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ABSTRACT 

Mouse telomerase reverse transcriptase (mTERT) is a gene that is expressed by cells 

that need to continually divide without the characteristic shortening of telomeres that 

accompanies DNA replication. Here we provide experimental evidence for mTERT as a 

novel and unique marker of adult neural stem cells (ANSCs). We use a triple transgenic 

mouse line that is designed so that mTERT-positive cells will glow green, via Green 

Fluorescent Protein (GFP), when the animal ingests doxycycline. This inducible model 

allows mTERT positive cells to be tracked and identified easily. Dissociated brain tissues 

were taken from these animals and sorted via a Fluorescence-Activated Cell Sorter into 

GFP-positive and GFP-negative cells. GFP+ cells were shown to exhibit similar gene 

expression patterns to that of ANSCs. For further support, the triple transgenic animals 

were exposed to known neurogenic stimuli, namely exercise and fasting. The brains of 

these animals were eventually removed, sliced, immuno-stained and imaged using a 

fluorescent microscope. Imaging allowed us to identify mTERT+ cells in the choroid 

plexus, but not in the hippocampus, a classic neurogenic niche.
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INTRODUCTION 

Background & scope 

For centuries now, science has continued to make massive strides in 

understanding the human body, but one organ is still somewhat a mystery to us. 

Ironically that organ is the one responsible for all scientific discoveries: the brain. The 

brain is responsible for the proper timing and functioning of all other organ systems in 

the body, as well as thoughts and movements. Many studies that look into the functions 

of the brain typically focus a function that is applicable to a specific disease pathology. In 

this study we endeavor to elucidate a reliable way to mark adult neural stem cells in order 

to further research the potential for healing the brain after degeneration, a venture that 

could allow for research that will affect this field for years to come. 

Neurodegenerative diseases, such as Alzheimer’s Disease, are characterized by 

the death of brain cells, without regeneration to replace them. Briefly, some hypothesize 

that the presence of tau tangles collapse the microtubules of neurons which cuts off their 

supply of nutrients causing cell death. Amyloid beta proteins have been hypothesized to 

play a role in Alzheimer’s by creating hard insoluble plaques throughout the brain. Short 

of finding a way to rid the brain of these harmful proteins, one option for treatment could 

be replacing the damaged cells.  

Traumatic brain injuries, or TBIs, cause approximately 2.5 million emergency 

room visits per year (CDC, 2016). Like Alzheimer’s, TBIs can often cause brain damage 

via cell death which can lead to neurological deficits. TBIs can cause lasting damage and 



	

	 2	

even death. Common treatments for TBIs focus on alleviating the long term symptoms if 

any are present. This occurs through therapy, such as occupational or physical therapy, as 

healing the brain itself is not yet attainable.  

Neural precursor cells 

The simple answer to these problems of brain damage and degeneration seems to 

be to heal the brain itself. This could possibly be done through the study and attempt to 

manipulate adult neural stem cells (ANSCs). These cells could potentially hold the key to 

being able regenerate brain cells after damage or degeneration as they are able to 

differentiate into any somatic cell given the correct signals. Studying ANSCs in the brain 

however has proved very challenging. It was previously believed that adults did not have 

any ANSCs, although it has since been proven that neural stem cells exist as a population 

in the brain throughout the entire life (Merkle and Alvarez-Buylla, 2006). However, the 

ANSC population does markedly decrease with age (Luo et al., 2006, Olariu, Cleaver, 

and Cameron, 2007, Amrein et al., 2004).  

ANSCs have been described as residing in two major niches in the brain in 

mammals. The first is the subgranular zone (SGZ) of the dentate gyrus (DG). Here cells 

will differentiate and migrate into the granular cell layer upon stimulation. Processes 

from these cells will then branch into the molecular layer of the DG. The second niche is 

the subventricular zone of the lateral ventricles. In mice ANSCs of the SVZ differentiate 

and migrate to the olfactory bulb to integrate into the neural circuitry there. In humans 

SVZ ANSCs differentiate and migrate to the striatum instead.  
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Neural precursor cells exist in six general categories that are dependent on 

location within the brain as well as morphology, behavior, and genetic expression (A 

summary of all of the genes discussed in this paper can be found in Supplementary Table 

1 below). In the sub-granular zone (SGZ) of the dentate gyrus (DG), type I cells are the 

earliest form of precursor cells. These cells display expression of Hes5, Sox2, Brain Lipid 

Binding Protein (BLBP), Glial Fibrillary Acidic Protein (GFAP) (Giachino et al., 2010) 

and nestin (Zhao, Deng, and Gage, 2008). Type I cells are typically referred to as Neural 

Stem Cells (NSCs) and can be divided into three subcategories: radial quiescent, 

horizontal quiescent, and horizontal dividing (Giachino et al., 2010).  These categories 

classify cells by morphology as well as activity, although it has been hypothesized that 

quiescent cells could move to a state of active division under appropriate conditions. 

Type II cells, known collectively as Intermediate Progenitor Cells, have been split into 

early Type IIA cells and later Type IIB cells depending on gene expression. Type IIA 

cells are characterized by the expression of BLBP, Sox2, and MASH1 with no Hes5 or 

GFAP expression. Type IIB cells are known to express BLBP, Sox2, DCX, Prox1, and 

NeuroD. Type II cells are able to self-renew as well as generate astrocytes and neurons 

(Zhao, Deng, and Gage, 2008) and are localized to the SGZ. Type III cells continue to 

express DCX and NeuroD, but lack the expression of other common Type II markers. 

These cells are known as migratory neuroblasts. SGZ ANSC’s are organized with Type I 

cells being located nearest to the surrounding blood vessels with precursors located 

slightly further away. Once a cell has committed to the neuronal lineage and 

differentiated into a Type III cell it will migrate a short distance into the granular cell 
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layer where it will become integrated into the pre-existing neural circuitry as a granular 

neuron (Mandyam, 2013). 

In the sub-ventricular zone (SVZ) a letter system is used to classify neural stem 

cells, although a correlation can be seen between the gene expression data of the two 

classification systems. Type B cells are most analogous to the type I cells above. Type B 

cells, which express GFAP, can be active or quiescent and are characterized as slowly 

proliferating astrocytes (Doetsch et al., 1999).  These cells show a radial morphology and 

can give rise to oligodendrocytes, astrocytes, and type A cells (Chaker et al., 2016). 

Quiescent cells are discernible from active due to the expression of epidermal growth 

factor receptor (EGFR), which is present in the active stem cells but, absent in the 

quiescent one (Doetsch et al., 2014). Lineage tracing studies have determined that Type 

A cells are the cells that eventually create new neurons in the olfactory bulb through 

migration via the rostral migratory stream (Doetsch et al., 1999).  Type C cells are similar 

to type II cells above in that they are described as rapidly dividing immature precursor 

cells (Doetsch et al., 1999). They express MASH1, can only divide up to three times, and 

are commonly described as transit-amplifying cells (Karl et al., 2012). Type A cells are 

migrating neuroblasts that express DCX and PSA-NCAM and can only divide once or 

twice. These cells will ultimately migrate down the rostral migratory stream (RMS) to the 

olfactory bulb (OB) 

The ANSC’s of the SVZ all work together in creating new cells and ensuring that 

they make it to the OB. Type A cells form chains which then migrate through tunnels 

created by the processes of Type B cells (Riquelme, Drapeau, and Doetsch, 2008). These 

Type A cells have been created by clumps of Type C cells that are present next to the 
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migratory chains (Riquelme, Drapeau, and Doetsch, 2008). These cells express Dlx, 

MASH1, and the LewisX antigen, but not GFAP (Aguirre et al., 2004). Once in the OB 

these cells migrate radially into distinct layers that make up the neural circuitry of the OB 

(Duan et al., 2008). 

 In this thesis cells will be referred to as ANSCs (Type I & Type B cells), transit 

amplifying cells (Type C & Type IIA cells), intermediate progenitor cells (Type IIB 

cells), and migratory neuroblasts (Type A & Type III cells).  

In order to study ANSC’s it certainly helps to be able to mark them easily and 

clearly. This has not been accomplished though, due to a lack of a specific and unique 

marker for ANSC’s. Markers do exist, but they also mark other populations which 

introduces a need for double staining to be certain that you are looking at the correct 

cells, which will limit the ability to lineage trace these cells. Double staining is not only 

time consuming and tedious, it also reduces the possibility of cross staining for another 

cell population or variable. If there was a marker that only marked ANSC’s, this would 

eliminate the tedious and confusing process of staining twice and allow for easier 

identification. We are proposing that this marker is Telomerase Reverse Transcriptase 

(TERT), or for the purpose of this experiment mouse Telomerase Reverse Transcriptase 

(mTERT). 

The role of mTERT 

TERT is a gene that is responsible for the lengthening of telomeres. In normal 

cells the telomeres at the end of our chromosomes shorten with each replication cycle, 

eventually leading to cell senescence. Cellular senescence occurs when the telomeres are 
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no longer present and the cell ceases to divide. In the average somatic cell telomeres are 

not regenerated during the life of the cell. mTERT+ cells however are different. These 

cells have their telomeres replaced so that they cannot reach cell senescence and can keep 

dividing. In order to prevent senescence in stem cells TERT is used to maintain the length 

of the telomeres.  

  mTERT has been shown to be present in slowly cycling intestinal stem cells 

(Montgomery et al., 2010). Intestinal stem cells are very common due to the transient 

nature of the epithelial lining of the gut. Most intestinal stems cells are rapidly cycling 

cells that maintain a healthy gut lining. However, researchers have hypothesized that a 

potential second population of slowly cycling cells must also be present in order to 

protect against genetic mutations as well as aid in repair of tissue damage. The Breault 

Lab, at Children’s Hospital/Harvard Medical, endeavored to find and mark these cells 

using mTERT and were successful in their venture. ANSCs have been shown to have a 

slowly cycling population in B cells (Ramírez-Castillejo et al., 2006). The Breault Lab’s 

research has allowed for the hypothesis that mTERT could mark slowly cycling Neural 

Stem Cells in addition to Intestinal Stem Cells. The Breault Lab has also allowed for the 

examination of this hypothesis by permitting our lab to use their triple transgenic mouse 

line, which allows for lineage tracing of mTERT cells to determine how they proliferate, 

migrate, differentiate, and integrate into the existing neural circuitry. 

Research tools & plan 

In this transgenic mouse line mTERT+ cells can be induced to express an 

indelible green fluorescent protein marker (further detail in the methods section). In order 
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to determine whether mTERT+ cells showed typical ANSC patterns, it is necessary to use 

common neural stimulation techniques and lineage tracing. Exercise, specifically running 

in mice, has been repeatedly shown to increase hippocampal neurogenesis (Van der 

Borght et al., 2007, Winocur et al., 2013, Luo et al., 2007). Novel objects added to the 

home cage, sometime referred to as Enriched Environment, have also been shown to 

increase neurogenesis (Vega-Rivera et al., 2016, Garthe, Roeder, and Kempermann, 

2015). These two sources together will allow for a significant amount of neurogenesis in 

our experimental group. These effects can be strain specific, but thus far we have no 

reason to believe that our mice have any deficiencies in neurogenesis. Although the 

control group will experience neurogenesis due to the novel object (the locked running 

wheel) the experimental group should experience significantly more, which will allow for 

us to visualize the difference in the brains and their mTERT+ populations. In both groups 

this should hopefully allow for enough of a stimulus to increase neurogenesis.  

Similar to exercise, fasting has been shown to promote hippocampal neurogenesis in 

adult mice (Hornsby et al., 2016, Park et al., 2013). Although the mechanism is currently 

not known, it has been hypothesized that diet restriction causes a mild stress response 

which then stimulates the production of stress resistant proteins which stimulate the 

creation of new neurons (Gillette-Guyonnet and Vellas, 2008). These proteins include 

neurotrophic factors, protein chaperones, and anti-apoptotic proteins. 

Female mice were used in the running study because it has been repeatedly shown 

that females run significantly more than their male counterparts, regardless of strain 

(Koteja et al., 1999). With so few mice this increase in running activity was crucial to 

obtain a power significant enough to show true effects. Female mice are used in many 
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high impact exercise and neurogenesis papers as well (Herring et al., 2016, Klein et al., 

2016). Thus far all of our cohorts have had male and female mice and no sex difference 

has been observed in neurogenesis.  

Our aim is to determine whether mTERT is a novel and unique marker for 

ANSCs. We hypothesize that by stimulating neurogenesis we will see patterns that are 

typical of quiescent ANSCs exhibited by the mTERT+ cells. Support for this hypothesis 

will be sought using genetic expression studies via quantitative Polymerase Chain 

Reactions (qPCR), imaging to confirm the location of the mTERT+ cells using a 

fluorescent microscope, and co-staining with two known proliferation markers to identify 

precursor cells. 
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METHODS 

Animals 

All animals were housed according to Institutional Animal Care and Use 

Committee (IACUC) specification with a 12 & 12 light and dark cycles. The strains used 

were mTERT-GFP and mTERT-rtTA oTETCre Rosa-mTmG (mTERT mTmG will be 

used from this point on for clarity). mTERT GFP is an endogenous reporter that marks 

cells that are currently expressing mTERT with a green fluorescent protein. This protein 

is no longer expressed upon the cessation of mTERT expression. 

mTERT mTmG is an inducible triple transgenic cre line. The cells of these mice 

are marked with a red membrane protein unless doxycycline is added to their water 

supply. Upon ingestion of doxycycline any newly formed cells that express mTERT will 

be indelibly marked with a green fluorescent membrane protein (GFP). These cells will 

express this GFP even if mTERT ceases to be expressed, which allows for the 

aforementioned lineage tracing studies. Below in figure X is the exact mechanism behind 

this triple transgenic line. In mTERT-expressing cells a reverse tetracycline controlled 

transactivator (rtTA) is transcribed. The rtTA is not active until bound by a tetracycline 

derivative (in this case doxycycline, or dox). Once activated the rtTA-dox complex binds 

to the promoter region on OTet and allows for the transcription of the cre gene, which 

will eventually form a cre protein. Cre excises anything between the two LoxP sites, in 
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our case a membrane tomato and a stop. This allows for the expression of membrane GFP 

in only mTERT-expressing cells. 

Figure 1 

 

Figure 1a: This figure demonstrates the differences between the brains and cell markers for each strain. 

Figure 1b: This brief visual explanation of the mechanism behind FACS shows how cell color determines 

the charge a cell receives and therefore which vial the cell is sorted into. Figure 1c: The transgenes at work. 

This figure shows the mechanism behind the triple transgenic line mTERT-rtTA oTet-Cre ROSA-mTmG. 

Figure 1d: qPCR will amplify any gene of interest based on the primers used. Each cycle of replication 

doubles the number of copies of the gene. Exponential increases in expression will make differences more 

apparent. 
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Experimental cohorts 

Exercise experiment 

Four female mice were used per group. The “run” group had a running wheel in 

their cage that was free to spin. The “lock” group had a running wheel in their cage, but it 

was locked via a zip tie, so that it could not spin and no running could be accomplished. 

A three-week pulse of doxycycline was given before the addition of the wheels. Once the 

wheels were added the doxycycline was taken away for the chase period. The 

chase/wheel period lasted for eleven days. At this time, they were sacrificed and 

perfused. This experiment was originally run on male mTERT GFP mice, but due to 

nonspecific signal of unknown origin, another run was scheduled using female mTERT 

mTmG mice. 

Fasting, feeding, & re-feeding experiment 

 This cohort was aged matched and used both sexes. This group was given a 

doxycycline pulse for three weeks and a water chase for five days. Two males and two 

females had continuous ad libitum access to food. Three males and two females were 

fasted for 24 hours before euthanization. Three males and two females were fasted for 24 

hours and then given ad libitum access to food for 24 hours before euthanization. All 

groups were injected with 50mg/kg bromodeoxyuridine (BrDU) 24 hours before 

euthanization. These interventions were intended to show increased neurogenesis upon 

stimulation. 
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Tissue collection, storage & processing 

Euthanization, dissection & storage 

 Mice were injected with a mixture of ketamine and xylazine prior to perfusion 

according to their body weight. Once the mouse was determined to be completely under 

anesthesia it was restrained. An incision was made into the animal and the heart was 

found. The perfusion needle was inserted into the left ventricle, the perfusion machine 

was started at 8.11mL/minute, and the right atria was clipped. The first fluid to perfuse 

was PBS buffer, and once this ran clear out of the body, Amresco was perfused to fix the 

tissue. Amresco is a fixative commonly used in the preservation of brains. Upon 

completion the mouse was removed from the machinery and the brain was dissected out. 

This was placed into a labeled cassette and put into a jar of Amresco in order to post fix. 

After 24 hours of Amresco the tissue was put through a sucrose gradient in order to 

protect it from the harmful effects of freezing. The gradient went from 5% to 15% to 30% 

sucrose solutions. From the sucrose gradient the tissue went into OCT (Optimal Cutting 

Temperature Compound), after being cut into 5 or 6 smaller sections using a brain block. 

Each piece was arranged in a plastic container with OCT poured over it and frozen via an 

ethanol and dry ice slurry. These tissues were then stored in a -20°C freezer. 

Slicing  

All slicing was done using a Leica CM 3050 S Cryostat set at -21°C with 7um 

slices. Tissue blocks were trimmed on a 10um slice until the tissue was clearly visible. At 
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this point the 7um slice setting was used to cut serial sections. Two sections were put on 

each slide with one slice occurring between them that was not used. Between each slide 

five slices were discarded. Once slicing was completed for the day tissues were dried in a 

37°C oven for 12-18 hours. From here they were stored once again at -20°C. 

Immunostaining 

 Slides were chosen based on location in the brain. Multiple slides of comparable 

location were taken from each animal. Slides were brought to room temperature over a 

period of thirty minutes. They were then fixed in ice cold acetone, followed by a rinse 

using Millipore Rinse Buffer (Cat #20845). Sudan black is used for twenty minutes to 

block for auto-fluorescence. After this tissues are again rinsed using the rinse buffer. 

Each slide has two slices on it. Each tissue has a hydrophobic barrier in the shape of an 

oval drawn around it using a pap pen (Dako Pen S2002). These barriers allow for drops 

of liquid to be pipetted directly onto the tissue without spreading. Millipore block (Cat 

#20773) is used for twenty minutes at thirty-seven degrees Celsius in order to block for 

non-specific staining. Tissues are then washed and a dilution of the primary antibody is 

added. The tissues with primary antibody are placed in a fridge overnight. The following 

morning tissues are washed again and a dilution of secondary antibody is added for ten 

minutes. Tissues are rinsed with wash buffer and then water. If the secondary antibody is 

not blue, DAPI can be used as a nuclear stain in order to more clearly visualize cells. For 

this to occur slides are put into a solution containing DAPI for five minutes and then well 

rinsed with water. A coverslip is then applied to each tissue using fluorescent mounting 

media (Millipore Cat #5013). Slides can be left flat to dry overnight and imaged the 

following day. 
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Table 1 

Antibody Species Type Concentration Color Catalog 

Number 

Anti-GFP Rabbit Primary 1:1000 N/A  Ab6556 

Anti-Ki67 Rabbit Primary 1:1000 N/A Ab15580 

Anti-BrDU Sheep Primary 10ug/mL N/A Ab1893 

Alexa Fluor 

488 

Goat anti-

rabbit 

Secondary 1:1000 Green A11070 

Alexa Fluor 

350 

Goat anti-

rabbit 

Secondary 1:1000 Blue A11046 

Alexa Fluor 

350 

Donkey 

anti-sheep 

Secondary 1:1000 Blue A21097 

Anti-GFP Goat Conjugated  1:1000 Green Ab6662 

Table 1: All antibodies and stains used in immuno-staining 
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Imaging 

Slides were imaged using a Nikon Eclipse E400 Fluorescence light microscope. 

Contrast was linear for all photos. Camera gain ranged from 100 to 800. Exposure ranged 

from 100ms to 800ms. All photos were captured using a 10X lens used in combination 

with a 10X objective for a total magnification of 100X. Immunostaining and imaging are 

used to determine specifically where cells reside in the brain. 

Gene expression experiment 

Fluorescence activated cell sorting 

Four male and three female mTERT mTmG mice were given two weeks of 

doxycycline in their water, known as the “pulse”, and then taken off doxycycline for 3 

days, known as the “chase”. At the end of the three days they were euthanized according 

to IACUC approved protocols and their brains were dissected. All areas caudal to the 

hypothalamus were removed and the majority of the cortex was removed. The brain was 

then finely sliced in 5mL of Pronase and Artificial Cerebrospinal Fluid (ACSF) (1mg/ml 

pronase in 15 ml ACSF). The brain pieces and reagents were then put into a 50ml tube in 

a shaking water bath at 37°C for 75 minutes. The sample was spun down and the 

pronase/ACSF was decanted and fresh Phosphate Buffered Saline (PBS) with 10% Fetal 

Bovine Serum (FBS). The tube was then placed back in the shaking water bath for 15 

minutes. Fire polished pipettes were then used to triturate the samples in order to break 

up any remaining pieces of tissue. Three sizes were used for this with a 600um size being 
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used first. The other two sizes were each slightly smaller, but the exact sizes are unable to 

be determined. These were created by holding 600um tips over an ethanol lamp flame 

until the opening became slightly smaller. The samples were spun down again, decanted 

and suspended in PBS with 10% FBS again and transferred to FACS tubes. These were 

kept on ice and then transported to Jackson Laboratory via car.  

Samples were sorted by Dr. Will Schott using a FACS Aria II machine. The sort 

results are shown below in the results section. Gating can be seen in supplemental figure 

1. These cells were then transported back to UMaine on ice in lysis buffer.  

Cells had cDNA extracted from them by Dr. Kristy Townsend. cDNA for this 

experiment did not require nanodropping to test for the amount of cDNA present because 

our results were expected to be largely a highly expressed or barely expressed response. 

Quantitative polymerase chain reaction 

For quantitative Polymerase Chain Reaction primers were chosen based on known 

expression in the brain. Our specific primers were ordered based on primers used in other 

papers and cross checked for specificity via a nucleotide BLAST. This takes the sequence 

given and searches for its use. If it is a specific primer it will come up as the gene it is 

used for. If it is not, it may come up as a variety of genes. Below, in Table 1, are all of the 

primers that were used and their sequences.  

All qPCR reactions were done using a BioRad CFX96 C1000 Thermal Cycler and 

SYBR. Reaction volume was 20 ul, with 15 ul master mix and 5 ul cDNA in each well of 

a 96 well plate. Each reaction was run in duplicate and reactions were not used in any 
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calculations if the duplicates differed by more than 0.5 arbitrary units. The process 

behind qPCR is explained in Figure 1 above. qPCR data were used to show the 

differences in gene expression between GFP+ and GFP- cells. 
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Table 2 

Primer Forward Sequence Reverse Sequence 

Cyclophilin CAAATGCTGGACCAAACACAA AAGACCACATGCTTGCCAT 

Hes5 GCACCAGCCCAACTCCAA GGCGAAGGCTTTGCTGTGT 

BLBP TAAGTCTGTGGTTCGGTTGG CCCAAAGGTAAGAGTCACGAC 

EGFR GCATCATGGGAGAGAACAACA CTGCCATTGAACGTACCCAGA 

GFAP CGGAGACGCATCACCTCTG AGGGAGTGGAGGAGTCATTCG 

Nestin AGGACCAGGTGCTTGAGAGA TGGCACAGGTGTCTCAAGGGTAG 

SOX2 GCGGAGTGGAAACTTTTGTCC CGGGAAGCGTGTACTTATCCTT 

Prox1 CGCAGAAGGACTCTCTTTGTC GATTGGGTGATAGCCCTTCAT 

CD24 GTTGCTGCTTCTGGCACTG GGTAGCGTTACTTGGATTTGG 

DoubleCortin CATTTTGACGAACGAGACAAAGC TGGAAGTCCATTCATCCGTGA 

NeuroD ATGACCAAATCATACAGCGAGAG TCTGCCTCGTGTTCCTCGT 

MASH1 CCACGGTCTTTGCTTCTGTTT TGGGGATGGCAGTTGTAAGA 

Table 2: All forward and reverse primers used for qPCR were obtained from scientific papers and then 
checked for specificity. 
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RESULTS 

GFP+ cells exhibit gene expression patterns similar to ANSCs but not other neural 

precursor cell populations 

 Analysis of gene expression of GFP+ cells in Figure 3 revealed a pattern similar 

to that of the quiescent slowly proliferating neural stem cells, seen in Figure 2. GFAP, 

nestin, SOX2, and Hes5 have all been identified as significantly upregulated in GFP+ 

cells when compared to GFP- cells. Possibly even more exciting than the significantly 

different genes are the genes that were not significantly different.  These genes include 

MASH1, DoubleCortin, NeuroD, EGFR, and TrkB; all markers of more 

activated/committed/differentiated neural precursors.  

GFP+ cell frequency is comparable to that of ANSCs in the brain 

 FACS sorting yielded numerical results related to the relative occurrence of GFP+ 

cells compared to GFP- cells. These results show an average of less than one percent of 

cells are GFP+ in the brains we sorted. This means ~99.1% of all cells sorted are GFP-. 

These data, combined with the knowledge that our aim was sorting neurogenic regions 

points to GFP+ cells making up a very small population in the adult brain. This small 

population combined with our other evidence supports our hypothesis that mTERT+ are 

indeed ANSCs. 
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Figure 2

 

Figure 2: This chart is a comprehensive compilation of genetic markers for each kind of neural 
precursor. (Daynac 2016; Doetsch et al., 2014; Giachino et al., 2010; Karl et al., 2012; Zhoa, Deng, and 
Gage, 2008) 
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Figure 3 

 

Figure 3: GFP+ cells and GFP- cells were assessed for gene expression. Five markers were 
significantly more expressed in GFP+ cells compared to GFP- cells: SOX2, Hes5, GFAP, Prox1 and 
Nestin. Seven tested do not display significant differences: DoubleCortin, EGFR, NeuroD, MASH1, CD24, 
BLBP, and TrkB. (Fold change ± SEM, significance determined using an unpaired student’s t-test. 
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Figure 4 

 

Figure 4: Brains from the exercise experiment and the diet restriction experiment both show a 
plethora of GFP+ cells in the choroid plexus in multiple brain sections and animals across all groups 
within the study. These images also show a small number of mTERT+ cells in the classic neurogenic 
niche of the SVZ and even fewer GFP+ cells in the DG. 
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GFP+ cells are heavily present in the choroid plexus but less present in classic 

neurogenic niches 

 GFP+ cells were immuno-stained for using either a conjugated GFP antibody or a 

primary GFP antibody coupled with a green fluorescent secondary. This, in combination 

with DAPI, a stain that binds to DNA, allowed for our initial discovery of mTERT in the 

choroid plexus by doctoral student Gabriel Jensen. Thorough investigation of the walls of 

the ventricles and the hippocampus of multiple animals across multiple cohorts revealed 

very few mTERT+ cells (figure 4). 

GFP+ cells and classic proliferation markers 

 Testing for the presence of proliferation markers including BrDU and ki-67 was 

done on the restricted diet cohort and the exercise cohort respectively. Ki-67 is a protein 

that is only expressed in the nucleus of actively dividing cells (Sobecki et al., 2016). Due 

to the specific nature of its expression it can be used as an antigen when staining for 

precursor cells. Bromodeoxyuridine (BrDU) is a synthetic thymine analog that 

incorporates into the DNA of cells in the S phase of the cell cycle (Bio-Rad, 2017). 

Instead of adding thymine, cells that are exposed to BrDU will add BrDU in its place. 

This can then be used as an antigen for cell identification. Our immuno-staining revealed 

that Ki-67 is weakly present in the hypothalamus, which is typically used as a positive 

control, as well as some cortical areas. No ki-67 has been identified in mTERT+ cells as 

of publication (Figure 5). This is most likely due to an inaccurate antibody or to a lack of 

optimization. BrDU staining was not able to be optimized in time for publication, so no 

conclusions can be drawn using this marker.  
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Figure 5 

 

Figure 5: The blue circled spots above mark possible Ki-67+ cells. They are the approximate shape and 
size of a nucleus. No blue staining was visible in the choroid plexus of any animal that was tested.  
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DISCUSSION  

The results above, in Figure 3, point to mTERT+ cells showing similar, if not the 

same, gene expression patterns when compared to the ANSC cell population of neural 

precursors. This expression pattern rules out the possibility of other precursors by the 

expression of GFAP and the lack of expression of EGFR. GFAP is only present in 

ANSCs, so the mTERT+ cells would need to start at the ANSC phase to express this. 

EGFR is only detected in activated cells, so our cells appear to be residing in a state 

before activation occurs. 

The qPCR results on the FACS sorted cells show us a very general pattern of 

expression that points to mTERT+ cells being early neural precursors. An important part 

of this data set is that the GFAP expression is significantly different. If mTERT+ were 

not ANSCs they would exhibit typical precursor markers but not GFAP. This tells us that 

mTERT+ cells at least start as ANSCs. EGFR expression also provides a critical clue in 

the search for mTERT cell identity. EGFR is not significantly different between GFP+ 

and GFP- cells, although a trend is apparent. This finding led us to believe that mTERT+ 

cells are quiescent, as EGFR is a marker that is associated with activation.  

The fact that so many genes typical of later stages of the neuronal lineage are not 

significant is also quite a relevant finding in that it points to an earlier stage of 

development. While these genes were not significantly different, a trend can be seen 

among many of them. The nature of our experiment allows for cells to stop expressing 

mTERT, differentiate, and migrate while still remaining marked with the GFP marker. 

This chase effect could allow some formerly mTERT+ cells to be in the GFP+ 
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population. The trend seen in the non-significantly different genes could be caused by 

differentiation of mTERT+ cells. This would begin alter the gene expression data, which 

could be what we are seeing in our graphs in Figure 3.  

GFAP is thought to only be found in glial cells of the Central Nervous System 

(CNS), which fits the classic description of ANSCs as “radial glial cells” (Cerilli and 

Wick, 2016). The upregulation of this gene in combination with the other three genes 

points to the GFP+ population being at least mostly stem cells as opposed to another kind 

of glial cell. SOX2 is an important transcription factor in neural tube development and 

has been shown to consistently mark early neural precursors (Lee et al., 2012). Nestin has 

also been shown to reliably mark early neural precursors (Cheng et al., 2015). It has been 

suggested that Hes5 keeps ANSCs in a proliferative state and prevents terminal 

differentiation, which would be necessary in the ANSC population regardless of 

activation or quiescence (Nieto-Estévez et al., 2016).  

Taken together this supports our hypothesis that mTERT+ cells are indeed 

ANSCs and most likely quiescent cells. Two of these factors point to stem cells being 

held in a proliferative stage and not differentiating, which is supported by the fact that the 

mice that these cells were harvested from had no novel neurogenic stimuli introduced 

during this experiment. The mouse brains we used would have been in a state of neural 

stasis, so ANSCs would have had no reason to be actively differentiating beyond the 

basal neurogenic level. 

Prox1 showed a very unexpected pattern of expression in our gene expression 

experiment. There are several possible explanations for this. Currently, the majority of 
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markers for each stage of a neuronal lineage, while widely accepted, are still not fully 

understood. It could be possible that Prox1 experiences a bimodal expression and is 

present in both qANSCs and immediate progenitors. It could also be possible that the 

primers used in this instance were not specific enough. Further testing will be conducted 

before any conclusion is reached. 

It is important to restate that the markers shown in Figure 3 have been assembled 

after a thorough review of the literature. It must be noted, though, that the nomenclature 

for adult neural precursors is not consistent across this field. I have therefore organized a 

table comparing the nomenclature used in my references. This table can be found in 

Appendix B labeled as Supplementary Table 2. Another issue regarding these markers is 

that it is typically assumed that expression of these markers is either fully expressed or 

fully absent in each cells type. It could be that gene expression is more variable than this 

and certain genes may be slightly or moderately expressed as opposed to absolutely 

expressed or not.   

If these cells are indeed quiescent, mTERT could provide an invaluable new tool in 

the field of neuroscience. Being able to confidently mark qANSCs with only one marker 

would cut down on time, cost, and labor in the study of quiescent neural stem cells. This 

would also allow for cells to be followed from quiescence in the presence of a variety of 

stimuli. If neurogenesis were to occur, we could expect to see increased mTERT 

expression due to the symmetric and asymmetric division that qANSCs would undergo 

upon stimulation. Increased mTERT expression could therefore allow us to quantify 

levels of neurogenesis in response to aging, neurogenic stimuli, and even injury. 
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Our preliminary immunostaining data, collected by Gabriel Jensen, showed an 

unexpected picture. mTERT+ cells were almost exclusively in the choroid plexus, but 

non-existent in the more studied neurogenic niches. However, upon closer inspection we 

were able to identify a small number of GFP+ cells in more classic neurogenic niches, 

such as the subventricular zone and the dentate gyrus. The low levels of GFP in these 

areas quickly led to the hypothesis that classically described niches could exclusively, or 

at least primarily, house more mature precursors.  

We were able to distinguish a very strong GFP signal from the median eminence of 

the hypothalamus. This is the area of the brain where regulatory hormones are released. It 

acts to connect the hypothalamus to the pituitary gland. This area would indeed need to 

adapt to changes in energy status and may use neural stem cells to accomplish this. It was 

still surprising that the vast majority of GFP+ cells reside in the choroid plexus. 

 The choroid plexus (CP) is an epithelium that secretes cerebrospinal fluid (CSF) 

as well as some of the many signaling factors that can be present in CSF such as growth 

factors, cytokines, and neuropeptides (Krzyzanowska et al., 2015). The CP is present in 

all four ventricles of the brain and acts as a blood-CSF barrier (Lun, Monuki and 

Lehtinen, 2015). This crucial barrier allows for the rapid transport of water and some 

solutes from the circulatory system to the epithelial cells of the CP in order to make CSF 

(Lun, Monuki and Lehtinen, 2015). 

 Based on our immunostaining images we began to speculate that the choroid 

plexus may be the most primitive niche for ANSCs, which would then be able to migrate 

to the more well-known niches of the ventricular/sub-ventricular zone and the sub-
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granular zone of the dentate gyrus (DG). Due to the ambiguous nature of previous 

markers it has been difficult to conclude that the neural precursors in more well-known 

niches are indeed the most primitive. If the CP was in fact the home of the most primitive 

cells it is possible that these cells could migrate to either of the other two niches or 

differentiate and then migrate to the other niches. Looking at this spatially it is also a 

possibility. The CP resides in ventricles which would provide plenty of access to the 

VZ/SVZ. The dentate gyrus is very close to the dorsal third ventricle which also houses 

CP (Paxinos and Franklin, 2013). This could allow for a small enough distance for the 

migration of stem cells into this region. Another key piece of supporting evidence is our 

timeline. It is estimated that it could take up to eight weeks for an ANSC to become a 

mature adult neuron (Duan et al., 2008). Our chase period for the running group was the 

longest at eleven days and the fasting and refeeding group only had a five-day chase. This 

could explain why we are seeing very few mTERT+ cells chasing to the more well-

known niches.  

It is also quite possible that the CP is only the most primitive niche for the 

VZ/SVZ and that the DG runs on a whole different system. Proximity and access is 

definitely more prominent in the VZ/SVZ. While both previously hypothesized niches 

show similar general patterns of behavior they also exhibit distinct differences related to 

function. Stem cells from the VZ/SVZ typically migrate to the olfactory bulb and 

integrate into the neural circuitry at that sight, while stems cells in the DG only migrate 

one cell layer up to become granule neurons.  

 In theory, the choroid plexus would be a well-suited environment for qANSCs. It 

provides ease of access to some of the most crucial brain regions in terms of basic 



	

	 30	

function and adaptability. Neural stem cells have frequently been described as requiring a 

nearby blood vessel, which the choroid plexus is directly in contact with. This contact 

with the blood vessel would allow the choroid plexus access to changing internal 

conditions which would allow for rapid activation of adaptive mechanisms, in the form of 

stem cells activation, if needed.  

Proliferation marker staining did not appear to mark any GFP+ cells thus far. It 

may be possible that the neurogenic stimuli were not strong enough or present for a long 

enough time period to induce activation in the mTERT+ cells. It is also possible that our 

protocol is not fully correct. Unfortunately, BrDU was not able to be used to supplement 

the ki-67 data due to protocol optimization difficulties. In order to further our 

understanding using these markers they will be used in future experiments that involve 

stronger neurogenic stimuli and longer chase periods. Both techniques will need further 

optimization in order to draw any conclusions. 

In order to further test our theory, we will be performing another FACS sort on 

mTERT-mTmG mice as well as mTERT-GFP mice. GFP mice will be used for further 

gene expression studies. This will allow full confidence in our gene expression data as 

mTERT-GFP mice only express green fluorescence in cells that are currently expressing. 

These cells will be exclusively mTERT+ and therefore our previous problems with 

impure populations will no longer be applicable. The mTERT-mTmG cells will be used 

for a neurosphere formation assay. This is a cell culture assay routinely used to prove 

neural stem cell lineage. Sorted cells will be added to a specific cell culture medium and 

allowed to grow. If they form floating spheres, we will be able to conclude that they 

originated from neural precursors. 
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 Cells from mTERT-mTmG neurospheres will then be used for a Neural-Colony 

Forming Cell Assay (NCFC). This assay definitively distinguishes ANSCs from other 

neural precursors (Azari et al., 2011). Cells are sorted into a specific cell medium and 

allowed to grow for five to eight days. At the end of the growth period, colonies are 

measured to determine cell origin. Colonies that are above 2mm are formed from ANSCs 

and anything below 2mm originates from a neural precursor from a later stage. If we see 

colonies above 2mm we will be able to conclude that at least some of our GFP+ cells are 

ANSCs which means that, at the very least, mTERT+ cells begin as the most primitive 

ANSCs.  

In this series of experiments, we were not able to conclusively determine differences 

due to the experimental treatments. Our immunostaining offered us a first look into the 

location of mTERT+ cells, but not an unbiased quantification method. In the future we 

will be using unbiased stereology in order to remedy this. Unbiased stereology will allow 

for us to fairly asses the number of mTERT+ cells in comparison with the total number of 

neurons in the brain. 

In addition to the aforementioned experiments, we have begun to examine the brains 

of aged mice (19 months). In gathering preliminary immunostaining data, we have been 

able to identify GFP+ cells again in the choroid plexus as well as in the median eminence 

(see supplementary Figure 1). Further analyses of these brains will be conducted using 

unbiased stereology, a protocol that will allow us to quantify the number of cells in each 

brain in order to more accurately compare cell number between young and old mice. The 

conclusions from this experiment will allow us to determine if the number of mTERT+ 

cells decreases with age, as would be expected of ANSCs. 
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APPENDIX A 

IACUC APPROVAL 
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APPENDIX B 

SUPPLEMENTARY MATERIAL 

Supplementary Table 1 

Abbreviation Name Function 

CD133/PROM1 Prominin 1 Originally thought to mark ANSCs, 
proven to only accurately mark 
embryonic stem cells. In the adult brain 
CD133 marks a diffuse population of 
cells in the brain that are not correlated to 
ANSCs. Role in the organization of the 
apical domain of epithelial cells. 

EGFR Epidermal 
Growth Factor 

Receptor 

Expressed in active ANSCs, but not 
quiescent. Ultimately leads to cell 
proliferation via signaling cascades. 
Receptor tyrosine kinase that dimerizes 
and auto-phosphorylates upon ligand 
binding. This activates pathways that 
promote cell survival, neuronal functions, 
and metabolism. 

GFAP Glial Fibrillary 
Acidic Protein 

Class III intermediate filaments 
needed for support and strength. Only 
found in astrocytes. 

Hes5 Class B Basic 
Helix-Loop-Helix 
Protein 38 

Basic Helix-Loop-Helix transcription 
repressor downstream of Notch. 
Important regulation of cell 
differentiation. Expression is 
downregulated upon differentiation. 

Nestin Nestin Type IV intermediate filament found 
to promote survival, renewal, and 
proliferation in neural progenitor cells. 
May play a role in the trafficking and 
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distribution of intermediate filaments in 
progenitor cell division. 

SOX2 

 

Sex 
Determining 
Region Y Box 2 

Keeps NSCs undifferentiated. 
Regulates several genes associated with 
embryonic development. 

DCX Double Cortin Codes for a cytoplasmic protein that 
binds microtubules. Directs migration in 
the developing brain by regulating the 
organization and stability of 
microtubules. 

BLBP Brain Lipid 
Binding Protein 

Small highly conserved protein that 
binds fatty acids. Involved in the 
establishment of radial glial fibers in the 
developing brain which are necessary for 
the migration of immature neurons. 

MASH1/ASCL1 Achaete-Scute 
Complex Homolog 

 

Codes for a Basic Helix-Loop-Helix 
(BHLH) transcription factor. Plays a role 
in commitment and differentiation in 
neuronal lineages. Essential for the 
generation of olfactory and autonomic 
neurons. 

NeuroD Neuronal 
Differentiation 1 

Codes for a Basic Helix-Loop-Helix 
(BHLH) transcription factor. Regulates 
the expression of the insulin gene. 
Involved in the regulation of 
neurogenesis, morphogenesis of 
dendrites, retinal neuron formation, inner 
ear sensory neuron formation, endocrine 
islet cell formation, eneteroendocrine cell 
formation, and hippocampal formation. 
Promotes differentiation into granule 
cells in the DG and islet cells in the 
pancreas. 

PSA-NCAM Polysialated 
Neural Cell 
Adhesion 
Molecule 

Common in developing nervous 
systems and areas of neurogenesis. 
Allows for the migration of precursor 
cells and synaptogenesis. 

Prox1 Prospero 
Homeobox 1 

Transcription factor involved in 
progenitor cell regulation and cell fate 
determination. Heavily involved in 



	

	 46	

embryonic development and 
neurogenesis. 

TrkB Neurotrophic 
Receptor Tyrosine 
Kinase 2 

“TRKB is the high-affinity receptor 
for BDNF and mediates BDNF signaling, 
regulating several aspects of neural 
plasticity including long term 
potentiation, neurogenesis and memory” 
(de Miranda et al., 2015) 

Supplementary Table 1: This table is a succinct summary of the genes that are 
mentioned throughout this thesis (Holmberg Olausson et al., 2014,GeneCards, Cerilli and 
Wick, 2016, Lee et al., 2012, Quartu et al., 2008, Reference, 2017, Doetsch et al., 2014 
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Supplementary Figure 1 

 

Sup. Figure 1: Images of the brain of an aged mouse (~19 months). These images 
are comparable to those shown in figure 4. (N=1). 
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Supplementary Table 2 

Townsend 
Terms 

Number 
System 

Letter 
System Glia-centric Other Common 

Names 

Other 
Common 
Names 

(continued) 

Quiescent 
Adult Neural 

Stem Cell 
(qANSC) 

Type I Type B 

Radial 
Quiescent 
Glial Cell Label Retaining 

Cells 

Slowly 
Proliferating 
Astrocytes Horizontal 

Quiescent 
Glial Cell 

Activated 
Adult Neural 

Stem Cell 
(aANSC) 

Type I Type B 
Active 

Horizontal 
Glial Cell 

  

Transit 
Amplifying 

Cells (TACs) 
Type IIA Type C  

Transit 
Amplifying 
Progentors 

(TAPs) 

Rapidly 
Dividing 
Immature 
Precursors 

Immature 
Neuroblasts Type IIB   Intermediate 

Progenitor Cells  

Migratory 
Neuroblasts Type III Type A    

Mature 
Neurons      

 

Sup. Table 2: This Townsend Terms Table compares the different designations for 
adult neural precursor cells. 
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