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Abstract

The purpose of this thesis is to develop a relationship between mathematics and physics

through differential equations. Beginning with first-order ordinary differential equations,

I develop a pathway describing how knowledge of differential equations expands through

mathematics and physics disciplines. To accomplish this I interviewed mathematics and

physics faculty, inquiring about their utilization of differential equations in their courses

or research. Following the interviews I build upon my current knowledge of differential

equations in order to reach the varying upper-division differential equation concepts taught

in higher-level mathematics and physics courses (e.g., partial differential equations, Bessel

equation, Laplace transforms) as gathered from interview responses. The idea is to present

a connectedness between the simplest form of the differential equation to the more compli-

cated material in order to further understanding in both mathematics and physics. The main

goal is to ensure that physics students aren’t afraid of the mathematics, and that mathe-

matics students aren’t without purpose when solving a differential equation. Findings from

research in undergraduate mathematics education and physics education research show that

students in physics and mathematics courses struggle with differential equation topics and

their applications. I present a virtual map of the various concepts in differential equations.

The purpose of this map is to provide a connectedness between complex forms of differ-

ential equations to simpler ones in order to improve student understanding and elevate an

instructor’s ability to incorporate learning of differential equations in the classroom.
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Chapter 1

Introduction

As an undergraduate double major in Mathematics and Physics, I’ve had an educational

experience that has inspired the writing of this thesis. While it may be expected that the

mathematics and physics departments would bear a strong connection, in my experience

there was a noticeable disconnect. Specifically, I found the disconnect centered around the

implementation of differential equations in both math and physics courses. In my differen-

tial equation courses, I learned how to solve a variety of differential equations with little to

no context. In my physics courses, it was the opposite. Differential equations in physics

are presented primarily through context with little to no mathematical formalism.

Be mindful that this is not an education research thesis. I present background literature

in research in undergraduate mathematics education and physics education research in or-

der to demonstrate content connections – and lack thereof – documented in prior studies on

student learning. Although I use education research as supporting information, it is only a

basis on which I intend to build in order to demonstrate the implementation of differential

equations in mathematics and physics classrooms and how students and instructors utilize

the different mathematical and physical tools at their disposal.

The purpose of this thesis is to explore the interconnection between physics and math-

ematics through differential equations, based primarily on my educational experiences but

also on information gained from the education research literature and interviews of instruc-
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tors of differential equations courses and relevant physics courses. The centerpiece of this

thesis is a constructed map I have built to show intellectual links between mathematical

theory and concepts in physics. The map provides a visual relating the various types of

differential equations and the solution methods typically used to solve those differential

equations. Additionally, there are branches of the map connecting physical applications

typically taught in mathematics and physics courses to the different types of differential

equations. To build this map I utilized my own personal class notes as well as instructor

interviews to explore how content in differential equations is linked across mathematics

and physics curricula. In the instructor interviews I asked questions related to the types of

differential equations instructors taught in their courses, the solution methods to solving

those differential equations, as well as any physical applications which correspond to the

various different differential equations. Putting all the information together produced a de-

tailed visual map highlighting the connections between various mathematics and physics

topics through differential equations. The map is built as a tool for instructors and stu-

dents alike to demonstrate how earlier mathematical ideas help build up to more complex

mathematical and physical content. I want to emphasize the importance of what I refer

to as experiential learning. I define experiential learning as utilizing previously learned

content, either from life or the classroom, to understand and further develop skills through

more complicated material. In mathematics, I consider experiential learning concepts to be

content that (not necessarily math-focused) students have seen before and can utilize when

solving more complex mathematical problems. The physics aspect provides an added el-

ement to experiential learning, contributing physical applications to aid in understanding

beyond the raw mathematics. This is not a one-way street, where physics only helps make

sense of the mathematics; in many instances the mathematics can clarify details in physics.

Overall, the visual map I’ve built has its place on a larger scale. This map focuses on a

specific part of a global image which demonstrates the interrelated structure of differential

equations. The best self-visualization I have is a family tree. A family tree comprised of

the span differential equations cover with the ordinary differential equation set analogous
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to the oldest generation (the top of the tree). From the ordinary differential equation one

can construct a pathway to more complex content in differential equations. This thesis

puts a spotlight on a few select pathways from the ordinary differential equation to various

applications in undergraduate physics courses. In order to present these ideas with the

reader in mind, I supply a step-by-step sequence of differential equation topics that I hope

demonstrate the correlation of distinct ideas taught in mathematics and physics courses in

order to aid in understanding.
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Chapter 2

Background Content

2.1 The Differential Equation

A differential equation (DE) expresses a relationship between a function and its derivative;

this typically represents a relationship between a quantity and the rate of change of that

quantity. For differential equations, the goal is no longer about algebraically solving for a

number, but instead solving for functional solutions primarily using ideas from Calculus.

The solution to a differential equation is a function that satisfies the relationship between

the derivatives and the function described by the differential equations. There are a few

categories in which to describe a differential equation, and commonly different categories

present different solution types. The first category is the order of a differential equation

which is determined by the highest order derivative term in the differential equation. The

following are examples of first- and second-order differential equations:

First Order DE :
dy

dt
+ a(t)y = b(t) (2.1)

Second Order DE : − ~2

2m

d2ϕE(x)

dx2
+

1

2
mω2x2ϕE(x) = EϕE(x). (2.2)

Equation 2.1 is a first order differential equation because the first derivative term dy
dt

is the

highest order derivative term in the equation. The second-order differential equation (2.2)

is the energy eigenvalue differential equation for the quantum harmonic oscillator which is
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discussed in detail later in the paper. It’s a second order differential equation because the

second-derivative term d2ϕE(x)
dx2

is the highest order derivative term in the equation.

The next category is whether a differential equation is homogeneous or

non-homogeneous. The following equations show the difference between homogeneous

and non-homogeneous differential equations:

Non-Homogeneous First Order DE :
dy

dt
+ a(t)y = b(t), b(t) 6= 0 (2.3)

Homogeneous First Order DE :
dy

dt
+ a(t)y = 0, b(t) = 0. (2.4)

Equation 2.3 is a non-homogeneous differential equation because the terms cannot be re-

arranged such that the right hand side (in this case (b(t) is equal to zero. On the other

hand, 2.4 is a homogeneous differential equation because the terms can be rearranged

such that the right hand side, b(t), is zero. Whether an equation is homogeneous or non-

homogeneous leads to different solution types for differential equations. The difference

in homogeneity can be utilized when describing various physical systems as well. If the

function and rates of change for a particular system have a functional dependence on the

right hand side of the differential equation, it will be non-homogeneous.

The third category which describes differential equations is the notion of whether one

is linear or non-linear. A differential equation is linear if the variables and derivatives are

multiplied by constants or variables independent of the solution function. An example of a

non-linear differential equation is

dy

dt
= y2 = y · y

where the variable y is clearly not independent of the solution y itself. Non-linear dif-

ferential equations can be challenging to solve. Typically it requires that the differential

equation is linearized. This allows us to utilize linear solution techniques, which we focus

on primarily in this paper, in order to solve the more complex differential equation. It is

common to have systems of linear equations. Later on we discuss transforming between

second-order differential equations and systems of first-order linear differential equations
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as a technique for solving second-order differential equations. The aspect of linear is a

useful tool in context of differential equations in simplifying a more complex differential

equation or system.

The last category used to differentiate differential equations is whether or not a differen-

tial equation is Ordinary or Partial. An ordinary differential equation (ODE) is a differential

equation where the solution is an unknown function of one independent variable. A partial

differential equation (PDE) is a differential equation that contains partial derivatives, as

opposed to ordinary, where the solution is an unknown function of multiple independent

variables. Below is an example of a partial differential equation:

ut = uxx + uyy, (2.5)

where u(x, y, t) is a a function of three independent variables. Equation 2.5 is known as

the heat equation (in two dimensions). Here the notation ut and uxx represent partial first

and second derivatives where ut = ∂u
∂t

and uxx = ∂2u
∂x2

.

Knowing these classifications is the first step of many in relating the ideas and im-

plementations of differential equations. The classifications produce a variety of different

concepts to explore in the realm of differential equations. The rest of the paper breaks

down the specific differential equations taught in a general undergraduate sequence build-

ing up to a interconnected visual map between the mathematics of differential equations

and the experiential contextualization in physics. First we explore the literature that pro-

vides a foreground in student learning of differential equations in mathematics and physics

to highlight some of the key implementations of differential equations found in earlier ed-

ucational research studies that I use as a base to building my map.
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Chapter 3

Background Literature

Despite the centrality of differential equations and their solution methods in undergraduate

mathematics, science, and engineering curricula, there have been fewer than 24 empirical

studies published in top journals in the past 12 years related to the teaching and learning of

differential equations.[1] One reason for this may be the focus in research in undergraduate

mathematics education (RUME) and physics education research (PER) on introductory

courses at the undergraduate level. The following sections discuss research on common

student difficulties and strategies for reinventing solutions in differential equations in each

of these disciplines. This highlights how students utilize prior knowledge in mathematics

or physics to solve more complex mathematical and physical ideas.

3.1 Student Difficulties: RUME

Student difficulties in undergraduate differential equations education is an expanding re-

search topic(e.g., [1-7]). A consistent finding in the research literature in undergraduate

mathematics education is that students face epistemological challenges across multiple

facets of solving differential equations. Additionally with respect to multiple representa-

tions of a solution (analytical, numerical, or graphical), students tend to privilege algebraic

approaches to graphical, despite being in classes which emphasize graphical and quali-
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tative analysis[1]. This is an example where experiential knowledge, such as algebraic

approaches, may be favored by students, while students may avoid or have trouble under-

standing what they may consider more complicated methods (e.g., graphical approaches).

Breaking away from experiential, solving for a function rather than a number may be a

new idea for students in differential equations[2]. It’s a challenge in mathematics education

to create learning environments in which students generate, refine, and extend their intuitive

and informal ways of reasoning to more sophisticated and formal ways of reasoning[3].

While mathematics and physics curricula are structured sequentially such that advanced

classes and topics stem from previous courses/concepts, making the logical connections

can be difficult.

In differential equation courses, solution methods can be taught using new or foreign

concepts, preventing students from utilizing their intuition to help comprehend a solution.

For instance, research states that most, if not all, differential equations textbooks solve sys-

tems of linear differential equations using techniques from linear algebra. Students are typ-

ically taught to find eigenvalues and corresponding eigenvectors, and from there they form

an analytic solution. This solution strategy often stems from the characteristic equation.

Mathematical ideas like eigenvalues, eigenvectors, and the characteristic equation tend to

be poorly understood by students[3]. We will see later an example where students simplify

solving a system of linear first order differential equations demonstrating knowledge of

straight line graphing as opposed to typical eigenvalue/eigenvector solution approach. In

this particular example students developed a strategy using their experiential knowledge of

slopes and ratios as a substitute for the standard linear algebra approach.

Another major challenge comes from the fact that universities are now accepting a

much larger and more diverse group of students[4]. This adds an additional layer of com-

plexity to the expectation that students will exploit prior knowledge in order to enhance

their understanding of differential equations. Consequently, the educational issues facing

universities have changed, introducing new pedagogical challenges. One response to these

challenges is to develop new curricular and instructional approaches based on contempo-
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rary theories of learning and instructional design. One such innovative approach, referred to

as the Inquiry-Oriented Differential Equations (IO-DE) project, is establishing that graphi-

cal and numerical approaches should not be taught as ends in and of themselves, but rather

should emerge as tools for students as they solve challenging problems [5]. I plan to show

that physical context and mathematical formalism can share a similar functionality for stu-

dents. In their respective disciplines, mathematics could view physical contextualization as

a guide to enhance student understanding, and likewise, physics courses could avoid using

mathematics purely as a means to a desired result. Physics and mathematics build off of one

another and may be considered mutually exclusive. When we do not contextualize math or

physics, students find that getting an answer is sufficient and that they’re not expected to

understand why the result makes sense. This is a consequence of rule-based explanations

or the ”because the professor said so” cliché[2].

A differential equation is a relationship between some quantity and that same quantity’s

rate of change[6]. These quantities are primarily expressed as functions in mathematics

and physics. In a study by Kuster[6] one resource students accessed was what he called

functional dependence, which provided support for relating specific values in differential

equations, as well as determining which equations potentially matched a vector field based

on which variables the value of the derivative term dy
dt

depended on. Kuster defines the term

“resource” as a small set of small-scale knowledge elements that have a productive role

during the process of problem solving. In Kuster’s analysis of two students, he noticed that

while both of the students utilized many of the same resources, their application of them in

the individual tasks was different more times than not. Similarly the interpretations of the

differential equations and their components within tasks were often different[6]. This sup-

ports that students approach content in mathematics differently, and that different solution

methods and multiple representations of differential equations may increase overall student

comprehension.

Students don’t just have difficulties with differential equations in mathematics courses;

researchers in physics education are exploring challenges students face with differential
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equations in physics as well. A few common findings are discussed in the next section.

3.2 Student Difficulties: PER

Research into student difficulties at the upper division is a growing area of physics educa-

tion research (PER) (e.g., [8-14]). Students in upper-division courses are asked to manip-

ulate increasingly sophisticated mathematical tools as they tackle more advanced physics

content[10].

In one study, researchers explored student difficulties with the mathematical procedure

of separation of variables, which is common to upper division physics and is a common

tool used when solving first order differential equations [9]. The equation students were

asked to separate is:

mv
dv

dx
= mg − bv2,

based off Newton’s second law (which we will discuss in detail later). Wittmann and Black

argue that there are multiple procedural resources that can be brought into problem solving,

and these resources are used in different combinations by different students. In this study,

the particular resources are algebra based, including the operations of multiplication, divi-

sion, addition, subtraction, and grouping[9]. It is not uncommon to see that students have

multiple approaches to solving a given problem, and many students appear more comfort-

able with their own personalized strategy in approaching it. In fact, students generally have

a multitude of ways to correctly solving a problem, and it’s important to recognize these

different solution pathways, specifically recognizing their values and shortcomings[9]. In

physics, there rarely is one specific way in which a solution to a problem can be found.

Therefore, there may be more than one solution method to solving differential equations

in a physics context. This goes back to allowing students to manipulate algebra in a way

that makes sense to them. It may be that one pathway to a solution is more effective than

another, but knowing what to suggest to a student in a given moment requires an under-

standing of the variety of student thinking [9].
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There are obviously many factors which influence student thinking including their edu-

cational background. The variety of approaches in algebraic strategies utilized in separating

an equation may stem from student differences in educational background. To account for

the diversity in techniques, instructors should be prepared to share different approaches to

solving problems in order to accommodate for student needs. This will be a key point in my

project as I attempt to shine a light on different mathematical and physical solution path-

ways in order to meet the knowledge based needs of a broad range of students with varying

educational backgrounds. Let’s consider using mathematical actions as a kind of thought

[9]. Every mathematical action may be a tool for students. For example, students are not

just dividing, but the action of division serves a thoughtful purpose. As educators, we need

to provide thought through mathematical action (as a tool) in order to improve student un-

derstanding. This thought through mathematical action is highly prevalent in a physics

differential equations context. Many of the differential equation solutions in physics we

will find lend themselves to the properties of the mathematical tool students use. There

may be more than one tool capable of finding the solution, and as educators we must help

students utilize these mathematical tools in order to make sense of this physics. Otherwise,

students may become lost in the mathematics, and in turn, unable to provide any physics

understanding. This becomes clear in the next study.

One common technique in solving partial differential equations in a physics context

is separation of variables (SOV). Here they use the term SOV to refer to the technique

of guessing a general solution with a functional form that allows the partial differential

equation to be separated into several ordinary differential equations and then solving these

ordinary differential equations individually with appropriate boundary conditions. This

technique is not to be confused with the strategy, also conventionally referred to as separa-

tion of variables, used to solve separable ordinary differential equations by isolating terms

with the function on one side of the equals sign and the independent variable on the other

side and integrating both(discussed in the last study)[10]. In an undergraduate physics cur-

riculum partial differential equations appear in numerous contexts including waves on a
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string, thermodynamics, and the Schrödinger equation. In one study students had difficul-

ties with construction of the model (mapping between the physics and mathematics of a

problem), specifically when they would inappropriately eliminate mathematical terms, in-

correctly set up or fail to utilize the nonzero boundary condition, or set up an integral (i.e.

Fourier’s trick) incorrectly. The majority of these issues arose from incorrectly establishing

an expression to match the nonzero boundary condition[10].

In the same study, when executing the mathematical formalism students typically would

write down solutions from memory or an equation sheet. About twenty-percent of the stu-

dents relying on memorization/regurgitation provided a general solution inconsistent with

the ODE they were solving. Common mistakes included an incorrect function form based

on the sign of the separation constant as well as misusing the separation constant in the

general solution[10]. This begins to demonstrate that memorization/regurgitation of gen-

eral solutions alone can be an inefficient method for determining specific solutions for

differential equations. In order for students to correctly express the mathematics, they must

additionally consider the context of the specific situation. Additionally, in the study when

student’s were asked to determine nonzero constants, the researchers found that more math-

ematical errors occurred applying Fourier’s trick as opposed with term matching. This is

most likely due to the mathematical rigor of a Fourier transform being an inherently more

demanding mathematical strategy[10]. This supports that there may be alternate strategies

to determining solutions (or specific aspects to solutions) which are mathematically favor-

able to students. The concept of a Fourier trick may be unfamiliar and/or complicated for

students as opposed to the more algebraic approach with term matching.

3.3 Simplifying the Problem

An idea from engaged model construct theory is that students engaged in mathematical

activity can reinvent formal mathematics starting with experientially real situations[1]. For

experientially real situations consider physical and natural applications that students would
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be familiar with. Grounding mathematics in familiarity may provide students with the

means to develop their own mathematical strategies to apply on current and future prob-

lems. Realistic Mathematics Education (RME) focuses specifically on engaging students

in the reinvention of mathematical ideas in differential equations[3]. It may be possible

to reinvent ideas using previous, possibly simpler solution methods and mathematical con-

cepts. Typical in students’ mathematical work is treating mathematical terms as physical

objects, offering an interplay of metaphor and bodily motion, which are significant el-

ements of doing mathematics[1]. Students naturally work toward making mathematics,

including the pure symbolism, a physical construct which they can manipulate in order

to enhance their mathematical comprehension. In differential equations, the derivatives

represent physical rates of change, the solution models particular behavior, and solution

methods for differential equations, like separation of variables, can have analogous physi-

cal attributes.

Currently typical instruction at the undergraduate level tends to not encourage students

to create their own strategies, but recent educators have been exploring approaches that

invite learners to build their own ideas and ways of presenting these ideas[3]. To see how

students utilize experiential knowledge to develop their own solution methods let’s discuss

a study focused on linear systems of differential equations. Linear systems of differential

equations typically arise in physical and natural sciences as a way to describe two or more

simultaneous rates of change. These systems are formed in order to analyze solutions to

higher-order differential equations by reduction of order. The typical method for solving

linear systems of differential equations involves ideas from linear algebra. Students are

typically taught to find eigenvalues and corresponding eigenvectors and then form an an-

alytic solution, which often stems from the characteristic equation. These mathematical

ideas tend to not be well understood by students. These concepts are discussed in more

detail later in Section 5.2.15.1.

In this study [3] a unique approach called “eigenvector first approach” or “slope first

approach” is developed as a substitute for the linear algebra eigenvalue method. Focus-
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ing on eigenvectors first extends students’ strong mathematical and intuitive understand-

ing of slope[3]. Any preexisting knowledge of slope is the experiential aspect of form-

ing a new solution. It’s assumed that students’ comprehension of slopes is better than

their understanding of eigen-based concepts from linear algebra. Using ideas from slope,

students created an innovative analytic solution method that combined graphic and ana-

lytic representations[1]. The new solution method is referred to as the straight line so-

lution (SLS) method which was designed as a simplification to the common eigenvalue

method described above. SLSs are significant mathematical ideas because they serve the

basic building blocks for all other solutions of linear and non-linear systems of differential

equations[3]. To see my derivation of the straight line solution method see Section 5.2.15.2.

If a teacher wants students to reinvent important mathematical ideas, it is the responsi-

bility of the teacher to foster in students the kind of curiosity and mathematical goals that

have the potential to lead to the intended reinvention[3]. I interviewed course instructors to

determine whether or not they are implementing multiple strategies for solution methods

for students. Instructors have a variety of tools, but what if instructors are having students

drive a nail with a wrench, as opposed to a hammer? Then students are attempting so-

lutions with complex, less understood, methods. The goal is to determine methods from

which students gain the most understanding. As we know, student learning is grounded in

experientially “real” situations, which leads to the development of formal mathematics. For

systems of differential equations, the “real” includes the slopes of vectors[3]. For example,

it is common for students to have worked with slope-intercept form of linear expressions

and graphing linear relationships in Algebra focused courses earlier in their mathematics

education. The straight line solution method as fore-mentioned provides a graphical solu-

tion to supplement the analytic solution known as a phase diagram, or phase portrait. The

phase portrait is the collection of solution graphs contained in the phase plane. This graph-

ical representation for solutions emerges as a new mathematical reality for students.[3]

This further supports the centrality of interplay between numerical, graphical, and analytic

representations in students’ mathematical work.[1]
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Chapter 4

Methods

The goal of this thesis was to show how various differential equations content in mathe-

matics and physics curricula are interrelated in my experience and analysis. Subsequently,

I explored the interconnectedness of ideas and solution strategies implemented in a typical

sequence of mathematics and physics courses. This information helped to build a map,

visually demonstrating the intellectual connections between different topics in differential

equations. In order to gather this information I went back though my class notes for courses

from Calculus II up to a senior level Quantum & Atomic physics course. Along with the

class notes, I went back to the textbooks associated with each course to further acquire data

to include in the final mapping of ideas. To prevent the thesis being entirely biased by my

course notes and textbooks, I vetted research literature in student learning of differential

equations to gain further insight on the typical differential equations material covered in

mathematics and physics courses. The literature did in fact provide ideas not provided by

my classwork or instructor interviews.

Interviewing instructors was the third method by which I gathered information for

building my map. Asking a series of eight questions to eight faculty across mathematics

and physics disciplines, I gathered information on what exactly instructors implement in

their classrooms. The instructors primarily helped in establishing a timeline of information

flow typical for their coursers, as well as mathematics and physics curricula in general. In
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terms of the visual map, the faculty interviews helped connect the dots between the various

facets of content between types of differential equations, their solution methods, and the

physical applications attributed to them. This chapter breaks down the different methods

going into more detail about their specific role in constructing the map.

4.1 Class Notes

The primary source material for this thesis is my own reflection on the education I’ve re-

ceived as an undergraduate mathematics and physics double major. I’ve reviewed the notes

and material from the courses I’ve taken as a guide to construct the intellectual progression

from the ordinary differential equation to higher level concepts in mathematics and physics.

The courses I’ve taken relevant to this project are Calculus II, Differential Equations, Clas-

sical Mechanics, Electricity and Magnetism, Physical Electronics, and Quantum & Atomic

Physics. Many examples found throughout this project are taken directly from the notes I

took for these courses. On top of the notes I’ve taken as a student I include any information

garnered from the textbooks associated with each course. Additional examples are taken

from variations of problems that I previously solved as a student of the course, either from

the instructor or the textbooks. Any additional information from the textbooks is an inher-

ent supplement of the education I received, and will provide its own unique perspective on

the differential equation topics covered in each class. While many instructors teach “by the

book,” there were a few occasions where professors would deviate from the textbook, and

the textbook would be an extra guide for my own growth and understanding. At times the

textbook provides details the professor didn’t cover and there are times when the professor

would clarify vague aspects of the textbook, or go above and beyond what the textbook

offers in terms of content. For instance, not all textbooks provide the same solution method

for particular differential equations. Reasons akin to these are why I chose to include both

my notes and textbook material as tools for my project on building a map of differential

equation related ideas. A full list of textbooks will be listed in the References (e.g., [22]-
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[25]). My personal class notes are biased to my unique experience in the particular courses

I took. To reduce biased information from the project I looked at research literature and

conducted faculty interviews with instructors from the math and physics departments to

broaden the scope of ideas and content for this thesis.

4.2 Literature

A portion of my research comes from research in the fields of mathematics and physics ed-

ucation. The literature provided different solution methods that I hadn’t discovered through

my own experiences and that I believe are invaluable to my overall project. The literature

provided information that was not biased to my own experience or the course/faculty rou-

tine at the universities where I conducted the interviews. I chose to include aspects of the

vetted literature as an attempt to explore a broader scope of learning in mathematics and

physics education centered around differential equations. I am aware that my individual

education did not provide me with all there is to know about differential equations, so I

have taken examples from a few articles in order to enhance my interconnected mapping of

concepts surrounding differential equations.

4.3 Interviews

In order to gather more of a perspective on the course progression at universities in the

northeast and where/how differential equations are implemented in math and physics cur-

ricula, I interviewed eight faculty from both mathematics and physics departments. I asked

each faculty member the same series of eight questions seen here:

1. What types of differential equations do you typically use in your courses? [First

Order, Second Order, PDE, Higher Order, Homogeneous, Inhomogeneous, Linear,

Nonlinear, etc.]

17



2. What applications are represented by these differential equations in your courses?

Mathematical or physical?

3. What solution methods do you use for these differential equations? Have you ever

considered more than one?

4. To what extent do you invoke initial and boundary conditions in applications of dif-

ferential equations? Why or why not?

5. To what extent do you present DEs from a physical perspective? What contexts do

you use, and for which DEs?

6. To what extent do you find that context, or the use of physical context in general,

useful or helpful for the students? Is it more helpful at the time, or for future topics

(either in this course or others)?

7. Have you ever found in your experience of more complex differential equations that

it helps to rely on a previous, possibly simpler, solution or concept? If so, when?

8. How do you connect the simpler solution/concept to the present one?

The interviews were scheduled for an hour in a private one-on-one setting; they were

either videotaped or notes were taken as part of an open discussion. With many faculty I

would follow up with them after the interviews to either clarify ideas or expand on specific

concepts that I believed imperative to my research. While building my project I would

watch the videos and/or review any written artifacts to construct the progression of differ-

ential equations for each class. The interview data is intertwined with the material from my

notes and the literature findings in order to paint the best picture for the reader.
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Chapter 5

Mathematics Courses

This chapter works through two courses, Calculus II and Differential Equations, where

differential equations are implemented in a typical undergraduate mathematics sequence.

These two courses were selected based on the instructors interviewed and their courses

taught. This section is written in a sequence that demonstrates the interconnectedness of

mathematical concepts through differential equations. A majority of students see a differ-

ential equation for the first time in the second semester of the Calculus sequence, utilizing

introductory solution methods like direct integration and separation of variables. Later in a

Differential Equations course, students learn more complex strategies for solving multiple

types of differential equations and discuss the mathematical theory that governs the solu-

tions to differential equations. Each course will have examples of physical applications that

apply to the different types of differential equations seen in each course. The motivation

or lack thereof with physical relevance in the following mathematics sections reflects the

instructional approach based on the instructor’s thoughts for each course and the nature of

my class notes. While I argue that experiential motivation is important for understanding, I

present these ideas as typically taught based on the perspective of the instructor interviews

and my own course work to not misrepresent how students may be seeing the material for

the first time. At the end of each class section there will be a subsection focused on thoughts

from the instructors as gathered from the interviews.
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5.1 Calculus II

A majority of students see a differential equation for the first time in the second semester

of the Calculus sequence. The typical solution methods in Calculus II are direct integration

and separation of variables, which both rely on various methods of integration familiar to

Calculus II students. Instructors use population and logistic models to provide physical

contextualization to the mathematical rigor.

5.1.1 First Order Differential Equations

Generally students in Calculus II work with first-order differential equations, typically lin-

ear, but not always. In preserving traditional notation from calculus, students generally

start working with first-order differential equations of the form

dy

dx
= g(x) · y, (5.1)

where g(x) is some function of x. From here students use concepts of anti-differentiation

through integration as defined by the fundamental theorem of calculus in order to determine

the solution to the differential equation. Let’s quickly work through a solution to equation

5.1. First divide both sides of the equation by y.

dy

dx
· 1

y
= g(x).

Using the reverse chain rule, the left side becomes

d

dx
(ln |y|) = g(x).

By integrating both sides with respect to x∫
d

dx
(ln |y|)dx =

∫
g(x)dx,

and then applying the fundamental theorem of calculus, we get

ln |y| =
∫
g(x)dx+ C.
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Exponentiating both sides of the equation yields

|y| = e
∫
g(x)dx+C = eCe

∫
g(x)dx,

where eC is rewritten as a new constant C such that

|y| = Ce
∫
g(x)dx.

The right side of the equation is always positive due to the exponential terms, therefore

y = Ce
∫
g(x)dx. (5.2)

This is the general solution to (5.1). Solving this differential equation required knowl-

edge of anti-differentiation through integration and the fundamental theorem of calculus

(FTC). For students in Calculus II, these concepts are previously explored mathematical

ideas from Calculus I, which they may draw from in order to make sense of the solution

process. Now that the mathematical solution to the differential equation is known, how can

a physical context be applied to enhance experiential learning by providing relevance?

5.1.2 The Population and Logistics Models

A common instructional context employed in Calculus II is a model for population dynam-

ics, for which the growth rate of population over time is given by the following equation:

dP

dt
= r(t, P ) · P, (5.3)

where r(t, P ) is the growth (or decay) function, which determines whether or not a popu-

lation grows or declines. One might consider r(t, P ) = birth rate − death rate. Hence, if

r(t, P ) > 0, there is population growth and if r(t, P ) < 0, population is declining (decay-

ing). This birth/death rate contextualization for the rate function r(t, P ) does not account

for immigration/migration factors in population dynamics.

Let’s consider a simplistic model with r(t, P ) = a where a is a rate constant. Then the

population rate of change model (5.3) can be written as the linear differential equation

dP

dt
= aP. (5.4)
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The solution method for this differential equation is similar to the solution method for the

differential equation (5.1), where the solution for equation (5.4) is:

P (t) = Ce
∫
adt. (5.5)

For this specific case where a is constant under integration, the solution is

P (t) = Ceat.

One can now solve for population behavior with r(t, P ) defined as a constant. In the

solution there is still this unknown constant term C. Is there anyway to solve for C? Does

it offer any significance in terms of our solution? The answer to both of these questions is

yes. So far our solutions to these differential equations have involved invoking indefinite

integration. What if we apply some initial condition such that the we could attribute values

to the bounds of our integral? Problems unto which we introduce an initial condition are

called initial value problems (IVP). Introducing an initial condition will provide a more

explicit solution to the differential equations (5.1) and (5.5), removing the ambiguity of the

constant term C.

Mathematically, this is how a typical solution works in detail. Using equation (5.4), we

start by dividing both sides by P :
dP

dt
· 1

P
= a.

which by reverse chain rule on the left side yields:

d

dt
(ln |P |) = a.

This time, when we integrate both sides of the equation, we want to consider an initial con-

dition for the population at a time t0, P (t0), and label that initial population P0. Integrating

both sides now as a definite integral from t0 to a later time t our expression becomes the

following integral, where the time terms have been assigned a new variable s as a notational

preference to avoid the variables of the integrand matching the bounds of integration:∫ t

t0

d

ds
(ln |P (t)|)ds =

∫ t

t0

ads.
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Applying the FTC yields and knowing that a is constant gives:

ln |P (t)| − ln |P (t0)| = a(t− t0).

Simplifying the left side using the difference of logs rule yields:

ln

∣∣∣∣ P (t)

P (t0)

∣∣∣∣ = a(t− t0).

Taking the exponential of both sides results in:∣∣∣∣ P (t)

P (t0)

∣∣∣∣ = ea(t−t0),

and for our final solution we get:

P (t) = P0e
a(t−t0), (5.6)

where P (t0) = P0. Another way to solve for C is that once we determine the general

solution, we can evaluate the solution at the initial condition. Let’s for concreteness say

our initial population at time t = 0 is P (t = 0) = 1000. Evaluating the general solution

P (t) = Ceat

at the initial condition gives

P (0) = Cea·0 = 1000.

Therefore the constant C = 1000. The exact solution then is

P (t) = 1000eat.

Equation (5.6) is the general solution for an initial value population model with a constant

growth (or decay) rate. Does this particular model truly reflect how population behaves

in reality? P0 since a population value cannot be negative. An interesting result with

this solution is that the population can be modeled in forward and backwards time. For

this solution, if a > 0, then the population over time P (t) will exponentially increase

as time progresses. In reality, there are environmental factors and competition logistics
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that prevent populations from getting infinitely large. In short, every population has a

carrying capacity. How can one incorporate carrying capacity into the solution? For a

more advanced model we can add a competition term −bP 2 to the right side of equation

(5.4). This added competition term for varying values of b might cause a quadratic decay,

depending on the population size at an instant in time. As the population size approaches

or is well above the carrying capacity (which we will show to be a
b
) the competition term

will dominate and the model will demonstrate a quadratic decay.

The new model,
dP

dt
= aP − bP 2, (5.7)

is known as the Logistic Law of Growth or the Logistic differential equation with a >>

b > 0. Here the rate function r(t, P ) = a− bP , and is no longer constant (but depends on

the time and thus population). Therefore, our new differential equation is non-linear. For

small population values, since the decay term is much smaller than the growth term, there

will still be mainly exponential growth. On the other hand, for large P , the competition

term −bP 2 is no longer negligible, and thus exponential population growth slows down or

even reverses.

Once equation (5.7) is solved analytically, the carrying capacity can be determined. The

first step in the solution is to divide by everything on the right and multiply by dt in order

to separate variables (discussed in the next section) such that:

dP

aP − bP 2
= dt.

Next we integrate both sides where we define the initial condition P (t0) ≡ P0 once again.

The definite integrals become:∫ P

P0

dr

ar − br2
=

∫ t

t0

ds,

where I have included a variable change in both integrals as to not confuse the bounds of

the integral with the functions over which we are integrating. This is a common technique

in integration, mainly used as a notational convenience. To solve the integral on the left we
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have to use another topic from Calculus II, partial fractions. Rewriting the integral on the

left expressed in partial fractions we get:

1

a

∫ P

P0

(
1

r
+

b

a− br

)
dr =

∫ t

t0

ds.

By the second part of the FTC, the right side is equivalent to t − t0, the elapsed time.

Integrating the left side via the first part of the FTC yields

1

a

∫ P

P0

(
1

r
+

b

a− br

)
dr =

(
1

a
ln |r|+ b

a
· 1

−b
ln |a− br|

) ∣∣∣∣P
P0

;

evaluating this expression at the bounds gives(
1

a
ln |r|+ b

a
· 1

−b
ln |a− br|

) ∣∣∣∣P
P0

=
1

a

(
ln |P | − ln |a− bP | − ln |P0|+ ln |a− bP0|

)
.

Using the rules for addition and difference of logs, our expression becomes:

1

a

(
ln |P | − ln |a− bP | − ln |P0|+ ln |a− bP0|

)
=

1

a
ln

∣∣∣∣P (a− bP0)

P0(a− bP )

∣∣∣∣
Rejoining the two sides of the integral equation gives:

1

a
ln

∣∣∣∣P (a− bP0)

P0(a− bP )

∣∣∣∣ = t− t0.

Multiplying both sides of the equation by a and then exponentiating each side, we get,∣∣∣∣P (a− bP0)

P0(a− bP )

∣∣∣∣ = ea(t−t0),

and, through some meticulous algebraic manipulation, we come to our solution:

P (t) =
P0a

P0b+ (a− bP0)e−a(t−t0)
.

What does this solution even tell us? The relevant question is, what happens at large

values of time – do we finally get the behavior we would expect for a more realistic popu-

lation model? Taking the limit of our solution as time goes to infinity yields

lim
t→∞

P (t) = lim
t→∞

P0a

P0b+ (a− bP0)e−a(t−t0)
→ aP0

bP0

=
a

b
.
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Figure 5.1: General Graphical Solution to The Logistic Growth Model

The limit of the population value at large time, since the exponential term decays to zero,

is represented by the asymptote in Figure 5.1. This limit is known as the carrying capacity.

Thus the value for the carrying capacity using our model of population dynamics is a
b
.

The carrying capacity is independent of P0, therefore whether P (t) increases with time,

0 < P0 <
a
b
, or P (t) decreases with time if P0 >

a
b
, the population still limits to the same

carrying capacity.

The next feature of our differential equation (5.7) to examine is the derivative of the

equation, which tells us about the change in population growth rate for differing values

of population size. Specifically, it allows us to determine how the population growth rate

behaves with respect to the relative closeness of the population to the carrying capacity.

Taking the derivative of differential equation (5.7) with respect to time we find that

d2P

dt2
= a

dP

dt
− 2bP

dP

dt

= (a− 2bP )
dP

dt
substituting in

dP

dt
= aP − bP 2

= (a− 2bP )(aP − bP 2)

d2P

dt2
= (a− 2bP )(a− bP )P.
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This results in the following three inequalities:

d2P

dt2
> 0 if P <

a

2b
;

d2P

dt2
< 0 if

a

2b
< P <

a

b
;

d2P

dt2
> 0 if P >

a

b
.

Therefore our solution P (t) is concave up for population values below half the carrying

capacity as well as above the carrying capacity, and concave down for values between the

a
2b

and a
b
. These results also agree with our expectations for a logistic curve.

Now students have access to the analytical and graphical solutions for a logistic growth

population model. It is important that students are aware of both representations. Having

the graphical solution, derived using Calculus I tactics, allows for students to predict pop-

ulation behavior for different values of P0, a, and b. Again, this is an idealized model of

population dynamics: we truly expect populations to fluctuate about the carrying capac-

ity, as opposed to gradually approaching the capacity as time gets large as seen in Figure

5.1. We can account for other population growth/decay factors mathematically using more

complex population models such as systems of differential equations describing multiple

populations which coexist, additional dynamic terms in the differential equation, etc. The

solutions for these particular models are outside the scope of Calculus II and many require

numerical approximation and cannot be confined to a single analytic solution.

5.1.3 Separation of Variables

In Calculus 2, the conventional separation of variables (SOV) solution method is used when

the function on the right side is not just in terms of the dependent variable (varied by a

constant) but depends on the independent variable as well. Consider the equation

dy

dt
=
g(t)

f(y)
(5.8)

where f(y) is a continuous nonzero function of y (dependent variable) and g(t) is a con-

tinuous function of t (independent variable). This form of differential equation could be
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linear or non-linear. The Logistic Growth population model is an example of a non-linear

differential equation for which we can solve using separation of variables. As the method

suggests, we want to separate the functions that depend on different variables. To do this,

first multiply both sides of Equation (5.8) by f(y) such that,

f(y)
dy

dt
= g(t).

If we express f(y) as a derivative then we can let,

F (y) =

∫
f(y)dy

be any antiderivative of f . This allows us to say, using the chain rule,

f(y)
dy

dt
=

d

dt
[F (y)]

and
d

dt
[F (y)] = g(t).

Taking the indefinite integral of both sides with respect to t gives,∫
d

dt
F
(
y(t)

)
dt =

∫
g(t)dt.

Invoking the FTC leads to our general solution:

F
(
y(t)

)
=

∫
g(t)dt+ C. (5.9)

Equation (5.9) is the general solution of a differential equation with separable variables,

i.e., it provides a family of functions that satisfy the differential equation (12). What hap-

pens when we have an initial value for this function? The adjustment requires taking a

definite integral instead of an indefinite integral. Looking back at equation (5.8), we now

start our solution with an initial value y(t0) = y0, where if:

dy

dt
=
g(t)

f(y)
,

then we still have
d

dt
[F (y)] = g(t).
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Now we want to take a definite integral with lower bound t0 and upper bound t such that∫ t

t0

d

dr
F
(
y(r)

)
dr =

∫ t

t0

g(s)ds,

where once again we change variables in the integrands as a notational convenience. By

the second part of the FTC this results in

F
(
y(t)

)
− F

(
y(t0)

)
=

∫ t

t0

g(s)ds, (5.10)

which is the same as ∫ y

y0

f(r)dr =

∫ t

t0

g(s)ds. (5.11)

Both equations (5.10) and (5.11) represent the solution to the initial value problem for

the separable equation (5.8).

The two solutions for separation of variables (general and initial value problem) go

through the mathematical rigor highlighting the formalism of indefinite integration and the

fundamental theorem of calculus through definite integration. However, it is not uncommon

for mathematicians and physicists alike to take a “shortcut” when it comes to separable

differential equations, avoiding the explicit calculus-based routine derived above. I refer

to this supplemental strategy as a shortcut, when in fact it invokes a new conceptualization

entirely. This new technique treats the derivative term dy
dt

of the differential equation as a

ratio of infinitesimally small quantities dy and dt which can be manipulated algebraically.

Starting with equation (5.8), I will quickly demonstrate the algebraic technique here, first

multiplying both sides of the equation by f(y):

f(y)
dy

dt
= g(t).

Treating dy and dt as very small quantities of y and t, I multiply both sides of the equation

by dt, which gives

f(y)dy = g(t)dt.

Now the differentials dy and dt are on the side corresponding to the function dependent on

the same variable. From here, an indefinite or definite integral, which correlate to initial
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value problems(IVP), can be taken on each side, leading to the same general solutions seen

in equations (5.9) and (5.11), respectively:

F
(
y(t)

)
dt =

∫
g(t)dt+ C and

∫ y

y0

f(r)dr =

∫ t

t0

g(s)ds.

5.1.4 The Gompertz Equation

Let’s go through a specific example using this shortcut exploring a special case of the lo-

gistics function known as the Gompertz equation. The Gompertz equation models tumor

growth, market impact in finance, and populations in confined spaces. The Gompertz equa-

tion is unique in that it describes behavior where growth is slowest at the beginning and end

of a time period. I choose this particular example because it is a unique application of dif-

ferential equations in Calculus II brought up in an instructor interview. Mathematically, the

Gompertz equation is defined as

dy

dt
= ry ln

(
K

y

)
. (5.12)

The Gompertz equation is a first-order differential equation where, r and K are positive

constants and y is a positive function. It may not be clear quite yet, but this equation is

separable. To start, divide everything by K so that:

d

dt

[
y

K

]
=
ry

K
ln

(
K

y

)
= −ry

K
ln

(
y

K

)
.

To make this equation more noticeably separable, substitute in z = y
K

(z > 0), rewriting

the previous step as:
dz

dt
= −rz ln(z).

Applying the algebraic separation of variables technique, dividing both sides by z ln(z) and

multiplying each side by dt, the resulting expression is:

dz

z ln(z)
= −rdt.

Taking an indefinite integral on either side leads to:

ln | ln(z)| = −rt+ C.
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Exponentiating both sides once simplifies to:

| ln(z)| = e−rt+C = eCe−rt = Ce−rt,

and then exponentiating again yields:

z = e

(
Ce−rt

)
= (eC)e

−rt

.

Substituting z = y
K

back into the equation and solving for y gives our general solution to

equation (5.12):

y(t) = K(eC)e
−rt

. (5.13)

To make this less ambiguous, let’s include an initial condition y(t0) = y0 in order to

solve for the constant C. Plugging in t = t0 into equation (5.13) we get

y(t0) = K(eC)e
(−rt0) = y0.

Solving for constant C gives

C = ln

(
y0
K

)
ert0

and the solution to the initial value problem becomes:

y(t) = K
(
eln(

y0
K

)ert0
)e−rt

= K
[
eln(

y0
K

)
]e−r(t−t0)

(5.14)

for any initial condition y0. Looking back at equation (5.13) let’s determine the behavior

of the solution as time gets infinitely large by taking the limit as follows:

lim
t→∞

K(eC)e
−rt

= K.

K is the equilibrium, similar to the carrying capacity of our population dynamics model

discussed earlier, such that at large values of time t the solution will approach the asymptote

y(t) = K.

5.1.5 Calculus II: Instructors’ Thoughts

In this section I discuss the responses to the faculty interview questions and highlight sup-

porting ideas for how the information was organized for Calculus II. Note that for Calculus
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II I only interviewed one mathematics faculty member. In the interview, when asked ”what

types of differential equations do you implement in your courses?” the instructor men-

tioned that “for the differential equations in Calculus II, derivatives are taken with respect

to x or t in order to preserve traditional Calculus notation.” The instructor also implied

that most differential equation content in Calculus II was restricted to first-order, linear,

homogeneous ordinary differential equations. Later on, the instructor mentioned that they

sometimes introduced students to second-order and non-homogeneous first-order differen-

tial equations. We will discuss these particular concepts in the next section of the thesis

through the scope of a core differential equations course, with respect to my Calculus II

experience not being as in depth with differential equations.

When asked what solution method to differential equations are seen in Calculus II,

the instructor responded that “the solution methods in Calculus II focus on taking the an-

tiderivative of the derivative, by the fundamental theorem of calculus,” which students typ-

ically see in a Calculus I course. In terms of applications of differential equations in Cal-

culus II, the instructor said they use “population and logistic models” to provide physical

contextualization to students in hopes to better student understanding. While the instructor

suggests that they may not focus on the applications, the instructor agrees that it is impor-

tant for students to be aware of them, as “many students will continue their education as

engineers and scientists, where applications become more central to their learning experi-

ences.” The population dynamics and logistics growth model make the students consider

what is reasonable, and take into account that the physical relevance plays a role in the

solution for mathematics.

5.2 Differential Equations

A differential equations course opens with concepts including first-order, linear, homoge-

neous differential equations, separation of variables, and populations models. All of these

concepts were discussed in detail in the previous section. Depending on the curriculum,
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these topics may or may not be review for students.

5.2.1 The Integrating Factor

While the integrating factor is sometimes introduced in a second semester Calculus se-

quence, I first saw the integrating factor in a differential equations course, and that’s why

I’ve included it in the differential equations section. The integrating factor comes in handy

when attempting to solve non-homogeneous, linear, first-order differential equations. Let’s

take a look at the following non-homogeneous linear differential equation:

dy

dt
+ a(t)y = b(t). (5.15)

If a(t) 6= b(t) 6= 0 (non-homogeneous) and a(t) and b(t) are strictly functions of t (linear)

then the differential equation (5.15) cannot be solved using direct integration or separation

of variables. With no other tools currently in our solution method tool box, let’s derive a

new method in order to solve the non-homogeneous differential equation (5.15). To start,

multiplying equation (5.15) by µ(t) gives

µ(t)
dy

dt
+ µ(t)a(t)y = µ(t)b(t). (5.16)

The reason behind this first step becomes more apparent soon. We treat the left side of the

equation as the derivative d
dt

(µ(t)y). Differentiating using the power rule we get

d

dt
(µ(t)y) = µ(t)

dy

dt
+
dµ(t)

dt
y. (5.17)

We need to determine a µ(t) such that

dµ(t)

dt
= µ(t)a(t). (5.18)

We choose this particular µ(t) to satisfy the two previous equations (5.16) and (5.17). Now,

in terms of µ(t), (5.18) is an ordinary, linear, homogeneous differential equation. Thus the

solution (akin to the solution of equation (5.1)) is

µ(t) = e
∫
a(t)dt. (5.19)
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Here, µ(t) is the integrating factor and it is mathematically represented by equation (5.19).

So,

µ(t)
dy

dt
+ µ(t)a(t)y =

d

dt
(µ(t)y) = µ(t)b(t) (5.20)

and indefinitely integrating both sides of the equation with respect to t yields:∫
d

dt
(µ(t)y)dt =

∫
µ(t)b(t)dt,

and furthermore by direct integration:

µ(t)y =

∫
µ(t)b(t)dt+ C.

The general solution to equation (5.15) is then:

y(t) =
1

µ(t)

[ ∫
µ(t)b(t)dt+ C

]
, (5.21)

where the integrating factor is:

µ(t) = e
∫
a(t)dt.

We can construct an initial value problem for non-homogeneous differential equations

as well by letting y(t0) = y0. Using equation (5.20) and taking the definite integral of the

last two expressions with respect to t yields:∫ t

t0

d

dr
(µ(t)y)dr =

∫ t

t0

µ(s)b(s)ds,

and by the second part of the fundamental theorem of calculus:

µ(t)y(t)− µ(t0)y(t0) =

∫ t

t0

µ(s)b(s)ds.

After two steps of algebra, to isolate y(t), the integrating factor initial value problem solu-

tion is

y(t) =
1

µ(t)

[
µ(t0)y(t0) +

∫ t

t0

µ(s)b(s)ds

]
. (5.22)

In comparing equations (5.21) and (5.22), providing an initial condition presents a value

for the constant C, where in this case C = µ(t0)y(t0).
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The integrating factor approach works based off of ideas from anti-derivatives in calcu-

lus. We picked the integrating factor to match up with terms in the differential equation in

equation (5.16) such that the reverse product rule for anti-differentiation holds. The inte-

grating factor differential equation in equation (5.18) was solvable using earlier techniques

such as direct integration or separation of variables. Once we had solved for the integrating

factor, the final solution y(t) was determined using integration techniques from calculus.

The integrating factor is an important tool, as we see it utilized later in the paper when we

discuss solving exact differential equations in Section 5.2.5.

5.2.2 Ratio-Dependent Differential Equations

Now consider a special group of differential equations called ratio-dependent equations.

This section introduces the algebraic technique, substitution, used to solve different types

of differential equations. A ratio-dependent differential equation takes the form

dy

dt
= f(y/t), (5.23)

where the function on the right is explicitly in terms of y/t. In order to solve the ratio-

dependent differential equation (5.23), introduce a new unknown function

u = y/t.

Then we have that y = t · u and by the product rule,

dy

dt
= 1 · u+ t · du

dt
.

Thus our ratio-dependent differential equation (5.23) becomes:

u+ t
du

dt
= f(u),

or
du

dt
=
f(u)− u

t
. (5.24)

We have reduced our ratio-dependent differential equation (5.23) to the separable equation

(5.24). We have the tools in order to solve for the solution u(t, C), which will depend on
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some constant C as a result of indefinite integration. Therefore the general solution to the

ratio-dependent differential equation (5.23) is:

y = t · u(t, C). (5.25)

The key idea to take away is with ratio-dependent differential equations we can rely on

separation techniques after a convenient substitution u = y/t in order to determine a solu-

tion. Ratio-dependent functions provide a new variety of differential equation which rely

on a previous solution method familiar to students in a differential equations course, as

well as substitution, a common algebraic tool. In the next section we see another use of

substitution when solving differential equations by variation of parameter techniques.

5.2.3 Variation of Parameters for First-Order Differential Equations

A first order linear differential equation takes the form:

a(t)
dy

dt
+ b(t)y + c(t) = 0 (5.26)

and when a(t) 6= 0 equation (5.26) can be rewritten in a more familiar form where after

dividing by a(t)

dy

dt
+ f(t)y = g(t), where f(t) =

b(t)

a(t)
and − g(t) =

c(t)

a(t)
. (5.27)

We already know when g(t) = 0, equation (5.27) is called a linear homogeneous equation,

otherwise when g(t) 6= 0 it is non-homogeneous. Here we utilize a new method to solving

linear non-homogeneous differential equations called variation of parameters, where the

first step requires that we solve the homogeneous equation:

dy

dt
+ f(t)y = 0. (5.28)

This equation is separable, so we can use techniques we’ve seen before to solve separable

equations such that
dy

dt
= −f(t)y,
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then
dy

y
= −f(t)dt,

and by the fundamental theorem of calculus:∫
dy

y
=

∫
−f(t)dt+ C,

such that

ln |y| = −
∫
f(t)dt+ C.

Solving for y(t) we get

y(t) = e−
∫
f(t)dteC = Ce−

∫
f(t)dt

and as a result to the homogeneous separable equation (5.28)

y(t) = Cv(t), where v(t) = e−
∫
f(t)dt, (5.29)

and C is some arbitrary constant. To return now and solve the non-homogeneous linear

differential equation (5.27) we replace the constant parameter C in equation (5.29) by an

unknown function C(t). This turns our homogeneous solution represented by equation

(5.29) into the following:

y(t) = C(t)v(t). (5.30)

If we substitute this new solution (5.30) into our original non-homogeneous differential

equation (5.27), obeying the power rule of derivatives we get

dC(t)

dt
v(t) + C(t)

dv(t)

dt
+ f(t)C(t)v(t) = g(t)

which when rewritten simplifies to

dC(t)

dt
v(t) + C(t)

[dv(t)

dt
+ f(t)v(t)

]
= g(t). (5.31)

Note that the terms within the brackets in 5.31 sum to zero seen by:

dv(t)

dt
=

d

dt

(
e−

∫
f(t)dt

)
= −f(t)e−

∫
f(t)dt = −f(t)v(t),
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after applying the chain rule for differentiation. Equation (5.31) then becomes:

dC(t)

dt
v(t) = g(t) or

dC(t)

dt
=
g(t)

v(t)
.

This last equation is a simple first-order differential equation solvable by integration. The

solution to the unknown function C(t) is then

C(t) =

∫
g(t)

v(t)
dt+ C1

where C1 is a new arbitrary constant. Now that we have solved for C(t), equation (5.30)

gives the general solution for the linear non-homogeneous differential equation (5.27) as

y(t) =

[∫
g(t)

v(t)
dt+ C1

]
v(t) where again v(t) = e−

∫
f(t)dt. (5.32)

In two steps the variation of parameter method reduces linear differential equations to a

problem we know how to solve. The first step is finding a solution of the linear homo-

geneous differential equation with methods previously discussed (separation of variables,

direct integration). The second step is defining a new unknown function C(t), plugging that

back into the original linear differential equation, and inevitably solving a simple ordinary

differential equation by direct integration. These two steps provided us with a general so-

lution for a linear non-homogeneous solution. The variation of parameter method works

as a substitute for the integrating factor method. Thus, we now have another way of solv-

ing linear non-homogeneous differential equations that relies on a similar, yet different,

mathematical approach.

5.2.4 Newton’s Heating/Cooling Law

One physical application of differential equations that interviewed instructors mentioned

implementing in their differential equations course can be found in the context of thermo-

dynamics, specifically heating/cooling problems. The rate of change in temperature T (t) of

an object is proportional to the difference between the object’s temperature and the external

temperature Texternal represented by the following differential equation:

dT

dt
= −k(T − Texternal), k > 0. (5.33)
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Equation (5.33) is known as Newton’s heating/cooling law where k is a positive proportion-

ality constant. The practicality of this law is as follows: the temperature of the object T is

changing faster when the difference between its temperature and the external temperature

is larger. The negative sign in front of the proportionality constant k ensures that the rate

of change in the object’s temperature:

dT

dt
< 0 if T > Texternal (cooling),

and
dT

dt
> 0 if T < Texternal (heating).

There are multiple applications of Newton’s heating/cooling law including approximating

time of death, estimating how fast ice cream melts or coffee cools, and determining initial

temperatures of objects after a period of heating or cooling. Let’s first analytically solve

Newton’s heating/cooling law (5.33) by appealing to the familiar solution method, separa-

tion of variables. To separate, divide both sides of the equations by (T − Texternal) such

that:
dT

dt
· 1

T − Texternal
= −k.

For the sake of simplicity we are going to treat dT
dt

as a fraction and multiply both sides of

our new equation by dt so:
dT

T − Texternal
= −kdt.

From here we take the integral of both sides, keeping in mind that Texternal is constant

(unchanging), and thus: ∫
dT

T − Texternal
=

∫
−kdt+ C,

which results in:

ln |T − Texternal| = −kt+ C.

From here we exponentiate both sides:

|T − Texternal| = e−KteC = Ce−kT
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and adding over Texternal we get that our general solution to the differential equation in

equation (5.33) is

T (t) = Texternal + Ce−kt. (5.34)

To solve for the arbitrary constants C and k we can evaluate equation (5.34) at t = 0 and

t = 1 respectively. Solving for C at t = 0 where our initial condition is T (0) = T0 we get

T (0) = Texternal + Ce−k(0) = Texternal + C = T0,

therefore

C = T0 − Texternal,

and our solution becomes

T (t) = Texternal + (T0 − Texternal)e−kt.

To solve for k we utilize the condition that T (1) = T1 so then

T (1) = Texternal + (T0 − Texternal)e−k(1) = Texternal + (T0 − Texternal)e−k = T1.

Through a few steps of algebraic manipulation we solve for k such that

k = − ln

(
T1 − Texternal
T0 − Texternal

)
.

Here we notice that as time t → ∞ the temperature approaches the value of Texternal

which behaves graphically as a horizontal asymptote. We get different short-term behavior

depending on whether the initial temperature of the object is higher or lower than Texternal.

5.2.5 Exact Differential Equations

This section discusses the differential equations known as exact equations. Exact equations

in my courses were first-order, homogeneous, non-linear differential equations. There are

also, non-exact differential equations for which we can use an adaptation of the integrat-

ing factor technique to determine the solutions. For now, consider the general differential

equation
d

dt
φ(t, y(t)) = 0 (5.35)
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where φ is continuous. From (5.35) we observe that∫
d

dt
φ(t, y(t)) =

∫
0

which implies that φ(t, y(t)) = C is constant. By the chain rule for multi-variable functions

(Calculus III):
d

dt
φ(t, y(t)) =

dφ

dt
+
dφ

dy
· dy
dt

= 0.

Let’s generate two functions M(t, y(t)) and N(t, y(t)) such that

M(t, y(t)) =
dφ

dt
and N(t, y(t)) =

dφ

dy
.

This allows us to rewrite equation (5.35) as

M(t, y(t)) +N(t, y(t)) · dy
dt

= 0. (5.36)

Many differential equations courses discuss the mathematical theory which drives differ-

ential equations and their solutions. The following theorem is is an example of the theory

seen in such a differential equations course.

Theorem 1. Let M(t, y(t)) and N(t, y(t)) be continuous with continuous partial deriva-

tives with respect to t and y in the rectangle R = {(t, y) : a < t < b, c < y < d}. Then

there exists a φ(t, y(t)) such that M(t, y(t)) = dφ
dt

and N(t, y(t)) = dφ
dy
. if and only if

∂M

∂y
=
∂N

∂t
.

This is a result of Clairaut’s theorem taught in Calculus III courses which states that

despite order of derivatives, mixed partial derivatives will be equivalent to one another. So,

the differential equation (5.36) is exact if

∂M

∂y
=
∂N

∂t
.

The main idea is once you can determine an M(t, y(t)) and N(t, y(t)) you can solve

for φ(t, y(t)) by solving the two equations

M(t, y(t)) =
dφ

dt
and N(t, y(t)) =

dφ

dy
.
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These two solutions generate a function Φ(t, y(t)) often defined implicitly (when after

algebraic manipulation y cannot get be isolated). Based on the nature of exact equations

our new function follows:

d

dt
Φ(t, y(t)) = 0 and therefore Φ(t, y(t)) = C,

where C again is some constant. This provides general solutions to exact equations.

What if equation (5.36) is not exact? Is it possible to find a µ(t, y) such that

M(t, y) +N(t, y) · dy
dt

= 0

is exact? For this to be exact, in addendum to the previous theorem,

∂

∂y

(
µ(t, y)M(t, y)

)
=

∂

∂t

(
µ(t, y)N(t, y)

)
,

or

M
∂µ

∂y
+ µ

∂M

∂y
= N

∂µ

∂t
+ µ

∂N

∂t
.

A µ(t, y) satisfying the above equation is an integrating factor for equation (5.36). This

relationship holds only if µ(t, y) is a function of only t or y. Let’s assume that µ(t, y) =

µ(t). Then M ∂µ
∂y

= 0 and so

µ
∂M

∂y
= N

dµ

dt
+ µ

∂N

∂t

which can be algebraically manipulated to:

dµ

dt
= µ

(
∂M
∂y
− ∂N

∂t

)
N

= µR(t)

where R(t) is a function of only t respecting the constraints we placed on µ. Notice now

that dµ
dt

= µR(t) is a differential equation we should now recognize how to solve from

integrating factor techniques in Section 5.2.1. Thus,

µ(t) = e
∫
R(t)dt where R(t) =

(
∂M
∂y
− ∂N

∂t

)
N

.
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Again we utilized the integrating factor in order to find a solution to a differential equation

when the equation didn’t present a straightforward approach (e.g non-homogeneous or not

exact).

5.2.6 Existence and Uniqueness

We’ve seen various forms of first order differential equations with an attributed initial con-

dition, which can be summarized as:
dy

dt
= f(t, y),

y(t0) = y0,

(5.37)

where f(t, y) is a function of y and t. We call the above expression (5.37) an initial value

problem (IVP) where the initial condition removes ambiguity concerning an arbitrary con-

stant in the general solution. While we have discussed multiple methods to solving differ-

ential equations of this form, for all possible functions of f typically these are not solvable.

Interestingly, it is a lot easier to write a differential equation that has no analytic solution

than to generate a differential equation that does. This is where we begin to discuss the

ideas of existence and uniqueness. We need to ask

1. Can we prove a solution exists? (Existence)

2. Can we show that there is exactly one solution? (Uniqueness)

These questions are key for the following reasons. Primarily, we must know if a solution

exists, otherwise the differential equation cannot be solved. If a solution exists, it’s just as

important to know that the solution is unique. In fact, it may be more significant to know

there exists a unique solution, then knowing the solution itself. Knowing a unique solution

exists can provide enough information to understand the behavior of a differential equation

without deriving a exact solution.

We start by proving that there exists a solution y(t) to (5.37). To show the existence of

a solution we will be using ideas from limits, specifically limits of sequences of functions,

as described in the following process.
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1. Construct a sequence of functions yn(t) which come closer and closer to solving

equation (5.37).

2. Show that the sequence defined as {yn}
∞

n=0

has a limit y(t) on a suitable interval

(domain) of t,

t0 ≤ t ≤ t0 + α α > 0.

3. Prove y(t) solves (5.37) (even if we don’t find an explicit form for y(t)).

This process shows existence by demonstrating that iterative functions yn(t) limit to, or

approach, a solution to a differential equation. It’s similar to ideas of convergence, where

each new iterative function, given an initial guess, gets us closer to the actual solution. If

the limit does not converge to a specific function or observable pattern from which we can

discern solution behavior, then no solution exists.

We can come up with an approximate solution for equation (5.37) by directly integrat-

ing over the interval [t0, t] such that:∫ t

t0

dy

ds
ds =

∫ t

t0

f(s, y(s))ds.

Note again the conventional change in notation to avoid the variables of the bounds match-

ing the variables of the integrand. Applying the fundamental theorem of calculus on the

left side, and rearranging yields:

y(t) = y0 +

∫ t

t0

f(s, y(s))ds. (5.38)

Equation (5.38) is called an integral equation. From this equation we can construct a se-

quence of successive approximate solutions, known as Picard iterates. The sequence for
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our general solution equation (5.38) is constructed as follows:

y0(t) = y0,

y1(t) = y0 +

∫ t

t0

f(s, y0(s))ds,

y2(t) = y0 +

∫ t

t0

f(s, y1(s))ds,

...

yn+1(t) = y0 +

∫ t

t0

f(s, yn(s))ds,

where each yn(t) is a successive approximation. The next step is to show that the Picard

iterates converges, that is:

lim
n→∞

yn = Y (t).

The final step is to show that Y (t) solves our differential equation (5.37). Let’s do a quick

example solving the differential equation below:

dy

dt
= y,

y(0) = y0 = 1.

(5.39)

The solution to this differential equation is et, but we are going to prove it using Picard

iterates. Constructing our sequence, we get the following:
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y0(t) = 1

y1(t) = 1 +

∫ t

0

1ds

= 1 + t

y2(t) = 1 +

∫ t

0

(1 + s)ds

= 1 + t+
t2

2

y3(t) = 1 +

∫ t

0

(1 + s+
s2

2
)ds

= 1 + t+
t2

2
+

t3

2 · 3

= 1 + t+
t2

2!
+
t3

3!
...

yn(t) = 1 +

∫ t

0

(
1 + s+

s2

2!
+
s3

3!
+ · · ·+ sn−1

(n− 1)!

)
ds

= 1 + t+
t2

2!
+ · · ·+ t2

n!

=
n∑
k=0

tk

k!
.

Now we test for convergence by taking the limit as n goes to infinity; from our Calculus

II knowledge of power series expansions we know:

lim
n→∞

yn(t) = lim
n→∞

n∑
k=0

tk

k!
= et.

The last step is to check and see that et is actually a solution to our differential equation

(5.39). Plugging et into equation (5.39), we have:

d

dt
(et) = et,

which is true, so et is in fact a solution to equation (5.39). While there were multiple,

possibly more intuitive ways (previously discussed) to determine a solution to (5.39), this

exercise was intended to present a new solution strategy that is effective for determining
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whether or not a solution to a differential equation exists. This leads to a theorem of exis-

tence and uniqueness for differential equations.

Theorem 2 (Existence and Uniqueness). Let f and df
dy

be continuous in the rectangle R =

{(t, y) : t0 < t < t0+a,−b+|y−y0| < b} with a, b > 0. DetermineM = max
(t,y)∈R

∣∣∣f(t, y(t)
∣∣∣

and let α = min(a, b
M

). Then equation (5.37) has at least one solution Y (t), the limit of

the Picard iterates, on the interval t0 ≤ t ≤ t0 + α and that solution is unique.

Let’s run through an example briefly to help make sense of this theorem by showing

that the solution of the IVP:
dy

dt
= t2 + e−y

2

,

y(0) = 0,

(5.40)

exists and is unique for 0 ≤ t ≤ 1
2

and |y(t)| ≤ 1. To start, we have no known strategies to

solve this differential equation currently in our arsenal, but we can check to see if a unique

solution exists. First, let’s determine the maximum of our differential equation in equation

(5.40)

M = max
(t,y)∈R

|t2 + e−y
2|

. Notice that t2 is largest when t = 1
2

and e−y
2 is largest when y = 0. Therefore the

maximum occurs at coordinates (1/2, 0) and is:

M =

∣∣∣∣(1

2

)2
+ e−0

2

∣∣∣∣ = 5/4.

Now, let’s determine the variable α = min(a, b
M

) where from our chosen bounds on t and

y, we determine that a = 1
2

and b = 1. Hence,

α = min
(1

2
,
4

5

)
=

1

2
,

and therefore a unique solution Y (t) exists at least on the interval 0 ≤ t ≤ 1
2
. It may

not be very satisfying to a differential equation student to simply determine that a solution

exists and is unique with no way of expressing that solution. In the next section, we’ll

discuss a numerical approximation method that will provide ways to determine behavior of

a solution for an analytically unsolvable differential equation.
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5.2.7 Euler’s Method

Not all differential equations have an analytical solution. The term analytical solution is

defined as having an exact solution, without having to approximate. Often, there isn’t

an “exact” solution, and as an alternative to analytical methods, numerical methods were

developed to approximate solutions to differential equations. One such numerical technique

is known as Euler’s Method. We will again consider the initial value problem for a general

differential equation

dy

dt
= f(t, y),

y(t0) = y0.

(5.41)

For simplicity we will consider a time interval of equally spaced discrete time steps a =

t0 ≤ t1 ≤ · · · ≤ tN = b, where the spacing of each discrete time step is defined as:

h =
b− a
N

where N is the number of equally spaced sub-intervals of time. In general, we can define

steps of times as:

tn+1 = tn + h.

We call yn the value of the solution at a time tn where:

yn = y(tn).

Finding the approximate values for the different yn with 0 ≤ n ≤ N is the premise of

Euler’s method. We already know our solution y(t) at the initial value, y(t0) = y0. Starting

with our initial value, we can construct Euler’s scheme in order to approximate the other

values of our solution y(t). To construct Euler’s scheme let’s first recall the limit definition

of the derivative from calculus,

dy

dt
= lim

h→∞

y(t+ h)− y(t)

h
.

For small values of h we can approximate the limit definition of the derivative as

lim
h→∞

y(t+ h)− y(t)

h
≈ y(t+ h)− y(t)

h
.
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Substituting the approximation into the differential equation in equation (5.41) gives:

y(t+ h)− y(t)

h
= f(t, y)

or equivalently

y(t+ h) = y(t) + hf(t, y). (5.42)

Returning to our discrete time steps, allowing t = tn and yn = y(tn) , in equation (5.42)

we have:

yn+1 = yn + hf(tn, yn). (5.43)

for any n ∈ N. Thus, we have shown that beginning with the initial value y(t0) = y0,

Euler’s scheme is expressed as:

y0 = y(t0),

y1 = y0 + hf(t0, y0),

...

yn+1 = yn + hf(tn, yn).

(5.44)

As an example, let’s approximate solutions for the IVP:

dy

dt
= 1 + (y − t)2,

y(0) =
1

2
,

(5.45)

from t = 0 to t = 1 in time steps of size h = .1 (t1 = .1, t2 = .2, etc.). So, N = 10

solutions will be used to approximate values of y(t). Following Euler’s scheme in (5.44),
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the approximations for y(t) go as follows:

y0 =
1

2

y1 = y0 + hf(t0, y0) =
1

2
+ .1

(
1 +

(1

2
− 0
)2)

y1 = 0.625

y2 = y1 + hf(t1, y1) = 0.625 + .1
(

1 +
(
.625− .1

)2)
y2 = 0.7525625

...

y10 ≈ 1.9422.

For the sake of space I have jumped to our desired final approximation. The actual solution

to differential equation in equation (5.45) is

y(t) = t+
1

2− t

and at time t = 1 which corresponds to the approximate solution y10,

y(1) = 1 +
1

2− 1
= 2.

Our approximation y10 = 1.9422 is 2.89% off the true solution y(1) = 2, showing an

accurate estimate.

Due to the nature of approximations, there is inherent error in Euler’s method. This

error can be lessened if one decreases the step width h between discrete values of time over

a given interval. Now if a unique solution exists to a given differential equation (akin to

the system in equation (5.41)), then we know how to approximate the solution at discrete

values of time. Numerical approximation methods are essential for differential equations

in which the existence is known but it cannot be solved analytically.

5.2.8 Introduction to Second-Order Differential Equations

So far we’ve only dealt with first-order differential equations. It’s time to introduce the

linear second-order differential equation. Second-order differential equations differ from
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first-order differential equations based on the highest order of derivative in the differen-

tial equation. This presents a few unique aspects of second-order differential equations,

which set them apart from first-order differential equations. We will see that second-order

differential equations can have more than one solution, and that these solutions can be lin-

early combined into one general solution. Second-order differential equations typically rely

on different solution methods given the mathematical difference of having a higher-order

derivative term. In certain cases we use techniques from solving first-order differential

equations to solve second-order differential equations. Additionally, the second-derivative

term impacts the physical behavior the differential equation can represent. The second

derivative, or the rate of change of a rate of change, adds another layer of physical meaning

and complexity. Many of the solution methods, similar to the previous sections on first-

order differential equations rely on previous mathematical concepts ranging from middle

school algebra up through the calculus sequence, as well as ideas from the last few sections

such as variation of parameters.

To start, let’s examine the linear second-order differential equation which has the gen-

eral form:
d2y

dt2
+ p(t)

dy

dt
+ q(t) = g(t). (5.46)

By definition, equation (5.68) is homogeneous when g(t) = 0 and non-homogeneous when

g(t) 6= 0. Let’s consider a simple second-order differential equation where the only terms

are the second-derivative and a smooth function of time such that:

d2y

dt2
= g(t). (5.47)

To solve this differential equation, we use integration tactics to determine the first derivative
dy
dt

and then the solution y(t). Integrating equation (5.47) once gives

dy

dt
=

∫
g(t)dt+ C1,

and by repeated integration,

y(t) =

∫ [
G(t) + C1

]
dt+ C2 =

∫
G(t)dt+ C1t+ C2. (5.48)
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Equation (5.48) is the general solution to the simple second-order differential equation

in equation (5.47), where G(t) is the antiderivative of g(t). Notice this general solution

depends on two arbitrary constants, C1 and C2. In order to solve for a particular solution to

a second-order differential equation, instead of one required initial condition, an additional

item of information is needed. There is an initial condition of the function as seen before,

y(t0) = y0 ∈ R. Additionally, there is also an initial condition on the first derivative of the

function defined as dy
dt

(t0) = y
′
0 ∈ R. A general second-order linear initial value problem

inprime notation, where

y
′′

=
d2y

dt2
and y

′
=
dy

dt
,

is depicted in the equation 5.49 with the differential equation and initial conditions:

y
′′

= f(t, y, y
′
),

y(t0) = y0,

y
′
(t0) = y

′

0.

(5.49)

For a second-order linear homogeneous differential equation IVP of the form

y
′′

= r(t)y
′
+ s(t)y,

y(t0) = y0,

y
′
(t0) = y

′

0,

(5.50)

the following theorem applies.

Theorem 3 (Existence-Uniqueness Theorem). If r(t) and s(t) are continuous on t ∈ (a, b)

then there exists a unique solution y(t) satisfying the differential equation in equation

(5.50). Further if y(t) solves equation (5.50) for y(t0) = 0 and y
′
(t0) = 0, then y(t) = 0 is

the unique solution.

Before we go over additional solution methods for second-order linear differential equa-

tions, we will first discuss linear operators, L[y], where L operates on a function y. In lay-

man’s terms, the operator L inputs a function as how functions input independent variables

(or numbers). Plainly, it’s a ‘function’ of functions. The operator L has the following two

properties:
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1. L[Cy] = CL[y], for C ∈ R where C is a constant;

2. L[y1 + y2] = L[y1] +L[y2] where y1 and y2 are solutions to the differential equation.

An operator which satisfies the above two properties is defined as a linear operator. All

other operators are called nonlinear. Let’s define define a second-order, linear, homoge-

neous differential equation as a linear operator such that

L[y] = y
′′

+ p(t)y
′
+ q(t)y = 0. (5.51)

If y1(t) solves equation (5.51) then C1y1(t) solves it for any C1 by property 1 for linear

operators. If both y1(t) and y2(t) solve equation (5.51) then y1(t) + y2(t) solves it by

property 2 for linear operators. Combining the two properties, if y1(t) and y2(t) solve

equation (5.51) then C1y1(t) + C2y2(t) solves equation (5.51) and the general solution is

written as follows:

φ(t) = C1y1(t) + C2y2(t); C1, C2 ∈ R, (5.52)

where the initial conditions corresponding to equation (5.50) are φ(t0) = y0 and φ′(t0) =

y
′
0. Now that we have determined the expression for a general solution to a second-order,

linear, homogeneous differential equation, we ask: what properties do y1(t) and y2(t) have

to have in order to be a solution? In order to answer that question, consider the following

theorem for linearly independent solutions.

Theorem 4 (Linearly Independent Solutions). Let y1(t) and y2(t) be solutions to a system

as in equation (5.51) for t ∈ (a, b) with:

y1(t)y
′

2(t)− y
′

1(t)y2(t) 6= 0, (5.53)

for t ∈ (a, b), then φ(t) = C1y1(t) + C2y2(t) is a general solution to (5.51).

If y1(t) and y2(t) are solutions which satisfy the above theorem, they are called a fun-

damental set of solutions. The left-hand side of equation (5.53) is called the Wronskian of

y1(t) and y2(t) and is defined as:

W (t) = W [y1, y2] = y1(t)y
′

2(t)− y
′

1(t)y2(t), (5.54)
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where the above theorem requires the Wronskian W (t) 6= 0 for t ∈ (a, b). From a linear

algebra standpoint, the Wronskian is the determinant of the following matrix:y1(t) y
′
1(t)

y2(t) y
′
2(t)

 .
Thus, we can express the Wronskian as:

det

y1(t) y
′
1(t)

y2(t) y
′
2(t)

 = y1(t)y
′

2(t)− y
′

1(t)y2(t).

In order for the above theorem to be satisfied, the determinant of the matrix must not

equal zero. Recall from linear algebra that a determinant of vectors not equal to zero im-

plies those vectors are linearly independent. Similarly, if W (t) 6= 0, the solutions y1(t)

and y2(t) are linearly independent, which implies they are not constant multiples of each

other, such that y1(t) 6= Cy2(t), ∀C ∈ R. If y1(t) and y2(t) are linearly independent,

W (t) = 0, this implies that one of the solutions is zero, or that y1(t) and y2(t) are equiv-

alent (not unique) up to a constant term C. This is an important idea to keep in mind as

we continue working through solution methods for second-order differential equations: the

solutions y1(t) and y2(t) must be linearly independent, and we can check for independence

using the Wronskian, a technique developed using concepts from linear algebra. If two

solutions are not linearly independent, then the solutions are not unique, and this breaks

the existence-uniqueness criterion for linear combinations of solutions to higher-order dif-

ferential equations.

5.2.9 Second-Order Linear Homogeneous DEs with Constant Coeffi-

cients

Consider the operator equation

L[y] = ay
′′

+ by
′
+ cy = 0; a, b, c ∈ R. (5.55)

Here a 6= 0, otherwise we’d be back to a first-order linear homogeneous differential

equation and we already know the methods to solve those. With a, b, c ∈ R the coeffi-
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cients of this operator equation are constant, and thus, it is a constant-coefficient equation.

The goal is to determine two solutions, y1(t) and y2(t), to construct a general solution,

φ(t) = C1y1(t) + C2y2(t). Looking at equation (5.55), how can we determine a solution

where the second derivative, first derivative, and original function sum to zero? Is there a

function from calculus whose derivative and second derivative retain the original function

(with an additional multiplicative factor). Besides the constant function 0, there is the ex-

ponential function y = ert where r ∈ R is some constant. Let’s plug ert into our operator

equation (5.55):

L[ert] = a(ert)
′′

+ b(ert)
′
+ cert = 0.

Evaluating the derivatives, the above expression becomes

ar2ert + brert + cert = 0.

Factoring out an ert from each term yields

ert(ar2 + br + c) = 0.

For any finite time, ert cannot be zero, which implies the expression in parentheses must

be zero. Dividing both sides by ert results in the quadratic equation:

ar2 + br + c = 0. (5.56)

Equation (5.56) is the Characteristic Equation for second-order constant coefficient

differential equations. Notice the characteristic equation in equation (5.56) is a quadratic

equation and its roots can be solved using the quadratic formula:

r =
−b±

√
b2 − 4ac

2a
. (5.57)

Thus, the two roots are:

r1 =
−b
2a

+

√
b2 − 4ac

2a
and r2 =

−b
2a
−
√
b2 − 4ac

2a
.

Now, there are three cases we need to consider when working with these roots and they are

as follows:
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1. b2 − 4ac > 0 (Real Roots);

2. b2 − 4ac < 0 (Complex Roots);

3. b2 − 4ac = 0 (Repeated Roots).

Let’s first discuss the real, non-repeated roots. Our solutions y1(t) and y2(t) are simply:

y1(t) = er1t and y2(t) = er2t,

resulting in the general solution:

φ(t) = C1e
r1t + C2e

r2t. (5.58)

Given initial values φ(t0) = y0 and φ′(t0) = y
′
0, one can determine the exact solution by

solving a system of equations for C1 and C2.

Now consider the second case, where r1 and r2 are complex roots. The quadratic for-

mula yields:

r1 =
−b
2a

+ i

√
4ac− b2

2a
and r2 =

−b
2a
− i
√

4ac− b2
2a

.

We expect our general solution to have both real and imaginary parts such that

φ(t) = C1u(t) + iC2v(t), (5.59)

where u(t) and v(t) are real-valued functions. Plugging our expected solution into (5.55),

we get

a(u+ iv)
′′

+ b(u+ iv)
′
+ c(u+ iv) = 0,

which, after differentiation and algebra, simplifies to

(
au
′′

+ bu
′
+ cu

)
+ i
(
av
′′

+ bv
′
+ cv

)
= 0.

This expression is satisfied if au′′ + bu
′
+ cu = 0 and av′′ + bv

′
+ cv = 0. Therefore, both

u(t) and v(t) are solutions to (5.55).

What does ert look like for complex roots? For notational simplicity, we redefine −b
2a

=

α and
√
4ac−b2
2a

= β. Using the new notation, a general root is r = α ± iβ, and thus
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ert = e(α±iβ)t. This next step may or may not be a new idea to the reader, but we’re going

to exploit a useful mathematical identity:

e±ix = cos(x)± i sin(x); for any x ∈ R. (5.60)

Equation (5.60) is known as Euler’s formula. Starting with e(α±iβ)t, we have a new expres-

sion using Euler’s identity which gives:

e(α±iβ)t = eαte±iβt = eαt
(

cos(βt)± i sin(βt)
)

= eαt cos(βt)± eαti sin(βt).

The above result matches what is expected in equation (5.59) where u(t) = eαt cos(βt) and

v(t) = eαt sin(βt). Therefore our general solution for complex roots is:

φ(t) = C1e
αt cos(βt)± C2e

αti sin(βt) = eαt
(
C1 cos(βt)± C2 sin(βt)

)
. (5.61)

The constant term C2 absorbs the ± argument leaving

φ(t) = eαt
(
C1 cos(βt) + C2 sin(βt)

)
as the solution to equation (5.55) when r is a complex root.

The final case is that of repeated roots, when r1 = r2. If r1 = r2 = −b
2a

, our solutions

y1(t) = er1t and y2(t) = er2t are no longer linearly independent, and cannot together satisfy

as a solution to (5.55). We start with one solution,

y1(t) = e
−b
2a
t. (5.62)

If it’s required for our second solution to be linearly independent from our first, let’s call

our second solution

y2(t) = y1(t)v(t) (5.63)

where v(t) is an unknown function of t. We want to plug our second solution into (5.55),

but first let’s calculate the derivative and second derivative with respect to time of y2(t)

above. The first derivative is

y
′

2 = y
′

1v + y1v
′
,
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and the second derivative is

y
′′

2 = y
′′

1v + y
′

1v
′
+ y

′

1v
′
+ y1v

′′
.

Plugging these expressions into equation (5.55) yields:

a(y
′′

1v + y
′

1v
′
+ y

′

1v
′
+ y1v

′′
) + b(y

′

1v + y1v
′
) + c(y1v) = 0.

After algebraic rearrangement the above expression can be written as

ay1v
′′

+ (by1 + 2ay
′

1)v
′
+ (ay

′′

1 + by
′

1 + cy1)v = 0.

Because y1(t) is a solution to equation (5.55),

ay
′′

1 + by
′

1 + cy1 = 0,

and so the last term in the previous expression vanishes, leaving us with:

ay1v
′′

+ (by1 + 2ay
′

1)v
′
= 0.

In terms of v′ this is a first-order differential equation (v′′ = (v
′
)
′
). Isolating v′′ in the last

expression gives:

v
′′

+
by1 + 2ay

′
1

ay1
v
′
= 0. (5.64)

We can solve this differential equation using an integrating factor, where:

µ(t) = e
∫ by1+2ay

′
1

ay1
dt

= e
∫

b
a
+2

y
′
1

y1
dt
.

Evaluating the indefinite integral,

µ(t) = e
b
a
te2 ln |y1| = y21 e

b
a
t.

Our solution to equation (5.64) in terms of v′ and the integrating factor µ(t) is

v
′
y21e

b
a
t.

This result is a solution, and so it satisfies that

v
′
y21 · e

b
a
t = 0.
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Integrating both sides of the equation,∫
v
′
y21 · e

b
a
tdt =

∫
0dt = k,

for k constant. This resultant constant is arbitrary, so we choose k = 1. Hence,∫
v
′
y21 · e

b
a
tdt = 1.

Solving for v′ gives:

v
′
= y−21 e−

b
a
t

and now integrating once more,

v(t) =

∫
y−21 e−

b
a
tdt. (5.65)

Thus, we have solved for the unknown piece of the second solution to equation (5.55) for

repeated roots. The process of changing a second-order differential equation to first-order

differential equation is called reduction of order. Plugging in equations (5.62) and (5.65)

into equation (5.63) gives the second solution as

y2(t) = y1(t)v(t) = e−
b
2a
t

∫
y−21 e−

b
a
tdt = e−

b
2a
t

∫
(e−

b
2a
t)−2e−

b
a
tdt.

Simplifying the above expression,

y2(t) = e−
b
2a
t

∫
(e

b
a
t)e−

b
a
tdte−

b
2a
t

∫
e0dt = e−

b
2a
t

∫
1dt.

The final result for y2(t) is:

y2(t) = te−
b
2a
t. (5.66)

Combining equations (5.62) and (5.66) the general solution to equation (5.55) for repeated

roots is:

φ(t) = C1e
− b

2a
t + C2t · e−

b
2a
t. (5.67)

We’ve now covered all the bases for solving a second-order linear, homogeneous con-

stant coefficient differential equation. In order to solve these differential equations, we

utilized the quadratic formula (middle school up to college algebra), integration, Euler’s
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formula (built from ideas in Calculus II), as well as techniques introduced earlier in this

section as taught in a differential equation’s curriculum based on instructor interviews and

class notes. Once again, through a hierarchy of learning, the new concepts and solution

methods just introduced were guided by our experiential (previous and rehearsed) under-

standing of prior mathematical ideas. Further, the characteristic equation works for differ-

ential equations of higher order. As long as you can solve the polynomial governed by the

characteristic equation when you input ert into the operator differential equation of interest

your solution will follow the same rules for real, complex, and repeated roots. For roots

which are repeated more than twice, the additional solutions have increasing powers of t.

For instance, if a root r3 repeats three times, the part of the solution attributed with that root

is:

Cer3t +Dt · er3t + Et2er3t

where C,D,E are arbitrary constants. The most difficult part of solving higher order con-

stant coefficient differential equations is solving for the roots of the polynomials in the

respective characteristic equation. Interestingly, the differential equations aspect is less

rigorous than the algebra for increasingly high order differential equations once we know

the general solution.

With the reduction of order technique, we can now solve the general second-order linear

homogeneous differential equation:

y
′′

+ p(t)y
′
+ q(t)y = 0 (5.68)

where if y1(t) solves equation (5.68), then:

y2(t) = y1(t)v. where v(t) =

∫
e−

∫
p(t)dt

y21

is the second linearly-independent solution. This one technique has opened the door to

solving a plethora of differential equations.
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5.2.10 Second-Order Linear Non-homogeneous Differential Equation

The general operator expression for a second-order linear non-homogeneous differential

equation is

L[y(t)] = y
′′

+ p(t)y
′
+ q(t)y = g(t), (5.69)

with g(t) 6= 0. Similarly to how the general solution to the first-order non-homogeneous

differential equation (5.27) relies on the general solution to the first-order homogeneous

differential equation (5.28), the general solution to equation (5.69) relies on the general so-

lution in equation (5.52) to the second-order homogeneous differential equation in equation

(5.51) such that it can be expressed as:

Ψ(t) = φ(t) + yp(t) = C1y1(t) + C2y2(t) + ψ(t). (5.70)

Here ψ(t) is defined as the particular solution to the non-homogeneous differential equa-

tion (5.69). Plugging in ψ(t) into (5.69) gives:

L[C1y1(t) + C2y2(t) + ψ(t)] = L[C1y1(t) + C2y2(t)] + L[ψ(t)] = 0 + L[ψ(t)] = g(t).

Here L[C1y1(t)+C2y2(t)] = L[φ(t)] = 0 because φ(t) solves the homogeneous differential

equation (5.51). Thus, we can conclude that our particular solution ψ(t) = g(t). The

following theorem clarifies the above result.

Theorem 5. Let y1(t) and y2(t) be two linearly independent solutions to y
′′

+ p(t)y
′

+

q(t)y = 0 as in equation (5.51). Then, with a particular solution ψ(t) to the

non-homogeneous equation (5.69), the general solution to (5.69) is:

Ψ(t) = C1y1(t) + C2y2(t) + ψ(t).

One neat result of this theorem, is given two particular solutions ψ1(t) and ψ2(t) to the

non-homogeneous differential equation (5.69), their difference ψ1(t) − ψ2(t) is a solution

to the homogeneous differential equation (5.51). As a brief proof, consider

L[ψ1(t)] = g(t) = L[ψ2(t)].
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The difference between them gives:

L[ψ1(t)]− L[ψ2(t)] = L[ψ1(t)− ψ2(t)] = 0,

and therefore ψ1(t)− ψ2(t) solves the homogeneous differential equation (5.51).

In order to find the general solution to a non-homogeneous differential equation (5.69)

we only need to find the general solution φ(t) to the homogeneous differential equation

(5.51) plus any one particular solution to the non-homogeneous differential equation (5.69).

Additionally, if we find more than one particular solution to the non-homogeneous differ-

ential equation (5.69), then we can determine at least one solution to the homogeneous dif-

ferential equation (5.51). When finding more than one possible solution
(
y1(t), · · · , yn(t)

)
to the homogeneous differential equation (5.51), we can utilize the Wronskian to check

for linear independence between the different solutions. We now have all the information

required to solve any non-homogeneous constant coefficient differential equation. An issue

remains when the differential equation is not constant coefficient. We haven’t developed

a technique to determine a particular solution ψ(t) to the non-homogeneous differential

equation (5.69) outside of making a strategic guess, being given one, or using g(t) in equa-

tion (5.69). The following section brings back a familiar solution method from when we

discussed solving first-order non-homogeneous differential equations in Section 5.2.3.

5.2.11 Variation of Parameters for Second-Order Differential Equa-

tions

One method for solving a second-order linear non-homogeneous differential equation:

L[y(t)] = y
′′

+ p(t)y
′
+ q(t)y = g(t), (5.71)

for a particular solution is using variation of parameters, similar to the variation of pa-

rameter process of solving a first-order, non-homogeneous differential equation (5.27) in

Section 5.2.3. Introducing two new unknown functions, u1 and u2, our particular solution
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ψ(t) will be of the form:

ψ(t) = u1(t)y1(t) + u2(t)y2(t), (5.72)

where y1(t) and y2(t) solve the homogeneous second-order differential equation:

L[y(t)] = y
′′

+ p(t)y
′
+ q(t)y = 0. (5.73)

We need to find what exact values of u1(t) and u2(t) make ψ(t) a particular solution to

(5.71). Let’s plug in the proposed solution ψ(t) (5.72) into the non-homogeneous differen-

tial equation (5.71):

L[ψ(t)] = ψ
′′
(t) + p(t)ψ

′
(t) + q(t)ψ = g(t). (5.74)

Differentiating ψ(t) = u1(t)y1(t) + u2(t)y2(t) gives:

ψ
′
(t) = u

′

1y1 + u1y
′

1 + u
′

2y2 + u2y
′

2,

where u′1y1 + u
′
2y2 = 0 is a resulting condition because y1(t) and y2(t) solve the homoge-

neous differential equation (5.73). Therefore, we have

ψ
′
(t) = u1y

′

1 + u2y
′

2,

and the second derivative is

ψ
′′
(t) = u

′

1y
′

1 + u1y
′′

1 + u
′

2y
′

2 + u2y
′′

2 .

Plugging in the above derivative expressions and ψ(t) = u1(t)y1(t) +u2(t)y2(t) into equa-

tion (5.74) yields:

u
′

1y
′

1 + u1y
′′

1 + u
′

2y
′

2 + u2y
′′

2 + p(t)
(
u1y

′

1 + u2y
′

2

)
+ q(t)

(
u1y

′

1 + u2y
′

2

)
= g(t).

Intense factoring of the expression above gives the following result:

u1
(
y
′′

1 + p(t)y
′

1 + q(t)y1
)

+ u2
(
y
′′

2 + p(t)y
′

2 + q(t)y2
)

+
(
u
′

1y
′

1 + u
′

2y
′

2

)
= g(t). (5.75)
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Note that because y1(t) and y2(t) solve equation (5.73),

y
′′

1 + p(t)y
′

1 + q(t)y1 = 0,

and

y
′′

2 + p(t)y
′

2 + q(t)y2 = 0.

Therefore (5.75) simplifies to:

u
′

1y
′

1 + u
′

2y
′

2 = g(t).

After inputting our solution ψ(t) into equation (5.72), we now know the following condi-

tions must hold:

u
′

1y1 + u
′

2y2 = 0;

u
′

1y
′

1 + u
′

2y
′

2 = g(t).
(5.76)

This next step is a trick in order to be able to solve for u′1(t). We are going to multiply the

first condition by y′2 and multiply the second condition by y2. The two conditions are now

u
′

1y1y
′

2 + u
′

2y2y
′

2 = 0;

u
′

1y
′

1y2 + u
′

2y
′

2y2 = g(t)y2.

Next, we subtract the top expression from the bottom one by process of elimination, such

that there is one resulting equation:

u
′

1

(
y
′

1y2 − y1y
′

2

)
= g(t)y2.

Notice the term in the parentheses is the negative of the Wronskian W [y1, y2] in equation

(5.54) and so

u
′

1 =
−g(t)y2
W [y1, y2]

. (5.77)

Similarly, we can solve for u′2 recalling the conditions in equation (5.76). Multiplying the

first condition by y′1 and the second condition by y1, they can be rewritten as:

u
′

1y1y
′

1 + u
′

2y2y
′

1 = 0;

u
′

1y
′

1y1 + u
′

2y
′

2y1 = g(t)y1.
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Once again by elimination, the above expressions simplify to:

u
′

2

(
y1y

′

2 − y
′

1y2
)

= g(t)y1

where the term here in parentheses is the Wronskian W [y1, y2]. Thus,

u
′

2 =
g(t)y1

W [y1, y2]
. (5.78)

Integrating both equations (5.77) and (5.78), we determine the expressions for our unknown

functions u1(t) and u2(t) such that:

u1(t) = −
∫

g(t)y2(t)

W [y1, y2]
dt;

u2(t) =

∫
g(t)y1(t)

W [y1, y2]
dt.

(5.79)

With the parameters satisfied in equation (5.79),

ψ(t) = u1(t)y1(t) + u2(t)y2(t),

from equation (5.72), is a particular solution to equation (5.71). This satisfies the general

solution Ψ(t) = C1y1(t)+C2y2(t)+ψ(t) as in equation (5.70) for linear non-homogeneous

differential equations.

Once again we were able to utilize a technique known as variation of parameters in

order to solve for solutions to a non-homogeneous differential equation. Most of the scratch

work required to reach the desired outcome has utilized concepts from calculus and algebra.

Most of the work in differential equations relies on mathematical context from before the

course, as is typical in most mathematics sequences. It’s fascinating to see that as the

ideas become more challenging, the mathematical formalism remains guided by ideas from

earlier experiences.

5.2.12 Judicial Guessing

In this section we’re going to develop a methodology for guessing solutions of the general

non-homogeneous constant coefficient differential equation:

L[y] = ay
′′

+ by
′
+ cy = g(t). (5.80)
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There’s a difference between guessing and judicial guessing. With judicial guessing we’ll

be making educated choices for our solution based on the function g(t). In my experi-

ence, judicial guessing plays a large role in physics differential equations curricula, but for

now we’re going to show why mathematicians and physicists alike share a fondness in the

strategy of guessing.

Consider the following non-homogeneous constant coefficient differential equation

L[y] = ay
′′

+ by
′
+ cy = a0 + a1t+ · · ·+ ant

n. (5.81)

Observing that the right hand side of the differential equation in equation (5.81) is an nth

degree polynomial, we want to seek a particular solution ψ(t) such that aψ′′ + bψ
′
+ cψ is

also an nth degree polynomial. Due to the niceness in taking derivatives of polynomials, a

strategic guess solution is to let ψ(t) to be an nth degree polynomial itself such that:

ψ(t) = A0 + A1t+ · · ·+ Ant
n. (5.82)

Taking the first and second derivative of (5.82) gives

ψ
′
= A1 + 2A2t+ · · ·+ nAnt

n−1.

and

ψ
′′

= 2A2 + 2 · 3A3t+ · · ·+ n(n− 1)Ant
n−2.

Plugging in our guess solution (5.82) into the differential equation (5.81) leads to

L[ψ(t)] = aψ
′′

+ bψ
′
+ cψ = a0 + a1t+ · · ·+ ant

n,

which is equivalent to

a
(

2A2 + 2 · 3A3t+ · · ·+nAntn−2
)

+ b
(
A1 + 2A2t+ · · ·+ nAnt

n−1
)

+ c
(
A0 + A1t+ · · ·+ Ant

n
)

= a0 + a1t+ · · ·+ ant
n.

(5.83)

The above expression factors as:

cAnt
n+
(
cAn−1 +nbAn

)
tn−1 + · · ·+

(
2A2a+ bA1 + cA0

)
= ant

n+an−1t
n−1 + · · ·+a0.
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Matching coefficients in front of equal powers of t yields the following three conditions:

cAn = an, therefore An =
an
c
, c 6= 0,

cAn−1 + nbAn = an−1, therefore An−1 =
an−1 − nbAn

c
,

where An = an
c

as shown above, and

2A2a+ bA1 + cA0 = a0.

These three conditions allow for one to solve for all the Ak coefficients, 0 ≤ k ≤ n, for

the particular solution ψ(t) expressed as an nth degree polynomial in equation (5.82). The

second condition is known as a recursion relation, where in order to solve for An or An−1

you need to know the other value.

There are two more solutions to consider for the differential equation in equation (5.81),

given that either c = 0 or b and c = 0. Consider first that c = 0, such that our differential

equation becomes

L[y] = ay
′′

+ by
′
= a0 + a1t+ · · ·+ ant

n. (5.84)

Similar to before, the particular non-homogeneous solution to 5.84 is:

ψ(t) = t
(
A0 + A1t+ · · ·+ Ant

n
)
. (5.85)

where our guess solution is a (n+1)th degree polynomial. Now consider the case for which

both b = c = 0. Then (5.81) becomes:

L[y] = ay
′′

= a0 + a1t+ · · ·+ ant
n, (5.86)

and our guess for a particular non-homogeneous solution to (5.86) is:

ψ(t) = t2
(
A0 + A1t+ · · ·+ Ant

n
)
, (5.87)

which is a (n+ 2)th degree polynomial.

Guessing solutions based on the elements of a differential equation is an effective strat-

egy to determining actual solutions. Making this guess relies on a recognition of patterns
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as well as drawing on former knowledge of functional relationships. In this section, we

saw it’s important to observe the behavior of the right-hand side of the differential equa-

tion, which lead to the guess of a polynomial solution. Other examples include when the

right-hand side is a combination of sines and cosines, or a nth degree polynomial multiplied

by an exponential term. Based on our knowledge of derivatives involving those different

types of functions, we can determine a good guess for a solution. We’ll utilize guessing a

polynomial solution again in the next section as we discuss power series solutions.

5.2.13 Power Series Solutions

Consider the differential equation:

L[y(t)] = P (t)y
′′

+Q(t)y
′
+R(t)y = 0, P (t) 6= 0 for t ∈ (a, b), (5.88)

where we assume P (t), Q(t), and R(t) are continuous polynomial functions with

Q(t)

P (t)
,
R(t)

P (t)
6= 0.

The differential equation in equation (5.88) can be expressed as:

L[y(t)] = y
′′

+
Q(t)

P (t)
y
′
+
R(t)

P (t)
y = 0. (5.89)

We know the general solution to a second-order homogeneous differential equation takes

the form φ(t) = C1y1(t) +C2y2(t), and because P (t), Q(t), and R(t) are polynomials, we

can expect our solution φ(t) is a polynomial as well. We can express nth degree polynomials

as a power series, meaning that our guess solution can take the form:

φ(t) =
∞∑
n=0

ant
n. (5.90)

Recall that the derivative of a series is the series of the derivative, i.e.,(
∞∑
n=o

ant
n

)′
=
∞∑
n=0

(ant
n)′.

Therefore, the first derivative of the series solution (5.90) is

φ
′
(t) =

∞∑
n=0

nant
n−1.
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Likewise, the second derivative of (5.90) is

φ
′′
(t) =

∞∑
n=0

n(n− 1)ant
n−2.

Plugging in the original solution (5.90) and its derivatives into the differential equation

(5.89) gives

L[ψ(t)] =
∞∑
n=0

n(n− 1)ant
n−2 +

Q(t)

P (t)

∞∑
n=0

nant
n−1 +

R(t)

P (t)

∞∑
n=0

ant
n.

Beyond here it becomes difficult to demonstrate for a general case how to solve a differ-

ential equation with a series solution. After differentiating a power series solution in a

differential equation, it is often required re-index the first and second derivative terms as

well as the function itself, which cannot be shown generally without knowing the func-

tional dependencies of Q(t)
P (t)

and R(t)
P (t)

. Thus, we examine an example solution. Consider the

following differential equation:

L[y(t)] = y
′′ − 2ty

′ − 2y = 0. (5.91)

We examine this particular example because it mirrors a physics application discussed later

in the thesis. We want to find two linearly independent solutions to equation (5.91). Plug-

ging in our guess solution to equation (5.90) into (5.91) yields:

L[ψ(t)] =
∞∑
n=0

n(n− 1)ant
n−2 − 2t

∞∑
n=0

nant
n−1 − 2

∞∑
n=0

ant
n = 0.

By absorbing the t of the middle term into the series, the above expression becomes:

∞∑
n=0

n(n− 1)ant
n−2 − 2

∞∑
n=0

nant
n − 2

∞∑
n=0

ant
n = 0.

Two of the three series are expressed as nth degree polynomials. Combining those two

series as like-terms, the expression above can be rewritten as:

∞∑
n=0

n(n− 1)ant
n−2 − 2

∞∑
n=0

(nan + an)tn = 0. (5.92)

In order for the left-hand side of the equation to equal zero in general, the first term needs

to be converted to an nth degree polynomial by re-indexing the series, that is, letting the
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index n be rewritten as n = m+ 2. Then the series above becomes:

∞∑
n=0

n(n− 1)ant
n−2 =

∞∑
m=−2

(m+ 2)(m+ 1)am+2t
m

where writing out the first two terms gives:

(−2 + 2)(−2 + 1)a0t
−2 + (−1 + 2)(−1 + 1)a1t

−1 +
∞∑
m=0

(m+ 2)(m+ 1)am+2t
m.

Notice that the first two terms are equal to zero, and so we’re left with the series:

∞∑
m=0

(m+ 2)(m+ 1)am+2t
m.

Here m is just an index, so after re-indexing with m = n the above expression becomes:

∞∑
n=0

(n+ 2)(n+ 1)an+2t
n.

Plugging this series as the nth degree replacement for the first term in (5.92) makes:

∞∑
n=0

(n+ 2)(n+ 1)an+2t
n − 2

∞∑
n=0

(nan + an)tn = 0.

Combining like terms gives:

∞∑
n=0

[
(n+ 2)(n+ 1)an+2 − 2(nan + an)

]
tn = 0,

and upon further simplification is:

∞∑
n=0

[
(n+ 2)(n+ 1)an+2 − 2((n+ 1)an)

]
tn = 0.

In order for this equation to be true, the coefficient of each power of t must equal zero

separately; thus

(n+ 2)(n+ 1)an+2 = 2(n+ 1)(an),

such that the recursion relation

an+2 =
2(n+ 1)(an)

(n+ 2)(n+ 1)
=

2an
n+ 2

(5.93)

holds. Because this relation is between terms two apart in the series, they hold for even and

odd n separately, and thus one needs to have two independent initial conditions, i.e., for
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a0 and a1, to get two independent solutions. Note that this recursion relation is specific to

this particular example and will not work for all series solutions of differential equations,

and again depends on the re-indexing of the series solution and it’s derivatives as well as

the functions P (t), Q(t), and R(t). For the sake of simplicity, let’s consider three different

conditions on a0 and a1.

The first condition is trivial:

a0 = 0 = a1.

Then all other an’s are zero as well by the recursion relation (5.93).

By letting

a0 = 1 and a1 = 0,

we get all the an’s for n even by (5.93). All an’s for n odd are zero because a1 = 0, and

a3 =
2a1

1 + 2
=

2 · 0
3

= 0,

where this recursion repeats for all odd n. The following are a few of the n even coefficients

as a result of (5.93):

a0 = 1, a2 = 1, a4 =
1

2
, a6 =

1

6
, a8 = 1/24, · · · , a2n =

1

n!
.

Lastly, letting

a0 = 0, a1 = 1,

gives us all the an’s for n odd by (5.93). The following are a few of the n odd coefficients

as a result of (5.93):

a1 = 1, a3 =
2

3
, a5 =

4

15
, a7 =

8

105
, · · · , a2n+1 =

2n

1 · 3 · 5 · 7 · · · (2n+ 1)
.

Our solutions y1(t) and y2(t) can be built using cases two and three such that:

y1(t) = 1 + t2 +
1

2
t4 + · · ·+ 1

n!
t2 =

∞∑
n=0

(tn)2

n!
= et

2

,

and

y2(t) = t+
2

3
t3 +

4

15
t5 + · · ·+ 2nt2n+1

1 · 3 · 5 · 7 · · · (2n+ 1)
.
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Our final solution φ(t) is then:

φ(t) = C1e
t2 + C2

(
t+

2

3
t3 +

4

15
t5 + · · ·+ 2nt2n+1

1 · 3 · 5 · 7 · · · (2n+ 1)

)
.

A few takeaways from this example should be that in order to determine an nth series solu-

tion one needs to re-index the second-derivative term and possibly the other terms as well.

Re-indexing is a good strategy in order to introduce a recursion relation for the coefficients

of your series solution. To supplement the recursion relationship, specific values for cer-

tain coefficients may be needed (hence the case by case construction above). It’s difficult to

develop a general solution breakdown for series solutions based on the different variations

each problem can present. Hopefully this example provides a strong enough basis for series

solutions; we will explore them further later in a physics context.

5.2.14 Laplace Transforms

In this section we discuss another method for solving second-order, non-homogeneous,

constant coefficient differential equations known as the Laplace transform. The Laplace

transform allows for one to solve linear constant coefficient differential equations by reduc-

ing these differential equations to linear algebraic expressions which can be algebraically

manipulated to determine a solution. It’s a three step process in which we take Laplace

transform of the differential equation of interest, algebraically solve for the Laplace trans-

form of the solution L[y], and lastly take the inverse Laplace transform to find an exact

value for y(t). First, we need to define the Laplace transform.

Consider the following differential equation and initial conditions,

ay
′′

+ by
′
+ cy = f(t),

y(t = 0) = y0,

y
′
(t = 0) = y

′

0.

(5.94)

The Laplace transform method becomes exceedingly effective when f(t) in equation (5.94)

is discontinuous or almost always zero (e.g., Dirac-Delta function). What is a Laplace
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transform? Let f(t) exist for 0 ≤ t <∞. Then the Laplace transform of f is:

F (s) = L[f(t)] =

∫ ∞
0

e−stf(t)dt. (5.95)

The integral in the definition of Laplace transform is an improper integral which is another

topic from Calculus II being applied in the context of differential equations. It is this im-

proper integral that makes the Laplace transform effective for f(t) discontinuous or almost

always zero. We establish our initial conditions in equation (5.94) at t = 0 (as opposed to

t = t0) due to the integral definition of the Laplace transform in equation (5.95).

The result of the Laplace transform is sometimes referred to as the Laplace image. As

an example let’s calculate the Laplace image of f(t) = 1.

L[1] =

∫ ∞
0

e−st · 1 = lim
b→∞

e−st

−s

∣∣∣∣b
0

=
1

s
− lim

b→∞

e−sb

s
.

If s > 0, the last term in the above expression limits to 0. If s < 0, the last term in the

above expression limits to∞. In general,

L[1] =


1
s

if s > 0,

∞ if s < 0,

(5.96)

where the s > 0 is the image of interest. Let’s calculate the Laplace image of a few other

recognizable functions. Looking at f(t) = t, and applying equation (5.95), we get:

L[t] =

∫ ∞
0

e−st · t.

Using integration by parts (from Calculus II), the above integral becomes:∫ ∞
0

e−st · t =
te−st

−s

∣∣∣∣∞
0

−
∫ ∞
0

e−st

−s
.

Similar to before, we’ll have two cases, s > 0 and s < 0, and the solution in general is

L[t] =


1
s2

if s > 0,

∞ if s < 0.

(5.97)
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From now on we’ll only be considering the finite Laplace images. We can calculate the

Laplace image of f(t) = tn the same way as (5.97) such that:

L[tn] =
n!

sn+1
(s > 0). (5.98)

Now that we know the Laplace image for all powers of the independent variable t, let’s

determine the Laplace image of f(t) = eat, where

L[eat] =

∫ ∞
0

e−steatdt =

∫ ∞
0

e(a−s)tdt =
e(a−s)t

a− s

∣∣∣∣∞
o

= lim
t→∞

e(a−s)t

a− s
− 1

s− a
.

Thus, the finite Laplace image of eat is

L[eat] =
1

s− a
for s > a. (5.99)

For s > 0, the following Laplace images for cos(at) and sin(at) can be derived:

L[sin(at)] =
a

s2 + a2
, (5.100)

L[cos(at)] =
s

s2 + a2
. (5.101)

These derivations are a result of taking the Laplace transform of Euler’s formula in equation

(5.60) from Section 5.2.9 expressed in the current context as:

eiat = cos(at) + i sin(at).

The Laplace transform is a function of the two linear operations, multiplication by e−st

and integration. That makes the Laplace transform a linear operator, and in turn it obeys

the following properties:

1. L[Cy] = CL[y], C ∈ R where C is a constant;

2. L[f(t) + g(t)] = Lf(t)] + L[g(t)], where f(t) and g(t) are functions representing

the right-hand side of equation (5.94).

These properties allow us to find Laplace images of sums of different functions with con-

stant coefficients. For example, taking the Laplace transform of 3t2 + 5e6t yields:

L[3t2 + 5e6t] = 3L[t2] + 5L[e6t] = 3 · 2

s3
+ 5 · 1

s− 6
=

6

s3
+

5

s− 6
,

74



by the above properties and derivations in equations (5.98) and (5.99). The Laplace trans-

form results in functions of s, but we ask how can one determine a solution back in terms

of t? The Laplace images are currently in another functional state, and now we need to find

a way to convert back in order to solve equation (5.94).

First, let’s determine the Laplace transforms for derivatives of y(t). The Laplace image

for the first derivative y′(t) is

L[y
′
(t)] =

∫ ∞
0

e−sty
′
(t) = sL[y(t)]− y(0).

The integral is computed using integration by parts. The Laplace transform of the second

derivative y′′(t) is similarly

L[y
′′
(t)] = sL[y

′
(t)]− y′(0) = s

(
sL[y(t)]− y(0)

)
− y′(0) = s2L[y(t)]− sy(0)− y′(0).

Note for the nth derivative, the Laplace image is

L[y(n)(t)] = snL[y(t)]− sn−1y(0)− sn−2y′(0)− · · · − y(n−1)(0).

Let’s now solve equation (5.94) by taking the Laplace transform of both sides of the differ-

ential equation such that:

L[ay
′′

+ by
′
+ cy] = L[f(t)] = aL[y

′′
] + bL[y

′
] + cL[y] = L[f(t)].

Using the derivative expressions derived above, this becomes:

a
(
s2L[y]− sy(0)− y′(0)

)
+ b
(
sL[y]− y(0)

)
+ cL[y] = L[f(t)].

Solving for L[y] gives:

L[y] =
(as+ b)y0 + ay

′
0 + L[f(t)]

as2 + bs+ c
.

Our solution to equation (5.94) is then the inverse Laplace transform of L[y] resulting in:

y(t) = L−1
(
L[y]

)
= L−1

(
(as+ b)y0 + ay

′
0 + L[f(t)]

as2 + bs+ c

)
. (5.102)
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The inverse Laplace transform is a tool which allows us to bring our solution out of the

Laplace functional form, getting an expression for the solution which solves equation (5.94

in terms of t.

Again, we have simplified to algebra techniques in order to solve complex differential

equations.

5.2.15 Systems of Differential Equations

So far we have dealt with solving differential equations one by one. What kinds of situa-

tions prompt a system of differential equations? We know we can use a single differential

equation to describe the population dynamics of one species. The population of two dif-

ferent species can be described by two separate differential equations. If the two different

differential equations influence (depend on) one another, the two differential equations are

connected in a system. For example, a predator-prey model can be represented by a system

of differential equations. A system of differential equations looks like

y
′
1 = f1(t, y1, y2, · · · , yn),

y
′
2 = f2(t, y1, y2, · · · , yn),

· · · · · · · · · · · · · · · · · · · · · ·,

y
′
n = fn(t, y1, y2, · · · , yn).

(5.103)

Here there are n unknown functions. In the context of this thesis, we’ll be considering the

maximum of 2 unknown functions where in general we deal with systems like
y
′
1 = f1(t, y1, y2),

y
′
2 = f2(t, y1, y2).

(5.104)

Consider a second-order differential equation:

y
′′

= g(t, y, y
′
). (5.105)

It turns out that we can represent this second order differential equation as a system of

first-order differential equations. To do this, we introduce the unknown functions u1 = y
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and u2 = y
′ such that u′1 = u2. Then equation (5.105) turns into a system of differential

equations 
u
′
1 = u2,

u
′
2 = g(t, u1, u2).

(5.106)

Now, we can use methods for solving systems of first-order differential equations to deter-

mine u1 and u2, which in turn will lead us straight to the solution y(t) to equation (5.105).

These methods discussed in the next section use ideas from linear algebra, with which

students may or may not have experience. This is the first time in the thesis I present a

mathematical technique that isn’t necessarily prior (experiential) mathematical knowledge

for a student in a sequence of mathematics courses.

5.2.15.1 Eigenvalue and Eigenvector Method

Consider the following system of first-order linear differential equations
dx
dt

= ax+ by,

dy
dt

= cx+ dy.

(5.107)

In vector notation the system in equation (5.107) is equivalent to

~u
′
= A~u where A =

a b

c d

 and ~u =

x
y

 .
In order to solve our system of differential equations we have to determine two linearly

independent eigenvectors ~v1, ~v2 of the matrix A defined above. These eigenvectors corre-

spond to eigenvalues λ1 and λ2 respectively.

The general solution to the system in equation (5.107) is governed by the following

theorem.

Theorem 6. If a matrix A of order n has n linearly independent eigenvectors ~v1, · · · , ~vn

with the eigenvalues λ1, · · · , λn, then

~y(t) = C1e
λ1t~v1 + · · ·+ Cne

λnt~vn
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is the general solution to a system of first-order linear homogeneous differential equations.

In order to determine the eigenvectors for matrix A we can set up the following equiv-

alence:

A~v = λ~v, (5.108)

where in this context ~v is a two-dimensional vector. Rewriting the right-hand side in matrix

notation gives:

A~v = λ

1 0

0 1

~v =

λ 0

0 λ

~v.
Subtracting the right side from the left side,

A~v −

λ 0

0 λ

~v =

(a b

c d

−
λ 0

0 λ

)~v =

a− λ b

c d− λ

~v = 0.

We define the resulting matrix as:

B =

a− λ b

c d− λ

 .
The determinant of matrix B has to be zero and so,

det

a− λ b

c d− λ

 = λ2 − (a+ d)λ+ (ad− bc) = 0.

Solving this quadratic equation for roots λ1 and λ2 results in the desired eigenvalues. We

can then plug these eigenvalues back into equation (5.108) to solve for their corresponding

eigenvectors ~v1 and ~v2. If there are repeated roots (λ1 = λ2), then there is only one linearly

independent eigenvector which solves equation (5.108). After determining the eigenvalues

and eigenvectors which solve equation (5.108) the general solution to equation (5.107) is:

~y(t) = C1e
λ1t~v1 + C2e

λ2t~v2.

5.2.15.2 Straight Line Solution Approach

As discussed in the background literature section, as a reinvention of the eigenvalue method

students developed the straight line solution approach as a way to overcome the mathemat-

ical complexity/unfamiliarity of linear algebra. The students’ reinvention is influenced by
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their past, experiential knowledge of slopes, as opposed to the less commonly seen or un-

derstood concepts concerning eigen-anything.

We consider again the system of differential equations
dx
dt

= ax+ by,

dy
dt

= cx+ dy.

(5.109)

Solutions to this system can be graphed in the x − y plane, or phase plane. The solutions

graphed on the phase plane are called straight-line solutions because they lie along the

straight line of tangent vectors. The equation for a line on the x − y plane that passes

through the origin in slope-intercept form is

y = mx

where m is the slope of the line defined as”

m =
y

x
. (5.110)

If the solutions to equation (5.109) are vectors, then the ratio of the derivatives is the slope

of that vector. Therefore we can define slope as:

m =
dy
dt
dx
dt

= cx+
dy

ax
+ by. (5.111)

Equating equations (5.110) and (5.111) yields:

y

x
= cx+

dy

ax
+ by.

Substituting y = mx into the above expression gives a quadratic expression in terms of

m. Depending on the result of the quadratic formula, there are either two, one or no real val-

ues form. Oncem is determined, we can plug y = mx back into equation (5.109) and solve

for the solutions x(t) and y(t) using separation of variables (Section 5.1.3). These are the

general solutions, which lie along the straight line. An initial condition along the straight

line would provide a specific straight-line solution. With two unique slopes correspond-

ing to two linearly independent straight-line solutions, (y1(t), x1(t)) and (y2(t), x2(t)), the

general solution for (5.109) is any linear combination of the straight-line solutions.
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5.2.16 Instructor’s Thoughts: Differential Equations

There is a lot of material in a differential equations course, from the types of differential

equations to the methods with which to solve them. This course is limited to ordinary dif-

ferential equations; while instructors in interviews implied they may mention the existence

of partial differential equations, but “typically solution techniques are not discussed.” Many

of the methods for solving ordinary differential equations require a variety of tricks. The

instructors I interviewed that taught a differential equations course acknowledged that there

are a lot of applications that could be taught in a differential equations course, but “it’s hard

to implement them due to time constraints.” One instructor brings up the concern that “any

one application won’t necessarily pique the interest of all the students“, implying an added

difficulty in presenting applications of differential equations in a mathematics course. Over

the course of the interviews the instructors mentioned different types of physical applica-

tions that could be covered such as free-fall motion (with air drag), oscillations, electronics,

and resonance. One instructor mentioned that they usually like to implement “biological

or financial models... typically models with growth or decay.” Additional applications an

instructor included were Newton’s Law of Heating/Cooling and mixing problems. Many

of these applications are all described by first-order differential equations. One instructor

mentioned that “in a course evaluation, students wrote that they appreciated having appli-

cations for the mathematics.” A few students wrote wanting more applications to see how

the work they’re doing applies to the real world.

One instructor in their interview demonstrated a favor for the theory aspects of a dif-

ferential equations course and placed emphasis on “what makes a solution a solution”, for

example the existence and uniqueness theorems. The instructor suggests that in differen-

tial equations a lot of the work comes from recognizing forms of differential equations;

whether or not they are separable, linear, ratio-dependent, or constant coefficient; or if they

are even analytically solvable. This is where numerical strategies, like Euler’s method, are

introduced in the classroom, and When asked how they introduce more complex material,

instructors would imply that every new concept builds from mathematical concepts before
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it, as “typical of a mathematics course.” One instructor said they “expect students to re-

call previous concepts as they’re applied to the newer material in hopes that the students

can make those connections.” The instructor later comments that “at times new differen-

tial equations are special cases of a previous differential equation and consequentially the

solution technique is similar.”

In the interviews, each instructor talked about introducing linear differential operators

in a differential equations course to formalize the set up of solving a differential equation.

As for types of differential equations, an instructor siad that “the linear operators allow for

functional coefficients, but generally for simplicity, many problems and exercises are done

with constant coefficients, due to the complexity of functional coefficients.“ For second-

order constant coefficient differential equations, another instructor suggests that “it simply

comes down to determining roots of a quadratic known as the characteristic equation, or

characteristic polynomial... the solution type depends on whether the roots are distinct,

complex, or repeat.”

In two interviews, instructors discussed the importance of the Laplace operator. Taking

the Laplace transform of the differential equation brings the problem into, as an instructor

puts it, “the Laplace World.” The instructor added that the “Laplace transform takes the

problem from solving a differential equation to solving an algebraic expression. Laplace

World allows for the problem to be simplified; once the business of simplification is com-

plete, we can leave Laplace World, go back to the real world, and we have the solution. “

In an interview with the second instructor, they provided that the Laplace transforms are

additionally useful when given a discontinuous function.

When asked about invoking initial and boundary conditions, instructors mention in gen-

eral that they may explain the difference between these conditions, but that it is “not a main

focus for the course.” Exercises or problems may require initial or boundary conditions,

and the conditions help solve for constants in the general solution. One instructor states

that “the purpose of the course is to establish the mathematical rigor to prepare students

for applications in their fields.” Another instructor implied that it’s important for students
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to understand how the differential equation relates to the given problem, and that they un-

derstand the solution process, and the solution itself. One instructor comments that “it is

important to establish the significance of notation and recognition of mathematical expres-

sions that will come up again in the future.”

One instructor mentioned the importance of showing students more than one solution

method. ”Students may favor one method over the other, and the method they favor may

benefit their overall understanding.” Another instructor suggests that a differential equa-

tions class is an ”opportunity to build student intuition on guessing solutions.” When I

asked instructors if they had heard of the straight-line solution method [3] for solving sys-

tems of linear first-order differential equations, none of the instructors I interviewed rec-

ognized the name or had previously implemented similar characteristics of the technique

in their classrooms. This demonstrates that there are alternative viable options to solu-

tions that instructors are unaware of; students inadvertently miss out on the opportunity to

discover these methods as well.
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Chapter 6

Physics Courses

This chapter describes the variety of physics topics found in courses that I took as an under-

graduate (with the exception of one general education physics course which was brought

up in an interview with one of the faculty). It is written in an order to help describe the

physics content in a sequence that mimics my experience as an undergraduate physics ma-

jor, as well as demonstrate how mathematical ideas in physics build off of one another. The

lessened inclusion of mathematical formalism in this chapter is reflective of my experience

in the physics classroom, and lends itself to the previous chapter where we have already

done the mathematical rigor. While I argue that mathematics should be a significant aspect

of a physics course to foster the transfer of knowledge from the mathematics classroom, it’s

important to not misrepresent how students are learning differential equations in a physics

context.

6.1 General Education Physics Courses

In this section we consider topics from a beginner course for physics students as well as a

course offered to students in and outside of the physics and mathematics departments, as an

offered science elective. These following sections are designed to demonstrate how to crit-

ically think about differential equations without students necessarily having a background
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in mathematics and physics.

6.1.1 Creating Differential Equations: The Zombie Apocalypse

How can instructors discuss differential equations in classes that don’t necessarily have

any mathematics pre-requisites, and with students who certainly have had no exposure to

differential equations? One question to answer for students is, where do differential equa-

tions come from? In the next few sections we will discuss how differential equations arise

from various physics concepts, but differential equations can be used to describe just about

everything. How then can we convey to students how to create a differential equation?

One interviewee introduced the idea of the zombie apocalypse. Students were asked to

develop a differential equation in order to prevent a total zombie uprising. The purpose

behind creating a differential equation is to determine a solution to a problem, in this case

the threat to human existence. Letting students develop their own mathematical expression

for saving the world is an enticing method to demonstrate the fundamental use of differen-

tial equations. Having to consider the rate at which zombies are created, how quickly they

are killed, how many of them return when they’re presumed dead, etc. presents a really

physical (yet imaginary) perspective for building differential equations, as opposed to the

resulting equation which formally is just a chain of mathematical symbols. The differential

equation students create is a population model similar to the logistic model discussed in

Section 5.1.2.

6.1.2 Graphical Analysis: “Curviness”

For differential equations, there is typically more than one way to represent the solution.

So far we’ve discussed analytical, graphical, and numerical solutions to various differen-

tial equations. In a course not necessarily centered around mathematics and physics, it

may be helpful to use the graphical approach of studying solutions. Consider one form of

84



Schrödinger’s equation (which will be discussed in more detail in Section 6.4):

−~2

2m

d2Ψ

dx2
= (E − V )Ψ, (6.1)

which can be rewritten in as

Ψ
′′

=
2m

−~2
(E − V )Ψ.

Let

k =
2m

~2

be a proportionality constant. Then this expression becomes:

Ψ
′′

= −k(E − V )Ψ. (6.2)

The goal is to understand how this differential equation predicts the behavior of Ψ

without overthinking the basic construct. Note that no explanations are being presented

for this particular equation as to what exactly it physically represents. What we can tell is

that Ψ is proportional to its own second derivative. Using our knowledge of solutions, in

reference to (6.2), if E > V the solution would be a sine or cosine function. If E < V

the solution will be an exponential function. These conclusions come based on the sign

difference between Ψ and its second derivative.

If you didn’t understand differential calculus, how would you be able to interpret this

equation? One way to do this is to denote the second derivative of Ψ, Ψ
′′ , as the “curviness”

function for Ψ, curv(Ψ). (6.2) becomes

curv(Ψ) = −k(E − V )Ψ. (6.3)

It’s no surprise that the second derivative is defined as curviness, because the second deriva-

tive determines information about the concavity of the original function. Again, for a gen-

eral education course, the goal is to avoid as much mathematical formalism as possible. In

this scenario, the curviness of a function is described by picturing oneself driving along the

graphical solution of Ψ, and thinking about how far one has to turn the steering wheel at a

point along the curve. The sharper the turn being made on the curve, the more curviness

85



at that point along the solution. For example, picture yourself driving along a sine curve.

When the function is zero, that is, when it crosses the x axis, the curviness is also zero;

the steering wheel would be (momentarily) unturned. The further from the x axis you get,

the more you have to turn the wheel to steer the car back towards the axis, until you turn

around, at which point you start straightening out the wheel until you reach the axis again.

Driving along the curve also demonstrates the changing levels of curviness. At minima

and maxima, the steering wheel is turned as far as it can go. For a sinusoidal function, this

motion repeats for all time.

To apply some physical relevance, Schrodinger’s equation can be used to determine the

quantized energy levels in a potential well. The curviness method works well at determin-

ing whether a specific energy fits inside a finite well. As a visual aide, Figure 6.1 depicts

a finite potential well with a few determined energy levels and their corresponding wave

function solution.

Figure 6.1: Finite Potential Well with Four Energy Levels (from [25])

.
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The curviness method becomes rather difficult to use for wells of infinite size, which we

discuss later in Section 6.4.1. Focusing back on wells of finite size, outside the well leading

into the boundary, there are exponential functions which connect to sinusoidal functions

within the well. We picture it like two opposite side ramps (exponential) getting on and

off a twisty highway (sinusoid). Curviness plays a role in determining which energy levels

actually exist within a finite well. One rule is that getting off and on the exponential ramps,

there can be no corners taken, only smooth driving. Any energy solutions with corners

at the boundary of the well are not possible. Mathematically, we’d say the derivatives at

the boundaries must be continuous. The area beneath the functions that make up the road

in and out of the well must also be finite. If the space beneath the functional path can be

filled with a finite amount of paint, that constitutes a possible solution, it meets the previous

curviness requirements. The energy values which meet the criterion are quantized energy

states. Using a non-mathematical approach, the curviness function was able to determine

quantized energy states governed by the Schrödinger equation. For students not typically

fond of physics and math this is a analogous way to come to the same conclusion working

through the mathematical formalism of solving equation (6.1). We will discuss how to

actually solve variations of the Schrödinger equation in Section 6.4.

6.1.3 Instructors’ Thoughts: General Education Physics Courses

For students knowing no calculus or differential equations, one instructor said they “fo-

cused on the idea of creating a differential equation as opposed to finding solutions that

solve them.” One issue an instructor had with differential equations was wondering “where

do differential equations come from?” The instructor mentions that in general, “physics

gives us the differential equation, which describes some physics behavior, and we’re ex-

pected to solve it.” The instructor goes on to add that “learning to create a differential

equation is a way to introduce students to differential equations, building their intuition in

a less formal mathematical, more qualitative way.”

For students not comfortable with mathematics such as calculus, the curviness graphical
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representation of the Schödinger equation is an effective visual cue of solution behavior. In

an interview the instructor describes it as “the visual strategy of driving down the solution

curve, and the curviness of the function is given a value based on how much the steering

wheel is turned.” The instructor suggests that there are further applications of the driving

analogy including ideas such as ‘smooth driving’, a finitely painted area beneath the road

for potential well, and tunneling systems. In fact, the instructor mentioned that “general

education students taught explicitly using the curviness method outscored senior students

coming out of a quantum mechanics course when tested on tunnelling.”

6.2 Classical Mechanics

Classical Mechanics is an area of physics that describes the behavior of macroscopic sys-

tems, typically of an object in motion. Key concepts from Classical Mechanics include

Newton’s Laws, the relationships between work, kinetic energy, and potential energy, and

oscillatory motion. Much of the physical motion in classical mechanics can be described

by differential equations, for example Newton’s Second law is a second-order differential

equation as a function of position. In the following few sections we explore the applications

of free-fall motion and classical harmonic motion and how knowledge of mathematics aides

in student understanding and allows students and instructors alike to differentiate behavior

of physical systems.

6.2.1 Newton’s Second Law

One typical differential equation in a traditional classical mechanics course is Newton’s

Second Law in one-dimension, where the net force, or sum of the forces, acting on an

object is equivalent to that object’s mass mmultiplied by the object’s acceleration a. Math-

ematically, Newton’s Second Law in one dimension is expressed as

∑
F = ma. (6.4)
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Acceleration is a measurement of the change in an object’s velocity over the time it takes

for the object to experience that change. In other words, the acceleration of an object is

the derivative of the velocity with respect to time. Now Newton’s Second Law (6.4) can be

written as: ∑
F = m

dv

dt
. (6.5)

Velocity is a measurement of the change in an object’s position over the time it takes for

the object to achieve that displacement. Similarly, the velocity of an object is the derivative

of the position with respect to time:

v =
dx

dt
= ẋ.

Notice this change in notation. When taking a derivative with respect to time, it is common

in mechanics to denote the first derivative with a single dot above the quantity of interest.

For the second derivative, there are two dots, so that acceleration becomes

a =
dv

dt
=

d

dt
(v) =

d

dt
(ẋ) = ẍ.

To summarize, the velocity is the first derivative of the displacement with respect to time be-

cause it describes how the displacement changes over time. The acceleration is the deriva-

tive of the velocity with respect to time because it describes how the velocity of an object

changes over time. In turn the acceleration is the second derivative of displacement with

respect to time. Newton’s Second Law (6.4) can be rewritten as∑
F = mẍ (6.6)

At first glance, Newton’s Second Law doesn’t appear to be a differential equation, when

in fact it can be expressed as a first-order differential equation for velocity (6.5), and a

second-order differential equation for position, (6.6). We can use an object’s acceleration

to derive a solution in terms of position x(t). Let’s first solve (6.5) considering a constant

net force F0 and consequently a constant acceleration a = F0

m
. Notice∑

F = F0 = mẍ =
dv

dt
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is a first-order separable differential equation. Using methods from Section 5.1.3 we can

readily solve this for velocity v(t). Separating the differentials and integrating we get∫
dv =

∫
F0

m
dt.

While we could simply leave these as indefinite integrals, it’s important to establish initial

(and later boundary) conditions to provide an accurate physics interpretation of the mathe-

matics. At time t = 0 we say an object has initial velocity (speed) v = v0. At some later

time t the velocity of the object is v. The above integrals can then be evaluated at our initial

and final conditions such that ∫ v

v0

dr =

∫ t

0

F0

m
ds.

Solving yields

v = v0 +
F0

m
t = v0 + at. (6.7)

This is one of the kinematics equations for systems undergoing constant acceleration typi-

cally discussed in an introductory physics course. It’s comforting that our solution matches

a previously defined physics concept. Notice that (6.7) can be written as

v =
dx

dt
= v0

F0

m
t. (6.8)

This is yet another first-order separable differential equation; this time we’re solving for

position x(t). Establishing initial conditions is important, so at time t = 0, the position of

the object is at a point x = x0. At a later time t, call the position x. Now, separating (6.8)

and integrating gives ∫ x

x0

dr =

∫ t

0

(
v0 +

F0

m
t

)
ds.

The solution solves to be

x = x0 + v0t+
1

2

F0

m
t2 = x0 + v0t+

1

2
at2. (6.9)

This is a second kinematics equation for systems with constant acceleration typically seen

in an introductory physics course. Once again the solution to the differential equation gives

a result familiar to a student in a stereotypical physics sequence for undergraduates. The
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third kinematic equation can be solved for by exploring the relationship between accelera-

tion and velocity. Recall that acceleration is the derivative of velocity,

a =
dv

dt
.

which can be expressed as
dv

dt
=
dv

dx
· dx
dt

expressed as a total differential. Plugging in for values we know,

a =
dv

dt
= v

dv

dx
=

1

2

d

dx
(v2).

and so
F0

m
=

1

2

d

dx

(
v2
)
.

This is a first-order differential separable equation, using the same initial and final condi-

tions as before for both velocity and position, separating the above expression and integrat-

ing gives ∫ v2

v20

d
(
v2
)

=

∫ x

x0

2F0

m
dx.

The solution is

v2 − v20 =
2F0

m
(x− x0) = 2a(x− x0), (6.10)

and that is the work-energy theorem for a particle. Applying the differential equation from

of Newton’s Laws we were able to derive the three kinematics equations for constant ac-

celeration taught in typical introductory physics courses. These strategies show where the

kinematic equations come from using mathematics through the physics context.

6.2.2 Free Fall Motion with Air Resistance

In order to further explore the differential equation representation of Newton’s Second

Law, let’s consider free fall, where we measure vertical motion in terms of position y(t)

conventionally. For our purposes, we will consider any upward displacement as positive,

and any downward displacement as negative. In an introductory physics course, a free fall
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problem examines motion of an object through the air in one-dimension considering only

the force due to gravity Fg = mg acting on the object. In this particular case Newton’s

Second Law for free fall is: ∑
F = mg = mẍ, (6.11)

where g is the acceleration due to gravity, defined as g = 9.81m/s2. We’ve already solved

this differential equation above, where here our constant force is the force due to gravity,

and the constant acceleration is g. The solution to (6.11) for vertical position y(t) is

y(t) = y0 + v0t+
1

2
at2 = y0 + v0t+

1

2
gt2. (6.12)

Upper-division classes, such as an Intermediate or Advanced Mechanics course, introduce

air resistance, or the drag force. The drag force on an object is proportional to that object’s

velocity, Fdrag = bv, where b is a proportionality constant. The drag force always opposes

motion (like friction) and depends on the medium through which an object moves (in our

case air) as well as the object’s cross-sectional area and shape. Adding the the drag force

to (6.11), the second-order differential equation for Newton’s Second Law for free fall

becomes ∑
F = mg − bv = mÿ. (6.13)

The sign attributed to the force due to gravity and the drag force depends on our established

coordinate system. If a force opposes the direction of motion, it’s sign is the negative of the

velocity. If velocity is negative, then force is positive. Therefore, both the drag force and

force due to gravity are negative for upward motion. The force due to gravity always points

toward Earth, and the drag force points opposite the direction of motion. For downward

motion, the force due to gravity is in the same direction as the velocity (which is negative),

and so it’s still a negative force. The drag force always opposes the motion of the object

and so as the object travels downwards, the drag force is positive.

It’s important to keep in mind the overall motion (trajectory) of the object in order to

account for proper sign changes on the forces. From Newton’s Second Law, the net force

will bear the same sign as the acceleration. If the force is negative, that force is causing the
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object to accelerate in the negative direction. If you’re moving in the negative direction,

and you have a negative acceleration, you will speed up. Similarly, if the force is positive,

it causes the object to accelerate in the positive direction.

In the downward motion of free fall, there is a moment when an object reaches what is

called its terminal velocity. This occurs when the force due to gravity and the drag force

are equal in magnitude, but opposite in direction. This implies the net force on the object

is zero, ∑
F = mg − bv = 0,

which means the acceleration of the object is also zero, so it moves with constant (terminal)

velocity. In order to analyze the motion of a free fall system for which air resistance is taken

into account, we need to solve the differential equation (6.13). Rewriting (6.13) in terms of

time-derivatives of y, we get

mÿ = mg − bẏ. (6.14)

Notice that (6.14) is a first-order differential equation in terms of the first derivative of

position. Let’s instead consider this equation in terms of velocity, such that ẏ = v and

ÿ = v̇. This gives

mv̇ = mg − bv. (6.15)

This reduces (6.14) to a first-order linear differential equation that we know to solve (Sec-

tion 5.1.1).

Before doing any formal mathematics, let’s discuss what requirements must be met to

abide by the laws of physics. We know an object in free fall may reach a terminal velocity,

as discussed above. An object reaches terminal velocity when its acceleration is zero, i.e.,

dvterm

dt
= 0. (6.16)

This serves as a boundary condition. So far, we’ve only discussed initial conditions that

remove ambiguity from general solutions. Boundary conditions serve the same purpose, by

providing conditions placed on the derivatives or the solution to fit a given physical context.
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Here, based on terminal velocity, we add a boundary condition on the derivative of

velocity. At increasing values of time, the velocity of the object will approach its terminal

velocity. Plugging our boundary condition (6.16) into our differential equation (6.15) gives

m · 0 = 0 = mg − bvterm

where vterm is the terminal velocity of the object. Solving for the terminal velocity yields

vterm =
mg

b
.

Our boundary condition provided a value for the terminal velocity of the object, this infor-

mation will be useful later on.

For now, let’s solve (6.15). It may not be quite clear how to arrange this equation in

order to see how our solution methods from Section 5.1.1 can be utilized here. With a little

algebra, we can get a recognizable form from which we can proceed.

Factoring out a b from the right-hand side of (6.15) gives

mv̇ = b
(mg
b
− v
)

= b(vterm − v).

For mathematical convenience we want (v−vterm). factoring out a−1 from the last expres-

sion gives

mv̇ = −b(v − vterm)

Let’s establish an initial condition on velocity such that v(0) = v0. Solving the previous

expression using methods from Section 5.1.1 or 5.1.3 gives

v(t) = vterm + (v0 − vterm)e−
b
m
t = v0e

− b
m
t + vterm

(
1− e−

b
m
t
)
. (6.17)

In the limit as time increases to infinity,

lim
t→∞

v(t) = vterm.

This matches what is expected physically in a free fall system.
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Now that we know the solution for velocity as a function of time, we can determine

the solution y(t) by integrating (6.17) with respect to time. Defining the initial position as

y(0) = y0, the solution is

y(t) = y0 + vterm · t+
m

b
(v0 − vterm)

(
1− e−

b
m
t
)
. (6.18)

Notice here that as time increases, at first there will be exponential growth in the position,

but eventually the vterm · t term dominates, and the change in position becomes linear. From

ideas in calculus relating graphs of the function and of its derivative, when the change

in position becomes linear, the velocity is constant dv
dt

= 0, which implies the object has

reached terminal velocity (see Fig. 6.2).

Figure 6.2: General Graphical Solution for Free Fall Motion with Air Resistance.

Our solution fits the physical laws which define free fall motion with air resistance.

Comparing solutions (6.12) and (6.18) notice that by adding a drag force we get a more

accurate representation of motion for an object in free fall. Defining the boundary condition

governed by terminal velocity provided a solution with more physical relevance.

6.2.3 Classical Harmonic Oscillator

To explore another differential equation discussed in mechanics, let’s consider oscillations.

One familiar system to explore is the mass-on-a-spring experiment. The force on the mass
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by the spring is governed by Hooke’s Law:

F = −kx (6.19)

where k is the spring constant (experimentally determined) and has units of Newtons per

meter. The x denotes how far the system is from equilibrium: if the string is stretched,

the displacement is positive and if the spring is compressed, x is negative. Hooke’s Law

describes the force on an object by a spring, and by Newton’s third law, the force on the

spring by the object. If the only force acting on the object is due to the spring, then New-

ton’s Second Law is written as ∑
F = mẍ = −kx. (6.20)

Dividing both sides of (6.20) by m gives

ẍ = − k
m
x. (6.21)

This is a second-order differential equation with constant coefficients as discussed in Sec-

tion 5.2.9, and we could use the characteristic equation to determine the solutions to this

differential equation. The roots of the characteristic equation for this particular differential

equation will be complex, so the solutions are functions of sine and cosine. If we didn’t

already have that tool, how else could we have determined a solution to (6.21)? Notice that

the second derivative ẍ is a negative constant away from its original function x. Are there

any functions we know of whose second derivative is the negative of itself (aside from a

constant)? Three functions come to mind: sine, cosine, and e±iωt. It seems intuitive that

we would choose periodic functions like sine and cosine to describe oscillatory behavior.

Let’s guess a solution to (6.21) such that the position of an object can be described as

x(t) = A cos(ωt− φ0), (6.22)

where φ0 is the initial phase of the oscillation.

The velocity is the derivative of position with respect to time, which gives

v(t) = ẋ = −Aω sin(ωt− φ0). (6.23)
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Similarly, the acceleration is the derivative of velocity such that

a = ẍ = −Aω2 cos(ωt− φ0). (6.24)

What do all of these unknown variablesA, ω, and φ0 represent? Plugging (6.22) and (6.24)

into (6.21) we get

−Aω2 cos(ωt− φ0) = − k
m
A cos(ωt− φ0).

Dividing out common terms we find the angular frequency

w =

√
k

m
= 2πf.

where f is frequency, measured in cycles per second. A is a boundary condition which

represents the maximum displacement from the origin or rest point. The maximum dis-

placement occurs at the turn-around points, or when ẋ = 0. The term φ0 is the phase shift,

which adjusts the solution function if the maximum displacement A doesn’t occur at t = 0.

The phase shift inherently is an initial condition that describes the position x0 of the object

at t = 0. Checking the initial condition for (6.22),

x(0) = A cos(ω(0)− φ0) = A cos(−φ0) = x0.

If we start at the maximum displacement from equilibrium, A = x0, then our phase shift φ0

is zero. Again, this model describes oscillation for when only one force is present along the

direction of motion, F = −kx. The result predicts that the oscillatory motion will continue

for all time.

We can add one layer of realism to this scenario by considering a drag force that im-

pedes the motion of the oscillator, similar to air resistance in free fall. The resulting motion

is described as damped oscillation. We already have

ẍ+ ω2
0x = 0 (6.25)

where we redefine
√

k
m

= ω0 as the natural angular frequency. Adding a drag term −bẋ,

by Newton’s Second Law,

mẍ = −bẋ− kx
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where b is a proportionality constant. Then (6.25) becomes

ẍ+
b

m
ẋ+ ω2

0x = 0 (6.26)

This is a second-order constant coefficient differential equation; we can use the charac-

teristic equation from Section 5.2.9 to determine unique solutions. Let’s first define for

notational convenience and later physical relevance that b
m

= 2β. The roots of the charac-

teristic equation

r2 + 2βr + ω2
0 = 0

are

r1 = −β +
√
β2 − ω2

0 and r2 = −β −
√
β2 − ω2

0.

Our general solution follows as

x(t) = e−βt
(
C1e

(
√
β2−ω2

0)t + C2e
(−
√
β2−ω2

0)t

)
.

How does the solution depend on the relative values of β2 and ω2
0? There are three specific

types of damping with occur, under-damped, over-damped, and critically damped. If β2 <

ω2
0 , then the amplitude of the oscillation will decay over time. Additionally, if β2 < ω2

0

then
√
β2 − ω2

0 is imaginary and the solutions will be of the form

x(t) = Ce−βte±iω1t

where ω1 =
√
ω2
0 − β2 is the observed angular frequency. With no damping, the observed

frequency is the natural frequency (ω1 = ω0). For a reminder on solutions for complex

roots of the characteristic equation, see Section 5.2.9. We know by Euler’s formula (5.60)

that

eiω1t = cos(ω1t) + i sin(ω1t)

and from Section 5.2.9 we know either cos(ω1t) or sin(ω1t) are solutions to (6.26) for

complex roots. Hence, our solution is

x(t) = Ce(−β+i
√
ω2
0−β2) = Ce−βteiω1t = Ce−βt cos(ω1t).
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Applying initial and boundary conditions for phase shift and amplitude, the solution be-

comes

x(t) = Ae−βt cos(ω1t− φ0). (6.27)

This looks familiar to our previous solution (6.22) for a system without damping, but with

an additional decay term e−βt, which has high physical relevance. e−βt behaves like an

envelope around the typical oscillatory function A cos(ω1t− φ0), decreasing the amplitude

of the oscillations over time, coming to a stop in the limit of very large t (see Fig. 6.3).

The quantity beta (β) is called the decay parameter. The case where β2 < ω2
0 is known as

Figure 6.3: General Graphical Solution for an Under-damped Oscillator (Equation (6.27))

.

under-damping, and represents an amplitude decay for oscillations over time. Additionally,

β effects the observed angular frequency: ω1 =
√
ω2
0 − β2, so for higher β, there is a lower

observed frequency.

What if β2 > ω2
0? Then our roots are real and our solution no longer contains sines and
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cosines. Our solution is

x(t) =

(
C1e

(−β+
√
β2−ω2

0)t + C2e
(−β−
√
β2−ω2

0)t

)
= e−βt

(
C1e

(
√
β2−ω2

0)t + C2e
(−
√
β2−ω2

0)t

) (6.28)

The question then remains as to which exponential term dominates as time t → ∞. The

exponential with the root of smallest magnitude will dominate the motion of the system.

The smallest root in this case is r = −β +
√
β2 − w2

0 = −(β −
√
β2 − w2

0). This root is

the decay parameter for this system. When β > ω0 the system experiences over-damping,

and the position solution has exponential behavior.

The last case to consider is when β2 = ω2
0. This gives repeated roots r1 = r2 = −β.

We know from Section 5.2.9 that our solution for repeated roots (ensuring two unique

solutions) is

x(t) = C1e
−βt + C2te

−βt = e−βt(C1 + C2t). (6.29)

Again, β is the decay parameter, which governs the system’s motion. For repeated roots,

β2 = ω2
0 , there is critical damping.

6.2.4 Instructors Thoughts: Classical Mechanics

In an interview, an instructor says “mechanics courses are designed as a refining of concepts

from introductory physics courses, adding new physical realities such as air resistance and

damping to physical systems to which students have previously been exposed.” Instructors

mention using the separation of variables technique to solve Newton’s second law, which

they anticipate students have seen before, either in Calculus II or a differential equations

course. In the context of oscillations, where the solution method requires the characteristic

equation; instructors suggest that “students say that they have not seen or do not remem-

ber seeing the characteristic equation, sometimes even after being in differential equations

course.” One instructor implied that time would have to be taken out of class in order to

rederive the characteristic equation technique for solving second-order differential equa-

tions.
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One instructor states that “initial and boundary conditions in mechanics are essential,

especially with air resistance.” The instructor adds later that “it’s easy to solve a differential

equation analytically, students instead have difficulties integrating a definite integral with

initial and boundary conditions... specifically students have trouble identifying the correct

limits over which to integrate now that they must pay attention to the physical laws which

govern the mathematics.“ Another instructor stressed that “physically a solution doesn’t

make sense without initial and boundary conditions; without them, the solution would

just mirror a mathematics course.” One mechanics instructor that I interviewed acknowl-

edged that the first and second derivatives, depending on the original function, may appear

strange, but admitted to not spending time exploring that concept in class with students.

6.3 Electrostatics and Circuits

6.3.1 Laplace’s Equation

In electrostatics one can determine the electric field ~E given by a stationary charge distri-

bution using Coulomb’s Law in integral form:

~E(~r) =
1

4πε0

∫ r̂
r 2

ρ(~r
′
)dτ

′
. (6.30)

r is the magnitude of the separation vector ~r ≡ ~r − ~r ′ , where ~r and ~r ′ describe the

locations of a test charge and a single point charge, respectively. Also, ρ(~r
′
) is the volume

charge density (i.e., the charge per unit volume) and dτ ′ is the differential volume element.

Integrating expressions such as (6.30) can be difficult to do analytically. It’s a common

tactic in electrostatics to first find the potential, governed by the expression

V (~r) =
1

4πε0

∫
1

r ρ(~r
′
)dτ

′
. (6.31)

This integral often remains to be difficult to compute analytically as well. Instead let’s

consider a function of potential in differential form know as Poisson’s equation:

∇2V = − 1

ε0
ρ. (6.32)

101



The Laplacian operator ∇2 ≡ ~∇ · ~∇ is a linear operator that transforms a function into

partial derivatives with respect to the coordinate system of interest. In Cartesian coordinates

for 3-dimensions,

∇2V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
.

It is typical in electrostatics to want to determine the potential of a region in which the

charge per unit volume, ρ, is zero. For this case in particular,

∇2V = 0. (6.33)

The above expression is known as Laplace’s equation, which is the homogeneous version

of Poisson’s equation (6.32). Written out in Cartesian coordinates for three dimensions,

Laplace’s equation is

∇2V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
. (6.34)

For much of electrostatics and other physics topics (e.g., magnetism, gravitation, thermody-

namics), Laplace’s equation plays a central role. Let’s first consider the case for Laplace’s

equation in one dimension,
d2V

dx2
= 0. (6.35)

The general solution to (6.35) will be the equation for a straight line

V (x) = mx+ b (6.36)

with m and b unknown constants. Two unknown constants, as we saw in Section 5.2.8, is

standard for second-order differential equations. These particular constants are fixed by the

boundary conditions of the problem. For concreteness let’s consider a case for which the

potential at the boundaries x = 1 and x = 5 are V (1) = 8 and V (5) = 0, then the constants

solve to be m = −2 and b = 10.

With predetermined boundary conditions, it comes down to solving two equations for

two unknowns. For these particular boundary conditions, our exact solution to (6.35),

plugging the solved constants into (6.36), is

V (x) = −2x+ 10, (6.37)
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Figure 6.4: Solution Graph of Potential for Equation 6.37

represented graphically by Figure 6.4.

Given two specific boundary conditions, we can now solve for that potential at any

point in one-dimension for the case where there is a known charge-per-unit-volume. Our

solution V (x) can be thought of as an average between two nearby points V (x − a) and

V (x+ a) for any value a such that

V (x) =
1

2
[V (x− a) + V (x+ a)].

Because the potential at any point is the average of two points nearby it, the maximum

and minimum potentials must occur on the boundaries. Hence, there are no local extrema

(minimums and maximums) in terms of potential in one-dimension. One takeaway here is

that a solution to Laplace’s equation cannot be determined without boundary conditions set

on the potential. This demonstrates how some mathematics relies on physical contextual-

ization in order to generate a solution. Boundary conditions may come in many different

forms, so far we’ve seen the function defined on two ends. We could also define a value

for the derivative at either end to pair with a function value at either end. There is never

need for more than two conditions when solving for a second-order differential equation,
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because there are only two constants to solve for. On the other hand, we need more than

one in order to determine an exact solution. A boundary condition on the derivative imme-

diately defines the value for m in (6.36). Having more than one boundary condition on the

derivative at once gives no new information, because in order for the solution to exist, both

must equal each other, otherwise the value for m would be inconsistent.

6.3.2 Circuits

Certain relationships between different elements of circuits can be described using differ-

ential equations. One such relationship is the following differential equation

dVc
dt

= − 1

RC
(Vc − V0), (6.38)

which describes the voltage across the capacitor in an RC-circuit. This is a first-order

differential equation which we know how to solve using separation of variables. Separating

the above expression like so
dVc

Vc − V0
= − 1

RC
dt

our solution is

Vc(t) = V0[1− e−
1

RC
t]. (6.39)

Let’s focus now on where differential equation (6.38) comes from. Picture a circuit

(see Fig. 6.5) with a battery, resistor, and capacitor in series with the capacitor initially

uncharged (open switch).

The battery has an emf ε = V0. Applying Kirchoff’s Loop Rule around this circuit we

get

V0 − IR−Q/C = 0. (6.40)

Because the elements are all in series, we know that the current through each element is the

same. Due to the nature of RC circuits, the current is time dependent and represented by

the change in charge over time,

I =
dQ

dt
.

104



Figure 6.5: RC Circuit Diagram

Plugging this expression for current into (6.40) we get

V0 −
dQ

dt
R−Q/C = 0. (6.41)

The charge across the capacitor is defined as

Q = Vc · C

Taking the derivative with respect to time we get that

dQ

dt
=
dVc
dt
· C.

Plugging these two expressions back into (6.41) yields

V0 −
dVc
dt
·RC − Vc = 0 (6.42)

Solving for dVc
dt

returns us to the differential equation (6.38). The reason for deriving the

differential equation returns to the challenge of understanding where many of these expres-

sions come from. Having a physical contextualization provides a means to determining

exactly what many differential equations model and represent.

Looking back at (6.41) we can additionally determine a solution for the charge as a

function of time. Solving
dQ

dt
= − 1

RC
(Q−Q0)

using separation of variables we get

Q(t) = Q0[1− e−
t

RC ] (6.43)
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where Q0 = CV0 is the inital charge acorss the capacitor. Differentiating (6.43) gives the

expression for current while charging a capacitor,

I(t) = I0e
− t

RC (6.44)

where I0 = Q0

RC
= V0

R
is the maximum current for the circuit.

Through an identical process, the equations for potential, charge, and current could be

determined for a circuit with the capacitor initially fully charged. The solutions respectively

are as follows

Vc(t) = V0e
− t

RC , (6.45)

Q(t) = Q0e
− t

RC , (6.46)

and

I(t) = −I0e−
t

RC . (6.47)

Notice that (6.44) and (6.47) differ by a negative sign. This implies that the current direction

when charging a capacitor is opposite that when discharging a capacitor.

Another important aspect of the solutions derived in this section on circuits is that we

can plug in our limits of time t = 0 and t = ∞ to check that the solutions match our

physics intuition. For instance, looking at the solution to (6.38), where the capacitor in the

circuit was initially uncharged, we have

Vc(t) = V0[1− e
t

RC ].

Note that Vc(0) = 0, which is expected because the capacitor is uncharged initially. As

we let time get large, Vc approaches V0. The potential across the capacitor eventually is

equivalent to the potential across the battery.

6.3.3 Instructors’ Thoughts: Electrostatics and Circuits

The electrostatics instructor I interviewed stated that “the main focus is the Laplace equa-

tion due to its centrality in related physics concepts, but most specifically solving for poten-

tial.” The instructor added that “in some years there’s not enough time to solve Laplace’s
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equation mathematically.” Beyond one dimension, Laplace’s equation is solved by, as an

instructor puts it, “a physicist’s favorite solution method, separation of variables for partial

differential equations.” The instructor stressed the importance of boundary conditions and

stated that “they’re critical to the physics... in terms of a mathematical solution meaning

something, there has to be a boundary condition.” The instructor later adds that “having a

context is easier to see a differential equation as a tool, especially knowing where the dif-

ferential equation comes from.” Further the instructor implied that the “physical meaning

can get lost in the mathematics” if student’s don’t know where differential equations come

from.

For circuits, the instructor I interviewed said “the primary focus is not on the mathe-

matical formalism of solving the differential equation”, but that “the most important aspect

is testing the limits of the differential equations’ solutions to see if the behavior matches

our intuition.” The instructor iterates that due to time commitments, “the primary solution

method in circuits instruction is guess and check (notice I use separation of variables tech-

niques above in Section 6.3.2 for mathematical clarity and to avoid the follow-the-leader

aspect of guessing). The instructor implied that they expect that students have seen the so-

lution methods before in a sequence where mechanics courses precede circuit courses. Fur-

ther, the instructor says “the focus is directed on the derivation of the differential equation

using ideas from circuit analysis and Kirchhoff’s Loop Law.” The instructor suggests that

“the derivation of the differential equation building from a physics perspective of circuits

is critical for students physical understanding of the differential equation.” The instructor

implies that by removing the ambiguity of mathematical symbolism, this students generally

have an increased understanding.

6.4 Quantum Mechanics

Quantum mechanics is the area of physics that describes the behavior of microscopic sys-

tems, typically an electron in some electric potential energy landscape. There are condi-
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tions under which a system is considered to be in a classical or quantum state, which are

not relevant here. Quantum systems are probabilistic rather than deterministic. A system

is described by the probability that a measurement of some property will yield a particular

value. The basic mathematics that describe quantum systems is actually linear algebra and

eigentheory. But for continuous quantities (e.g., position, momentum), the system behavior

can be described by a differential equation, known as the Schrödinger equation, that relates

the “wave function,” ψ(x), to the potential energy function of the surroundings and the

discrete values of system energy (which happen to be the eigenvalues of the Hamiltonian

operator). The wave function can be complex. The square of the wave function, |ψ(x)|2,

is the (position) probability density of the system. This is integrated over the spatial region

of interest to determine the probability of a measuring the particle’s position in that region.

The full Schrödinger equation is a function of position and time. But in the standard

system, which is closed and thus conserves energy, the equation is separable, and the time

function, which carries the energy eigenvalues with it, is an imaginary exponential, or a

sinusoidal function. This function oscillates with a frequency proportional to the energy

level of the system. The other side of the equation is a function of position but not time,

and can be rearranged to be the time-independent Schrödinger equation

−~2

2m

d2ψ

dx2
= (E − U(x))ψ(x), (6.48)

where U(x) is the potential energy, E is the total energy of the system, and ~ is a constant

known as Planck’s constant, divided by 2π.

This chapter provides examples of the use of differential equation methods in three

canonical quantum mechanical systems.

6.4.1 Particle in a Box

One concept from quantum mechanics is attempting to understand particle behavior when

it is trapped in a “box.” In physics, this box is an infinite square potential well of base

length L.
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Figure 6.6: Infinite Square Potential Well

Inside of the well (see Figure 6.6), the potential energy U is zero, while the walls of

the well have infinite potential energy. We introduce the infinite potential well in order to

determine a solution for the wave function ψ(x) from the time-independent Schrödinger

equation.

For the infinite potential square well, we consider U(x) = 0. For this particular case,

(6.48) becomes
−~2

2m

d2ψ

dx2
= Eψ(x). (6.49)

Let’s define

k =

√
2mE

~2
(6.50)

for convenience. Then the expression above becomes

d2ψ

dx2
= −k2ψ(x).

This is a second-order constant coefficient differential equation with complex roots. There-

fore our general solution to (6.49) is

ψ(x) = A sin(kx) +B cos(kx). (6.51)

There are boundary conditions on both sides of the well, x = 0 and x = L. On both

sides U(x) = ∞ which implies that there is no wave function at the boundaries, because
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the wave function must be finite in order to be normalizable. Therefore we cannot find a

particle on the boundaries and the wave function at the boundaries is zero, i.e., ψ(0) =

ψ(L) = 0. Using these boundary conditions we can determine the constants A and B. For

the boundary condition at x = 0 we get

ψ(0) = A sin(0) +B cos(0) = 0

which implies that B = 0. Our solution (6.51) simplifies to

ψ(x) = A sin(kx).

Testing the second boundary condition at x = L gives

ψ(L) = A sin(kL) = 0.

This is where “quantization” of the energies comes in: because of the constraints on the

wave function at the edges of the well, only particular values of k are allowed that solve

the equation. The values for which sin(kL) = 0 are k = nπ
L

, where n is a positive integer.

A is the amplitude of the wave function, so we will write it as C1 = A. The solution (6.51)

then becomes

ψ(x) = A sin(
nπ

L
x) = A sin(kx) (6.52)

Earlier (6.50) we defined k in terms of the energy E. With our new expression for k as

a result of the second boundary condition, k = nπ
L

we can determine an expression for the

total energy,

E =
n2π2~2

2mL2
=

n2h2

8mL2
. (6.53)

Now we have quantized energy states for different values of n, where n = 1 is the

lowest energy, or ground, state. The final task now is to “normalize” our wave function

solution (6.52) to determine a value for the amplitude A. To normalize the wave function

is to ensure that the probability P (x) of finding the particle at some point in the allowed

spatial region is 100%. Mathematically, we integrate the square of the wave function over
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all space. The space in which the particle may exist with respect to the potential well is

between x = 0 and x = L, and so integration yields∫ ∞
−∞

P (x)dx =

∫ L

0

|ψ(x)|2dx =

∫ L

0

|A2| sin2(kx)dx = 1.

Computing the integral and solving for A gives

A = ±
√

2

L
.

While it is possible for the amplitude A to be complex, in order to keep things as simple as

possible we are only going to consider the real case. The exact solution to (6.49) is

ψ(x) =

√
2

L
sin(kx). (6.54)

6.4.2 Step Potential Regions

After determining the solution for the infinite potential well, let’s now explore what is

known as a “potential step” region. This models an abrupt change in the potential energy

of the system as a instantaneous change in the value of U(x). For x < 0, the potential

is constant at U(x) = 0. For x > 0, the potential jumps (steps) up to a constant value

U(x) = U0.

The behavior of the solution to Schödinger’s equation (6.48) for the step potential de-

pends on the value of the total energy E with respect to the step U0. Note that this is not a

bound state like the infinite potential well. We still solve for individual energies, but they

are not quantized here. The reason being is that there is only one “boundary condition”

at the step x = 0 (See Figure 6.7). After solving for the individual energies, we need the

overall solution to be a linear combination of solutions to be normalized to obey physics.

The first case to consider is E > U0. Then for the region x < 0 where U(x) = 0 we

get sines and cosines (or positive and negative imaginary exponential) for ψ(x) with the

same k as for the infinite square well (6.50). These can be considered as plane waves in the

negative-x region.
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Figure 6.7: Step Potential Region with Two Energy Levels

For x > 0, (6.48) takes the form

d2ψ

dx2
= −κ2ψ(x)

where

κ =

√
2m(E − U0)

~2
.

Notice that κ < k. The solutions for ψ(x), x > 0 are still sines and cosines, but the

wavelengths are longer, because there is a lower kinetic energy E − U0 as opposed to the

total energy E being entirely kinetic for x < 0.

The second case to consider is 0 < E < U0. The total energy is between the energy

step U0 and zero potential energy. For x < 0, as before, ψ(x) is sinusoidal (a plane wave)

with the same k as before (6.50). For x > 0, (6.48) is expressed now as

d2ψ

dx2
= K2ψ(x)

where K is a new constant defined as

K =

√
2m(U0 − E)

~2
.

The possible solutions to this equation are

e+Kx or e−Kx.
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Both are exponential functions; one describes exponential growth and the other exponential

decay. The exponential growth solution eKx cannot be the solution because then ψ(x) =

eKx would go to infinity for large values of x. Therefore, the solution for x > 0 must be the

exponential decay expression e−Kx. Thus function matching must occur at the boundary

x = 0, i.e., the wave function transforms from a sinusoidal function into an exponential

decay for the case 0 < E < U0.

As mentioned earlier, the wave function is related to the position measurement prob-

ability. When the energy is within the region of the step, the probability of finding the

particle is exponentially decaying, but non-zero. This is different from classical physics,

which would predict the probability finding a particle in a wall would be zero. Picture

throwing a tennis ball at brick wall, would you expect it to travel through the wall? No, and

that’s why this result for quantum mechanics is so fascinating.

6.4.3 Quantum Harmonic Oscillator: Power Series Solution

The utility of the harmonic oscillator as a model for physical systems is not limited to

classical mechanics; it is a powerful model in quantum mechanics as well. Thus solving the

Schrödinger equation for a harmonic oscillator potential is extremely relevant. We explored

the classical harmonic oscillator in Section 5.4.3. For the quantum harmonic oscillator, the

potential energy function is written as a function of the angular frequency ω rather than the

“spring constant” k, so that U(x) = 1
2
mω2x2; the differential equation corresponding to

the Schrödinger equation here becomes

−~2

2m

d2ϕE(x)

dx2
+

1

2
mω2x2ϕE(x) = EϕE(x). (6.55)

The goal of this section is to determine a solution to (6.55) using power series. To

begin, let’s make the clever variable change,

y =

√
mω

~
x,

which simplifies (6.55) to

−~2

2m

d2ϕE(y)

dx2
+

~ω
2
y2ϕE(y) = EϕE(y). (6.56)
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By the chain rule,

d2ϕE(y)

dx2
=

d

dx

(
dϕ(y)

dy
·dy
dx

)
=

√
mω

~
d

dx

(
dϕ(y)

dy

)
=

√
mω

~

(
d2ϕ(y)

dy2
·dy
dx

)
=
mω

~
d2ϕ(y)

dy2

where
dy

dx
=

√
mω

~
.

Substituting the above expression back into (6.56) yields

−~2

2m

mω

~
d2ϕE(y)

dy2
+

~ω
2
y2ϕE(y) = EϕE(y)

which further simplifies to

−~ω
2

(
d2ϕE(y)

dy2
− y2ϕE(y)

)
= EϕE(y).

Solving for the second derivative term gives

d2ϕE
dy2

= (y2 − 2E

~ω
)ϕE = (y2 − k)ϕE (6.57)

where k = 2E
~ω . Rewriting this expression so that the right side is zero gives

d2ϕE
dy2

− (y2 − k)ϕE = 0.

The solution is going to have multiple components, but some constraints on the wave

function properties can help determine one or two of these components. In order to identify

some components, the solution is considered for extreme values of y.

The first constraint will be implemented when we determine that the solution becomes

asymptotic for large y, in which case k becomes negligible in comparison, leaving the

second-order differential equation

d2ϕE(y)

dy2
− y2ϕE(y) = 0.

The solution to this second-order differential equation is a variation of the exponential

function. The solution for this equation is

ϕ ≈ Ae−
y2

2 +Be
+y2

2 . (6.58)

114



Notice that
d2

dy2
(e−

y2

2 ) = (y2 − 2)e−
y2

2 ≈ y2e−
y2

2 .

The last equivalence is a result of our asymptotic assumption where y2 − 2 approximates

to y2 for y >> 1. Referring back to (6.58), in order for the wave function solution ϕ to

be normalizable – i.e., for ϕ to asymptotically approach zero at large values of y, so that

the integration over the square of the wave function is finite – the positive exponential must

vanish, so B must be zero. The adjusted approximate solution is

ϕ ≈ Ae−
y2

2 .

The next component of the solution is labeled h(y) and is multiplied with the exponen-

tial, so that the “full” solution takes the form

ϕE(y) = h(y)e−
y2

2 . (6.59)

Substitution of (6.59) into (6.57) will give the differential equation in terms of h(y); the

exponential terms will survive on both sides of the equation and can be eliminated, leaving

a second-order differential equation of h(y).

First we need to know the second derivative of (6.59). The first derivative, as a result of

the product rule for differentiation, is

dϕ(y)

dy
=
dh

dy
e−

y2

2 + h(y)e−
y2

2 (−y).

The second derivative follows similarly as

d2ϕ(y)

dy2
=
d2h

dy2
e−

y2

2 +
dh

dy
e−

y2

2 (−y) +
dh

dy
e−

y2

2 (−y) + h(y)e−
y2

2 (−1) + h(y)e−
y2

2 (−y)2

which can be simplified to

e−
y2

2

(
d2h

dy2
− 2y

dh

dy
+ (y2 − 1)h

)
.

Substituting ϕ from (6.59) and its second derivative into (6.57) yields

e−
y2

2

(
d2h

dy2
− 2y

dh

dy
+ (y2 − 1)h(y)

)
= (y2 − k)h(y)e−

y2

2 .
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After factoring and cancelling out common terms, including the exponentials, the above

expression becomes
d2h

dy2
− 2y

dh

dy
+ (k − 1)h(y) = 0. (6.60)

This is a new second-order differential equation for h(y). Notice that the coefficients in

front of the first derivative and h(y) are both polynomials. Recall from Section 5.2.13 that

a strategic guess solution is a polynomial: let

h(y) = a0 + a1y + a2y
2 + a3y

3 + · · · =
∞∑
j=0

ajy
j. (6.61)

The first and second derivative of our guess solution are as follows:

dh

dy
= a1 + 2a2y + 3a3y

2 + · · ·+ nant
n−1 =

∞∑
j=1

jajy
j−1;

d2h

dy2
= (2 · 1)a2 + (3 · 2)a3y + · · · =

∞∑
j=2

j(j − 1)ajy
j−2.

Substituting the derivatives and (6.61) into (6.60) gives

∞∑
j=2

j(j − 1)ajy
j−2 − 2y

∞∑
j=1

jajy
j−1 + (k − 1)

∞∑
j=0

ajy
j = 0.

Reindexing the second derivative term yields

∞∑
j=2

j(j − 1)ajy
j−2 =

∞∑
j=0

(j + 2)(j + 1)aj+2y
j.

The first derivative term can be reindexed also. The y term in front of the summation can

be put inside the sum, raising the power of y by 1. Then the index can start at zero, since

the first term (for j = 0) is zero:

y

∞∑
j=1

jajy
j−1 =

∞∑
j=1

jajy
j =

∞∑
j=0

jajy
j.

Rewriting the expression above with the new reindexed summations gives

∞∑
j=0

(j + 2)(j + 1)aj+2y
j − 2

∞∑
j=0

jajy
j + (k − 1)

∞∑
j=0

ajy
j = 0.
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Since all three sums are in terms of the same power of y (i.e., yj), we can combine the sums

into one large sum:

∞∑
j=0

[
(j + 2)(j + 1)aj+2 − 2jaj + (k + 1)aj

]
yj = 0.

As pointed out in Section 5.2.13 for this result to hold for all y values, the coefficient of

each power of y must individually be zero, thus the expression in the brackets must be

equal to zero:

(j + 2)(j + 1)aj+2 − 2jaj + (k + 1)aj = 0.

Solving this equation for aj+2 gives the recursion relation

aj+2 =
2j − k + 1

(j + 2)(j + 1)
aj. (6.62)

Here we will get even and odd solutions for aj , that is, solutions of exclusively even powers

of y or exclusively odd powers of y. (This makes sense that there are two solutions, given

that it’s a second-order differential equation.) These functions have symmetry (even or odd

symmetry, respectively) about y = 0. a0 determines a2, which determines a4 and so on. a1

determines a3, and so on.

However, there is a concern at this point. If h(y) is an infinite power series with the

nonzero coefficients, then it can be approximated as

h(y) =
∞∑
j=0

ajy
j ≈ ey

2

,

and our full solution for ϕ(y) (6.59) has the functional form

ϕ(y) = ey
2

e−
y2

2 = e
y2

2 .

This is a problem, because once again the wave function ϕ would not be normalizable, be-

cause for increasing values of y, the solution would become infinitely large, and the square

integral would not be finite. This implies that in order for the solution to be normalizable,

the power series solution h(y) must terminate at some maximum power of y, which is la-

beled n, i.e., jmax ≡ n. These are additional limits imposed on the power series due to
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normalization. The conditions of termination can be expressed n the recursion relation:

an+2 =
2n+ 1− k

(n+ 2)(n+ 1)
an = 0.

Solving this expression for k gives

k = 2n+ 1.

Note that this is where quantization comes from: n is an integer representing some power

of y, and k has values that depend on n. Recall originally that

k =
2E

~ω
.

Setting the last two expressions equal to one other gives an expression for allowed energies

En = ~ω(n+
1

2
). (6.63)

These are the energy values that allow ϕ(y) to satisfy the Schrödinger equation for the

harmonic oscillator potential.

Let’s try and determine the first few solutions. Let’s first look at h0. This is an even

solution (n = 0) which implies aodd = 0. Seeming as n = 0, h0(y) = a0, and our solution

ϕ(y) (6.59) is

ϕ0(y) = h0(y)e−
y2

2 = a0e
− y2

2 .

This is the wave function as a function of y. Rewriting the wave function in terms of x

gives

ϕ0(x) = a0e
−mω

2~ x
2

.

We find a0 by recalling that the integral over all space of the wave function squared must

be equal to 1 by normalization:

1 =

∫ ∞
−∞

∣∣∣a0e−mω
2~ x

2
∣∣∣2 =

∫ ∞
−∞

a20e
−mω

~ x2 = 2a20

∫ ∞
0

e−
mω
~ x2 .

Computing this integral and solving for a0 yields

a0 =

(
mω

~π

) 1
4

.
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Therefore the “ground state” solution for (6.55) is

ϕ0(x) =

(
mω

~π

) 1
4

e−
mω
2~ x

2

. (6.64)

To continue determining solutions for higher energy states, it’s important to note that

the aj’s are different for different energy levels n. This is a result of normalizing the wave

function solution for each energy level. Let’s go through and determine the solutions for

the n = 1 and n = 2 energy states.

For the first excited state (n = 1), a0 = 0, a1 6= 0, so h1(y) = a1y (6.59). The wave

function is

ϕ1(y) = a1ye
− y2

2

which becomes, as a function of x,

ϕ1(x) = a1

√
mω

~
xe

mω
2~ x

2

.

Normalizing this wave function gives

a1 =
√

2

(√
mω

~π

) 1
4

.

The first energy state solution to (6.55) is

ϕ1(x) =

(
mω

~π

) 1
4√

2 ·
√
mω

~
xe−

mω
2~ x

2

=

(
mω

~π

) 1
4
√
mω

2~
(2x)e−

mω
2~ x

2

. (6.65)

Lastly, let’s look at the n = 2 energy state. Here there are no odd solutions, and

h2(y) = a0 + a2y
2. By the recursion relation (6.62),

a2 = 2
−2(2− 0)

(2)(1)
= −2a0,

and so

h2 = a0 − 2a0y
2 = a0(1− 2y2).

The second excited state wave function is

ϕ2(x) = a0

(
1− 2

(√
mω

~
x

)2)
e−

mω
2~ x

2

.
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Normalizing this wave function gives

a0 =

(
mω

~π

) 1
4 1√

3mω~ − 2
√

mω
~ + 1

.

(Notice this is not the same a0 as for the n = 0 state.) The solution to (6.55) for the second

excited state is

ϕ2(x) =

(
mω

~π

) 1
4 1√

3mω~ − 2
√

mω
~ + 1

(
1− 2

mω

~
x2
)
e−

mω
2~ x

2

. (6.66)

6.4.4 Instructors Thoughts: Quantum Mechanics

In the interview with the instructor who has taught quantum mechanics, they say that “the

primary differential equation used in quantum mechanics is the Schödinger equation. The

Schrödinger equation becomes a different differential equation to solve depending on the

functional form of the potential, and so the Schrödinger equation in theory represents nu-

merous differential equations.” The instructor adds that “the potential term in the differen-

tial equation is typically time-independent”, and so that is how they teach the Schrödinger

equation throughout a course. Further the instructor states that “it’s a key relevance that

the solutions correspond to quantized energy levels, and only certain solutions for the wave

function or energy eigenfunction work with given boundary and initial conditions. The

solutions and their derivatives have to be continuous at the boundaries, unless the poten-

tial is infinite at those points”, like for the infinite potential well in Section 6.4.1. The

instructor mentioned how much of the analysis comes down to “looking at the system re-

lationship between the energy and the potential.” They continued by acknowledging that

“while a function could satisfy the general solution, after plugging in boundary conditions,

the function must also obey the continuity laws at the boundary.” Additionally, it was im-

plied that the function must be square integrable and normalizable, which is a “reoccurring

theme utilized in determining solutions in quantum mechanics.”

The instructor said “the applications come down to finding the quantized energies and

determining where a particle is most likely to be found at a given energy using probabil-

ity distributions.” The goal is to locate a particle in space and determine how the particle
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propagates in time, and “predict the future.” The wave function is known as the proba-

bility amplitude, but has no true physical meaning, and is a mathematical construct. The

probability density, the square of the wave function, is the aspect of the wave function in

which the physics plays a role. The instructor implied that they emphasize to their stu-

dents the significant difference between probability amplitude and density to “differentiate

the mathematics and the physics of probability.” Generally, it was said that instructors

implement the Schrödinger equation when potential is constant over specific intervals and

can be expressed as a second-order homogeneous constant coefficient differential equation.

“These forms of the Schödinger equation are either solved by real or complex exponential

functions (or sines and cosines).” When the potential is no longer constant (e.g., quantum

harmonic oscillator), the instructor mentioned that “there are additional methods to solve

the differential equation, either the power series solution or operator method”, which rely

on different mathematical concepts.

The instructor argued that “key to the power series solution is the relationship between

the mathematical solution and the physical conditions imposed by the physics system.”

They continued by adding that “these conditions lead to mathematical approximations such

as termination of the power series to prevent the solution from blowing up, which creates a

recursion relationship for the coefficients of the polynomial described by the power series.”

The instructor highlights the approximations in the power series solution as “necessary to

abide by physical laws.” The supplementary operator method uses ideas from linear algebra

and as the instructor mentioned, “removes the aesthetic look of the differential equation,

converting it into momentum and position operators.” The instructor went on to describe

the process of the operator method. “By manipulating the operators back into the differ-

ential equation gives an operator equation. From the operator equation one can determine

the ground state, and from the ground state one can use new operators to raise and lower

the energy states... The operators can be re-expressed as first-order differential equations...

The solutions to these differential equations translate back to the operators to determine

the quantized energies.” In conclusion, the instructor pointed out the “elegance” of this
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operator method over the power series solution, although “each hold their own weight as

solutions to the Schrödinger equation for the harmonic oscillator potential.”
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Chapter 7

Discussion

The last two chapters present the parallels and differences in presentation of differential

equations in mathematics and physics classrooms. In the mathematics classroom the ma-

terial is implemented with some use of applications, but primarily focuses on the mathe-

matical rigor of differential equations: being able to solve differential equations using the

various solution methods, understanding what properties a solution needs to have, and de-

veloping a sense for the notation common of differential equations. Instructors correlate the

lack of applications to a lack of instructional time over the length of a course. Furthermore,

mathematics instructors don’t consistently use initial or boundary conditions to lessen the

ambiguity of problems unless a particular exercise requires it.

In physics, the differential equations only describe physical applications such as free-

fall motion, harmonic oscillation, properties of electric circuits, etc. The mathematical

formalism becomes less of the focus. Instructors expect students to have seen the solution

methods before, or simply lead students to make an educated guess for a convenient so-

lution. Differential equations and their solutions in physics are often coupled with initial

and boundary conditions. Instructors claim that without initial and boundary conditions

the differential equations returns to traditional mathematics. In physics, because a differ-

ential equation relates to a real physical situation, there is more focus on showing where

the differential equation comes from to help make sense of the mathematical symbolism.
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Education research literature would suggest that mathematics instruction should include

more experientially real situations to help students develop more formal mathematics [3].

While implementing applications may be difficult due to time pressures, “experientially

real” for students can be linking new mathematics to previous concepts, similar to how stu-

dents developed a slope-focused approach to overcome difficulties using eigenvalue ideas

from linear algebra [3]. As instructors mention, every new concept is built from previ-

ous ideas covered in a typical sequence of mathematics courses, from algebra, to calculus,

to differential equations. In differential equations, if there is a new style of differential

equation, it’s typically a special case of one seen before.

Mathematics instruction often consists of a mix of analytical, graphical, and numeri-

cal solution methods, but primarily the focus is on analytical solutions. In my experience,

tests primarily asked to solve for analytic solutions or recall theory, but did not focus on

numerical and graphical concepts. Research shows that what is primarily emphasized is

what students come away with, so when instructors give multiple representations, but only

really go into depth on one- including assessments- then students won’t place the impor-

tance on others [15]. Yet, central to a student’s mathematical work is the interplay between

numerical, graphical, and analytical work [1].

Instructors should find more time to include graphical solutions corresponding to the

analytical solutions, as well as add an additional focus to numerical methods to approxi-

mate solutions to differential equations. It’s too easy to write a differential equation that

cannot be solved analytically and thus requires a numerical solution; therefore numerical

methods should be included more in differential equations studies. Certainly not everything

described by differential equations in the real world is refined to a simple analytic solution.

In Quantum Mechanics for example only the Hydrogen atom is solved exactly analytically

(using separation of variables for partial differential equations). Anything more sophisti-

cated has to use either an approximation technique or numerical methods, and that may be

simple in comparison to developing the analytic solution to the Hydrogen atom.

In physics, students struggle with differential equations because the mathematics is now
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being applied to a specific context. In other words, the application of knowledge in differ-

ent contexts is limited by students’ understanding of the conditions under which knowledge

applies [11, 21]. If a student first sees a type of differential equation in a mathematics con-

text, they may not immediately recognize a similar differential equation in a physics con-

text. The same argument applies to solution methods. Simply because a student may have

learned a solution method in a mathematics context, or even another physics course, does

not imply students will make the connection when it comes up again in a new setting. This

is also true for connections between old and new mathematics. One role of the instructor is

to make those connections apparent to students.

Let’s now break from the general discussion and talk about specific aspects of the math-

ematics and physics classes.

7.1 Calculus Techniques

When students are first introduced to differential equations, the primary technique to solve

them requires the students to take an integral or determine the antiderivative of a function,

a tool introduced in Calculus I and II. Student difficulties with integration or antidifferenti-

ation is its own research topic. Broad difficulties include the difference between indefinite

and definite integration, the two parts of the fundamental theorem of calculus, and how the

antiderivative relates to the to the function being integrated [16]. Despite student difficul-

ties, solving a first-order ordinary differential equation, or a simple second-order differen-

tial equation (Section 5.2.8) utilizes no new mathematical techniques, only a new context

in which students have to apply those integration techniques. This is where it’s important

to explain the components of a differential equation and its solution, because solving for a

function rather than a number may be a new idea for students in differential equations [2].

As we saw in Sections 5.1 and 5.2, outside of general solutions to differential equations

there are initial value problems. Initial value problems are defined by set initial conditions,

based on the order of the differential equation. For first-order differential equations, there
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is one initial condition typically set on the solution itself. Solving first-order differential

equations requires direct integration, but adding an initial condition changes the process

in one of two ways. For a general solution, after indefinite integration there is a left over

constant C. With an initial condition, the ambiguity of the constant is replaced with a nu-

merical value. One way to remove the ambiguity is to perform definite integration when

determining the solution; this prevents an unknown constant from appearing as a result of

indirect integration. The other way is to determine the general solution, and then plug in

the initial condition and solve for the unknown constant algebraically. If students have dif-

ficulties with definite integrals, evaluating the antiderivative at two bounds, the algebraic

approach may be a more intuitive way of solving for the arbitrary constant. Solving for the

constant using definite integration only works for first-order differential equations. Second-

and higher-order solutions using algebraic methods determine any arbitrary constants. Re-

member, there must be an initial or boundary condition for every order of the differential

equation. This provides a system of equations in which to solve for any ambiguities.

7.1.1 Separation of Variables

Separation of variables is a very common technique for solving first-order linear homoge-

neous differential equations. As discussed in Section 5.1.3, there are two different methods

of solving separable differential equations. One method treats terms like dy
dt

as a deriva-

tive that cannot be separated into differentials dy and dt. This method requires integration

over the derivative term, which results in the solution function. A substitute for the calcu-

lus technique is the algebraic method, which allows the differential terms dy and dt to be

treated as algebraic quantities. This allows the differential equation to be separated, with

one side a product of dy and a function of y and the other side a product of dt and a function

of t. Once the equation is separated, then one can proceed with integration to determine

the solution. The algebraic method, which I refer to as a short cut, is commonly used in

physics courses, as opposed to the integral technique. I consider the algebraic method to

be a short-cut because solving for values algebraically is less abstract for me. On the other
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hand, it does not feel natural to break down a derivative into its respective differentials.

Every student can have a preference, and if both methods provide the same conclusion, I

believe it’s important that students get the opportunity to work with both, and recognize

the connection between them. As an instructor, this provides two pathways of experiential

content to draw from to demonstrate separation methods.

In physics, separation of variables is probably one of the most utilized techniques for

solving differential equations [9, 10]. There are two different types of separation of vari-

ables, one for ordinary differential equations, the other for partial differential equations. In

this paper I have only discussed separation of variables for ordinary differential equations.

In an undergraduate physics curriculum partial differential equations appear in numerous

contexts including waves on a string, thermodynamics, Laplace’s equation for multiple di-

mensions and the Schrödinger equation. Partial differential equations deserve their own

paper in order to cover the range of content and context which they cover. Separation of

variables for partial differential equations refers to the technique of guessing a general solu-

tion with a functional form that allows the partial differential equation to be separated into

several ordinary differential equations and then solving these ordinary differential equa-

tions individually with appropriate boundary conditions [10]. I focus on the separation of

variables technique for ordinary differential equations. In Sections 6.2.1, 6.2.2, and 6.3.2.

we solved differential equations for a few physics contexts. Despite the centrality of the

separation of variables technique in physics, there are student difficulties due to the proce-

dural aspects of algebraic problem solving [9].

7.1.2 Calculus III and Exact Equations

Exact differential equations are special. In order for a differential equation to be exact

it has to have a specific functional form dependent on M and N as discussed in Section

5.2.5. The theory that governs the solution requires that the mixed partial derivatives of

the solution are equivalent to each other. This is a consequence of Clairaut’s theorem,

typically taught in a Calculus III class when partial derivatives are introduced. The hope
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is that when students recognize the calculus, the differential equations content seems less

unfamiliar. Students that correctly utilize the concepts from Calculus III may refine the

formal mathematics of exact differential equations and develop strategies for determining

whether a differential equation is exact and further finding a solution to match the unique

characteristics of the exact equation.

Calculus III would also play a significant role for partial differential equations not dis-

cussed in this thesis.

7.1.3 Integrating in the Integrating Factor

The integrating factor, discussed in Section 5.2.1, as its name implies, involves concepts

from calculus. It is one of the first methods I learned for solving non-homogeneous first-

order differential equations. To understand where the integrating factor comes from re-

quires the product rule for differentiation, as demonstrated. The integrating factor can be

solved for using techniques discussed for solving first-order linear homogeneous differen-

tial equations, such as separation of variables or direct integration. Once the integrating

factor is determined, the original differential equation is solved with techniques from first-

order homogeneous differential equations.

The integrating factor technique is used solving other types of differential equations

as well. In Section 5.25 when discussing exact equations, the integrating factor plays a

role in determining solutions to differential equations that were not exact. The integrating

factor is a chosen function such that the differential equation becomes exact, similar to how

the integrating factor turns a non-homogeneous differential equation into a homogeneous

differential equation in which the techniques exist in order to solve. We saw the integrating

factor again when solving for repeated root solutions in Section 5.2.9. Here the integrating

factor helps determine the second linearly independent solution for second-order constant

coefficient differential equations.

While at first the integrating factor is a tool for solving first-order non-homogeneous

differential equations, it can be used across multiple facets of differential equations. The
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integrating factor is a choice function that enforces the ideas of calculus in differential

equations. If you need a specific solution, the integrating factor can be implemented to

adapt the differential equation to be solvable. The integrating factor provides a recognizable

differential equation for which students should already have the techniques to solve. If

there are first-order differential equations in physics which are non-homogeneous or non-

exact, the integrating factor is one strategy which can provide a solution. The solution for

the critically damped oscillator in Section 6.2.3 is determined using the integrating factor

technique to get the second linearly independent solution. In my experience, the second

solution was taught as a guess which happened to solve the differential equation for the

classical harmonic oscillator. With the integrating factor, we can demonstrate why that

solution makes sense.

7.2 Intuitive Guessing

In both mathematics and physics it is common to first guess a solution if it is not obvi-

ous. Guessing a solution is how many solutions are derived in differential equations. For

instance, in Section 5.2.12 we discussed judicial guessing of a polynomial solution based

on the behavior of the right-hand side of the differential equation. Guessing is also useful

when the right-hand side is the product of a polynomial and exponential, or a sinusoidal

function. In Section 5.2.13 we guessed a power series solution based on the polynomial

coefficients in the differential equation. We then utilized this strategic guess to determine

the power series solution to the quantum harmonic oscillator in Section 6.4.3. In Section

6.3.1 we guess a solution to Laplace’s equation in one-dimension, which can also be solved

for using direct integration and naming constants conveniently.

A problem arises with guessing when there is not enough time in instruction to re-visit

all the historical possibilities of solutions that don’t work. In some settings guessing the

solution becomes more of knowing the answer ahead of time. One consequence of this is

that students think that getting the answer is sufficient and aren’t expected to understand
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why the result makes sense.[3] While the guess solution can be proven to solve the differ-

ential equation of interest, that does not constitute understanding; it just feeds more into

the rule-based explanations to which students are accustomed.

7.2.1 The Characteristic Equation and the Quadratic Formula

One critical guess occurs solving the second-order, homogeneous, constant-coefficient dif-

ferential equation in Section 5.2.9. The guess that the solution is the exponential function

comes from ideas from calculus. Knowing that the derivative of the exponential function

always maintains exponential form makes it a valid guess for a solution. Guessing this

solution brings about the characteristic equation or characteristic polynomial. The char-

acteristic equation for second-order equations mirrors the quadratic formula. It allows us

to solve for the roots of the exponential solutions. This iconic guess simplifies differential

equations down to an algebraic formalism for all orders of constant coefficient differential

equations.

The characteristic equation, like separation of variables, is another common technique

to solving differential equations in physics. In Sections 6.2.3 and 6.4.2 we use the character-

istic equation to solve differential equations for a few physics contexts. The characteristic

equation is useful if there is different behavior under different conditions, because there are

three cases for solutions: real roots, complex roots, and repeated roots. In Section 6.2.3

we determined the behavior for under-damped oscillations, over-damped oscillations, and

critically damped oscillations manipulating the characteristic equation. Similarly, in Sec-

tion 6.4.2 the solution behaves differently based on the relationship between total energy E

and potential energy U0. The mathematics lends itself to the physical behavior for a given

solution.
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7.3 Laplace World

Instructors in differential equations consider the Laplace transform as a way of simplifying

complicated differential equations. The Laplace transform converts differential equations

into an algebraic expression, using techniques from improper integration typically taught in

Calculus II. The Laplace transform may be a new concept for many students, but its func-

tion is governed by former techniques students have studied. When the differential equation

is transformed to an algebraic expression, this is what instructors called the Laplace World:

algebraic techniques determine the solution. Often with Laplace transforms of any non-

trivial functions, solving the algebraic expression requires partial fractions. This algebraic

method is a strategy commonly introduced in complex integration in a Calculus II con-

text. Once the algebraic expression has been solved in Laplace transform, we can convert

back to the differential equation form and determine the solution to the original differential

equation.

In physics, Laplace transforms can be useful whenever the system behavior has a dis-

continuity or is almost always zero. The Laplace transform works well with situations that

include Dirac delta functions, piecewise functions, and pulse-like behavior. Laplace trans-

forms are also a generalization of Fourier series/transforms which often occur in upper-

level physics courses, including Optics and Quantum Mechanics.

7.4 The Role of Linear Algebra

Linear algebra plays a huge role in differential equations, especially second-order equa-

tions. In Section 5.2.8 we discussed the Wronskian, which implements the determinant

of a matrix from linear algebra to demonstrate whether or not two solutions are linearly

independent. Linear algebra backs the theory for unique solutions. This is the founda-

tion of determining multiple solutions for higher-order differential equations: they must be

linearly independent. Linear algebra techniques are a central part of solving systems of lin-

ear differential equations.[3] Solving for eigenvalues and their corresponding eigenvectors
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determines solutions for systems of linear differential equations, as discussed in Section

5.2.15.

The challenge with linear algebra concepts is that depending on the sequence of under-

graduate mathematics courses, not all students have a background in linear algebra. It then

falls on the professor to take time out of a differential equations or physics class to teach

linear algebra. For instance, I learned about linear operators in linear algebra after seeing

it in the context of a differential equations course. This is one reason why the straight

line solution method is a useful substitute to the eigenvalue method for systems of linear

differential equations. The straight line solution method, or ”slope first approach,” utilizes

students’ understandings of slopes to solve systems of linear differential equations.[3]

As mentioned in Section 6.4 much of quantum mechanics is mathematically described

using linear algebra and eigentheory. In Section 6.4.3, I discuss the power series solution

for the harmonic oscillator using differential equations to determine the wave function for

quantized energy. In McIntyre’s Quantum Mechanics text [25], there is a different solution

method, considered to be more elegant, called the operator method. The operator method

is a linear algebra based approach on solving the harmonic oscillator for wave functions for

quantized energy states. This particular method was taught to me in class, while I never saw

the power series solution. The power series solution requires multiple approximations and

it’s not quite clear how the intermediate steps fit in until the solution is reached. The oper-

ator method provides a cleaner step-by-step analysis building up to quantized energies and

how to go up in energy levels or go down using raising and lowering operators. Depending

on a student’s preference, either method derives the behavior of energies in a harmonic os-

cillator system. Personally I found the power series solution worked well with the boundary

conditions of the system, and helped make sense of the physics through the reasons behind

the mathematical formalism. I too acknowledge that the operator method provides a slick

derivation, and students may have more experiential ties with linear algebra.
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7.5 Lacking Numerical and Graphical Methods

There were not many numerical or graphical methods implemented in the mathematics and

physics courses I took as an undergraduate, and my thesis reflects this. Instructor’s correlate

this to the time pressures associated with instructing new material for students. Students

prefer analytical/algebraic methods over graphical and numerical methods despite being

in classes that emphasize graphical and qualitative analysis, and few studies emphasize a

strong understanding of the interplay between graphical and analytic solutions. Yet, central

to students’ mathematical work is interplay between numerical, graphical, and algebraic

work.[1] The question is whether students prefer analytic methods because that’s all they’ve

known prior to differential equations content.

In Section 6.1.2 we discussed the construct of “curviness” for graphically solving the

Schrödinger equation. An instructor commented that general education students, using

ideas of curviness, outperformed undergraduates in an upper-division undergraduate quan-

tum mechanics course when tested on quantum tunneling solutions. The straight-line solu-

tion method, as discussed in Section 5.2.15.2, uses concepts from the phase plane as well

as graphical identities such as slope and tangent vectors to derive the solutions to systems

of linear differential equations. This graphical approach was a reinvention of the algebraic

approach solving for eigenvalues first, then finding the corresponding eigenvectors. The

collection of solution graphs in the phase plane (referred to as the phase portrait) represents

an emerging new mathematical reality (for students).[3]

Look at the sections where we solved differential equations analytically and coupled

those solutions with a graphical representation (e.g., sections 5.1.2, 5.1.4, 6.2.2, 6.2.3,

6.3.1, 6.4.1, 6.4.2). Do the graphical forms of the solutions aid in the understanding of the

analytic solution? That is what we need to find out from students. Does it help determine

where the differential equation comes from? In my experience, I’d be given a differential

equation without context and would then solve for a solution to that differential equation,

again without context. The idea behind supplementing the analytic solution with a graphi-
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cal representation is to provide additional contextualization for students. In many cases, the

graphical representation is easier to manipulate in order to determine behavior for different

parameters. Take the population modelling in Section 5.1.2, for example. The graphical

guide helps to determine how the population is changing over time for different population

values. It’s not as easy to see the range of behavior when simply plugging in values to an

analytic solution.

Let’s discuss the importance of numerical methods. Given the ease with which one can

write down a differential equation with no analytic solution, it is reasonable to assume that

numerical solutions are at least necessary. Yet in my studies, numerical solution methods

were scarce in both mathematics and physics. This may be that instructional material is

idealized to have convenient solutions for differential equations discussed in mathematics

and physics curricula. Additionally, doing numerical methods out by hand is long and te-

dious, where most numerical methods should be done on a computer program. Instructors

would then need to implement computational strategies in the courses for which they al-

ready don’t have enough time to cover all desired material. (And some instructors may not

be familiar with computational numerical methods, and thus not comfortable teaching it to

their students.) Often there may exist a numerical analysis course which would cover a lot

of these gaps seen in other courses.

7.6 Applications

There were not many applications discussed in my core differential equations class; other

instructors admit that applications are difficult to implement in the classroom due to time

constraints or overall student interest. I argue that mathematics courses should include

contextualized examples to ease the transfer of knowledge when students later apply dif-

ferential equations in physical contexts. On the other hand, in applied courses, such as

physics, it cannot be assumed that students already know and understand the mathemat-

ics. The transfer of knowledge from mathematics to a physics context does not ensure
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immediate recognition or comprehension from students.[11]

Applications remove ambiguity of general solutions by providing relevant initial and

boundary conditions. All interviewed physics instructors agree that without these condi-

tions, the differential equation solution methods and solutions would be physically irrel-

evant, just mathematics. I want to point out that although applications may be an effec-

tive tool to increase student understanding, the particular applications should be chosen

carefully, especially in a mathematics course. For instance, electric potential alone can

be a difficult subject for students in a physics classroom.[10] Therefore, it wouldn’t be a

strategic choice for a general application in a differential equations course which may have

non-physics students. Introducing physical applications in a mathematics context however

may help with students’ transfer of knowledge from generic to context-specific differential

equations in their respective areas of study [8, 11].

7.7 Hierarchy of Differential Equations

As more than one instructor mentioned, content in mathematics courses is sequenced so

that new material builds off of previous content. I argue that differential equations is no

exception. I hope that I’ve made it clear that much of differential equations can be simpli-

fied using an existing knowledge of calculus and algebra. A differential equations course

should be structured to demonstrate a smooth interconnectedness between ideas. Consider

the first-order linear homogeneous differential equation solution methods, once students

understand how to the solve the homogeneous form, the non-homogeneous solution method

(integrating factor and variation of parameters) uses the homogeneous solution techniques.

The ratio-dependent differential equations as discussed in Section 5.2.2 are a special case

of first order differential equations and adapt no new techniques outside of algebraic ma-

nipulation to get the change of variables desired. After the integrating factor is introduced,

exact and non-exact equations can be implemented.

Theory is an integral part of differential equations. While I spent little time in this
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thesis proving theoretically why many of the techniques work for certain differential equa-

tions (e.g., exact differential equations), ideas like existence and uniqueness are central

to differential equations. Existence and uniqueness are especially important if there is no

easily recognizable analytic solution or solution method to a given differential equation.

The theory establishes the criteria based on which numerical methods approximate or even

determine solutions. In Section 5.2.7 I discussed Euler’s method, which uses Taylor se-

ries approximations to determine solutions. Other numerical methods include Fixed-Point

method and Newton’s method, which similarly rely on the idea of Picard iterates. Newton’s

method is sometimes taught/seen in the calculus sequence.

For second-order differential equations, there is an addendum to the theory for exis-

tence and uniqueness. Now there’s the possibility for two solutions, which introduces the

Wronskian to check for linear independence between solutions. Like with first-order, one

starts with linear homogeneous differential equations, but more specifically, differential

equations with constant coefficients. This introduces the characteristic equation, which

determines the solution set for any linear homogeneous constant coefficient differential

equation. Solutions to the non-homogeneous differential equations are the sum of two so-

lutions to the homogeneous equation plus a particular solution to the non-homogeneous

differential equation. When finding more than one solution to the non-homogeneous or ho-

mogeneous differential equation, the Wronskian can be used to determine whether or not

the solutions are linearly independent.

The challenge arises in determining a particular solution to the non-homogeneous dif-

ferential equation. Returning to a technique from first-order non-homogeneous differential

equations, in Section 5.2.11, there is variation of parameters. The particular solution is de-

termined using variation of parameters and depends on the Wronskian of the homogeneous

solutions. In variation of parameters we also introduce the idea of reduction of order. An-

other effective method to determining a solution is guessing. Guessing relies on students’

intuitions, which have hopefully developed thus far in the differential equations course.

Guessing is particularly useful when the coefficients are no longer constant. Guessing
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leads to solutions in terms of polynomials, sines, cosines, as well as series/power series.

It can be incredibly difficult to determine the solution to a non-homogeneous differential

equation, but knowing how to guess a reasonable solution is an essential first step. If the

non-homogeneous differential equation has a discontinuous function, the Laplace trans-

form is an effective integration operator to convert differential equations into algebraic

expressions to provide non-homogeneous solutions.

The last topic in my undergraduate differential equations course was systems of linear

equations. By reduction of order, second-order differential equations can be broken down

into a system of two first-order differential equations, which can be solved using either the

typical eigenvalue method or the straight-line solution method[3], as discussed in Sections

5.2.15.1 and 5.2.15.2, respectively.

7.7.1 The Intellectual Pathway Through Differential Equations

Figure 7.1 is a map depicting the intellectual pathway for differential equations content in

mathematics and physics courses, as presented in this thesis. Observe the interconnected-

ness of ideas and concepts while noting the way the various topics build off one another.

Topics are connected by a sequence of arrows. The lighter shaded regions are the particular

techniques used to solve the type of differential equation and the darker circled regions are

applications attributed to the various differential equation types. The box in the upper-right

is the portion of general topics not covered in my research that would expand that certainly

belong in a more global map of differential equations. The map can be utilized as a guide

for students and instructors to determine what prior mathematical content is required to

problem solve later, possibly more complex concepts.

7.7.2 Higher-order, Non-linear, and Partial Differential Equations

This map above is only a fraction of the scope that differential equations encompass. Other

areas of differential equations to consider are qualitative analysis of non-linear differential
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Figure 7.1: An Intellectual Pathway Through Differential Equations (The Map)
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equations, partial differential equations and ordinary differential equations of higher order.

Given equations of higher order, we utilize reduction-of-order techniques to reduce the

differential equation to a form for which we can determine a solution. The characteristic

equation works for all orders of constant coefficient differential equations. The difficulty

comes in solving for roots of nth degree polynomials.

Given a non-linear differential equation which cannot be solved using techniques dis-

cussed in this paper (e.g. separation of variables and exact equations), there exist different

techniques. Certain non-linear differential equations must be linearized in order to use

techniques we already know for solving linear differential equations, which is the primary

focus of this thesis. Other non-trivially solvable non-linear systems of equations arise in

conserved quantities, such as Hamiltonian and gradient systems, Lyapunov Functions, and

bifurcation theory.

Partial differential equations rely on their ordinary differential equation counterparts.

The second separation of variables technique requires guessing a functional solution that

allows the partial differential equation to be separated into several ordinary differential

equations and then solving these ordinary differential equations individually with appropri-

ate boundary conditions.[10] Partial differential equations rely on ideas from Calculus III

such as partial differentiation as well as integrating with respect to more than one variable.

Partial differential equations describe many systems in physics, including higher dimen-

sions of the Laplace equation, the hydrogen atom, as well as waves and thermodynamics.

Partial differential equations rely on ideas from Calculus III such as partial differentiation

as well as integrating with respect to two or more variables.

For future research, ideas from these different types of differential equations should

be included to better demonstrate the complete interconnectedness of differential equation

content for students and instructors alike.
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