water. The initial resin will settle onto the frit and immediately slow the 

water dripping through. Keep the water volume full while you add the resin.  The resin should settle 

out gradually and evenly as it is added thus avoiding air bubbles getting trapped in the resin bed. 

Continue to add resin to the column until the proper volume is reached. If you do get air bubbles, fill 

the column with some water and suck up the resin with the pipette to re-suspend it and usually it will 

resettle without bubbles.  

 

 

You’ve overloaded a column! Preparing samples for a 2nd Cation Column 

 

• You still have to precipitate the sample. This is the only way to remove the sulfuric acid. So, do that, 

and note the volume of precipitate.  

• Dissolve the BeOH precipitate in 2ml of 3M HCl and transfer it back to a Teflon beaker. 

• Then follow the normal procedure for Sulfate Conversions. 

 

 

Table A.1. Acid strengths. 

Chemical Molecular Formula 
Approx. Strength of 

Concd. Reagent 

Molarity of Concd. 

Reagent 

Hydrofluoric Acid HF 49.0 % 28.9 

Hydrochloric Acid HCl 37.2 % 12.1 

Nitric Acid HNO3 70.4 % 15.9 

Sulfuric Acid H2SO4 96.0 % 18.0 

Ammonium Hydroxide NH4OH 56.6 % 14.8 
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DOUBLE CATION COLUMN – (4ml resin) 

 

• Use the larger columns. 

• Fill w/ 4 ml resin. Note, that these columns are marked w/ height in cm., and not volume. 4 ml is just 

under the 6 cm. mark. 

 

 

STRIPPING & CONDITIONING RESIN: 

 

o ~ 18 ml 3 M HCl (Fill to the top twice.) Allow it to drain completely. 

o ~ 18 ml 1.2 M HCl. Drain completely. 

o ~ 18 ml 0.2 M H2SO4 containing a trace of 2% H2O2. Drain. 

 

Remove waste trays and discard acid into waste containers. 

 

ELUTE Ti: 

 

o Place 60 ml rinsed and labeled (“Ti/Al Fraction”) bottles under columns. 

o Load each sample onto its column using a clean disposable pipette. YOU STILL LOAD in 4 ml. 

Allow to soak into the resin completely. 

o Add 1 ml 0.5 M H2SO4 containing a trace of 2% H2O2to each beaker as a rinse and add to the column. 

o Add 18 ml of 0.5 M H2SO4 w/ trace 2% H2O2to each column. It may be necessary to add a further 4-5 

ml of 0.5 M H2SO4 to completely remove Ti. Note how much you use. 

 

ELUTE Be: 

 

o Place 22 ml labeled Teflon vials under each column. 

o Add exactly 20 ml of 1.2 M HCl (“10%” HCl).  

 

ELUTE Al: 

 

o Place 15-ml bottles under each column to collect the Al fraction. Add 12 ml of 3M HCl. 
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APPENDIX B 

ICP-OES RESULTS 

 

Table B.1. ICP-OES results for quartz used in surface-exposure dating. 

ID Al (ppm) Be (ppm) Ca (ppm) Fe(ppm) Ti (ppm) 

TGP-16-01 238 0.046 165 108 75 

TGP-16-02 230 0.125 173 207 72 

TGP-16-03 270 0.050 100 178 123 

TGP-16-07 243 0.140 126 292 86 

TGP-16-08 227 0.077 101 114 54 

TGP-16-09 224 0.125 165 105 81 

TGP-16-10 270 0.099 136 60 75 

TGP-16-12 209 0.000 162 41 65 

TGP-16-13 199 0.050 269 245 83 

TGP-16-14 243 0.075 152 94 101 

TGP-16-16 262 0.043 122 89 95 

TGP-16-18 211 0.026 40 33 65 

TGP-16-19 220 0.036 63 41 70 

TGP-16-30 222 0.038 52 33 75 

TGP-16-31 202 -0.006 104 33 68 

TGP-16-32 230 -0.011 89 38 69 

TGP-16-35 205 0.037 178 52 66 

TGP-16-36 211 0.061 117 32 66 

TGP-16-37 225 0.044 128 82 71 

TGP-16-38 269 0.118 88 69 74 

TGP-16-39 210 0.049 115 34 69 

TGP-16-40 178 0.041 165 55 48 

TGP-16-51 225 0.060 150 72 74 

TGP-16-52 191 0.063 218 23 63 

TGP-16-53 217 0.113 225 147 92 

TGP-16-56 306 0.086 112 61 60 

TGP-16-57 239 0.076 121 32 60 

TGP-16-59 278 0.110 119 149 193 

TGP-16-60 269 0.000 23 139 19 

TGP-16-61 298 0.132 117 52 65 

TGP-16-62 365 0.132 157 69 78 

TGP-16-65 223 0.127 104 50 78 

TGP-16-66 273 0.151 97 107 70 

TGP-16-67 258 0.099 99 91 84 

TGP-16-68 255 0.043 167 44 67 

TGP-16-69 247 0.107 227 80 81 
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Table B.1. Continued.  

TGP-16-70 233 0.071 100 49 76 

TGP-16-71 192 0.071 46 66 40 

TGP-16-73 182 0.133 4 5 45 

TGP-16-74 223 0.119 122 50 69 

TGP-16-75 248 0.118 95 98 80 
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APPENDIX C 

SAMPLE CATALOG 

Appendix C is catalog of all boulders sampled from the Tsagaan Gol-Potanin Glacier valley 

(TGP). Of the 76 samples collected, 41 were processed for surface-exposure dating. The form includes 

latitude, longitude, elevation, boulder dimensions, shielding values, dip, and dip direction of the sample 

site. Also included are photographs of each sampled boulder and a description of boulder and geomorphic 

setting. For pages describing processed samples, the form includes the 10Be age and shielding values. 



 

97 

 



 

98 

 



 

99 

 



 

100 

 



 

101 

 



 

102 

 



 

103 

 



 

104 

 



 

105 

 



 

106 

 



 

107 

 



 

108 

 



 

109 

 



 

110 

 



 

111 

 



 

112 

 



 

113 

 



 

114 

 



 

115 

 



 

116 

 



 

117 

 



 

118 

 



 

119 

 



 

120 

 



 

121 

 



 

122 

 



 

123 

 



 

124 

 



 

125 

 



 

126 

 



 

127 

 



 

128 

 



 

129 

 



 

130 

 



 

131 

 



 

132 

 



 

133 

 



 

134 

 



 

135 

 



 

136 

 



 

137 

 



 

138 

 



 

139 

 



 

140 

 



 

141 

 



 

142 

 



 

143 

 



 

144 

 



 

145 

 



 

146 

 



 

147 

 



 

148 

 



 

149 

 



 

150 

 



 

151 

 



 

152 

 



 

153 

 



 

154 

 



 

155 

 



 

156 

 



 

157 

 



 

158 

 



 

159 

 



 

160 

 



 

161 

 



 

162 

 



 

163 

 



 

164 

 



 

165 

 



 

166 

 



 

167 

 



 

168 

 



 

169 

 



 

170 

 



 

171 

 



 

172 

 



 

173 

 

BIOGRAPHY OF THE AUTHOR 

 

 Mariah Radue was born in Washington, D.C. and grew up in Maryland. She graduated from 

Sandy Spring Friends School in 2010. Mariah attended Carleton College, where she received a degree in 

geology in 2014. After Carleton, Mariah was a student on the Juneau Icefield Research Program, a ski 

instructor at Grand Targhee Resort, and a Geological Society of American GeoCorp intern at Mount 

Rainier National Park. As a part of geology field work, Mariah has traveled to South Dakota, Minnesota, 

Missouri, Washington, California, New Zealand, West Virginia, southeast Alaska, northern Maine, 

Mongolia, and China. She entered the University of Maine in June 2014. Mariah is a candidate for the 

Master of Science degree in Quaternary and Climate Studies from the University of Maine in May 2018. 


	The University of Maine
	DigitalCommons@UMaine
	Spring 5-2018

	Glacial History of the Tsagaan Gol- Potanin Glacier Valley, Altai Mountains, Mongolia
	Mariah J. Radue
	Recommended Citation


	tmp.1532017418.pdf.KOyn1

