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Abstract 

Neurotrophic factors are a family of growth factors that regulate neuronal 

plasticity. Thus far, these factors have been understudied in peripheral tissues, including 

adipose tissues, where they could play a key role in mediating the neuronal inputs that 

lead to energy expenditure via lipolysis (white fat) and thermogenesis (brown fat). Based 

on prior experiments, we hypothesized that brain derived neurotrophic factor (BDNF) is 

the main neurotrophic factor acting in adipose tissues to mediate neurite outgrowth and 

branching of incoming sympathetic nerves. We found that BDNF knock-out animals had 

less innervation of their white fat, shown by reduced expression of neuronal markers, but 

a paradoxical increase in cold-stimulated brown adipogenesis in white fat (‘browning’). 

Further investigation using immunofluorescent staining indicates that although browning 

can be activated by some alternate factor that remains ambigious, innervation and 

stimulation of the sympathetic nervous system is required for activation of UCP1-

mediated thermogenesis.   
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Introduction 

 In 2013, the Center for Disease Control (CDC) estimated that 69 million people 

were considered obese in the United States alone (The World Health Organization, 2016).   

Obesity and the metabolic diseases that are associated with obesity are increasing at an 

alarming rate due to the modern day high calorie diet and sedentary lifestyle as well as 

genetic predisposition.  Obesity is accompanied by an increased risk of developing both 

mechanical and physiological comorbidities that are serious, non-reversible and often 

deadly.  These comorbidities include sleep apnea, osteopathic complications, 

cardiovascular disease, hormone-related cancers, cardiovascular disease and insulin 

resistance, as seen in type II diabetes (Wilding et al., 2012).  

The root of the obesity problem is an accumulation of adipose tissue resulting 

from improper energy balance between storage and expenditure.  To understand and 

potentially correct this imbalance, it is first important to understand the mechanisms.  

Energy balance in the body is in part managed by two types of adipose tissue (white and 

brown) as well as the systems that interact with them, including the digestive, vascular 

and nervous systems.   

White adipose tissue (WAT) stores lipid in large triglyceride droplets, which can 

be broken down to create energy when the process of lipolysis is initiated by neuronal 

stimulation.  In cases of abnormally high amounts of lipid, adipocytes attempting to 

accommodate the needed storage can become very large, or hypertrophic.  These large 

cells have a low surface area to volume ratio of the cells, which can inhibit diffusion of 

oxygen and important nutrients provided by vasculature and extracellular matrix which 

are needed for processes inside the cell.  Without proper diffusion, the cell can become 
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hypoxic, or oxygen deficient, and die, leading macrophages (a type of phagocytic 

immune cell) of the adipose tissue to surround that cell and engulf it.  Seen under a 

microscope, an image of this process is known as a crown-like structure (Murano et al., 

2008).  

Macrophages can be recruited to adipose tissue by chemotaxic signals emitted by 

the tissue in response to stress, such as cell death, hypoxia or cold exposure.  

Additionally, macrophages can be polarized to different physiological states and thus 

secrete different cytokines depending on the state of the tissue.  Adipose-derived Th1 

secretions in response to obesity cause macrophages to be polarized from their M2, anti-

inflammatory state, to their M1, pro-inflammatory state, in which they secrete pro-

inflammatory cytokines, creating an inflammatory and unhealthy state in the adipose 

tissue (Lumeng et al., 2007).  

The other type of adipose tissue is brown adipose tissue (BAT) which functions to 

create heat by uncoupling oxidative phosphorylation from ATP production in a process 

called non-shivering thermogenesis, which is mediated by the BAT-specific uncoupling 

protein 1 (UCP1) (Cannon et al., 2004).  In contrast to WAT, BAT is multilocular, 

meaning it has multiple small lipid droplets instead of a single large one (unilocular).  

BAT has a large number of mitochondria in comparison to WAT, which along with a 

dense vascular supply gives the tissue its characteristic brown color.  BAT is present 

mostly in small mammals and the young of larger mammals; however, it has been shown 

that there are small amounts of BAT that can be detected by imaging like MRI or PET-

CT in human adults (Nedergaard et al., 2007).  
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UCP1 (also known as thermogenin) is unique to BAT and crucial to its process of 

thermogenesis.  UCP1 increases the permeability of the inner membrane of the numerous 

mitochondria in BAT, acting as a proton carrier and providing a route for protons/anions 

to pass through other than ATP synthase (Aquila et al., 1985).  In normal mitochondrial 

function, a proton gradient is created by pumps in the inner membrane and protons pass 

through the membrane in order to satisfy the charge gradient that was created by the 

pumps (Camps et al., 1992).  The enzyme ATP synthase allows the protons to pass 

through the inner membrane but in doing so, a separate subunit of the enzyme undergoes 

conformational changes which cause the enzyme to create adenosine triphosphate (ATP) 

from adenosine diphosphate (ADP) and inorganic phosphate (Ko et al., 1999).  By 

allowing the process of transmembrane proton transport to occur without the production 

of ATP by ATP synthase, the two processes are uncoupled.  ATP is not created and the 

energy is dissipated as heat (Heaton et al., 1978).  Because of this thermogenic role of 

BAT, the activation of UCP1-mediated thermogenesis in BAT causes a dramatic increase 

in glucose uptake and whole-body energy expenditure (Orava et al., 2011). 

Although fat depots are primarily composed of brown or white fat, the formation 

of brown adipocytes, can occur in WAT through a process termed ‘browning’ with the 

help of innervation and vascularization in the area surrounding the tissue (Cousin et al., 

1992).  The new adipocytes are known by many different names including beige (Harms 

et al., 2013), brite (Petrovic et al., 2010), inducible (Lee et al., 2011), or recruitable 

(Schulz et al., 2013).  The process termed ‘browning’ can be activated as a result of cold 

exposure (Barbatelli et al., 2010) and in mammals is common in young as a way to 

regulate body temperature.  This process of browning serves as a natural way to shift the 
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energy balance back towards expenditure without an increase in physical activity or basal 

metabolic rate.   

Innervation of adipose tissue is extremely important to the regulation of energy 

balance. In WAT, innervation and neuronal activation can stimulate lipolysis or the 

hydrolysis of triglycerides into glycerol and free fatty acids for use in creating energy 

through the process of cellular respiration which occurs throughout the body.  As the 

lipid inside adipocytes is broken down and transported to other tissues, the cell size 

shrinks, leading to an overall healthier tissue. Innervation of WAT can also cause the 

creation of new adipocytes through adipogenesis, which is known as hyperplagia (Faust 

et al., 1978).  In BAT, innervation and neuronal activation is thought to turn on UCP1-

mediated thermogenesis.  Since UCP1 function is activated by the binding of free fatty 

acids, innervation and subsequent lipolysis of WAT, which releases free fatty acids into 

circulation can also affect the level of thermogenesis.  Furthermore, testing the effect of 

manipulating adrenergic agents and adrenoreceptors has also shown that sympathetic 

innervation is important in initiating browning of WAT (Nedergaard et al., 2014). 

Neuronal health and plasticity throughout the body is largely dependent on a 

group of growth factors called neurotrophic factors.  Neurotrophic factors are secreted by 

a developing neuron’s target tissue and are responsible for the growth, plasticity and 

survival of those neurons by mediating the creation of new neurons (neurogenesis), 

creation of new synapses (synaptogenesis), and neuronal branching (Strand et al., 1991). 

The implications of neurotrophic factors in the brain and in the nervous system overall 

are evident.  Less explored, however, are the implications of those same neurotrophic 

factors in adipose tissue.   



5  

The neurotrophic factor of interest in this study is known as Brain Derived 

Neurotrophic Factor (BDNF) and was first discovered in 1982 as the second member of 

the neurotrophic factor family (Barde et al., 1982).  BDNF was first isolated from pig 

brain and used to support the growth and in vitro survival of embryonic chick sensory 

neurons (Leibrock et al., 1989).  There is growing evidence that BDNF is crucial not only 

to life, but also metabolic health.  It has been shown that BDNF homozygous knockouts 

(-/-) do not survive for longer than three weeks (Lyons et al., 1999).  BDNF heterozygous 

knockouts (+/-) as well as mice with post-natal BDNF gene deletion are prone to obesity 

(Kernie et al., 2000, Rios et al,. 2001).   

A possible BDNF mechanism has been uncovered in which BDNF binds with its 

high affinity receptor Trk-B, a member of the family of tropomyosin sensitive receptor 

kinases (Kaplan et al., 1991, Klein et al., 1991).  When the ligand BDNF binds to the full 

length TrkB isoform, homodimerization initiates cross tyrosine phosphorylation in 

intracellular TrkB domains and initiate one or more intracellular signaling pathways 

(Yoshii et al., 2009).  These pathways include mitogen-activated protein kinase (MAPK), 

phosphatidylinositol 3-kinase (PI3K) and phospholipase Cγ (PLCγ), which work to 

increase dendritic spine density and plasticity (Reichardt et al., 2006). 

The Townsend Lab at the University of Maine is interested in unveiling the role 

that the nervous system plays in metabolic health and understanding the mechanisms 

which can be manipulated to improve metabolic health.  In the preliminary stages of this 

collaborative study, Townsend found that secretions of the neurotrophic factor BDNF 

were increased in subcutaneous white fat in response to cold exposure.  Fluorescence 

activated cell sorting was used to determine that the BNDF source was not mature 
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adipocytes, but Lys-M myeloid lineage cells present in the stromal vascular fraction, 

including the previously mentioned macrophages involved in the adipose inflammatory 

response. 

Therefore, to investigate the importance of the neurotrophic factor, BDNF on 

peripheral nerve activity and implications in adipose tissue, Cre-Lox technology was used 

to create a mouse strain with a tissue specific knock-out.  LysM-Cre mice, which express 

Cre recombinase only in a subset of immune cells, including macrophages, were mated to 

BDNF-floxed mice, leading to BDNF deletion in LysM cells.   

The hypothesis for this project was that KO mice would have decreased 

peripheral nerve recruitment and function in adipose tissue and therefore inhibited 

browning of WAT.  Also, any recruitable brown adipocytes that did form were not 

expected to be able to initiate non-shivering thermogenesis.  The implications of these 

outcomes would most likely result in an increased animal weight due to larger WAT 

depots as well as presence of adipose inflammation.    

I, in collaboration with other members of the Townsend Lab, aimed to investigate 

the morphological changes in adipose tissue caused by the deletion of BDNF in this 

transgenic mouse model.  Morphological changes were assessed as indicators of adipose 

depot health and presence of UCP1-protein indicated thermogenic function.  My hope is 

that revealing the importance of BDNF to adipose health and energy balance will initiate 

further research into the therapeutic options of the neurotrophic factor for the prevention 

and treatment of obesity and its comorbidities.  
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Methods and Materials 

Mice 

All mice were products of mixed genetic background matings of LysM-Cre and 

BDNF-flox, both of which were purchased from Jackson Lab in Bar Harbor, 

Maine.  Only male mice were used because in previous cohorts no difference in 

phenotype was observed and males would not exhibit variation due to the reproductive 

cycle.  The 5 control animals were Cre -/- mated with lox+/lox+ and the 8 KO animals 

were Cre +/- mated with lox+/lox+. 

 

Treatment: Cold Exposure 

The mice were allowed to reach maturity and then acute cold exposed (4-day 

duration) in a specially designed Caron Diurnal Incubator on 5/1/15 immediately prior to 

terminal tissue collection on 5/5/15. 

Adipose Tissue Dissection 

Subcutaneous (flank) adipose depots were carefully dissected and weighed.  

Tissue was placed in a cassette and stored in 10% buffered formalin overnight and the 

next day moved to PBS (phosphate buffered saline) and later embedded in paraffin by the 

UMaine Histology Core. 

 

Histology 

Tissues were sliced using a microtome with a thickness of 5 µm and three 

consecutive sections were placed on a positively charged Superfrost slide, with a total of 
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six slides were made with serial sections for each animal.  After slicing, slides were 

baked overnight in a 40 °C oven and then stored at room temperature.   

 

Pre-staining Procedure 

 Before staining any slides, the tissues were first deparaffinized.  Histochoice 

clearing agent was used followed by a series of washes in ethanol followed by a rinse in 

distilled water.  Tissue were then stained or stored overnight in distilled water for staining 

the next day.  

   

Hematoxylin Stain 

Hematoxylin stain, which stains the nuclei, cytoplasm and extracellular matrix in 

the cell, was used to stain slide #3 from each animal in the cohort that was used for this 

experiment.  To stain, de-paraffinized slides were soaked in hematoxylin stain for 3-4 

minutes, then washed in distilled water.  Slides were then de-stained in ammonia 

hydroxide and finally rinsed in distilled water for another 3 minutes, left out to dry and 

stored at room temperature. 

 

Immunostaining 

Dako reagent was first used for antigen unmasking (2X10min in the microwave 

on low) followed by a wash with Millipore rinse buffer (cat# 20845 dilute from 20X to 

1X).  Sudan Black (0.3% in 70 EtOH) was used to block for auto-fluorescence for 20 

minutes at room temperature.  A Pap Pen was used to make a hydrophobic barrier around 

each tissue to keep it hydrated.  Millipore Block (cat # 20773) was used to block for non-
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specific staining for 20 minutes at 37 °C.  Primary antibody was then diluted in Dako 

antibody diluent and 100µl was added to each tissue.  Slide #2’s from each animal were 

treated with PGP9.5 Abcam at 1:1000 dilution.  Slide #4’s from each animal were treated 

with UCP1 Abcam at 1:50 dilution.  Each experiment included one slide #6 as a control.  

After primary antibody was added to each tissue, the slides were kept in a humid chamber 

at 4°C for 24 hours.   

The next day secondary antibody (Alexa 488 α Rabbit) was added for 10 minutes.  

Slides were kept in the dark for the remainder of the experiment (including this step) to 

prevent bleaching of the fluorophore.   

The slides treated with PGP9.5 primary antibody were then stained with Oil Red 

O (ORO, cat # 01391 from Sigma, diluted to working solution and filtered with Watman 

Paper #1) which demonstrates the presence of fat or lipids.  The slides treated with UCP1 

were not treated with ORO to prevent any interference with the UCP1 stain.  All tissues 

were covered with a small square coverslip and mounted with Millipore Mounting 

Media.  

 

Fluorescent Scope Imaging 

Pictures were taken on Nikon E400 which is capable of Brightfield, Hoffman 

Modulation, and 4-color fluorescence.  Pictures were taken at 100x.  The control slide 

with no primary antibody added was used to establish a level of background fluorescence 

and any signal above this level was considered significant.   

Regardless of stain, entire tissue sections were carefully examined at 100 x total 

magnification in a systematic fashion in order to ensure that the entire tissue’s 
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morphology was taken into account (see appendix A for protocol).  Then, three 

representative images were taken at 100x total magnification and any interesting features, 

such as areas of browning, were photographed at 200x total magnification.  Because I 

was the one running the experiment it was difficult to collect the data blindly.  In order to 

prevent biased observations, I did not note whether the slide was from a KO or a control 

until after the photographs were taken. 

 

Analysis 

 Originally all microscope images were going to be analyzed through Image J 

imaging software in order to measure average cell size, which would have served as a 

measure for relative rates of lipolysis and an indicator of innervation and activation of the 

tissue.  The Image J technology was not compatible with the images taken, so I relied on 

qualitative observations of cell size and used the amount of browning and crown-like 

structures present as an indicator of the tissue’s innervation, activation and overall health.   
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Results 

Preliminary Results:  

A. There is a trend for a lower body weight (BW) in Control animals and a 

statistically significant WAT weight. 

 

 

               

B. KO of BDNF in LysM cells decreases the presence of innervation in adipose 

tissue. 

PGP9.5 

                       

 β Tubulin 
 
 

   

 

 

Con KO 

Con KO 
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C. KO of BDNF in LysM cells decreases the presence of innervation in adipose 

tissue. 

 

 

Figure 1. Preliminary Results (obtained by Magda Blaszkiewicz) 
(A) Subcutaneous adipose tissue weights of control and KO mice compared to total body weight (BW) 
(B) Western blot measuring presence of PGP9.5 in control and KO mice. 
(C) Western Blot of PGP9.5 normalized and quantified. 
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Hematoxylin 

Figure 2: No significant difference in cell size or overall amount of browning was 

observed between KO mice and Control mice. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2. Representative images of average cell size using Hematoxylin stain. 
(A) Representative Image taken at 100x of KO1 subcutaneous WAT with H&E stain. 
(B) Representative Image taken at 100x of KO3 subcutaneous WAT with H&E stain. 
(C) Representative Image taken at 100x of Con 1 subcutaneous WAT with H&E stain. 
(D) Representative Image taken at 100x of Con 5 subcutaneous WAT with H&E stain. 
 

 

 

 

 

 

A B 

C D 



14  

Figure 3: No significant difference in cell size or overall amount of   

 browning was observed between KO mice and Control mice. 

 

 

Figure 3. Images of browning in subcutaneous WAT. 
(A) Microscope Image taken at 100x of Con 1 subcutaneous WAT with H&E stain. 
(B) Microscope Image taken at 100x of Con 3 subcutaneous WAT with H&E stain. 
(C) Microscope Image taken at 100x of KO1 subcutaneous WAT with H&E stain. 
(D) Microscope Image taken at 100x of KO2 subcutaneous WAT with H&E stain. 
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Immunostaining: PGP9.5 

Figure 4: LysM-BDNF KO mice express decreased innervation. 

A) Control 4    B) KO 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                          

Figure 4. PGP9.5 Immunostaining: KO mice exhibit intense browning not matched by expected amount of 
innervation. 

A) Mouse Con 4 immunofluorescent scope images. From top to bottom: Brightfield, ORO, PGP9.5 
antibody. 

B) Mouse KO7 immunofluorescent scope images. From top to bottom: Brightfield, ORO, PGP9.5 
antibody. 
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Immunostaining: UCP1 

Figure 5: KO mice lack expected UCP1 levels. 

A) Control 2     B) KO 5 

    

B) Control 5                 D) KO 6 

    

Figure 5. UCP1 immunostaining. KO mice exhibit dense patches of browning without expected brightness 
of UCP1 stain.  Brightfield (left) and Immunoflourescent (right) images taken of slides stained with UCP1 
antibody from the following animals: 
(A) Control 2 
(B) KO 5 
(C) Control 5 
(D) KO 6 
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KO of BDNF in LysM cells decreases the presence of innervation in adipose tissue.   

To determine the effects of the neurotrophic factor BDNF, a mouse strain was 

created using Cre-Lox technology in which adipose LysM cells, including macrophages, 

with the ability to secrete the neurotrophic factor BDNF were genetically knocked out.  

This mouse strain was exposed to cold, which is a stress stimulus that is known to initiate 

browning of white adipose tissue and subsequent thermogenesis, so that the role and 

importance of BNDF in adipose metabolism may be better understood.   

Initial results confirmed that genetically knocking out BDNF does hinder nerve 

growth and development.  Both immunostaining and western blot with PGP9.5, an 

antibody to mark the presence of sympathetic nerves, indicated a lack of innervation in 

KO tissues.  Protein levels in KO animals were significantly lower in the western blot 

(Figure 1C).  Also, very dense areas of browning seen in KO mice were not accompanied 

by the expected amount of innervation that was previously thought to be crucial to the 

initiation of browning in WAT.  Furthermore, control animals with little or no browning 

had a higher amount of innervation compared to those KO animals with large amounts of 

browning (Figure 4A-B). 

 

KO animals exhibited large amounts of browning with no significant difference in cell 

size.  

Multiple histology techniques were used to assess the morphologies of the 

adipose depots in this study.  In order to consider cell size and amount of browning 

within the adipose depots, slides were stained with hematoxylin.  Initial observations 

indicated an unexpected amount of browning in the WAT of the KO mice.  Often, intense 



18  

browning was located adjacent to vascularization in the tissue section (Figure 3 C-D).  

This was accompanied by the observation that although there was more intense browning 

in KO animals compared to controls, there was no obvious difference in cell size between 

the two groups (Figure 2), which was unexpected since BAT is known to consume a large 

amount of free fatty acids in thermogenesis and the lipolysis required to supply those free 

fatty acids would logically result in a smaller cell size.  The preliminary finding that KO 

animals had significantly higher subcutaneous (flank) weight compared to control 

animals (Figure 1A) indicates that there is a disconnect between the level of browning 

observed in the KO WAT and the expected lipolysis and burning of lipid that usually 

accompanies the presence of that browning. 

 

KO mice lack expected UCP1 levels. 

UCP1 activation is necessary for the process of thermogenesis in BAT.  In order 

to measure UCP1 levels in the WAT, immunostaining with UCP1 antibody was 

performed.  While the areas of browning as well as the unilocular traditional WAT areas 

of the control animals indicated the presence of UCP1, even the very dense regions of 

exhibited a comparatively low levels of UCP1 (Figure 5).  Because the activation of 

UCP1 is necessary for the proper function of BAT in its role of thermogenesis, these 

findings indicate that the presence of neuronal stimulation, which is subsequently 

dependent on the presence of LysM cell secreted BDNF, is crucial to the activation of the 

UCP1-moderated thermogenesis in BAT; however, it is not needed for the initial 

browning of WAT, which was previously hypothesized.   
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Discussion 

 Adipose health contributes significantly to whole-body energy balance and if it is 

not properly managed, can lead to metabolic diseases with dangerous comorbidities such 

as heart disease and type II diabetes.  The current study reveals a novel distinction in the 

understanding of adipose tissue mechanisms between what appears to be the source of 

initiation of browning in WAT and activation of UCP1-mediated thermogenesis in those 

recruitable BAT cells.   

Fundamentally, due to the lack of PGP9.5 marking in LysM-BNDF KO mice 

which was seen both in the PGP9.5 western blot and immunostaining, this study suggests 

that the LysM-BDNF KO mice lacked innervation compared to the control group, which 

supports the emerging idea that adipose macrophages residing in the stromal vascular 

fraction, not mature adipocytes, secrete the neurotrophic factor, BDNF.  Furthermore, 

these results suggest that BDNF is crucial in supporting the growth and viability of 

neurons in the tissue since those mice without BDNF secretion were unable to sustain the 

innervation in their adipose tissue. 

Results from hematoxylin staining showed that there was browning present in the 

adipose tissue of KO mice after cold exposure, which was surprising since it was 

previously thought that innervation was needed to initiate the process of adipose 

browning.  The results from this study suggest that innervation is not required for the 

process of ‘browning’ to occur; that is, new recruitable or beige adipocytes can form 

within a WAT depot without neuronal stimulation.  However, immunostaining with 

UCP1 anitbody showed that the recruitable brown adipocytes that were formed in the 

LysM-BDNF KO mice were deficient in the protein UCP1, which is needed to actually 
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initiate non-shivering thermogenesis in functional BAT.  These findings indicate that 

innervation and proper activation of the sympathetic nervous system is required for the 

activation of UCP1-mediated thermogenesis.   

It was difficult to properly asses the relative sizes of the adipocytes in the LysM-

BDNF KO and control mice because of complications with the computer imaging 

program compatibility, however there did not seem to be any difference in cell size 

between the KO mice, which had a higher amount of very concentrated recruitable BAT 

in their WAT depots, and control mice, which exhibited a less dense, more evenly 

distributed amount of browning.  This could indicate that the recruitable BAT in LysM-

BDNF KO mice was not properly activated and therefore unable turn on thermogenesis, 

which would have utilized a high number of fatty acids from the WAT surrounding the 

very concentrated BAT causing adipocyte size to shrink.    

Since vasculature was present in all depots, it is reasonable to hypothesize that a 

circulatory factor may initiate the browning process, but is not sufficient to provide the 

activation needed to initiate thermogenesis.  Existing evidence suggests that the mural 

cell compartment found in vasculature serves as a reservoir for adipocyte precursors 

which are committed, either prenatally or early in postnatal life (Tihai et al., 2013, Tang 

et al., 2008).  Also, an increase of adipose vascularization by means of increase in 

vascular endothelial growth factor (VEGF) has been shown to increase the presence of 

browning in WAT (Elias et al., 2012).  Consistent with these findings, it is possible that a 

circulatory factor present in adipose vasculature could activate the available progenitor 

cells to proliferate into mature adipocytes, and that in response to cold, the proliferation 

of so-called “recruitable” type adipocytes could be responsible for browning in WAT.   
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An interesting aside from the results is that the unilocular WAT cells in the 

control mice expressed UCP1, which could suggest that the WAT depot was undergoing 

transdifferentiation into multilocular BAT which contains UCP1 and can undergo non-

shivering thermogenesis.  Further studies with cell lineage tracking could further 

illuminate the process of browning in WAT.   

To my knowledge, this is the first study to make this distinction between the 

mechanisms that initiate browning (possibly a circulatory factor) and those that activate 

UCP1-mediated thermogenesis (innervation).  These findings create a new layer of 

complexity in the attempt to understand adipose biology.  Further studies will need to be 

done to confidently determine what is controlling the initiation of the browning process if 

it is not innervation and how that factor works along side innervation in cold-induced 

browning of WAT and thermogenesis. 

In conclusion, this study demonstrates innervation in adipose tissue is dependent 

on LysM cell-secreted BDNF and that innervation is needed to activate UCP1 mediated 

thermogenesis in the recruitable cells within a WAT tissue, although it is not necessary to 

initiate the process of WAT browning.  Along with the previously understood importance 

of adipose tissue in metabolic health, these findings help to increase the understanding of 

the adipose browning mechanism and could be instrumental in developing future 

therapeutic options for those battling metabolic disease 

 
 
 
 
 
 
 
 



22  

References 
 
Aquila H, Link TA, and Klingenberg M. The uncoupling protein from brown fat  

mitochondria is related to the mitochondrial ADP/ATP carrier. Analysis of 
sequence homologies and of folding of the protein in the membrane. EMBO J 
1985. 4, 2369–2376. 

 
Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino  

JP, De Matteis R, Cinti S. The emergence of cold-induced brown adipocytes in 
mouse white fat depots is determined predominantly by white to brown adipocyte 
transdifferentiation. Am J Physiol Endocrinol Metab 2010. 298, E1244–E1253. 

 
Camps M, Castelló A, Munoz P, Monfar M, Testar X, Palacín M, and Zorzano A. Effect  

of diabetes and fasting on GLUT-4 (muscle/fat) glucose-transporter expression in 
insulin-sensitive tissues. Heterogeneous response in heart, red and white muscle. 
Biochem J . 1992. 282: 765–772. 

 
Cannon B, Nedergaard J. Brown Adipose Tissue: Function and Physiological 

Significance. Psychologial Reviews. 2004, 84, 1, 277-359. 

Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Penicaud L, Casteilla L.  
Occurrence of brown adipocytes in rat white adipose tissue: molecular and 
morphological characterization. Journal of Cell Science. 1992. 103, 931-942. 

Elias I, Franckhauser s, Ferre T, Vila L, Tafuro S, Munoz S, Roca C, Ramos D, Pujol A, 
Riu E, Ruberte J, Bosch F. Adipose tissue overexpression of vascular endothelial 
growth factor protects against diet-induced obesity and insulin resistance.  
Diabetes. 2012. 61, 1801-1813. 

Faust, I. M., P. R. Johnson, J. S. Stern, and J. Hirsch. Diet-induced 
adipocyte number increase in adult rats: a new model of obesity. Am. J. Physiol. 
1978. 235: E279–E286. 

Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential.  
Nature. 2013. 19, 1252-1263. 

Heaton GM, Wagenvoord RJ, Kemp JA, and Nicholls DG. Brown-adipose-tissue  
mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. 
Eur J Biochem. 1978. 82: 515–521. 

 
Huang EJ, Reichardt LF. 2003. Trk receptors: Roles in neuronal signal transduction.  

Annual Review Biochemistry. 2003. 72, 609–642. 
 
Kaplan DR, Hempstead BL, Martin-Zanca D, Chao MV, Parada LF. The trk  

proto-oncogene product: A signal transducing receptor for nerve growth factor. 
Science. 1991. 252, 554–558. 



23  

 
Klein R, Nanduri V, Jing SA, Lamballe F, Tapley P, Bryant S, Cordon-Cardo C. 

The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic 
factor and neurotrophin-3. Cell. 1991. 66:395–403. 

Ko YH, Hong S, Pedersen PL. Chemical mechanism of ATP syn- thase: 
magnesium plays a pivotal role in formation of the transition state where ATP is 
synthesized from ADP and inorganic phosphate. J. Biol. Chem. 1999. 274:28853–
28856.  

Lee P, Swarbrick MM, Zhao JT, Ho KK. Inducible brown adipogenesis of 
supraclavicular fat in adult humans. Endocrinology. 2011. 152, 3597–3602. 

 
Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P, Thoenen H.  

Molecular cloning and expression of brain-derived neurotrophic factor. Nature. 
1989. 341:149–152. 

 
Lumeng C, Bodzin J, Saltiel A. 2007. Obesity induces a phenotypic switch in adipose  

tissue macrophage polarization. J Clin Invest. 2007;117(1):175–184. 
 
Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, Castellucci M, and Cinti S.  

 Dead adipocytes, detected as crown-like structures, are prevalent in visceral  
 fat depots of genetically obese mice. Journal of Lipid Research. 2008. 49:(7) 
1562-1568. 

 
Nedergaard J, Benstsson T, Cannon B. Unexpected evidence for active brown  

adipose tissue in adult humans. American Journal of Physiology. 2007. 293, 2, 
E444- 

E452. 
 
Nedergaard J, Cannon B. The Browning of White Adipose Tissue: Some Burning  

Issues. Cell Metabolism. 2014. 20, 3, 396-407. 
 
Orava, J. et al. Different metabolic responses of human brown adipose tissue to activation 

by cold and insulin. Cell Metabolism. 2011. 14, 272–279. 

Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J.  Chronic 
  peroxisome proliferator-activated receptor gamma (PPARgamma) activation of 

epididymally derived white adipocyte cultures reveals a population of  
thermogenically competent, UCP1-containing adipocytes molecularly distinct 
from classic brown adipocytes. J. Biol. Chem. 2010. 285, 7153–7164 

 
Reichardt LF. Neurotrophin-regulated signaling pathways. Philos Trans R Soc  

Lond B Biol Sci. 2006. 361: 1545–1564. 
 
Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, Cypess AM, 

Mishina Y, Gussoni E, Tseng YH. Brown-fat paucity due to impaired BMP 



24  

signalling induces compensatory browning of white fat. Nature. 2013. 495, 379–
383. 

Strand FL, Rose KJ, Zuccarelli A, Kume J, Alves SE, Antonawich FJ, Garrett LY.  
Neuropeptide hormones as neurotropic factors.  Physiological Reviews. 1991. 71, 
4, 1017-1046. 

 
Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff  

JM. White fat progenitor cells reside in the adipose vasculature. Science. 2008; 
322 (5901): 583–586. 

 
The World Health Organization. ISBN: 978 92 4 156485 4 http:// 709 
www.who.int/nmh/publications/ncd-status-report-2014/en/. 710 Retrieved: March 2016.  

Wilding J. Obesity and its Comorbidities. Medical Gazette. 2012, 17, 55-55. 
 
Yihai C. Angiogenesis and vascular functions in modulation of obesity, adipose  

metabolism, and insulin sensitivity. Cell Metabolism. 2013. 18, 4, 478-489.  
 
Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse  

NImaturation, plasticity, and disease. Developmental Neurobiology. 2012. 70: 
304-322. 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 



25  

Appendix A: Microscope Protocol 
 
How to Analyze Adipose Histology on the Microscope,  
Townsend Lab as of September 2015 
 

1. Organization of data: Project → Cohort → Animal # → Slide # → Photos 
2. For each Cohort, the blocks of tissues are typically sliced on the microtome so we 

have 6 slides of 2-3 tissue sections per slide.  Once all animals in a cohort are 
sliced for a given tissue (ie: scWAT), then we can move onto histology.  Only 
stain when you have a full cohort to stain all together. 

3. Typically, the 6 slides per animal tissue, we use slide #3 for Hematoxylin stain.  
This is the slide you will be analyzing on the microscope.  This stain allows us to 
see the morphology of the cells, so we can ask:  

a. What did the experiment do to the cell size?  
b. Is there Multiolocularity? Is there browning in WAT or did the BAT lipid 

droplet change size? 
c. Is there vascular input? 
d. Are there crown-like structures? 
e. Other observations? 

4. Some of these will be simply qualitative observations, others can be quantified in 
Image J based on the photos taken on the scope. 

For each slide: 
1. Systematically visualize the entire tissue in a grid-like pattern, left to right and top 

to bottom. 
2. As you go along, make notes on the template form to note your observation about 

the morphology.  Take photos of anything noteworthy (browning, crown-like 
structures at 200x total magnification). 

3. Once you have viewed the entire tissue section, go back and take 3 representative 
images that capture the average or overall look of the tissue.  (Be diligent to avoid 
bias- best done by an observer who is blind to the experiment).  Save images as 
TIFF files. 

4. Save image files by animal #, slide # and photo info.  The images on the camera 
will automatically save by data and time, you can annotate the file afterwards.  
Store these images in folders by Project/ Cohort / Experiment. 
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