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The American lobster (Homarus americanus) support one of the most valuable 

fisheries in the United States. A growing body of literature recognizes the importance of 

environmental variables in regulating this species’ biogeography and population dynamics. 

However, the current lobster stock assessment and management do not explicitly consider the 

impact of environmental variables such as water temperature and assumes spatiotemporal 

variabilities in the lobster environment as random background noises. Furthermore, while 

climate-induced changes in marine ecosystems continue to impact the productivity of lobster 

fisheries, studies that model lobster response to altered environmental conditions associated 

with climate change are lacking. As such, evaluating changes in lobster biogeography and 

population dynamics, as well as explicitly incorporating quantified lobster response to altered 

environmental conditions into the specie’s stock assessment will be critical for effective 

lobster fisheries management in a changing environment.  

This dissertation research developed a modeling framework to assess and incorporate 

environmental variability in assessment and management of American lobster stocks in the 

Gulf of Maine, Georges Bank, and southern New England. This modeling framework 

consists of: 1) a qualitative bioclimate envelope model to quantify the spatiotemporal 

variability in availability of suitable lobster habitat; 2) a statistical climate-niche model to 



 
 

quantify spatiotemporal variability of lobster distribution; and 3) a process-based population 

size-structured assessment model to incorporate the effect of environmental variable such as 

water temperature in lobster population dynamics. The developed modeling framework was 

used to predict climate-driven changes in lobster habitat suitability and distribution, as well 

as to determine whether incorporating the environmental effects can better inform historical 

recruitment especially for years when recruitment was very low or very high.  

The first component of the framework provides a qualitative bioclimate envelope 

model to evaluate the spatiotemporal variability of suitable lobster habitat based on four 

environmental variables (bottom temperature, bottom salinity, depth, and bottom substrate 

type. The bioclimate envelope model was applied to lobsters in Long Island Sound and 

inshore Gulf of Maine waters. In the Long Island Sound, an examination of the temporal 

change in annual median habitat suitability values identified possible time blocks when 

habitat conditions were extremely poor and revealed a statistically significant decreasing 

trend in availability of suitable habitat for juveniles during spring from 1978 to 2012. In the 

Gulf of Maine, a statistically significant increasing trend in habitat suitability was observed 

for both sexes and stages (juvenile and adult) during the spring (April–June), but not during 

the fall (September–November). 

The second component of the framework provides a statistical niche model to 

quantify the effects of environmental variables on lobster abundance and distribution. The 

statistical niche model was used to estimate spatiotemporal variation of lobster shell disease 

in Long Island Sound, and to quantify environmental effects on season, sex- and size-specific 

lobster distributions in the Gulf of Maine. In the Long Island Sound, the statistical niche 

model found that spatial distribution of shell disease prevalence was strongly influenced by 

the interactive latitude and longitude effects, which possibly indicates a geographic origin of 

shell disease. In the Gulf of Maine, the statistical niche model indicated that bottom 



 
 

temperature and salinity impact on lobster distribution were more pronounced during spring, 

and predicted significantly higher lobster abundance under a warm climatology scenario.  

The third component of the framework provides a size-structured population model 

that can incorporate the environmental effects to inform recruitment dynamics. The size-

structured population model was applied to the Gulf of Maine/Georges Bank lobster stock, 

where climate-driven habitat suitability for lobster recruitments was used to inform the 

recruitment index. The performance of this assessment model is evaluated by comparing 

relevant assessment outputs such as recruitment, annual fishing mortality, and magnitude of 

retrospective biases. The assessment model with an environment-explicit recruitment 

function estimated higher recruitment and lower fishing mortality in the early 2000s and late 

2010s. Retrospective patterns were also reduced when the environmentally-driven 

recruitment model was used.  

This dissertation research is novel as it provides the comprehensive framework that 

can quantify impacts of environmental variability on lobster biogeography and population 

dynamics at high spatial and temporal scales. The modeling approaches developed in this 

study facilitate the need to invoke assumptions of environment at non-equilibrium and 

demonstrate the importance of considering environmental variability in the assessment and 

management of the lobster fisheries. This dissertation is dedicated to increase the breadth of 

knowledge about the dynamics of lobster populations and ecosystems and renders a novel 

first step towards sustainable management of this species given the expected changes in the 

Northwest Atlantic ecosystem.
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1. CHAPTER 1 - INTRODUCTION AND BACKGROUND 

1.1 Status of American lobster fisheries in the United States 

 This doctoral dissertation at the University of Maine aims to enhance the adaptive 

capacity of management efforts for the American lobster (Homarus americanus) fishery in 

the United States.  The American lobster supports one of the economically valuable fisheries 

in the United States with landings over $666 million in 2016 (ACCSP, 2017). The U.S. 

lobster fishery has experienced significant expansion in both effort and landings over the last 

60 years (ASMFC, 2015a). Lobster landings were generally around 25 million pounds until 

the early 1950s, increasing to roughly 150 million pounds in 2012 (ASMFC, 2015b).  

Approximately 94 % of total U.S. landings came from the Gulf of Maine in 2012 (ASMFC, 

2015b). The 2015 benchmark stock assessment showed record high stock abundance and 

recruitment in the Gulf of Maine and Georges Bank; however, the southern New England 

lobster stock was found to be in poor condition due to prolonged low abundance and 

persistently poor recruitment (ASMFC, 2009, 2015a). Changes in water temperature, salinity, 

and dissolved oxygen coupled with continued high fishing mortality had been identified as 

principal causes of low recruitment and poor stock condition (ASMFC, 2009, 2015a). 

Because of the specie’s economic value, improving the accuracy and reliability of the 

specie’s stock assessment is critical (ASMFC, 2015a); however, its complex life cycle, 

physiological characteristics that make its population dynamics likely to be influenced by 

environmental variability, and the spatial complexity of the fishery offer many challenges to 

scientists and managers (Factor, 1995; Butler et al., 2006; Wahle et al., 2013; ASMFC, 

2015b) .   

1.2 Ecology of juvenile and adult American lobster 

 American lobster is a large benthic crustacean widely distributed along the Atlantic 

coast of North America (Fig. 1.1).  American lobster is an ectothermic species sensitive to 
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changes in environmental conditions (Reynolds and Casterlin 1979). Water temperature has a 

significant impact on the physiology of juvenile and adult lobsters especially in non-optimal 

dissolved oxygen and salinity conditions (Mercaldo-Allen and Kuropat 1994), and plays an 

important role in regulating this species’ behavior, movement, recruitment dynamics and 

growth (Factor 1995; Butler et al., 2006; Wahle et al., 2013). Lobsters have been found in 

waters temperatures ranging from 0-25 °C and with salinities ranging from 15-32 ppt, but 

prefer a thermal range between 12 °C and 18°C (Crossin et al. 1998) and salinities of 20-32 

ppt (ASMFC, 2009; Harding, 1992; Jury et al., 1994). Increasing water temperature forces 

lobster to use more energy for respiration, leaving less energy for feeding, growth, immune 

response, and reproduction (Butler et al. 2006; Lawton and Lavalli 1995; Wahle et al. 2013). 

As water temperatures rise abosve 20.6 °C, lobster show various physiological stress 

responses such as increased respiration rates and depression of immunocompetence (Dove et 

al. 2005; Fogarty et al. 2007).  
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Figure 1-1: Known distribution of Homarus americanus within US waters based on 

fishery-independent bottom trawl surveys (1984-2016). Red dots represent where the 

species was caught.  
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American lobster can be found in waters ranging from the inter-tidal zone to depths of 

up to 700 m, but tend to be most abundant in coastal waters shallower than 50 m (Lawton and 

Lavalli 1995; Wahle et al. 2013). American lobster prefer rocky substrate, but can be found 

on other several substrate types including bottoms covered with mussel shells, eelgrass, or 

algae (Lawton and Lavalli 1995). American lobsters typically remain within a home range of 

about 5-15 km2, but the spatial distribution of lobster is known to vary by sex, size, and 

season (Lawton and Lavalli 1995; Chang et al., 2010). Large adults are more likely to be 

found in deeper, cooler waters, but migrate to shallow coastal waters during spring to 

reproduce. Large mature lobsters in the Gulf of Maine move inshore and into estuaries in 

spring (Jury et al., 1994) and often remain close to shore in the summer, then move back 

offshore in late fall to escape winter turbulence (Chen et al., 2006). Small juvenile lobsters 

are more likely to be found inshore at depths of less than 10 meters and do not make seasonal 

migrations offshore in winter (Cooper et al., 1975). These differences in spatial distribution 

suggest size-specific responses to environmental variables such as bottom temperature and 

salinity (Jury et al., 1994; Lawton and Lavalli, 1995). 

American lobster generally requires 5-8 years to reach minimum legal size of 82.5 

mm CL and enter the fishery (ASMFC, 2015b, 2009). While many abiotic factors can 

influence the biological processes of lobster, temperature is speculated to be one of the most 

significant environmental factors influencing the embryonic and larval development, 

progression of the molt cycle, and subsequent recruitment to the fishery (Aiken and Waddy, 

1986; ASMFC, 2015b; Wahle et al., 2013). Water temperature regulates recruitment of 

postlarvae to the benthic habitat by controlling their vertical movement (Annis 2005; Cobb 

and Wahle 1994). Seasonal variations of temperature regulates oocyte maturation and timing 

of spawning (Aiken and Waddy 1986). American lobster grow incrementally by molting, and 

the growth rate show a proportional relationship to temperature within a thermal range of 8-
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25 °C (Waddy and Aiken 1995); however, region-specific stepwise growth models show 

clear differences in growth trajectories between thermally contrasting Gulf of Maine and 

southern New England regions (Bergeron 2011). In warmer southern New England, juvenile 

lobsters show higher growth rate compared to the cooler Gulf of Maine, but mature at a 

smaller size than Gulf of Maine lobster (Bergeron 2011). The U.S. lobster fishery largely 

depends on lobster newly recruited to the fishery, and environmental variability such as shift 

in thermal regime can have a significant impact on fishery recruitment and productivity.   

1.3 Climate-driven changes in the Northwest Atlantic marine system  

Shift in thermal regimes as a result of climate change is speculated to alter the lobster 

biogeography and population dynamics (Caputi et al. 2013). The water temperature in many 

parts of the Northwest Atlantic coastal waters has increased over the last 40 years (ASMFC, 

2009; Mills et al., 2013; Nixon et al., 2004). The 31-year time series recorded at inshore (20 

m depth) eastern Long Island Sound shows a significant warming trend of 0.04 degrees per 

year (ASMFC, 2009). A 49-year time series for sea surface temperature (SST) from 

Narragansett Bay and Rhode Island Sound show a larger warming trend at 0.05 °C per year 

(ASMFC, 2009). The number of days when the average bottom water temperature remains 

above 20 °C has increased substantially (ASMFC, 2009). These warming trends were also 

observed in SST recorded at Woods Hole, and bottom water temperatures recorded at 

Buzzards Bay and eastern Long Island Sound (ASMFC, 2009). The average SST in the Gulf 

of Maine increased at 0.03 °C per year since 1982 (Fernandez et al. 2015; Mills et al. 

2013)(Fig. 1.2). The abrupt warming trend in the Gulf of Maine SST is particular evident as 

the rate of warming has intensified to 0.23 °C per year since 2004. The recent findings 

indicated that this abrupt warming trend in the Gulf of Maine is faster than 99% of the world 

oceans (Fernandez et al. 2015).  
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Figure 1-2: Trends in Gulf of Maine Sea Surface Temperature (SST) since 1982 (Mills 

et al., 2013).  

Climate change has been identified as a likely primary stressor to the U.S. American 

lobster fisheries (Caputi et al. 2013; Dove et al. 2005; Mills et al. 2013). In 1999, a 

combination of above average water temperature, low levels of dissolved oxygen, the toxic 

impacts of ammonia and sulfides in western Long Island Sound led to a massive die-off of 

lobsters, which effectively eliminated the $100 million lobster industry in the region (Pearce 

and Balcom 2005). The 2012 Northwest Atlantic Heat Wave did not result in population 

collapse in the Gulf of Maine, but contributed to early inshore migration and molting of 

lobsters. This led to unusually high and early landings of lobsters in June and July, and 

overwhelmed the processing capacity, ultimately led to a 17 % price drop and a decline in 

total value of the U.S. lobster fishery (Mills et al. 2013). Furthermore, specific climatic 

factors have been tied to increasing epizootic shell disease (ESD) prevalence since the first 

outbreak was documented in 1996 in the southern New England (Cawthorn 2011; Gomez-

Chiarri and Cobb 2012). The prevalence of ESD is positively correlated to the number of 

days with water temperature above 20 °C (ASMFC, 2009). The prevalence of ESD has been 
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speculated to cause the collapse of lobster populations south of Cape Cod (Bell et al. 2012). 

As warming of the northwest Atlantic Ocean continues, the disease has spread northward and 

become a threat to the sustainability of the Gulf of Maine lobster fishery (Homerding et al. 

2012). These findings indicate the impact of climate change on American lobster and reveal 

the importance of incorporating key environmental variables into the assessment and 

management of the species. Furthermore, the Northwest Atlantic marine ecosystems are 

especially susceptible to abrupt shifts in environment as the stability of these systems has 

been long compromised by biodiversity losses due to overfishing (Acheson 2006).  

1.4 Dissertation structure 

A growing body of literature is recognizing the impacts of environmental variability on 

many aspects of this species’ population dynamics and ecological processes (e.g. Caputi et 

al., 2013; Chang et al., 2016; Tanaka and Chen, 2016). Furthermore, climate change has been 

identified as a catalyst for increased uncertainty in the traditional management paradigm of 

American lobster (ASMFC, 2015b; Pinsky et al., 2013; Tanaka and Chen, 2016). While 

climate-induced changes in marine ecosystems will continue to impact ecological processes 

and population dynamics of American lobster, studies that model lobster population 

dynamics and altered climatological conditions are lacking. Current management and 

assessment of American lobster stocks do not incorporate environmental variability 

(ASMFC, 2015b), while many coastal communities continue to be heavily dependent on the 

lobster fishery, leaving the coupled natural and human system vulnerable to environmental 

changes (Steneck et al., 2011). For sustainable management of the U.S. lobster fisheries, it is 

critical to (1) evaluate the relative importance and synergistic impacts of environmental 

variability, and (2) maximize the efficiency and accuracy of the existing stock assessment 

program.  
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To this end, my dissertation research presents a coupled qualitative-statistical-

population modeling framework that incorporates environmental variability into the 

assessment and management of the U.S. lobster fishery. The following two research 

objectives outline the overall structure of my modeling framework; (1) develop the capacity 

for predicting spatiotemporal changes in the biogeography of American lobster, and (2) 

incorporate environmental variability into the current lobster assessment to better evaluate the 

status of U.S. lobster stocks in a changing environment. The modeling capacity developed in 

my dissertation research will improve our understanding of the impact of climate-driven 

environmental changes on the U.S. lobster fishery resources, and will be critical to effective 

management of this species given the inevitable changes in the northwest Atlantic marine 

ecosystems. The dissertation will consist of the following chapters;  

Chapter 2 & 3 will present the qualitative-modeling component of this framework, 

which consists a bioclimate envelope model that can hindcast spatiotemporal variability of 

suitable American lobster habitat for more than 30 years (Tanaka and Chen, 2015, 2016). The 

bioclimate envelope model utilizes empirical Habitat Suitability Index (HSI) that is a 

numerical index that describes the capacity of a given habitat to support a given species, 

scaled from 0 (least suitable habitat) to 1 (most suitable habitat) based on key environmental 

variables (e.g., temperature; Franklin (2010). Tanaka and Chen (2015, 2016) coupled a 

qualitative HSI and a regional circulation model to quantify the spatiotemporal variability of 

bioclimate envelope (a species’ habitat suitability with boundaries defined by physical and 

climatic variables) for American lobster in the Long Island Sound and coastal waters of 

Maine and New Hampshire from 1978 to 2013. Tanaka and Chen (2016) found a statistically 

significant increasing trend in the species’ habitat suitability during the spring.  

Chapter 4 & 5 will present the statistical-modeling component of this framework, 

which consists a generalized additive model (GAM) that can forecast changes in lobster 
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abundance and distribution under different climatic scenarios. Studies suggest that the 

population dynamics of American lobster experience strong bottom-up (e.g., climate and 

temperature) controls (Boudreau et al. 2015). Using bottom temperature and salinity fields 

generated by a regional ocean circulation model, this statistical-modeling component of the 

framework provides a hindcasting and forecasting tool that can enhance adaptive 

management in changing ecosystems. Tanaka et al., (2017) applied two-stage GAM approach 

to predict spatial distribution of American lobster shell disease in Long Island Sound to 

improve the efficiency and precision of existing lobster shell disease monitoring programs. 

Tanaka et al., (In Review) developed a Tweedie-GAM to quantify such effects on season, 

sex- and size-specific distribution of American lobster in the inshore Gulf of Maine.  

Chapter 6 will present the population-modeling component of this framework consist 

of a size-structured assessment model for the U.S. lobster stocks that incorporates the effect 

of key environmental variables (e.g., bottom water temperature) in lobster recruitment 

dynamics. The performance of this assessment model is evaluated by comparing relevant 

population and fishery parameters from the current assessment model that neglects 

environmental variability. This population-modeling component of the framework 

specifically focuses on determining if including environmental variability can improve 

precision and robustness of the existing lobster assessment model relative to changes in stock 

production and recruitment (Tanaka et al., In Prep).  

To date, the management advice for the U.S. lobster fishery has been predominantly 

based on a “single species equilibrium” paradigm (ASMFC, 2015b). On the other hand, 

climate change and the resulting ecosystem shifts will continue to impact American lobster 

and the socioeconomic benefits provided by the lobster fishery. Overall, through the 

proposed modeling framework, my dissertation research aims to provide the necessary pillars 

of ecosystem-based approaches to the assessment and management of the U.S. lobster 
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fishery. The research outcome can be used to facilitate and operationalize ecosystem-based 

fisheries assessment and management and provide a better understanding of how American 

lobster will respond to changing marine ecosystems. Developing a modeling framework to 

incorporate environmental variability into assessment and management of resilient fish stock 

and fisheries in a changing ecosystem will be critical for sustainable fisheries management.  
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2. CHAPTER 2 - SUITABLE HABITAT FOR LOBSTER IN LONG ISLAND 

SOUND 

2.1 Abstract  

 A Habitat Suitability Index (HSI) model was developed using four environmental 

variables (bottom temperature, bottom salinity, depth, and bottom substrate type) and 28 

years of spring and fall lobster surveys for evaluating the spatio-temporal variability of 

suitable lobster habitat in Long Island Sound (LIS). The suitability indices (SIs) calculated 

for the four environmental variables were combined to form a composite HSI using an 

arithmetic mean model (AMM) and geometric mean model (GMM). A cross-validation study 

was conducted to evaluate the predictive performance of the HSI models. Annual GIS maps 

of estimated HSI values were produced using kriging interpolation for adult and juveniles in 

spring and fall from 1978 to 2012. The overall spatial distribution of suitable habitat for 

lobster was mainly concentrated in the western-central part of LIS during spring (April-June), 

but showed clustering patterns throughout LIS during fall (September-October). An 

examination of the temporal change in annual median HSI values identified possible time 

blocks when habitat conditions were extremely poor and revealed a statistically significant 

decreasing trend in availability of suitable habitat for juveniles during spring from 1978 to 

2012. Spatio-temporal variability in availability of suitable habitat may imply changes in 

carrying capacity of LIS for the American lobster.  

2.2 Introduction 

 The American lobster (Homarus americanus) is a benthic crustacean distributed 

throughout coastal Northwest Atlantic waters, most commonly from Newfoundland, Canada 

through North Carolina, USA (Thunberg 2007). The species can be found in waters ranging 

from the intertidal zone to depths of up to 700 m, but tend to be most abundant in coastal 
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waters shallower than 50 m (Lawton and Lavalli 1995; Meeren et al. 2010). Coarse rocky 

substrates (cobbles and boulders) are the most common habitat, but lobsters can also be found 

on several other substrates including mud, sand base with rock, shell, eelgrass, or algae 

(Lawton and Lavalli 1995).  

 The American lobster is an ectothermic species with a specific preferred thermal 

range for optimum physiological functionality (Reynolds and Casterlin 1979). Water 

temperature has a significant impact on the physiology of juvenile and adult lobsters 

especially in non-optimal dissolved oxygen and salinity conditions (Mercaldo-Allen and 

Kuropat 1994). Lobsters have been found in waters temperatures ranging from 0-25 °C and 

with salinities ranging from 15-32, but lobsters prefer a thermal range between 12 °C and 

18 °C (Crossin et al. 1998) and salinities of 20-32 (ASMFC, 2009; Harding, 1992; Jury et al., 

1994). Lobsters use more energy for respiration in warmer water conditions leaving less 

energy for feeding, growth, immune response, and reproduction (Qadri et al. 2007). As water 

temperatures rise above 20 °C, lobster show various physiological stress responses such as 

increased respiration rates and decrease in immunocompetence (Dove et al. 2005; Fogarty et 

al. 2007).  

 The spatial distribution of lobster is known to vary by sex, size, and season (Chang et 

al., 2010). American lobsters typically remain within a home range of about 5-15 km2 

(Lawton and Lavalli 1995). Large adults are more likely to be found in deeper, cooler waters, 

but migrate to shallow coastal waters seasonally to reproduce. Large mature lobsters in the 

Gulf of Maine (GOM) move inshore and into estuaries in spring (Watson III et al. 1999) and 

often remain close to shore in the summer, then move back offshore in late fall to escape 

winter turbulence (Chen et al., 2006). Small juvenile lobsters are more likely to be found 

inshore at depths of less than 10 meters and do not make seasonal migrations offshore in 

winter (Cooper et al., 1975). These differences in spatial distribution suggest size-specific 
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responses to environmental variables such as bottom temperature and salinity (Jury et al., 

1994; Lawton and Lavalli, 1995; Mercaldo-Allen and Kuropat, 1994). 

 The American lobster fishery in the northeastern U.S.A. has experienced significant 

expansion in both effort and landings over the last 60 years (ASMFC, 2015c). Lobster 

landings were generally around 25 million pounds until the early 1950s, increasing to roughly 

150 million pounds in 2012 (ACCSP, 2017). Approximately 94% of total U.S. landings came 

from the GOM (ASMFC, 2015c). The 2009 benchmark stock assessment showed record high 

stock abundance and recruitment in the GOM and Georges Bank (GBK); however, the 

Southern New England (SNE) lobster stock was found to be in poor condition due to 

prolonged low abundance and persistently poor recruitment (ASMFC, 2009). Changes in 

water temperature, salinity, and dissolved oxygen coupled with continued high fishing 

mortality have been identified as principal causes of low recruitment and poor stock 

condition (ASMFC, 2009).  

 The lobster population in Long Island Sound (LIS) is a part of the SNE lobster stock. 

With ex-vessel values over $40 million, the LIS lobster fishery accounted for over 90% of the 

value of commercial landings in the region and remained the third largest lobster fishery in 

the United States until 1998 (Shields 2013). The LIS lobster stock has experienced a 

substantial decrease in abundance over the last 20 years due to deteriorating habitat and 

heavy exploitation (ASMFC, 2015b, 2009). Triggered by the major mortality event possibly 

caused by stress from warm temperatures, pollutants and decreasing oxygen concentrations, 

landings declined by 89% in 1999 with cumulative landings from 1999 - 2010 only reaching 

0.42 million pounds (CTDEP, 2014). Epizootic shell disease has also become an increasing 

threat to the stability of the LIS lobster fishery (Bell et al., 2012; Castro and Somers, 2012). 

As climate change continues to alter Northwest Atlantic coastal ecosystems (Mills et al. 

2013), the poorly adapted LIS lobster stock is under increasing stress caused by changes in 
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suitable habitat availability. In order to illustrate the extent that habitat deterioration has 

influenced the American lobster’s decline in LIS, it is necessary to quantify changes in 

suitable lobster habitat over time. 

 Habitat suitability index (HSI) models are widely utilized in wildlife management to 

describe the relations between species abundance and ecological variables (Chang et al., 

2012; Franklin, 2010; Morrison et al., 2012). An empirical HSI model is derived from 

observations of the species in the field, and reflects the impacts of multiple habitat variables 

given the input data (e.g., abundance index or relative biomass) (Ahmadi-Nedushan et al., 

2006; Chen et al., 2009, 2010; Dettki et al., 2003). HSI models standardize habitat suitability 

a target species on a scale from 0-1, representing “least suitable” to “most suitable” habitat 

qualities respectively (Schamberger et al. 1982). Oftentimes evaluation of habitat suitability 

is based on a limited number of habitat variables that influence organism abundance and 

distribution. Therefore, HSI implies relative habitat quality rather than actual population 

levels (Jian et al. 2013). HSI modeling results in combination with GIS provide an effective 

means of evaluating spatio-temporal variability in habitat conditions of a target species and 

produce habitat maps that can be used by managers and policymakers to make informed 

decisions (Bovee and Zuboy 1988; Terrell 1984). In fisheries management, the HSI model is 

often used to characterize fish habitat preference, availability, and quality (Morris and Ball 

2006). For the lobster fishery, the HSI model can evaluate variability of suitable lobster 

habitat considering all key environmental variables for different life history stages.  

 The objective of this study is to develop an HSI model for evaluating the spatio-

temporal variability of suitable habitats for LIS juvenile and adult lobsters in spring (April-

June) and fall (September-October) from 1978 to 2012. The model is used to describe how 

the proportion and spatial trend of suitable habitat have changed over time. Finally, HSI 

model results were used to identify possible periods when lobster habitat conditions were 
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extremely poor in LIS in order to determine whether habitat conditions have influenced the 

decline of lobsters in this region.  

2.3 Materials and methods 

2.3.1 Study area  

 The LIS is an estuary 181.9 km long and 33.8 km wide at its widest and covers 

approximately 3,419 km2 in the area (Fig. 2.1). The depth of LIS varies from 4.6-60.4 m, 

averaging 22.6 m. Salinity ranges from 23 at the western end to 35 at the eastern end 

(Gottschall 2013). 

 

Figure 2-1: Map of Long Island Sound and sampling locations for the bottom trawl 

survey used in this study (1984-2012). Each sampling site is 1.85 x 3.7 km. 

2.3.2 Fishery Data 

 Fisheries-independent data tend to provide a better representation of species 

distribution and abundance than fisheries-dependent data as they are normally collected using 

standardized gear and sampling methods with a clearly defined spatiotemporal scale (Tian et 
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al., 2009). Bottom trawl survey data collected from LIS by the Connecticut Department of 

Energy and Environmental Protection (CTDEP) from 1984 to 2012 were used to develop the 

HSI models in this study (Fig. 2.2).  

 

Figure 2-2: Geometric means of selected bottom trawl survey data for American lobster 

in Long Island Sound (1984 - 2012). 

 The LIS trawl survey is a semi-annual fishery-independent survey operated by the 

CTDEP. The survey encompasses an area from longitude 72o 03' (New London, Connecticut) 

to longitude 73o 39' (Greenwich, Connecticut), and includes both Connecticut and New York 

state waters from 5 to 46 m in depth over mud, sand and transitional (mud/sand) substrate 

types. The survey is based on a stratified-random sampling design, and the survey area is 

divided into 1.85 x 3.7 km sites assigned to 12 strata classified by depth (0-9 m, 9.1-18.2 m, 

18.3-27.3 m, and 27.4 + m) and bottom substrate type. 

 The survey was conducted in the spring, from April through June, and during the fall, 

from September through October, with 40 sites sampled monthly for a total of 200 sites 

annually. It was done during daylight hours with a 14-m otter trawl with a 51 mm codend 
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sampling gear to reduce the sampling bias associated with diurnal variability in catchability 

(Sissenwine and Bowman 1978).  Target tow duration was 30 min at 3.5 knots to cover a 

mean distance of 3,241 m at each site (CTDEP, 2013). At each site, tow date, tow location 

(latitude and longitude), tow duration, environmental variables (e.g. bottom temperature, 

bottom salinity, and depth) and biological information of the catch (e.g. carapace length, 

weight, cull condition, and shell disease presence) were recorded (Gottschall 2013).  

 No information with regards to measure of area swept was available before 2012 

(CTDEP, 2013, 2012). The size specifications for the trawl net and associated gear remain 

unchanged as far as since 1992 (Reid et al. 1999). The standardized survey design allows for 

temporal comparisons of lobster catch and distribution. In this study, a total of 5,353 tows 

that sampled 156,202 lobsters between fall 1984 and spring 2012 were analyzed. Lobster 

carapace length (CL) ranged between 16.1 and 112 mm and between 16 and 117 mm for the 

spring and fall surveys, respectively. 

2.3.3 Environmental data 

 The Finite-Volume Community Ocean Model (FVCOM) was used to produce bottom 

temperature and bottom salinity estimates by depth, time, and location in LIS from 1978 to 

2012. This regional coastal ocean circulation model was developed by UMASSD-WHOI 

joint efforts and is suited for forecasting and hindcasting the ecosystem dynamics for areas 

characterized by complex coastlines and inter-tidal zones (Chen et al., 2006). Additionally, 

data on distribution of surficial substrate (resolution: 0.00001 decimal degrees or 1.11m) 

throughout LIS was obtained from the U.S. Geological Survey Poppe and Seekins, 2000). 

Bottom substrate types in LIS include gravel (pebbles defined as 2.00-64.00 mm, cobbles 

defined as 64-256 mm, boulder defined as above 256 mm), gravel-sand (0.62-2.00 mm), 

sand-clay (0.001-0.004 mm), silt (0.004-0.062 mm) /sand, sand- clay/silt, sand-silt/clay, and 
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sand/silt/clay Poppe and Seekins, 2000). Bathymetry data were obtained from the U.S. 

Coastal Relief Model - Northeast Atlantic by the NGDC-NOAA (NGDC, 1999). 

2.3.4 Habitat Suitability Index (HSI) model 

 HSI is a numerical index based on suitability indices (SIs) that can quantify the 

habitat conditions from 0 (least suitable habitat) to 1 (most suitable habitat) for key habitat 

variables. The SIs can be calibrated from presence/absence data, presence only data, or using 

expert knowledge (Franklin 2010). Development of HSI model requires: 1) selection of 

habitat variables to include in the model, 2) development of SIs for each habitat variable, and 

3) combination of those SIs via a mathematical equation to produce a composite HSI 

(Schamberger et al. 1982). Based on the literature on American lobster ecology and behavior 

(ASMFC, 2009; Chang et al., 2010), the following four environmental variables were chosen 

for their potential influence on American lobster habitat: bottom temperature (°C), bottom 

salinity, depth (m), and bottom substrate type.    

2.3.5 Data analysis and processing 

 Bottom trawl survey data for American lobster in LIS from 1982 to 2012 were used in 

this study. To depict behavioral difference throughout lobster life stage, the dataset was 

divided into two size classes, juveniles (≤ 60 mm carapace length) and adults (> 60 mm 

carapace length), as 60 mm represents the minimum size at maturity defined by ASMFC 

(ASMFC, 2009). The spring and fall survey data were analyzed separately. This approach 

resulted in four groups of lobster (2 size classes × 2 seasons). Each lobster group was 

modeled independently.  

 The abundance index derived from LIS bottom trawl survey was considered a good 

indicator of lobster abundance in developing SIs and HSI models in this study (Chang et al., 
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2010). The nominal abundance index, calculated as a survey catch per unit of sampling effort 

(CPUE) at sampling station i, in season j, and year y, was calculated as; 

    Eq. 2-1 

where Count is the total number of either adult or juvenile lobsters caught. Tow Duration is 

towing time duration measured in minutes, which usually varied from 20 to 30 minutes but 

was standardized to 20 minutes at each sampling station.  

 The relationship between lobster CPUE and habitat variables from 1984 to 2012 was 

identified. For each habitat variable, a suitability index (SI) based on species abundance 

(CPUE) was first developed.  The SIs were estimated using a common approach known as 

the histogram method (Chen et al., 2010; Vinagre et al., 2006). The three continuous habitat 

variables (bottom temperature, bottom salinity and depth) were delineated into 10 classes 

using Fisher's natural breaks classification method (Bivand, 2013), while the categorical 

habitat variable bottom substrate was classified into seven substrate types (Poppe et al., 

2000). For class k of habitat variable i in each lobster group, the average CPUE over all the 

sampling stations falling within the class was calculated as CPUEi,k. The SI value of class k 

for habitat variable i, SIi,k, was then calculated on a scale of 0.0 - 1.0 using the following 

formula (Chang et al., 2012) 

    Eq. 2-2 

where CPUEi,min and CPUEi,max are the minimum and maximum values of the average 

CPUEs of all the classes for habitat variable d. Thus, the SI for the most suitable class should 

have a value of 1, while the SI for the least suitable class should have a value of 0. An SI 

value was assigned to every class of the habitat variables in the form of a linear transfer 

function to qualitatively analyze the relationships between the habitat variable and lobster 
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abundance. As a result, a total of sixteen SIs were calculated (i.e. four SIs corresponding to 

the four environmental variables for four lobster groups including two seasons and two 

stages).   

 For the purpose of sensitivity analysis, the SI curves were first drawn by mean 

function, and then re-drawn by trimmed mean function to remove any missing values and 5% 

of the highest and lowest scores (Crawley 2013; Tukey 1977). The suitable ranges were 

identified as area under both SI curves. The SI values derived from each habitat variable were 

then combined to form composite HSIs also scaled 0 - 1 and proportional to habitat quality.  

The following two empirical HSI models were developed in this study (Cooperrider et al. 

1986) (Fig. 2.3);  

 

Figure 2-3: Flow chart of modeling procedure for estimating the habitat suitability 

index (HSI) of American lobster in Long Island Sound 
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Arithmetic Model (AMM): 

     Eq. 2-3 

Geometric Model (GMM): 

     Eq. 2-4 

where SIi is a value of SI associated with the ith habitat variable and n is the number of habitat 

variables included in the HSI model.   

2.3.6 Model validation 

 A cross-validation approach was applied for evaluating the predictive performance of 

the HSI models. Models were developed independently for each lobster group (e.g. spring-

adult, spring-juvenile, fall-adult and fall-juvenile) using a randomly selected subset of data 

representing 80% of all the data, referred to as training data. The remaining 20% of the data, 

referred to as testing data, were set aside for the cross-validation to assess the predicting 

ability of models developed from training data (Zuur et al. 2007). The predicted HSI values 

were compared against the observed HSI values. Linear regression analysis was performed 

on predicted versus observed HSI values, and the regression intercept, slope, r-squared value, 

and the Akaike information criterion (AIC) score were used to evaluate the predictive 

performance of the HSI model. An unbiased prediction should have an intercept parameter 

not significantly different from 0, a slope not significantly different from 1, and a high R2. 

One hundred rounds of cross validation were conducted using random selection in each round 

to obtain 100 sets of regression parameters. This validation process was conducted for both 

AMM and GMM HSI models to determine which model performed better.  
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2.3.7 Mapping HSI values  

 The predicted HSI values were assigned to every FVCOM grid in LIS, and this 

procedure was conducted for every year that was available in the FVCOM dataset between 

1978 and 2012. The ordinary Kriging method using the exponential semivariogram function 

was applied to create continuous HSI maps. The area with the highest class of HSI (e.g. 0.6 - 

1.0) was designated as good habitat and correspondingly the area with the lowest HSI (e.g. 0 

- 0.2) as poor habitat. The spatial distribution of median HSI values for a total of 34 years 

was mapped to observe the overall spatial trend in suitable habitat distribution for each group 

of lobsters. The median HSI maps were then compared to spatial trends in CPUE from the 

survey to verify the model. Finally, a median HSI value for each year was calculated with a 

fitted linear regression model to analyze whether there was any statistically significant trend 

in suitable habitat. The following R packages were used to implement this analysis; sp (E. 

Pebesma et al. 2014), maptools (Koh et al. 2014), rgdal (Bivand et al., 2014), gstat (E. J. 

Pebesma 2004), maps (Becker et al. 2014), and fields (Douglas et al. 2014). 

2.4 Results 

2.4.1 Suitability indices 

 The highest SI for bottom temperature differed by season and lobster size. The 

suitable thermal range (i.e., bottom temperature with SI > 0.8) for spring-adult lobsters was 

found to be 11.1-12.4 °C (Fig. 2.4A), while the suitable thermal range for spring-juvenile 

lobsters was 8.45-9.55 °C (Fig. 2.4B). In spring, the suitable depth range for adult and 

juvenile lobsters was similar at 31.9-37.2 m (Fig. 2.4C) and 31.9-37.3 m (Fig. 2.4D), 

respectively. The suitable salinity range for spring-adult lobsters was 21-23.7 (Fig. 2.4E), 

while the spring-juvenile lobsters had a suitable salinity range of 21.9-24.4 (Fig. 2.4F). 
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Figure 2-4: Suitability index (SI) graphs of bottom temperature, depth, bottom salinity 

and bottom substrate for juvenile and adult lobsters in spring. Both mean SI (solid line) 

and trimmed mean SI (dashed line) are plotted. 

 The suitable thermal range for fall-adults was 17.9-19.2 °C (Fig. 2.5A), and 15.6-

16.6 °C as well as 17.4-18.4 °C for fall-juveniles (Fig. 2.5B). The suitable depth range for 

fall-adult lobsters was between 14.8-17.9 m and 31.9-37.3 m (Fig. 2.5C), while the suitable 

depth range for fall-juvenile lobsters was 15-17.9 m (Fig. 2.5D). Higher suitable salinity 
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ranges were observed in fall for both size groups: 27.6-28.1 for adults (Fig. 2.5E) and 26.6-

27.4 and 29.4-30.4 for juveniles (Fig. 2.5F).  

 

Figure 2-5: Suitability index (SI) graphs of bottom temperature, depth, bottom salinity 

and bottom substrate for juvenile and adult lobsters in fall. Both mean SI (solid line) 

and trimmed mean SI (dashed line) are plotted. 

 Sand/silt/clay was found to be the substrate type with the highest SI values for adult 

lobsters in both seasons (Fig. 2.4G & Fig. 2.5G). For the spring-juvenile group, sand-silt/clay 
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showed the highest SI values, while gravel appears to be the most suitable substrate type for 

fall-juveniles (Fig. 2.4H & Fig. 2.5H). 

2.4.2 Model validation and selection 

The GMM model showed intercepts (α) closer to 0, while the AMM model showed 

slopes (β) closer to 1 in the regression between predicted and observed HSI values in cross 

validation. However, the AMM-HSI models showed higher R2 values in all four groups. 

When compared with an ideal model without prediction bias (i.e., α = 0, β = 1, and R2 = 1), 

predictive performance for the spring-adult lobster was found to be the best (α = 0.145, β = 

0.732, R2 = 0.611), and predictive performance for the spring-juvenile lobster was the poorest 

(α = 0.212, β = 0.595, median R2 = 0.456). The AMM model also predicted HSI values 

better, since AIC values were smaller in all modeling groups (Table 2.1). Finally, due to the 

nature of geometric mean algorithm, GMM-HSI model yielded a “0” HSI value when the 

model included an SI value of 0. Thus, the AMM can better distinguish subtle differences in 

areas of low SI values, and was determined to be more appropriate than the GMM for 

estimating lobster HSI in LIS.  
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Table 2-1: Summary of regression analyses from 100 runs of cross validations. The table shows model parameters for the linear 

regression between the predicted and observed habitat suitability index (HSI) values and Akaike information criterion (AIC) for the two 

HSI models - arithmetic mean model (AMM) and geometric mean model (GMM). 

 

Model Life Stage Season 

Intercept (α) Slope (β) R2 AIC 

Mean Median (95% C.I.) Mean Median (95% C.I.) Mean Median Mean Median 

AMM Adult Spring 0.145 0.143 0.042 0.266 0.732 0.732 0.529 0.922 0.594 0.611 -533 -539 

  Juvenile Spring 0.212 0.212 0.082 0.368 0.594 0.595 0.397 0.797 0.458 0.456 -357 -351 

  Adult Fall 0.161 0.168 0.007 0.271 0.682 0.676 0.493 0.949 0.495 0.492 -274 -273 

  Juvenile Fall 0.179 0.183 0.075 0.291 0.683 0.681 0.465 0.867 0.549 0.550 -199 -194 

GMM Adult Spring 0.128 0.124 0.012 0.280 0.750 0.746 0.484 1.123 0.536 0.541 -306 -298 

  Juvenile Spring 0.136 0.136 0.036 0.284 0.680 0.669 0.343 1.194 0.441 0.448 -194 -181 

  Adult Fall 0.161 0.166 0.001 0.305 0.628 0.615 0.341 0.954 0.384 0.358 -94 -84 

  Juvenile Fall 0.152 0.162 0.052 0.247 0.679 0.673 0.470 0.910 0.507 0.512 -148 -144 
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2.4.3 Spatial and temporal variability in HSI values  

 Using the AMM-HSI model, the spatial distribution of estimated HSI values in LIS 

was mapped for each lobster group. A visual examination of HSI maps revealed that the 

suitable habitats (i.e. HSI > 0.6) are concentrated in western-central LIS in spring for both 

size groups of lobster, but showed clustering patterns throughout LIS in fall (Fig. 2.6). The 

season and size-specific distribution of suitable habitats predicted by the AMM-HSI model 

generally coincides with high and low lobster catch on the bottom trawl survey (Fig. 2.6).  

  
 

  

  
 

  

Figure 2-6: Comparison of spatial distribution of the median habitat suitability index 

(HSI) values over 1978-2012 (upper 4 panels), and average Catch Per Unit Effort 

(CPUE) from bottom trawl survey over 1984-2012 (lower 4 panels) in Long Island 

Sound.



28 
 

Temporal variation in proportion of suitable habitat was observed in all four groups 

over the 34-year time series (Fig. 2.7). There were no statistically significant temporal trends 

in suitable habitat change for adult lobsters in spring (p = 0.317) and fall (p = 0.609). For 

juvenile lobsters, a significant declining trend in proportion of suitable habitat was found in 

spring (β = -0.003, p = 0.016), and a significant increasing trend was found in fall (β = 0. 002, 

p = 0.015) (Fig. 2.8).  

 

Figure 2-7: Temporal variation in habitat suitability index (HSI) values. The color scale 

bar on the right indicates the percent area for each year, with dark gray being the 

largest percent area and light gray is the lowest percent area. 
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Figure 2-8:Median habitat suitability index (HSI) score for each year from 1978 to 2012 

(solid line). The trend in each group was shown by the fitted linear regression model 

(dashed line). 

 In the HSI model, depth and substrate type are static components, while bottom 

temperature and bottom salinity are dynamic components. However, no relationships were 

observed between temporal trends in temperature, salinity and availability of suitable habitat 

(Fig. 2.9). Possible periods of extremely poor habitat conditions (such as a year when both 

seasons had an HSI value above 0.6 in less than 10% of the studied area) were identified. For 
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adult lobsters, poor habitat conditions were observed in 1979-1980, 1983, 1985, 1988-1989, 

1994-1999, 2004-2005, 2007, and 2009. For juvenile lobsters, poor habitat conditions 

occurred in 1980, 1983, 1985, 1997, 1999, 2002, 2004-2005, and 2011(Fig. 2.10). 

 

Figure 2-9: Mean bottom temperature, mean bottom salinity and mean Habitat 

Suitability Index (HSI) values for spring (April-June) and fall (September-October) 

from 1978 to 2012 in Long Island Sound. The mean HSI values represent both adult 

and juvenile lobsters. 
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Figure 2-10: Change in proportion of suitable habitat with habitat suitability index 

(HSI) values above 0.6. 

2.5 Discussion 

 This study developed a modeling approach to analyze the spatio-temporal variability 

of suitable habitat as a function of bottom temperature, bottom salinity, depth, and substrate 

for lobster in LIS.  

The SI results for bottom temperature, bottom salinity and depth were consistent with 

past observations of preferential lobster habitat. The SI for bottom temperature identified 

different suitable thermal ranges between spring and fall for both size classes of lobsters. 

Adult lobsters showed a slightly higher and broader suitable thermal range compared to 

juveniles. In spring, the suitable thermal range for adults appeared to be considerably warmer 
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than that of juveniles, while the difference in thermal range between the two size classes was 

less in fall. Overall, the suitable thermal range for lobsters in fall appears to be greater than 

that in spring. Water temperatures above the thermal threshold were avoided in both seasons 

(Crossin et al. 1998). Finally, two separate suitable thermal ranges were identified for 

juveniles in fall. These distinctive suitable thermal ranges between two seasons and two life 

history stages may be due to differences in behavioral thermoregulation as lobsters mature. It 

is generally accepted that lobster behavior is strongly regulated by water temperature 

(Crossin et al. 1998), and that the relationship between lobster density and bottom 

temperature is dome-shaped with a peak somewhere between 14-19 °C (Chang et al., 2010).  

In this study, the suitable thermal range (SI > 0.8) varied from 8.45-18.4 °C. This is 

consistent with a previous study in the GOM where lobster concentrations observed in areas 

with water temperature greater than 5 °C in spring and 8 °C in fall (Chang et al., 2010).   

The SI for depth showed differences in suitable depth ranges across all groups. In fall, 

the suitable depth range for adult lobsters was between 14.8-17.9 m and 31.9-37.3 m, which 

might reflect a skewed spatial distribution by sex caused by migrations of ovigerous lobsters 

and sex-specific responses to different salinity ranges (ASMFC, 2009; Chang et al., 2010). 

Contrary to previous findings suggesting that small juveniles are more likely to remain 

inshore at depths of less than 10 meters (Cooper et al., 1975), both adult and juvenile lobsters 

in spring showed a deeper suitable depth range when compared to depths in fall. These 

findings agree with the in-situ observations of seasonal lobster movements in Bonavista Bay, 

Newfoundland (Ennis 1984) and suggest possible seasonal shift in suitable depth ranges for 

both life stages of lobster.  

 Model results indicate a suitable salinity range of 21-30.4, which is consistent with 

lobster salinity tolerance observed in past studies of 20-32 with occasional tolerance as low 

as 15 (ASMFC, 2009; Harding, 1992; Jury et al., 1994). The bottom salinity SI identified 
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relatively constant suitable salinity ranges between adults and juveniles. However, higher 

suitable salinity ranges were observed in fall for both age groups, which may indicate 

different salinity tolerance of lobsters under different thermal regimes (Ennis and Fogarty, 

1997; Jury et al., 1994; Mercaldo-Allen and Kuropat, 1994). There were two separate suitable 

salinity ranges identified for fall juveniles. This may indicate differential distribution of male 

and female juveniles in the fall. Since females are more sensitive to low salinities, males are 

generally more dominant in inshore waters and females dominant in offshore waters (Jury et 

al., 1994; Chang et al., 2010). 

 This study identified sand/silt/clay as the most suitable bottom substrate type for adult 

lobsters in both spring and fall. Sand-silt/clay was the substrate with the highest SI for 

juveniles in spring, but was the least suitable substrate for juveniles in fall. Gravel yielded the 

highest SI for fall juveniles. These findings are relatively inconsistent with the previously 

documented post-settled lobster habitat preferences of shelter-providing rocky and boulder 

substrates (Barshaw and Bryant-Rich 1988; Wahle and Steneck 1991). Several factors have 

been identified as the potential source of this inconsistency. First, the U.S.G.S. substrate data 

used in the HSI models did not differentiate boulder or cobble substrate, since the category of 

gravel includes grain size greater than 2 mm in diameter Poppe and Seekins, 2000). This 

over-generalization of bottom substrate type may have affected SI values derived from the 

histogram method and may have resulted in underrepresentation of bottom substrate as a 

habitat variable in the HSI model. Second, the CTDEP bottom trawl survey may have shown 

biased lobster density as rocky substrate could sometimes interrupt a tow (CTDEP, 2013) and 

boulder and rocky substrates are generally associated with lower trawl capture efficiency 

(Steneck and Wilson, 2001). While the lack of trawl survey data with certain key substrates 

cannot be quantified or ignored, these data-driven biases can be potentially corrected by the 

use of expert knowledge as quantitative assessment criteria (Store and Kangas, 2001; 
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Vincenzi et al., 2007). Furthermore, while shelter-providing rocky/cobble/boulder substrates 

are generally considered to be preferred habitat by both newly-settled and older lobsters 

(Cooper and Uzmann, 1980; Steneck, 2006), preference for specific substrates diminishes as 

lobsters grow out of the early benthic phase (Wahle and Steneck 1991). This inconsistency in 

substrate preference between lobster life stages was also observed in the Gulf of Maine, 

where substrate type affected the probability of juveniles, but not adult, presence (Chang et 

al., 2010). Similarly, mud base (particle size < 0.06 mm) with burrows is known to be a 

preferred substrate by adult lobsters in inshore and in estuaries where lobsters can create 

shelters by excavating soft substrate (Lawton and Lavalli 1995). This literature supports the 

result that sand/silt/clay is the most suitable substrate type for adults in both spring and fall. 

Overall, despite insufficient resolution of the substrate data and trawl survey bias, agreement 

of the seasonal size-specific suitable lobster habitat predictions by the HSI model and 

patterns in survey catch suggest the robustness of modeling results. 

 While cross-validation of the AMM-HSI model suggested reasonable predictive 

performance, the SIs derived from the spline smooth regression method can be used to deal 

with possible non-linear relationships between covariate and response variables in a semi-

parametric manner for further analysis (Chang et al., 2012; Maunder and Punt, 2004).  

 The type and number of habitat variables to be inacluded in the calibration of an HSI 

model is critical to the successful identification of suitable habitats (Tian et al. 2009). 

Distribution and abundance of lobster can be influenced by many other environmental 

variables such as availability of prey, presence of predators, thermal fronts, latitude and 

longitude, time of the day, light levels, and dissolved oxygen concentration (Wahle and 

Steneck 1992; Mercaldo-Allen and Kuropat 1994; Crossin et al., 1998; Chang et al., 2010). 

Consequently, more habitat variables may need to be incorporated and evaluated in future 

analyses. While these variables are likely to be correlated, application of dimension reduction 
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technique such as principal component analysis can be incorporated to develop more 

comprehensive HSI model (Daskalov 1999). 

 Furthermore, while equal weight was assigned to each habitat variable for the 

empirical HSI model in this study (Vayghan et al. 2013), the relative importance of different 

habitat variables in regulating lobster spatio-temporal distribution is likely to be variable, 

which could significantly influence the predictive performance of HSI models (Gong et al. 

2012). For the existing HSI models to better predict spatio-temporal distribution of suitable 

lobster habitat, the impact of differential weighing of habitat variables should be carefully 

analyzed based on relative contribution to the spatial distribution of lobsters (Chang et al., 

2010). The selection and weighting of habitat variables in an empirical HSI model should be 

further studied to improve the model’s hindcasting or forecasting ability. This will be 

important in promoting the use of HSI models in fishery management and could be 

particularly useful when considering shifts in the marine environment due to climate change.  

 Most stock assessments neglect to incorporate habitat information into the assessment 

models, but habitat data are important to many aspects of the stock assessment process. The 

SI and HSI modeling results for juvenile lobsters have implications for lobster recruitment, 

while results for adult lobsters have implications for spawning stock biomass. For example, 

periods of low habitat suitability, such as years when both seasons had an HSI value above 

0.6 in less than 10% of the studied area (Fig 2.10), partially overlap with periods of estimated 

low recruitment abundance (2003 - 2007) and low spawning stock abundance (2004 - 2007) 

from the 2009 benchmark assessment (ASMFC, 2009). Further analysis may (1) reveal 

statistically significant correlations between habitat suitability and recruitment or spawning 

stock abundance, and (2) link availability of suitable habitat to carrying capacity of LIS for 

American lobsters. Also, change in habitat availability could potentially be related to the 

recent collapse of LIS lobster stock. 
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 Application of HSI models can improve lobster stock assessment by allowing us to 

(1) hindcast and forecast periods of distinct lobster productivity and recruitment dynamics in 

LIS, and (2) define and compare different modeling time periods with respect to these 

processes. Traditional stock assessment models focus on the context of commercial fishing, 

where natural mortality is relegated to a single, typically time-invariant parameter that is 

often not related to lobster ecology. The recent management shift towards Ecosystem-Based 

Fisheries Management (EBFM) requires scientists and managers to develop useful, 

quantitative measures to illustrate the history of stock fluctuations in an ecological context. 

Incorporating habitat availability modeling into stock assessments will aid in effective 

implementation of ecosystem-based management.   
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3. CHAPTER 3 - THE BIOCLIMATE ENVELOPE OF AMERICAN LOBSTER 

3.1 Abstract 

A bioclimate envelope model was developed to evaluate the potential impacts of climate 

variability on American lobster (Homarus americanus). Bioclimate envelopes were defined 

by season-, sex-, and stage- specific Habitat Suitability Indices (HSI) based on (1) bottom 

temperature, (2) bottom salinity, and (3) depth. The species’ association to each of these three 

environmental attributes was expressed using Suitability Indices (SIs) calibrated by 

standardized lobster abundance derived from 14 years of fishery independent survey. A 

regional ocean model (Finite-Volume Community Ocean Model) was integrated with the HSI 

to hindcast spatiotemporal variability of bioclimate envelopes for American lobster in coastal 

waters of Maine and New Hampshire from 1978 to 2013. The model predictions indicated 

higher habitat suitability in inshore waters for both adult and juvenile lobsters. A statistically 

significant increasing trend in habitat suitability was observed for both sexes and stages 

(juvenile and adult) during the spring (April-June), while no significant trend in habitat 

suitability was observed in the fall (September-November). This study provides a modeling 

framework to reconstruct climatically suitable lobster ranges that can be used to formulate 

climate-based hypotheses for future studies of this species. 

3.2 Introduction 

 American lobster, Homarus americanus, is a large benthic crustacean present 

throughout coastal Northwest Atlantic waters, from Labrador, Canada to Cape Harettas, USA 

(Lawton and Lavalli, 1995; Wahle et al., 2013). The species is abundant in shallow coastal 

waters (< 50 m) of the Gulf of Maine and southern Gulf of St. Lawrence out to the canyons 

of the continental slope (Aiken and Waddy, 1986), but is often found in the intertidal zone at 

depths down to 700 m (Lawton and Lavalli, 1995). It prefers coarse rocky substrate often 
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characterized by cobble and boulder, but can also be found on several other substrate types 

such as mud and sand base with rock (Lawton and Lavalli, 1995). H. americanus in the Gulf 

of Maine supports one of the most valuable fisheries in the USA with an estimated ex-vessel 

value of $460 million in 2013 (ASMFC, 2015a).  

 Due to its ectothermic nature, water temperature has a significant impact on H. 

americanus life history, especially when coupled with non-optimal dissolved oxygen and 

salinity conditions (Mercaldo-Allen and Kuropat, 1994). H. americanus can tolerate a wide 

range of temperatures and salinity, from 0 – 25 °C and 15 – 32 ppt, respectively, but the 

species exhibits affinity to a specific thermal (8 – 18 °C) and salinity (0 – 32 ppt) range to 

maximize its physiological functionality (Reynolds and Casterlin, 1979; Crossin et al., 1998; 

ASMFC, 2009). Adult H. americanus exhibit long distance seasonal movements (>100 km) 

between shallow and deep waters to pursue optimal water temperature for growth and egg 

development (Cobb and Wahle, 1994). Water temperature above 20.6 °C creates a stressful 

environment for H. americanus as the species is forced to spend more energy for respiration 

and less energy for growth and feeding (McLeese, 1958; Dove et al., 2005; Fogarty et al., 

2007). Adult lobsters respond to even small changes in temperature (Crossin et al., 1998; Jury 

and Watson, 2000) both behaviorally (e.g., movement) and physiologically (e.g., changes in 

cardiac cycle) (McLeese and Wilder, 1958; Worden et al., 2006). 

 The favorable habitat and spatial distribution of H. americanus vary with life stage 

and season (MacKenzie and Moring, 1985; Chang et al., 2010). Small juveniles typically 

remain inshore and within a home range of about 5 – 15 km, and do not exhibit large-scale 

seasonal movements (Cooper et al., 1975). Mature individuals exhibit an average annual 

range of 32 km (Campbell, 1986), and have a higher tolerance to deeper and cooler waters. In 

the GOM, adults migrate inshore and into estuaries during spring, and then migrate back 

offshore late fall (Watson et al., 1999; Chen et al., 2006a). Differences in the spatial 



39 
 

distribution of H. americanus with size composition suggest stage and season-specific 

responses to climate-driven variables such as bottom temperature and salinity (Jury et al., 

1994; Factor, 1995). 

 Climate change is rapidly altering environmental conditions in the GOM. This could 

significantly impact H. americanus because its abundance appears to be primarily regulated 

by bottom-up forces (e.g. climate-driven changes in environment and resources) (Mills et al., 

2013; Steneck and Wahle, 2013; Boudreau et al., 2015; Fernandez et al., 2015). Relationships 

between H. americanus distribution and climate variables have been well documented 

(Chang et al., 2010; Mills et al., 2013; Tanaka and Chen, 2015). Sea surface temperature in 

GOM shows an increase of 0.03 °C per year, resulting in a 1 °C increase in the mean 

temperature since 1982 (Mills et al., 2013). At the southern end of the species’ range, 

summer sea surface temperature has increased approximately 0.09°C per year since 1990 

(Wahle et al., 2015). Such an abrupt increase in temperature is hypothesized to alter 

availability of suitable habitat for H. americanus and lead to a significant decline in the 

density and size composition in H. americanus nurseries (Tanaka and Chen, 2015; Wahle et 

al., 2015). While a northward shift in the species’ distribution in response to climate 

variability has been observed (Pinsky et al., 2013), impacts of gradual and abrupt warming 

events on the spatiotemporal availability of suitable H. americanus habitat remain 

understudied. Such a knowledge gap restricts us from gaining a mechanistic understanding of 

the impacts of climate variability on the spatial dynamics of fish populations, which is crucial 

for implementation of effective ecosystem-based fishery management. 

A bioclimate envelope model is a type of species distribution models, and has become 

a common ecological tool to hindcast/forecast species’ responses to climatic variability 

(Pearson and Dawson, 2003; Araújo and Peterson, 2012; Watling et al., 2013). A bioclimate 

envelope is commonly defined as a set of physical and biological conditions that are suitable 
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to a given species (Cheung et al., 2009, 2008). Bioclimate envelope models define climate-

driven habitat suitability by using quantitative associations between climate variables and 

relative species abundance or occurrence, but do not incorporate predator-prey interactions or 

dispersal ability of a given species (Cheung et al., 2009, 2008). Thus, the utility of bioclimate 

envelope models lies in estimating realized niches of a given species, and is often applied to 

examine the spatial distribution of suitable environments as well as patterns and limiting 

factors for the species of interest (Stock et al., 2011; Araújo and Peterson, 2012; Watling et 

al., 2013).  

 In this study, an empirical bioclimate envelope model was developed based on 

season, sex and life history stage specific Habitat Suitability Indices (HSI) to evaluate 

spatiotemporal variability of a bioclimate envelope for H. americanus in the coastal waters of 

Maine and New Hampshire during spring (April – June) and fall (September – November) 

from 1978 to 2013. The HSI is an ecological index developed by the U.S. Fish and Wildlife 

Service (FWS) to facilitate habitat evaluation procedures (FWS, 1981). An HSI quantifies 

habitat suitability for a given species on a scale of 0 – 1 to represent “least suitable” to “most 

suitable” habitats, respectively (Franklin, 2010). It is a useful tool to describe the relationship 

between relative species abundance and ecological variables (Vinagre et al., 2006; Tian et al., 

2009). The construction of an HSI is a repeatable technique, and the utility lies in enabling 

managers to predict where a species is likely to occur within a distributional range. In 

fisheries management, HSI is often combined with a geographic information system (GIS) to 

analyze the spatiotemporal variability in fish habitat preference, availability, and quality to 

make informed decisions (Terrell, 1984; Bovee and Zuboy, 1988; Morris and Ball, 2006; 

Chang et al., 2012). A HSI-based bioclimate envelope model was recently developed, in 

which spatial analysis was applied to analyze spatiotemporal variability of suitable habitat for 

H. americanus in Long Island Sound, USA (Tanaka and Chen, 2015). 
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 This study expands upon the modelling framework developed in Tanaka and Chen 

(2015) and adds an analytical component exploring the impact of changes in climate-driven 

H. americanus habitat suitability over 1978 – 2013 in the coastal waters of Maine and New 

Hampshire. Bioclimate envelopes were defined by habitat suitability based on bottom 

temperature, depth and bottom salinity. These three environmental attributes were chosen 

based on previous studies (Chang et al., 2010; Tanaka and Chen, 2015). A major advantage 

of the bioclimate model developed in this study is the incorporation of a regional ocean 

model for hindcasting impacts of climate change over 1978 – 2013. Such a contribution is 

important for understanding potential biome shifts in marine environments under changing 

climate (Harley et al., 2006). Although the model does not explicitly incorporate the effects 

of biological interactions and evolutionary process (Pearson and Dawson, 2003), the 

implications of these uncertainties are discussed. 

3.3 Materials and Methods 

3.3.1 Maine - New Hampshire Inshore Bottom Trawl Survey 

 This study used 14 years of semi-annual fishery-independent survey data collected by 

the Maine-New Hampshire Inshore Bottom Trawl Survey for H. americanus from 2000 to 

2013 conducted by the Department of Marine Resources (DMR) in spring (April – June) and 

fall (September – December). The total survey area spanned from 12,437 to 16,001 km2 each 

year, and included 2,246 bottom-trawl samples in total (n = 280,185 lobsters; Sherman et al., 

2005) (Fig. 3.1). The survey employed a stratified random design, with the coastal waters of 

Maine and New Hampshire being divided into five longitudinal areas based on abiotic and 

biotic features (Sherman et al., 2005; Cao et al., 2014). Each stratum is further separated into 

four depth classes (9 – 37 m, 37 – 64 m, 64 – 100 m, and >100 m with 12 km offshore limit), 

resulting in a total of 20 strata. Each survey targets 115 stations with a sampling density of 1 
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station for every 137.2 km2. The number of tows in a given stratum is adjusted according to 

areas of each stratum size. The fishing gear is a modified shrimp net with 50.8 mm mesh in 

wings and 12.7 mm mesh liner in the cod end (Sherman et al., 2005). The targeted tow 

duration is 20 minutes at a velocity of 2.2 – 2.3 knots to cover approximately 1.48 km2. A 

CTD profiler is deployed at each tow to record salinity, temperature and depth (Sherman et 

al., 2005).  

 

Figure 3-1: Spatial distribution of standardized Homarus americanus abundance and 

observed size frequency based on spring and fall surveys during 2000 - 2013. The box 

on the map indicates the location of Penobscot Bay. 

3.3.2 Environmental data  

 The unstructured-grid Finite-Volume Community Ocean Model (FVCOM) was used 

to simulate monthly estimates of bottom temperature and salinity by location and time in the 
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coastal waters of Maine and New Hampshire from 1978 to 2013. The FVCOM is a regional 

coastal ocean circulation model developed by the University of Massachusetts-Dartmouth 

and the Woods Hole Oceanographic Institution. It has a horizontal resolution ranging from 

0.02 km to 10 km (Chen et al., 2006b). The unstructured FVCOM grid can capture complex 

and irregular coastal geometry, which makes FVCOM suitable for physical and biological 

studies in coastal regions and estuaries (Chen et al., 2006b; Huang et al., 2008). Bathymetry 

data were obtained from the U.S. Coastal Relief Model (CRM) (NGDC, 1999).  

3.3.3 Data analysis and model development 

 This study is an extension of an earlier modeling effort for H. americanus in Long 

Island Sound (Tanaka and Chen, 2015). The overall procedure for developing the HSI-based 

bioclimate envelope model (Fig. 3.2) was modified from Tanaka and Chen (2015). H. 

americanus exhibits season, size, and sex specific preferences to surrounding environment 

(Chang et al., 2010). For example, the species’ response to change in temperature is 

determined by season or thermal history through acclimatization (Worden et al., 2006; Qadri 

et al., 2007; Jury and Watson, 2013). The survey data were consequently analyzed separately 

by season (spring and fall), sex and for two H. americanus stage classes (adult: > 60 mm 

carapace length, juvenile: ≤ 60 mm carapace length). The carapace length of 60 mm 

represents the minimum size at maturity defined by ASMFC (ASMFC, 2009).  
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Figure 3-2: Schematic representation of the structure of the bioclimate envelope model 

developed in this study, implemented in R programming environment. 

 The standardized H. americanus abundance index derived from the survey was used 

to develop suitability indices (SIs) for each environmental variable. The nominal abundance 
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index was calculated as a survey catch per unit of sampling effort (CPUE) at station i, in 

season j, and year y (Chang et al., 2012; Tanaka and Chen, 2015);  

𝐶𝑃𝑈𝐸𝑖𝑗𝑦 = (
𝐶𝑜𝑢𝑛𝑡𝑖𝑗𝑦

𝑇𝑜𝑤 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑗𝑦
) ∗ 20    Eq. 3-1 

where Count represents the total quantity of either adult or juvenile H. americanus caught 

and Tow duration is measured in minutes. Continuous environmental variables (temperature, 

salinity and depth) were delineated into 10 classes using Fisher's natural breaks classification 

method (Bivand, 2013). The SI of class k for environment variable i, SIi,k, was calculated on 

a scale of 0.0 - 1.0 following (Chang et al., 2012; Tanaka and Chen, 2015): 

𝑆𝐼𝑖,𝑘 =
𝐶𝑃𝑈𝐸𝑖,𝑘−𝐶𝑃𝑈𝐸𝑖,𝑚𝑖𝑛

𝐶𝑃𝑈𝐸𝑖,𝑚𝑎𝑥−𝐶𝑃𝑈𝐸𝑖,𝑚𝑖𝑛
    Eq. 3-2 

where CPUEi,k represents the average CPUE over all the sampling stations falling within the 

class k of environmental variable i in each H. americanus group. CPUEi,min and CPUEi,max 

represents the minimum and maximum values of the average CPUEs of all the classes for 

environmental variable i, respectively. To analyze the relationships between each 

environmental variable and H. americanus abundance, estimated SI was assigned to each 

class of environmental variables in the form of a linear transfer function, where the most 

suitable class (SI = 1) and the least suitable class (SI = 0) were identified (Bayer and Porter, 

1988). 

 Suitability Indices (SIs) were estimated using the histogram method (Vinagre et al., 

2006; Chen et al., 2010), and a trimmed mean function was used to remove any missing 

values and 5% of the highest and lowest scores to eliminate outliers (Tukey, 1977; Crawley, 

2007). Local polynomial regression fitting (LOESS) smoothing was applied to the SIs (R 

Core Team, 2014). Suitable ranges were identified as SI values above 0.8 (McMahon, 1983; 

Tanaka and Chen, 2015). The SIs were combined to form composite HSI also scaled from 0 
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to 1 following two mathematical equations (Franklin, 2010; Chang et al., 2012; Tanaka and 

Chen, 2015);  

Arithmetic Mean Model (AMM) 

𝐻𝑆𝐼 =
∑ 𝑆𝐼𝑖

𝑛
𝑖=1

𝑛
     Eq. 3-3 

Geometric Mean Model (GMM) 

𝐻𝑆𝐼 = [∏ 𝑆𝐼𝑖
𝑛
𝑖=1 ]

1
𝑛⁄     Eq. 3-4 

where SIi represents a SI value associated with the ith environmental variable while n 

represents the number of environmental variables included in either AMM or GMM HSI. 

3.3.4 HSI performance validation and FVCOM skill assessment 

 The predictive ability of HSIs was evaluated in a cross-validation study, which was 

conducted independently for each H. americanus group. A randomly selected subset 

representing 80% of all the data (training data set) was used for HSI development, while the 

remaining 20% (testing data set) was used for the evaluation of the HSI performance (Smith, 

1994; Zuur et al., 2007; Tanaka and Chen, 2015). The predicted HSI values (based on the 

training data set) were compared against the observed HSI values (based on the testing data 

set), and linear regression analysis was performed to evaluate the predictive performance of 

the HSI. This cross-validation procedure was repeated 100 times using random selection in 

each step to obtain 100 sets of liner regression parameters (intercept, slope, R2, and Akaike 

Information Criterion AIC). The results for both AMM and GMM were compared to 

determine which model had better predictive ability, which was quantified by an intercept (α) 

closest to 0, a slope (β) closest to 1, higher R2 and lower AIC. The 95% conference intervals 

derived from the 100 runs of simulation were compared to evaluate the difference for each 

regression parameter between the AMM and GMM.  
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 A collection of observed bottom temperatures provided by the Environmental 

Monitors On Lobster Traps (eMOLT) program was used to assess performance of FVCOM 

in the DMR bottom trawl survey area. The eMOLT provides a large collection of hourly 

bottom temperatures from lobster traps at more than 200 sites in the Gulf of Maine and 

Georges Banks, and is ideally suited for skill assessment of coastal ocean circulation and 

regional ocean models (Manning and Pelletier, 2009). In a preliminary analysis, observed 

bottom temperatures from 64 eMOLT sites in the DMR survey area were compared to 

modeled FVCOM bottom temperature at hourly temporal resolution from 2001 to 2013 (n = 

969,249; Fig. 3.3). This univariate comparison of predicted (FVCOM) and observed 

(eMOLT) outputs were examined by six quantitative metrics; (1) correlation coefficient, (2) 

root mean squared error, (3) reliability index, (4) average error, (5) average absolute error, 

and (6) modeling efficiency (Stow et al., 2009). The results showed strong similarity between 

FVCOM and eMOLT outputs at an hourly resolution (correlation coefficient = 0.877, 

reliability index = 1.062, average error = 0.156, root mean squared error =1.704, average 

absolute error = 1.124, modeling efficiency = 0.759), demonstrating that modeled FVCOM 

bottom temperature can be used in this study.  
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Figure 3-3: A linear regression plot of the modeled bottom temperature (FVCOM) 

compared to the observed bottom temperature (eMOLT). The linear regression for the 

model versus predicted value is plotted (solid line) relative to the 1:1 line (dashed line). 

3.3.5 Spatial and temporal HSI-based bioclimate envelope analysis 

 The model generated an HSI-based bioclimatic envelope for every spring and fall 

season between 1978 and 2013 for both sexes and both stages of H. americanus.  

 A spatial interpolation technique using variogram modeling and ordinary kriging was 

implemented in the R programming environment to visualize the model outputs (Bailey and 

Gatrell, 1995; R Core Team, 2014). Semivariogram models were fitted with gaussian, 

exponential, and spherical variograms with non-linear least squares using R package “gstat”. 

The model with the lowest mean squared error was used for kriging (Pebesma, 2004). 
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Interpolated model outputs were mapped using “sp” R package (Pebesma and Bivand, 2005). 

The model outputs were first inspected visually. The interpolated surfaces for each modeled 

group were subtracted from one another to produce mean season, sex, and stage specific 

differences. 

 The distribution of median HSI over 36 years was evaluated for the spatial trend in 

the quality of bioclimate envelopes. In this study, an area with HSI value larger than 0.7 was 

designated as good habitat, while the area with HSI value below 0.3 as poor habitat (Brooks, 

1997; Tian et al., 2009; Chang et al., 2012; Williams and Biggs, 2012). 

 Linear regression analysis was performed at every FVCOM grid and the slope (β) was 

used to evaluate temporal changes over 36 years in quality of H. americanus bioclimate 

envelopes. Annual median HSI was calculated with a fitted linear regression model to detect 

any statistically significant trend to evaluate temporal variation in climate driven habitat 

suitability in both seasons, sexes, and life-stages during 1978 – 2013.  

 Finally, as predicted HSI reflected one static variable (depth) and two dynamic 

variables (temperature and salinity), the HSI time series were cross-correlated with 

temperature and salinity time series to determine whether two variables are correlated with 

each other at different time lags in each season.  

3.4 Results 

3.4.1 Suitability index of each environmental variable 

 The highest SI for each environmental variable differed by sex, stage and season (Fig. 

3.4; Table 3.1). Observed bottom temperature varied between 2.6-12.0 °C and 5.7-14.3 °C in 

spring and fall respectively. The suitable bottom temperature for adults varied from 

approximately 8.4-10.6 °C in spring and 11.6-14.3 °C in fall. Suitable temperature ranges for 

juveniles showed greater seasonal contrast, from approximately 6.6-10.1 °C in the spring, and 
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shifted higher to 10.9-14.3 °C in fall. A broader suitable temperature range was observed for 

male juveniles compared to female juveniles.  

 

Figure 3-4: Suitability Index (SI) curves of bottom temperature, depth, and bottom 

salinity for four groups of Homarus americanus (2 sexes * 2 life stages). Both spring 

(black line; April - June), and fall (red line; September - November) SI curves are 

plotted. 

 Surveyed depth range varied between 3.3-121 m in spring and 2.5-121 m in fall. The 

range for male adults was 14.6-22.1 m and was 4.8-22.9 m for female adults in spring. The 

corresponding depth ranges shifted deeper to 12.2-40.3 m and 32.9-41 m in fall. For 
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juveniles, spring suitable depth range was observed at 16.9-36.7 m in spring, and 16.5-27.7 

for both males and females in fall.  

Table 3-1: Summary of season, sex, and stage specific suitable range of each 

environmental variable. 

Season 
Sex Stage Bottom Temperature (ºC) Depth (m) Bottom Salinity (ppt) 

Spring Female Adult 8.4-10.6 14.8-22.9 30.7-31.9 

    Juvenile 6.8-9.6 17.1-36.2 27.0-31.8 

  Male Adult 8.4-10.6 14.6-22.1 25.7-31.9 

    Juvenile 6.6-10.1 16.9-36.7 31.2-31.8 

Fall Female Adult 11.6-14.3 32.9-41.0 32.2-32.9 

    Juvenile 10.9-14.3 19.2-26.2 32.5-32.9 

  Male Adult 11.6-14.3 12.2-40.3 28.5-32.9 

    Juvenile 10.9-14.3 16.5-27.7 32.0-32.9 

  

Observed bottom salinity varied between 25.7-34.2 ppt in spring, and 26.7-34.6 ppt in 

fall. Male adults exhibited broader suitable salinity range in both seasons. suitable salinity for 

female adults was between 30.7-31.9 ppt in spring, and 32.2-32.9 ppt in fall. For male adults, 

suitable salinity ranges were between 25.7-31.9 ppt in the spring, and 28.5-32.9 ppt in fall. 

For juvenile males, suitable salinity ranges were 31.2-31.8 ppt in spring, and 32-32.9 ppt in 

fall. For juvenile females, suitable salinity ranges varied between 27-28.5 ppt and 31.2-31.8 

ppt in spring, and 32.5-32.9 ppt in fall. 

3.4.2 Model validation  

 Table 3.2 shows a summary comparison of cross-validation results between AMM 

and GMM for eight modeling groups. AMM produced lower intercepts and higher slopes in 

10 out of the 16 comparisons. AMM showed better predictive ability overall by showing 

smaller AIC values and higher R2 for all the 8 modeling groups. Therefore, AMM was 
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determined to be more appropriate than GMM in this study. Among the eight modeling 

groups, spring-female-adult showed the best predictive performance with the highest R2 and 

the lowest AIC, while predictive performance for the fall-male-juvenile was the poorest with 

the lowest R2 and the highest AIC. 
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Table 3-2: Summary of linear regression results between the predicted and observed habitat suitability index (HSI) for Geometric Mean 

Model (GMM) and Arithmetic Mean Model (AMM) based on 100 rounds of cross-validations.  

Season Sex Stage Sample Size  Intercept  Slope 
     AMM mean 95 % CI GMM mean 95 % CI  AMM mean 95 % CI GMM mean 95 % CI 

Spring Female Adult 38069  0.049 (0.040, 0.058) 0.023 (0.018, 0.028)  0.942 (0.923, 0.962) 0.959 (0.927, 0.991)   
Juvenile 31252  0.158 (0.146, 0.170) 0.101 (0.087, 0.114)  0.776 (0.755, 0.797) 0.848 (0.807, 0.888)  

Male Adult 43822  0.053 (0.041, 0.064) 0.054 (0.042, 0.065)  0.909 (0.893, 0.926) 0.826 (0.782, 0.870)   
Juvenile 29825  0.191 (0.177, 0.204) 0.166 (0.150, 0.183)  0.764 (0.741, 0.787) 0.747 (0.711, 0.783) 

Fall Female Adult 38069  0.235 (0.217, 0.254) 0.268 (0.241, 0.296)  0.690 (0.669, 0.712) 0.566 (0.539, 0.593)   
Juvenile 29686  0.261 (0.246, 0.275) 0.284 (0.262, 0.306)  0.636 (0.615, 0.658) 0.536 (0.511, 0.561)  

Male Adult 41350  0.280 (0.256, 0.303) 0.301 (0.276, 0.324)  0.667 (0.642, 0.693) 0.539 (0.560, 0.568)   
Juvenile 30122  0.206 (0.193, 0.219) 0.176 (0.160, 0.193)  0.621 (0.595, 0.647) 0.505 (0.452, 0.558) 

        

Season Sex Stage Sample Size 
 R-squared  AIC 
 AMM mean 95 % CI GMM mean 95 % CI  AMM mean 95 % CI GMM mean 95 % CI 

Spring Female Adult 38069  0.827 (0.813, 0.842) 0.817 (0.794, 0.840)  -557.18 (-577.60, -536.75) -479.98 (-512.22, -477.74)   
Juvenile 31252  0.602 (0.580, 0.624) 0.544 (0.507, 0.580)  -287.93 (-297.56, -278.30) -121.16 (-136.89, -105.44)  

Male Adult 43822  0.815 (0.799, 0.831) 0.657 (0.609, 0.704)  -550.42 (-569.86, -530.97) -349.45 (-378.45, -311.45)   
Juvenile 29825  0.623 (0.599, 0.646) 0.462 (0.432, 0.493)  -303.62 (-313.63, -293.60) -101.49 (-114.40, -88.00) 

Fall Female Adult 38069  0.569 (0.543, 0.595) 0.361 (0.333, 0.387)  -302.44 (-312.57, -292.31) -124.22 (-135.76, -112.67)   
Juvenile 29686  0.522 (0.494, 0.551) 0.382 (0.358, 0.407)  -200.71 (-207.94, -193.45) -110.15 (-117.12, -103.18)  

Male Adult 41350  0.561 (0.534, 0.588) 0.362 (0.330, 0.389)  -290.29 (-299.78, -280.80) -123.01 (-133.75, -122.26)   
Juvenile 30122  0.451 (0.422, 0.479) 0.249 (0.211, 0.288)  -159.38 (-165.75, -153.01) -37.829 (-46.459, -29.198) 
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3.4.3 Model prediction  

 The season, stage, and sex specific bioclimate envelopes for H. americanus were 

generated based on predicted HSI at every FVCOM grid in the DMR bottom trawl survey 

area (Fig. 3.5). Overall, high habitat suitability in inshore waters appeared to occur together 

while offshore areas were of low habitat suitability. Visual inspection revealed a higher 

propensity for suitable habitat (i.e. HSI > 0.7) for both juveniles in spring, while a greater 

area of suitable habitat in the fall was observed for adults. Adult bioclimate envelopes were 

more extensive than juvenile bioclimate envelopes in both seasons and sexes. Finally, the 

model predicted higher habitat suitability for female juveniles in the Penobscot Bay in fall, 

compared to male juveniles (Fig. 3.5). Season, stage, and sex specific comparison of 

interpolated model predictions showed larger mean differences between seasons (0.2058), 

compared to the differences between stages (0.0926) and between sexes (0.0982).  
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Figure 3-5: Season, sex, and stage specific maps illustrating the spatial distribution of 

the median habitat suitability index (HSI) over 1978 - 2013 in the coastal waters of 

Maine and New Hampshire for Homarus americanus. fl: Fall (September – November); 

sp: Spring (April – June); adu: Adult ( > 60 mm carapace length); juv: Juvenile (<= 60 

mm carapace length).  

 The changes in climate-driven habitat suitability during 1978 - 2013 are shown in Fig. 

3.6. In the spring, there was greater change towards higher habitat suitability throughout 

coastal waters for both modeled stages and sexes. In the fall, the change was less significant 
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in magnitude (fainter in color) for both sexes and stages. A declining trend in habitat 

suitability was observed in the upper Penobscot Bay in all eight modeled groups.  

 

Figure 3-6: Season, sex, and stage specific heat maps illustrating change in habitat 

suitability index (HSI) over 1978 - 2013 in the coastal waters of Maine and New 

Hampshire for Homarus americanus. fl: Fall (September – November); sp: Spring 

(April – June); adu: Adult ( > 60 mm carapace length); juv: Juvenile (<= 60 mm 

carapace length). Darker red indicates change towards higher habitat suitability at 

higher magnitude.  
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 Temporal variation in climate driven-habitat suitability during 1978 - 2013 was 

observed for both seasons, stages and sexes of H. americanus (Fig. 3.7). A significant 

increasing trend in habitat suitability was observed in all groups, except in the fall (β = -

0.0001, p = 0.806). The cross-correlation analysis revealed significant relationships between 

HSI and both temperature and salinity in the spring, while the correlations between the 

variables were less significant in the fall (Fig. 3.8).  

 

Figure 3-7: Median habitat suitability index (HSI) for each year from 1978 to 2013 

(solid line). The trend in both seasons-sexes, and stages was shown by the fitted linear 

regression model (dashed line). 
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Figure 3-8: Cross-correlation functions measuring correlations between two time series 

at different lags (years). Every vertical line shows the correlation between the two time 

series at each lag indicated along the x-axis. A correlation extending above or below the 

dotted lines shows statistical significance. 

 The relative proportion of poor, fair, and good habitat conditions (HSI < 0.3, 0.3 <= 

HSI < 0.7, and 0.7 <= HSI) was identified for both modeled stages, sexes, and seasons (Fig. 

3.9). Proportion of habitat condition showed a similar trend between adult - juveniles and 

male - females; however, a larger proportion of good habitat was observed during the fall 

while a pronounced proportion of poor habitat was observed during the spring (Fig. 3.9).   
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Figure 3-9: Relative proportion of good (yellow), fair (green), and poor (blue) habitat 

for H. americanus in the coastal waters of Maine and New Hampshire (1978 to 2013). 

Upper panel represents fall (September-November), while lower panel represents 

spring (April-June). y-axis represents percentage of the study area.  

3.5 Discussion 

3.5.1 Bioclimate envelopes and Suitability Index 

 The modeling results showed higher climate-driven habitat suitability during the fall, 

which was consistent with the field survey trends reporting higher lobster abundance during 

the fall survey (ASMFC, 2015b). The overall declining trend in habitat suitability in the 

upper Penobscot Bay suggests that contraction of H. americanus habitat is driven by the 

changes in bottom temperature and salinity. Empirical studies in the Great Bay Estuary, NH 
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and Narragansett Bay, RI have shown the contraction of the species’ suitable habitat in 

estuarine systems where temperature and salinity become sub-optimal (Howell et al., 1999; 

Jury and Watson, 2012). The greater propensity towards higher habitat suitability throughout 

coastal waters for both modeled stages and sexes during the spring indicates an increasing 

number of days that bottom temperature and salinity falls within the species’ optimal range in 

this area. The modeling results show that the best predictive power was derived for adult 

females in spring (Table 3.2). This reflects adult females potentially exhibiting more 

significant behavioral thermoregulation compared to H. americanus of different stage, sex, 

and season (Campbell, 1986; Crossin et al., 1998). Hatching of eggs occurs in spring when 

bottom water temperature reaches approximately 15 ºC, and completes within a relatively 

short time span of 10 to 14 days (Hughes and Matthiessen, 1962). Although few studies have 

focused on relationships between behaviors of adult females and surrounding environment, it 

has been proposed that egg-bearing females seek to subject their eggs to a specific thermal 

regime during the spring to maximize degree-days required for egg development (Campbell, 

1986; Ugarte, 1995; Goldstein and Watson III, 2015). This is plausible as H. americanus can 

detect very small changes in water temperature (Jury and Watson III, 2000), and the species’ 

highly mobile and thermoregulated nature allow them to seek their preferred thermal regime 

(Crossin et al., 1998; Jury and Watson III, 2013; Reynolds and Casterlin, 1979). However, H. 

americanus also exhibits varying response and preference specific to changes in salinity, 

depth and other environmental factors depending on their physiological condition, sex, molt 

stage, and size (Mercaldo-Allen and Kuropat, 1994). Therefore, it is difficult to identify the 

extent to which environmental variables regulate the behavior of the species over others. in 

this regard, future bioclimate modeling efforts should actively incorporate mechanistic 

understanding of the species’ metabolic response to each environmental variable.   
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 The season- and stage-specific SIs for temperature, depth, and salinity were consistent 

with the existing literature of H. americanus habitat preferences. Seasonal shifts in SI curves 

likely reflect a composite result of interaction between different levels of temperature, light, 

oxygen concentration, salinity, food availability and predation dynamics exist at different 

water depths and seasons. The SI-temperature curves identified shifts in suitable thermal 

ranges between spring and fall for both adults and juveniles. Suitable temperature for H. 

americanus varied from 11.6 – 14.3 °C in the fall, and 8.4 – 10.6 °C in the spring. This was 

consistent with past findings reporting the species’ avoidance of temperature below 5 °C and 

above 18 °C (Aiken and Waddy, 1986; Lawton and Lavalli, 1995; Crossin et al., 1998; Jury 

and Watwon III, 2013). The SI-temperature curves generally did not show unimodal shape, 

and with the reported thermal preference of the species of 15.9 °C (Crossin et al., 1998) and 

16.5 °C (Reynolds and Casterlin, 1979) suggests even warmer bottom temperatures would be 

more suitable with no adverse effects. The significant shift in SI-depth curves for adults 

suggests a seasonal inshore/offshore migration, while a less significant shift in SI-depth 

curves for juveniles suggests a more localized migration along the coastal waters (Lawton 

and Lavalli, 1995). Adults exhibited a broader suitable salinity range in the fall, while 

juveniles showed a shift in suitable salinity ranges between spring and fall. The difference in 

suitable salinity ranges possibly reflected the juveniles actively moving to optimal salinity 

ranges due to their limited ability to osmoregulate (Charmantier and Aiken, 1987).  

3.5.2 Model limitations and future improvements  

 Understanding climate-driven habitat suitability is a key component in the sustainable 

management of fishery resources (Chen et al., 2009; Cheung et al., 2008, 2009). However, 

there are limitations inherent to bioclimate envelope models.  
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3.5.2.1 Bottom Substrate  

 This study initially considered bottom substrate type obtained from the Continental 

Margin Mapping (CONMAP) GIS database compiled by the U.S. Geological Survey (Poppe 

et al., 2005) as the fourth habitat variable. This variable was removed from the final 

bioclimate envelope model. It was determined that inclusion of the species’ association to 

substrate based on bottom trawl survey would lead to biased results. Several reasons have 

been contributed to this decision. 

 First, contrary to previously documented substrate preferences by post-settled H. 

americanus for shelter-providing rocky and boulder landscape (Barshaw and Bryant-Rich, 

1988; Wahle and Steneck, 1991; Lawton and Lavalli, 1995), none of the SI-bottom substrate 

results identified gravel as the most suitable substrate type for H. americanus (Appendix A). 

Based on the DMR Inshore Bottom Trawl Survey, clay-silt/sand was most frequently 

identified as the bottom type with highest habitat suitability, while gravel-sand was identified 

as the most suitable .bottom substrate for adults in the spring. These results were likely 

artifacts of biased H. americanus abundance as rocky substrates are generally associated with 

poor trawl efficiency (Steneck and Wilson, 2001) and there are several areas that could not be 

towed due to complex bottom structure (Sherman et al., 2005; Cao et al., 2014).  

 Second, the CONMAP database did not distinguish between boulder or cobble as both 

substrates were included in the gravel category. The CONMAP categorized bottom substrate 

type in the study area as gravel (pebbles defined as 2.00 - 64.00 mm, cobbles defined as 64 - 

256 mm, boulder defined as above 256 mm), gravel-sand (0.62 - 2.00 mm), sand-clay (0.001 

- 0.004 mm), sand- clay/silt (0.004 - 0.062 mm), sand-silt/clay, and sand/silt/clay (Poppe et 

al., 2005). Although gravel, cobble, and boulder substrates are generally uncommon 

throughout the northeast coastal waters and only comprise 10–16% of the bottom type at 

depth less than 20 m along the coastline of Maine (Barnhardt et al., 1996; Hovel and Wahle, 
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2010), the overgeneralization of key substrates coupled with potentially biased H. 

americanus abundance and spatial patchiness of cobble/boulder substrates may have resulted 

in a biased estimation of SI-bottom substrate in this study.  

 Overall, SI-bottom substrate results were determined not to be meaningful as they 

were likely to be heavily biased by insufficient resolution of the substrate data and the 

limitation of the bottom trawl survey sampling design with key substrate type. The removal 

of bottom substrate type from the final model ignored the importance of shelter-providing 

gravel/cobble/boulder substrates as essential nursery substrates. While these data-driven 

biases and limitations cannot be quantified or ignored, the use of traditional ecological 

knowledge may be used as a qualitative correction criterion for these biases (Store and 

Kangas, 2001; Vincenzi et al., 2007). For future studies, the use of ventless trap based 

abundance index may be used to enhance the understanding of the species’ association to 

temperature, salinity, depth and substrate (Maine DMR, 2006). A random stratified ventless 

trap survey can provide relative H. americanus abundance without the biases identified in 

conventional bottom trawl surveys. While data are available for the ventless trap survey for 

fewer years and it has smaller sampling coverage, this supplementary fishery-independent 

data can be used to compliment and validate the known sampling bias associated with the 

Maine - New Hampshire bottom trawl survey (Cao et al., 2014).  

3.5.3 Assumptions and limitations inherent in bioclimatic envelope models 

 Calibration of bioclimate envelope model is often based on a restricted number of 

environmental variables, and forced to neglect food-web interactions, species dispersion, or 

ecosystem productivity because of the difficulty in obtaining reliable information (Pearson 

and Dawson., 2003; Cheung et al., 2008, 2009; Stock et al., 2011; Jian et al., 2013; Watling 

et al., 2013; Tanaka and Chen., 2015).  
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 The model developed in this study aimed to predict relative habitat suitability rather 

than actual species biomass or population level, and did not explicitly incorporate biotic 

interaction such as inter-specific or food-web interactions. It is likely that predators and prey 

of H. americanus respond differently to changes in climate-driven oceanographic conditions. 

For example, the increase in H. americanus abundance in the Gulf of Maine  may be 

correlated to changes in predators and prey abundance (Steneck and Wahle, 2013; Wahle et 

al., 2013). Integrating biotic interactions, multispecies population dynamics and species 

dispersal in predicting impact of climate variables would be the next modeling step and may 

address some of these limitations (Cheung et al., 2009, 2008).  

 Furthermore, the assumption that habitat preference of targeted species will remain 

unchanged with the shifting climatic conditions should be tested as evolutionary adaptations 

may yield factors that could affect the model outcomes (Pearson and Dawson, 2003; Stock et 

al., 2011; Araújo and Peterson, 2012). The model in this study was implicitly based on the 

niche conservatism. However, the extent to species to retain their ancestral traits and 

physiological thresholds is highly debated in a climate change context (Pearson and Dawson, 

2003; Crisp et al., 2009). Some species may exhibit evolutionary adaptation to changing 

climates (e.g., increasing variety of habitat types and dispersal ability), while many species 

are susceptible to ecological change with a limited adaptive capacity to new biomes. 

Evolutionary changes may alter patterns of range-shifting of a targeted species, However, the 

rate of genetic changes in marine species with regard to climate change is poorly understood 

(Cheung et al., 2008), while a global trend towards the niche conservatism was observed as 

only 3.6% of the evolutionary divergences involved a biome shift (Crisp et al., 2009). 

Defining target species’ physiological thresholds may address these problems in future 

applications. 
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 A mismatch between prediction and observation is inherent and ineviTable 3.in 

modeling of open environmental systems (Oreskes et al., 1994; Araújo and Peterson, 2012). 

When a bioclimate envelope model evaluates a specific environment for a given species, 

prediction error is often due to potential species presence in un-sampled areas or extrinsic 

factors not included in the modeling effort (Araújo and Peterson, 2012). Such commission 

error does not indicate model flaws, but simply indicates that the model needs further 

development (Oreskes et al., 1994). 

 For future studies, the model calibration process may incorporate additional 

procedures and variables to develop a more comprehensive bioclimate envelope model. For 

example, as species responses to the array of climate variables are neither gradual nor linear, 

the SIs may incorporate Cubic spline smoothing (e.g., Generalized Additive Model) to 

capture potential non-linear relationships between the response variable (CPUE) and key 

habitat variables (Chang et al., 2012). The three environmental variables had equal weight in 

the model, but the actual importance of different environmental variables may differ. This 

needs to be considered in the next modeling effort to reflect the relative influence of 

confounding variables on bioclimate envelope models.  

 The three environmental variables considered in this study were chosen based on 

perceived importance and data availability, but many other environmental variables can also 

greatly influence the species’ habitat quality (Lawton and Lavalli, 1995). These variables 

may include more climate and ecological variables such as thermal fronts, latitude and 

longitude, coastal upwelling, regional climate forcing, change in pH level and dissolved 

oxygen concentration (Mercarldo-Allen and Kuropat., 1994; Boudreau et al., 2015). 

Alternatively, exclusion of certain habitat variables (e.g. depth) should be considered to allow 

greater change in the species’ distribution as a result of changes in other variables in future 

projection (Hare et al., 2013). While this study focused on climatic impacts on the species’ 
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realized niche, a mechanistic niche modeling to understand how environmental conditions 

affect the species’ growth, survival and reproduction should be considered for future 

projection of climate change impact (Kearney, 2006).  

3.5.4 Management implications 

 Commercial fish stocks including H. americanus often exhibit strong physiological 

responses to abrupt changes in the environment (Mills et al., 2013). Furthermore, sea surface 

temperature has increased significantly in the coastal waters of Maine and New Hampshire 

since the late 1990s, while the number of days that water temperature falls within the optimal 

range for the species has also increased (ASMFC, 2015b). Conventional stock assessments 

often neglect to address environmental variability (NMFS, 2010), but the modeling 

framework developed in this study can be used to characterize season-, sex-, and stage 

specific H. americanus habitat condition and provide several opportunities where climate 

variability can inform and improve stock assessments. 

 Recruitment in fish stocks often appears to be influenced by environmental conditions 

(Myers, 1998; Brander and Mohn, 2004; Keyl and Wolff, 2008). Recruitment in H. 

americanus stocks is generally modeled as a function of spawning stock, but inclusion of 

environmental covariates can potentially provide additional information about the annual 

recruitment variability (ASFMC, 2015b). The most recent H. americanus stock assessment 

incorporated a temperature recruit covariate (number of days with subsurface temperature 

above 20 °C measured by a local power station) to investigate the impact of increasing water 

temperature on the recent recruitment failure in southern New England (ASMFC, 2015b). 

While most studies have focused on linking recruitment to temperature and salinity (Myers, 

1998), incorporating modeled HSI values as an alternative recruitment covariate captures the 

composite effect of climate variability on the species’ recruitment dynamics. Alternatively, 

HSI-based bioclimate envelope models for the species in postlarval settlement and early 
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benthic phase can be used to calculate a recruitment density index, while similar information 

for mature individuals is an important precursor to assessment of spawning stock biomass. 

Furthermore, while many fish stocks are affiliated with their relevant habitat variables, 

conventional bottom-trawl surveys are often stratified by geography, depth, and time 

(Horodysky et al., 2015). Differences between the nature of stratification by fishes and 

surveys can lead to flaws in inferences. Climate-driven change in species distribution and 

migration patterns may also affect survey catchability (NEFSC, 2014). Here, developing a 

species-specific bioclimate envelope models provide several advantages of (1) incorporating 

bioclimatic variables and climatic variability into stock assessments to improve the model 

fittings, and (2) avoiding fixed and subjective stratification to improve precision and accuracy 

of estimated stock status (Shelton et al., 2014).  

 As the rate of climate change is predicted to accelerate in the future, alongside the 

species’ ongoing distributional shifts (Pinsky et al., 2013), there is a growing need to assess 

changes in H. americanus habitat condition. Under RCP 8.5 emissions scenario, average 

bottom temperature in Northeast U.S. Continental Shelf system is expected to increase more 

than 1 °C by 2050 (IPCC, 2014; NOAA, 2015). While the projected increase in bottom 

temperature in the Gulf of Maine is not expected to exceed the species’ maximum 

temperature tolerance and may even considered favorable, management uncertainties at the 

southern range limits of the species can be addressed through scenario-based analysis (Hare 

et al., 2013; Shackell et al., 2014, ASFMC, 2015b). Bioclimate envelope models are valuable 

tools to; (1) evaluate climate impacts and aid implementation of ecosystem-based fishery 

management, and (2) generate hypotheses of large scale potential ecological changes in 

climate-driven marine environment (Cheung et al., 2009). Advancement in our understanding 

of climate-driven habitat suitability of H. americanus can play a critical role in the 

sustainability of the species’ fishery. 
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3.6 Conclusion 

 This study coupled a conventional habitat-suitability model (HSI) with a regional 

ocean model (FVCOM) to predict past and present bioclimate envelopes of H. americanus. 

The developed HSI-based bioclimate envelope model aimed to predict general patterns of 

potential responses of H. americanus to climatic variability. The model highlighted the 

impacts of climatic variables on the H. americanus fisheries at the regional scale. The results 

can be used to complement ongoing management efforts that focus on the analysis of the 

habitat needs and requirements of this species (ASMFC, 2014). For future analyses, 

appropriate downscaling of existing global climate models (GCMs) may enable resource 

managers to project the potential geographic shift of a given species’ bioclimate envelopes, 

which will be a valuable addition to existing vulnerability assessment programs.   
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4. CHAPTER 4 - A STATISTICAL MODEL FOR MONITRING SHELL 

DISEASE 

4.1 Abstract  

The expansion of shell disease is an emerging threat to the inshore lobster fisheries in the 

northeastern United States. The development of models to improve the efficiency and 

precision of existing monitoring programs is advocated as an important step in mitigating its 

harmful effects. The objective of this study is to construct a statistical model that could 

enhance the existing monitoring effort through (1) identification of potential disease-

associated abiotic and biotic factors, and (2) estimation of spatial variation in disease 

prevalence in the lobster fishery. A delta-generalized additive modeling (GAM) approach 

was applied using bottom trawl survey data collected from 2001-2013 in Long Island Sound, 

a tidal estuary between New York and Connecticut states. Spatial distribution of shell disease 

prevalence was found to be strongly influenced by the interactive effects of latitude and 

longitude, possibly indicative of a geographic origin of shell disease. Bottom temperature, 

bottom salinity, and depth were also important factors affecting the spatial variability in shell 

disease prevalence. The delta-GAM projected high disease prevalence in non-surveyed 

locations. Additionally, a potential spatial discrepancy was found between modeled disease 

hotspots and survey-based gravity centers of disease prevalence. This study provides a 

modeling framework to enhance research, monitoring and management of emerging and 

continuing marine disease threats. 

4.2 Introduction 

 The American lobster (Homarus americanus), which is of critical economic and 

ecological importance throughout northeastern USA and Atlantic Canada, is currently being 

threatened by the emergence of shell disease. The shell disease in H. americanus is 

manifested as necrosis and lesions on the dorsal carapace of infected individuals that can 
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result in decreased survival (Shields 2013) and decreased reproductive success (Castro et al., 

2006). Shell disease in H. americanus was first reported in the 1930s, and various forms of 

lobster shell disease have been observed (e.g., endemic shell disease, impoundment shell 

disease, and diet-induced shell disease) (Hess, 1937; Smolowitz et al., 1992; Tlusty et al., 

2008). Notably, shell degradation associated with disease decreases the market value of 

infected individuals, resulting in economic and market loss in this lucrative fishery (ASMFC, 

2009, 2015a). 

 Epizootic shell disease (ESD) is a recently observed degradation of the lobster cuticle 

by a suite of bacteria (e.g., Aquimarina homaria) (Shields 2013). Individual susceptibility to 

ESD has received increased research attention following the host susceptibility hypothesis 

proposed by Tlusty et al., (Tlusty et al., 2007). This hypothesis states that the internal 

condition of a lobster ultimately determines whether an infection becomes established, with 

physiological stress likely being the strongest indicator of susceptibility. This notion was 

generally supported by subsequent studies evaluating the influence of water temperature 

(Tlusty and Metzler, 2012), pollutants (Laufer et al. 2013; Shields 2013), and diet (Tlusty et 

al., 2008). Additional studies of shell disease etiology noted significant shifts in microbial 

communities between the shells of infected and uninfected lobsters, suggesting importance of 

a polymicrobial, rather than single species, pathogen (Meres et al. 2012). A major outbreak of 

ESD was first observed in Long Island Sound (LIS) in 1996, which was followed by the 

unprecedented rise and spread of ESD among Southern New England (SNE) lobster stocks. 

Prior to 1999, the lobster fishery in LIS was the third largest in the country, with landings 

valued at more than $35 million (NMFS,  2016). However, in 2013 the Atlantic States 

Marine Fisheries Commission (ASMFC) required the states surrounding LIS to take steps to 

reduce the total lobster harvest by 10 percent, resulting in the first-ever seasonal closure of 

the LIS lobster fishery (ASMFC, 2012). Concern over the stability of the lobster fishery has 
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forced many fishermen to abandon their traditional livelihoods and pursue new careers 

outside of the lobster industry (Benson 2013; Lacurci 2014). 

 Tools are required that will allow the fishery to deal with possible future spread of 

lobster shell disease. The development of a modeling framework that can provide (1) 

ecological interpretation of factors associated with disease prevalence, and (2) more reliable, 

contemporary disease maps at policy-relevant spatial scales has been advocated as an 

important step in understanding the harmful effects of oceanic diseases (Harvell et al. 2004; 

Pullan et al. 2011). There are presently two broad types of modeling approaches available for 

predicting spatiotemporal disease prevalence: empirical-based statistical models that seek to 

quantify associations between disease prevalence and environmental factors (e.g., Pedersen et 

al., (2014)) and process-based mechanistic models that seek to simulate biological or 

ecological processes that drive disease prevalence (e.g., McCreesh et al., (2015)). It is 

generally acknowledged that both approaches can be used to facilitate proactive disease 

management. 

 The objectives of this study were to develop empirical-based statistical models to (1) 

quantify associations of lobster shell disease occupancy and abundance with environmental, 

spatial, and ecological factors, and (2) predict relative lobster shell disease prevalence in non-

surveyed locations to provide a spatially-varying disease probability map across the entire 

study area to identify potential disease hotspots that remain undetected by the existing survey 

programs. We hypothesized that the spatial distribution of shell disease prevalence is 

associated with external factors such as salinity, water temperature, depth, distance offshore, 

sediment type, latitude and longitude, as well as host sex and life stages. To this end, a delta-

generalized additive modeling (GAM) framework was developed to evaluate the relative 

contributions of a variety of environmental and biological factors to shell disease occupancy 

and abundance. GAMs have the advantage of reconciling highly non-linear and non-



72 
 

monotonic relationships that are common in nature, and can serve as either descriptive or 

predictive statistical models (Guisan et al. 2002).  

 This study highlights the utility of pairing existing fishery-independent datasets with a 

non-parametric and parsimonious modeling approach to enhance the knowledge of how 

lobster shell disease associates with various abiotic and biotic factors. Ultimately, our 

findings will provide policy-relevant information for effective ecosystem-based marine 

disease surveillance programs, which could be of value for the U.S. lobster fishery. 

4.3 Materials and methods 

4.3.1 Case study area 

 The LIS is an estuary that is 182 km long and 33.8 km wide with an average depth of 

22.6 m (Fig 4.1). The bathymetry of LIS is composed by four major basins with a maximum 

depth of 60.4 m. The LIS is weakly stratified as the salinity ranges from 23 ppt at the western 

end to 35 ppt at the eastern end (Gottschall 2013). Three major rivers (Thames, Housatonic, 

and Connecticut) account for the majority of freshwater input into LIS. Runoff and drainage 

along the coast of New York and Connecticut also deliver freshwater into the sound (Lee and 

Lwiza 2008).   

4.3.2 Modeled data 

 The lobster shell disease data were collected by bi-annual bottom trawl survey 

conducted by the Connecticut Department of Energy and Environmental Protection (CTDEP) 

during 2001 and 2013 (Fig 4.2). The CTDEP survey employs a stratified random design 

based on 12 strata (4 depth strata * 3 substrate strata). Samples were collected using a 14-m 

otter trawl with a 51 mm codend. Date, location, bottom temperature, bottom salinity, depth, 

and biological information of each lobster (carapace length (CL), sex, and shell disease 

presence) were recorded at each tow (Table 4.1). The survey area is divided into 1.85*3.7 km 

sites assigned to the 12 strata (Gottschall and Pacileo 2013). Spring surveys were conducted 



73 
 

during the months of April- June, and fall surveys were conducted from September through 

October. In situ data are collected once a month from 40 sites that are randomly selected from 

within each stratum, resulting in a total of 200 sites annually. The survey was conducted at 

3.5 knots for a targeted duration of 30 minutes during daylight hours to reduce sampling bias 

related to diurnal variability in catchability (CTDEP, 2013; Sissenwine and Bowman, 1978). 

There were no changes associated with the size specification for the trawl equipment during 

the survey.  

 

Figure 4-1: Sampling locations of the Long Island Sound bottom trawl survey used in 

this study (2001 to 2013). Each sampling site is 1.85*3.7 km. 
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Figure 4-2: Abundance indices of American lobster (Homarus americanus) and shell disease per tow in Long Island Sound, USA. For 

calculation of American lobster CPUE see Tanaka and Chen (2015). CPUE: catch-per-unit-effort.   
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Table 4-1: A list of variables identified as candidate explanatory variables for delta generalized additive modeling approach with 

corresponding VIF value. All variables listed in this table were measured directly from the Long Island Sound bottom trawl survey 

(2001-2013). 

Variables Type Description VIFb 

Season Temporal Season trawl was conducted: Spring = March-May, Fall = September-November n/a 

Year Temporal Year trawl was conducted n/a 

Latitude (Degree) Spatial Measurement of latitude trawl was conducted (mid trawl point) 2.2312 

Longitude (Degree) Spatial Measurement of longitude trawl was conducted (mid trawl point) 1.9888 

Distance Offshore (km) Spatial Measurement of distance between trawl location and coastline 1.5965 

Depth (m) Abiotic Observed depth at trawl location 2.2378 

Bottom Temperature (°C) Abiotic Observed bottom temperature at trawl location 1.4678 

Bottom Salinity (ppt) Abiotic Observed bottom salinity at trawl location 1.7772 

Stage Biotic Adult (CLa > 60 mm ) and Juvenile (CL <= 60 mm) n/a 

Sex Biotic Female and Male (unspecified sex were omitted) n/a 

aCL: Carapace Length. 

bVIF: Variance Inflation Factor. 
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The monitoring of lobster shell disease began in 2001, and a total of 1,246 tows that 

collected 18,322 lobsters were initially explored in this study. A tow was considered 

satisfactory for the analysis only when it recorded (1) number of shell disease-positive 

lobsters with relevant biological information (e.g. sex and carapace length), (2) geographical 

information (e.g. latitude and longitude), and (3) environmental information (e.g. bottom 

water temperature and salinity, depth). A total of 1,234 tows that collected 17,838 lobsters 

met these criteria were used for the analysis. The dataset showed an overdispersion of shell 

disease abundance due to the high number of tows that caught zero infected lobsters. A 

lobster was considered to be free of shell disease if the shell surface shows no signs of the 

disease (i.e. the default condition) or if the lobster had limited necrotic spots (e.g. pitting and 

“cigarette-like burn” mark on the shell surface) or lesions (e.g. damage that penetrates 

carapace to inner musculature). A visual inspection was conducted to identify shell disease 

on the claws, carapace, tail, and legs. A lobster was considered to be infected if more than 

10% of shell surface shows signs of shell disease (e.g., pitting and lesions). Several types of 

lobster shell disease have been documented, which are not differentiated here. Despite our 

inability to distinguish among shell diseases, the condition we describe here is most likely 

ESD given its known prevalence throughout the study area (Castro and Somers, 2012; Cobb 

and Castro, 2006; Maynard et al., 2016; Shields, 2013).  

  The shell disease catch-per-unit-effort (CPUE) was considered to be a good indicator of 

lobster shell disease prevalence in the study area (Cao et al., 2009; Chen et al., 2008; Tanaka 

and Chen, 2015). Survey-CPUE is a commonly used indicator for monitoring changes in 

relative abundance of fish stocks (Maunder and Punt 2004). Studies have shown that CPUE is 

most reliable when the sampling units are homogeneous in their characteristics and operating 

procedure (Lehodey et al. 1997; Maunder and Punt 2004; Richards and Schnute 1986), and 

gravity centers of CPUE can be used to better understand the spatiotemporal dynamics of fish 
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stocks (Lehodey et al. 1997; Tseng et al. 2011; Yasuda et al. 2014; Zhang et al. 2015). A 

nominal shell disease CPUE at station i, in season j, and year y was calculated as;  

𝐶𝑃𝑈𝐸𝑖,𝑗,𝑦 = (
𝐶𝑜𝑢𝑛𝑡𝑖,𝑗,𝑦

𝑇𝑜𝑤𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑗,𝑦
) ∗ 20    Eq. 4-1 

where Count represents the total quantity of shell disease positive lobster caught. Tow 

duration varied between 20 to 30 minutes but was standardized to 20 minutes at each 

sampling station (Tanaka and Chen, 2015). To analyze the spatial distribution of lobster shell 

disease, the longitudinal and latitudinal gravitational centers of nominal disease CPUE in 

year y were calculated by; 

𝐿𝑜𝑛𝑦 =
∑ (𝐿𝑜𝑛𝑖∗𝐶𝑃𝑈𝐸𝑦,𝑖)𝐾

𝑖=1

∑ 𝐶𝑃𝑈𝐸𝑦,𝑖
𝐾
𝑖=1

    Eq. 4-2 

𝐿𝑎𝑡𝑦 =
∑ (𝐿𝑎𝑡𝑖∗𝐶𝑃𝑈𝐸𝑦,𝑖)𝐾

𝑖=1

∑ 𝐶𝑃𝑈𝐸𝑦,𝑖
𝐾
𝑖=1

    Eq. 4-3 

where Loni represents the longitudinal point of the station i between -73.63 and -72.07 E; Lati 

represents the latitudinal point of the station i between 40.92 and 41.31 N; CPUEy,i denotes 

the nominal shell disease CPUE at station i in year y; K is the total number of stations.  

4.3.3 Generalized additive model 

4.3.3.1 Model development 

A delta (also known as Hurdle or Two-stage) generalized additive modeling (GAM) 

approach was applied to account for zero-inflation and overdispersion (Jensen et al., 2005; 

Chang et al., 2010; Grüss et al., 2014). GAM is a semi parametric extension of the 

generalized linear model and commonly used in ecological studies (Zuur et al. 2007, 2009). 

GAMs assume that the response variables are independent, and use spline smooth function to 

define nonlinear relationships between the response and explanatory variables (Guisan et al. 
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2002). With the delta approach, occupancy and abundance observations are modeled 

separately to formulate the overall prediction of relative species abundance while it allows 

independent evaluation of predictor variables for both occurrence and abundance, which 

often differ (Potts and Elith 2006; Sagarese et al. 2014).s 

Lobsters within each tow were grouped by stage (adult: >60 mm carapace length, 

juvenile: ≤60 mm carapace length) and sex (male and female), allowing every tow to have up 

to 4 groups of lobsters (2 stage * 2 sexes) (Chang et al., 2010; Tanaka and Chen 2015, 2016). 

This categorization technique developed by (Chang et al., 2010) can relate biological 

characteristics of a tow-subgroup to environmental information recorded by the 

corresponding tow. For each tow-subgroup, the delta-GAM separately modeled: (1) the 

“encounter rate probability” of shell disease (i.e. a proportion expressed as total number of 

shell disease positive lobsters divided by total number of lobsters), and (2) the “positive catch 

probability” of shell disease (i.e. number of shell disease positive lobsters conditional on 

presence). The general delta-GAM formulation can be written;  

Encounter rate probability (𝑦1): 

𝑙𝑜𝑔𝑖𝑡(𝑦) = 𝛼 + ∑ 𝑓(𝑥𝑖)
𝑝
𝑖=1 + 𝜀     Eq. 4-4 

Positive catch probability (𝑦2): 

𝑙𝑛(𝑦) = 𝛼 + ∑ 𝑓(𝑥𝑖)
𝑝
𝑖=1 + 𝜀      Eq. 4-5 

Overall prevalence probability: 

𝐷 = 𝑦1 ∗ 𝑦2     Eq. 4-6 

where a denotes an intercept term, f denotes the non-parametric cubic spline smooth 

function; xi denotes the ith explanatory variable directly measured by the CTDEP survey; and 

ε is the residual error term. The first stage GAM modeled the proportion of shell disease per 

tow-subgroup (i.e. encounter rate probability) using a logit link function and a binomial error 

distribution. Here, the total number of lobsters in each response variable served as a prior 
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weight on the contribution of the data to the first stage GAM fitting procedure to account for 

the difference in response variable size. The second stage GAM modeled the shell disease 

abundance per tow-subgroup conditional on presence (i.e. positive catch probability) using a 

log link function and a negative binomial error distribution. The overall prevalence 

probability (D) was derived by multiplying the products from both stages (Grüss et al. 2014; 

Sagarese et al. 2014).   

Variance inflation factor (VIF) analysis with an acceptable value below 3.0 was 

conducted to minimize collinearity among candidate explanatory variables (Zuur et al. 2007). 

To avoid unnecessary model complexity and computation time, boosted regression tree 

(BRT) analysis was conducted for each GAM to incorporate candidate bivariate terms (Elith 

et al. 2008; Sagarese et al. 2014). To prevent model overfitting, the maximum degrees of 

freedom was set at 5 (k=5) for univariate terms and 30 (k=30) for bivariate terms (Rooper et 

al. 2014; Sagarese et al. 2014; Zuur et al. 2009). Furthermore, gamma = 1.4 was set for each 

GAM to place a heavier penalty on each term to prevent overfitting (Wood, 2012; Zuur et al., 

2009). 

All statistical analyses were conducted in the R programming environment (R Core 

Team 2016). GAMs were built and fitted using the mccv package (Wood,  2011) and fmsb 

[52] and dismo [53]  were used to implement VIF and BRT analyses. 

4.3.4 Model selection and validation  

 Chi-square statistical significance tests and Akaike information criteria (AIC) were 

used as the model selection criteria. A stepwise backward selection was applied to identify an 

optimal model in each stage (Truesdell 2013). First, a full model was built for each stage 

using all of the candidate univariate and bivariate terms identified through VIF and BRT 

analyses. Second, the least statistically significant variable was removed using the specified 

p-value significance threshold (p < 0.05) (Wood 2003; Truesdell 2013; Li et al., 2015; Chang 
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et al., 2010). Variable removal was conducted one at a time and the reduced model was refit 

to the data. Candidate univariate and bivariate terms were kept in the model if they 

contributed to a lower AIC (Winton et al. 2014). The stepwise model selection procedure was 

repeated until an optimal model was identified according to the above criteria at each stage 

(i.e. a model with lowest AIC and included only significant variables). Finally, model 

diagnostic plots were examined to evaluate residual patterns and model assumptions.  

 A cross-validation study was conducted to evaluate the performance of the best-fitting 

delta-GAM (Zuur et al. 2007). A randomly selected subset representing 80% of the original 

data (training data) was used to develop and calibrate the delta-GAM, and the remaining 20% 

(testing data) was used to evaluate the model performance. The model predictions were 

compared to the observations and linear regression analysis was used to evaluate the model 

performance. The cross-validation process was repeated 100 times using a random partition 

in each step. The model performance was quantified by 100 sets of linear regression 

parameters: an intercept (α) closest to 0, a slope (β) closest to 1, and higher R2.  

4.3.5 Environmental data 

 Because a GAM does not generate coefficients that can be multiplied by conventional 

grid maps of the covariates, spatial predictions were made by constructing new 

environmental datasets of the study area (Franklin 2010). Bottom temperature and salinity 

estimates by depth, time, and location in the study area were modeled by the Finite-Volume 

Community Ocean Model (FVCOM) runs from 2001 to 2013. FVCOM is an ocean 

circulation model developed by University of Massachusetts Dartmouth and Woods Hole 

Oceanographic Institution (Chen et al., 2006). The FVCOM has been configured for the 

Northwest Atlantic Shelf region, with horizontal resolution ranging from 20 m in river 

mouths to as coarse as 10 km towards the open boundary off the shelf (Chen et al., 2006). 

Bathymetry layers were obtained from the U.S. Coastal Relief Model (NGDC, 1999). The 
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surficial substrate layer in LIS was obtained from the U.S. Geological Survey (resolution: 

0.00001 decimal degrees or 1.11 m; Poppe and Seekins, 2000). Substrate classifications in 

included; gravel (pebbles defined as 2.00–64.00 mm, cobbles defined as 64–256 mm, boulder 

defined as above 256 mm), gravel-sand (0.62–2.00 mm), sand-clay (0.001–0.004 mm), silt 

(0.004–0.062 mm)/sand, sand- clay/silt, sand-silt/clay, and sand/silt/clay (Poppe et al., 2000). 

4.3.6 Predictions of spatiotemporal patterns in shell disease prevalence 

 The shell disease prevalence predictions derived by the best-fitting delta-GAM were 

assigned to every FVCOM grid in the study area and universal kriging interpolation 

technique was used to produce high-resolution maps for interpretation (Bivand et al., 2013; 

Pebesma, 2004; Zuur et al., 2007). This procedure was repeated for every year within the 

predictive capacity of the best-fitting delta-GAM (2001-2013). The spatial distribution of 

median GAM outputs was mapped to interpret the overall spatial variability in shell disease 

prevalence. The longitudinal and latitudinal gravitational centers of observed shell disease 

prevalence between 2001 and 2013 were compared to the modeled disease hotspots to 

evaluate magnitude of spatial discrepancy due to potential biases associated with the survey 

design and subsequent sample size.   

4.4 Results 

4.4.1 Significance of abiotic and biotic variables 

 A total of 2,008 tow-subgroups out of 1,234 tows were analyzed during the time period 

of 2001-2013 (n = 17,838 lobsters). Shell disease positive lobsters (n = 363) sampled in LIS 

ranged in size from 37.3 to 88.1 mm CL, with mean CL of 69.81 mm and median CL of 71 

mm. The shell disease samples were collected at various depth ranges from 4.9-42.7 m and 

between 40.98:41.31 °N and 73.37:72.07 °W. The observed bottom temperature and salinity 

associated with shell disease positive lobster ranged from 3.9-22.1 °C and 24.8-31.5 ppt 

respectively.  
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 The location variable identified as a bivariate interaction covariate by latitude and 

longitude was found to be the most important determinant in the probability of shell disease 

presence. The response surface of the location variable indicates that probability of shell 

disease presence increased toward the northeastern region of LIS (Fig 4.3). Neither longitude 

nor latitude was found to be significant in the best-fitting positive catch probability model.  

 

Figure 4-3: Partial generalized additive model (GAM) plot describing the significant 

interactive contribution of bivariate location variable in the best-fitting encounter rate 

probability model (1st stage). 

 Bottom temperature and bottom salinity were included in the best-fitting encounter rate 

probability model (Figs 4.4 and 4.5). Both abiotic variables had a significant non-linear effect 

on the probability of shell disease presence. The bottom temperature response curves from 

the best-fitting encounter rate probability model showed higher probability of shell disease 

presence at < 5 °C and between 10-15 °C, while the temperature response curve from the 

positive catch model showed that the relationship was dome-shaped with a peak probability 

of shell disease abundance between 10-15 °C. Bottom salinity also showed significant effect 

on both shell disease encounter rate and positive catch probability, where the probability of 

shell disease presence peaked at ~25 ppt, while the probability of shell disease positive catch 

increased at higher salinity ranges (Figs 4.4 and 4.5). Distance offshore was included in the 
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best-fitting encounter rate probability model, while depth was included in the best-fitting 

positive catch model (Figs 4.4 and 4.5). The distance offshore response curve from the 

encounter rate probability model indicates that the probability of disease presence peaked 

between 5-10 km (Fig 4.4). The probability of conditional disease abundance was lowest at 

approximately 20 m depth (Fig 5). 

 

Figure 4-4: Fitted back-transformed smoothing curves for significant univariate 

explanatory variables in the best-fitting encounter rate probability model (1st stage). 

The tick marks on x-axis denote the relative density of observation. The grey envelopes 

represent the 95% confidence intervals. The boxes with “NS” represent univariate 

explanatory variables that were not significant in the model. The boxes with “INT” 

indicate that the variables were used as a bivariate interaction variable. Note that the 

range of y-axis differs among the panels for display purposes. SD: shell disease.  
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Figure 4-5: Fitted back-transformed smoothing curves for significant univariate 

explanatory variables in the best-fitting positive catch probability model (2nd stage). The 

tick marks on x-axis denote the relative density of observation. The grey envelopes 

represent the 95% confidence intervals. The boxes with “NS” represent univariate 

explanatory variables that were not significant in the model. Note that the range of y-

axis differs among the panels for display purposes. SD: shell disease.  

 A year effect was included in the best-fitting encounter rate probability model as a 

significant temporal variable (Fig 4.4). The disease encounter rate probability per tow was the 

lowest in 2001, but peaked in 2011. Effects of bottom type, stage, and season were only 

significant for the encounter rate probability model. The highest disease encounter rate 

probability was associated with gravel, while the lowest encounter rate probability was 

associated with sand-silt/clay (Fig 4.4). The adult life stage and fall season (September-

October) were also associated with higher probability of disease presence (Fig 4.4).  
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4.4.2 Model fitting and validation  

 All candidate explanatory variables were observed with VIF less than 3 (Table 4.1), 

therefore multicollinearity was determined to be negligible in the model development. The 

best-fitting binomial GAM (1st stage encounter rate probability model) explained 56.3% of 

the deviance, while the best-fitting negative-binomial GAM (2nd stage positive catch model) 

explained 31.3% of the deviance (Table 2). A comparison of the mean cross-validation 

results with an ideal model performance (e.g. a model without prediction bias; α = 0, β = 1, 

and R2 = 1) indicated that the delta-GAM predicted the overall shell disease prevalence well 

(α = 0.134, β = 0.809, and R2 = 0.43; Fig 4.6). A slight bias toward over-prediction at low 

prevalence was observed while the degree of over-prediction increased with higher 

prevalence. However, the model’s predictive performance was considered to be sufficient for 

predicting an overall distribution of the true shell disease prevalence in this study. 
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Table 4-2: Comparison of full and best-fitting generalized additive model (GAM) results 

for the delta modeling approach.  

1st stage "Encounter Rate Probability" GAM (n = 

2008) 

      

Model Formula edfa Deviance explained 

(%) 

AICb 

Full Size + Sex + Season + Year + Sediment 

Type + s(Bottom Temperature) + 

s(Bottom Salinity) + s(Depth) + 

s(Distance Offshore) + s(Longitude) + 

s(Latitude) 

3.98 3.89 3.62 3.50 3.06 

1.00 

50.10 1453.0

8 

Best-

fitting 

Size + Season + Year + Sediment Type + 

s(Bottom Salinity) + s(Distance 

Offshore) + s(Bottom Temperature) +  

s(Longitude, Latitude) 

3.86  3.67  3.95 26.72 56.30 1371.0

3 

          

2nd stage "Positive Catch Probability" GAM (n = 

142) 

      

Model Model edf Deviance explained 

(%) 

AIC 

Full Size + Sex + Season + Year + Sediment 

Type + s(Bottom Temperature) + 

s(Bottom Salinity) + s(Depth) + 

s(Distance Offshore) + s(Longitude) + 

s(Latitude) 

2.99 2.96 1.04 1.00 1.04 

1.00 

53.20 217.34

6 

Best-

fitting 

s(Bottom Temperature) + s(Bottom 

Salinity)  + s(Depth) 

3.21 1.42 2.38 31.30 207.05

6 

aedf: estimated degree of freedom 

bAIC: Akaike information criterion 

 

  



87 
 

 

Figure 4-6: Bivariate observed versus predicted plot complemented by the graphical 

summary of regression analyses from 100 runs of cross-validations for the delta 

generalized additive modelling (GAM) effort. The light gray lines represent 100 linear 

regression lines. The black line represents the mean of 100 linear regression lines. The 

dashed line represents the 1:1 line and an ideal model performance. 

4.4.3 Delta-GAM prediction and survey-based gravity centers of disease prevalence 

 The delta-GAM was used to generate zero inflation adjusted estimate of shell disease 

prevalence (per minute towing; 101 m2). The predicted shell disease prevalence in LIS 
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showed a ‘high-east: low-west’ spatial pattern (Fig 3.7a). The delta-GAM predicted high 

disease prevalence in the shallow waters on the southwestern and northeastern sides of 

Fishers Island in northeastern LIS. The survey-based gravity centers of shell disease shifted 

northeastward during 2001-2013 in the area between 72.8:72.3° W and 41.1:41.25 ° N (Fig 

3.7b); however, the survey-based gravity centers did not coincide spatially with the predicted 

disease hotspots.  

 

Figure 4-7: Mean spatial variation of predicted zero inflation adjusted shell disease (SD) 

prevalence, expressed as ln(number of SD positive lobster per 101 m2), for 2001-2013. 

The red rectangle represents the spatial domain of Fig 7b.  
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Figure 4-8: Observed inter-annual variability in shell disease gravity centers for 2001-

2013.  

4.5 Discussion 

4.5.1 Ecological interpretation of model outputs 

The delta-GAM developed in this study identified a high concentration of shell disease 

prevalence in northeastern LIS (Fig 3.7a). A similar pattern has been documented in other 

studies, although its drivers remain difficult to identify. However, bottom water temperature 

has been frequently cited as one major contributor to shell disease occurrence (Glenn and 

Pugh 2006; Shields 2013). Because eastern LIS has had higher rates of temperature increase 

and higher mean maximal monthly temperatures than western LIS (Maynard et al. 2016), this 

could be influencing the patterns we describe. Eastern LIS is also known to have higher 

levels of contaminants such as PCBs, pesticides, and metals than other regions of the Sound, 

which have also been noted as potential contributors to various lobster diseases (Harder et al. 

1992; Shields 2013).  

Other potential causes of shell disease seem to be distributed paradoxically to the east-
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high, west-low spatial prevalence patterns. For example, shell diseased symptoms occur 

when the loss of shell material exceeds its natural deposition (Tlusty et al., 2007), therefore it 

is expected that shell disease would coincide with areas with high concentrations of 

alkylphenols, which inhibit shell growth (Laufer et al. 2012). However, Jacobs et al., (Jacobs 

et al. 2012) found that levels of alkylphenol contamination was highest in lobsters from 

western LIS, where observed disease prevalence is generally lowest. Similarly, presumably 

stress-inducing hypoxia increases in severity from east to west, in opposition to the shell 

disease prevalence documented here (Robohm et al. 2005). 

Potential insights into disease etiology in LIS can also be gained by evaluating 

univariate explanatory variables individually. For instance, the response curves from best-

fitting binomial and negative-binomial GAMs were generally in agreement with existing 

literature related to habitat tolerance of American lobster with regard to bottom temperature, 

bottom salinity, depth and sediment type (Harding 1992; Jury et al., 1994; Mercaldo-Allen 

and Kuropat 1994; Crossin et al., 1998; Chang et al., 2010; ASMFC, 2015a; Tanaka and 

Chen 2015), indicating shell disease occurrence often coincides with optimal or near-optimal 

lobster habitat conditions. For instance, Tanaka and Chen (Tanaka and Chen, 2015) identified 

suitable salinity for lobster in LIS is between 21 and 30.4 ppt, which is also contained the 

salinity range where shell disease is found (Fig 4). These results are unexpected given past 

research (e.g., Tlusty et al., (2007) suggesting that environmentally-induced physiological 

stress is a precursor to shell disease incidence. However, this pattern could be explained by 

an increased propensity for infected individuals to move away from stressful conditions 

found in suboptimal environments, due to the costs they are incurring while subjected to 

stressful conditions.  

Water temperature has been previously identified as a significant contributor to shell 

disease occurrence (Glenn and Pugh 2006; Shields 2013). The significant, nonlinear 
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relationship between bottom water temperature and shell disease encounter rate probability 

we documented (Fig 3.4) is likely reflective of lobsters’ varied molting rate at different 

temperatures and ability to molt out of a moderately infected shell (Stevens 2009). For 

instance, encounter rate probability peaks between 10-14°C, when disease progression may 

be outpaced by molting rates. Similarly, the reduction in prevalence toward 20 °C could be 

attributable to molting rate exceeding disease progression. The increasing presence of shell 

disease in fall as indicated by our model coincides with previous studies performed in eastern 

LIS where disease prevalence increased through the summer and into fall as waters warmed 

(Castro, 2005; Landers, 2005) as well as near Massachusetts where the highest concentration 

of shell disease in the study area correlated with cumulative periods of time where water 

temperatures exceeded 20°C (Glenn and Pugh 2006).  

This model further reinforces the likely role of demographic characteristics to shell 

disease susceptibility. Because juveniles tend to molt more frequently, less time is allowed 

for shell disease to become established before a shell is molted. Therefore, the significance of 

age in our model are likely due to extended intermolt durations for large individuals (Stevens 

2009). Ovigerous females have often been found to have a higher incidence of shell disease 

than either males or non-reproductive females due to delayed molting cycles (Castro and 

Somers, 2012; Howell, 2012); however, our model did not detect a significant effect of sex. 

We attribute this result to the concatenation of samples taken throughout the year, which may 

mask the effects of higher prevalence for females during egg-bearing times of the year when 

molting is postponed. 

4.5.2 Model implications and limitations  

For reasons of logistical rationality and simplicity, monitoring of marine species is 

conducted based on a spatiotemporal scale relevant to observers, not marine species 

(Horodysky et al. 2015). This bias, due to differences between the stratification strategies 
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employed by the observer and marine species, results in disease presence, origins and spread 

often remaining undetected (Harvell et al. 2004). In this study, the delta-GAM predicted a 

significant hotspot of lobster shell disease in the non-surveyed area in the northeast of the 

LIS, which did not coincide with observed shell disease gravity centers. The model-based 

disease probability map can be used to generate hypotheses about exposure for further 

investigation by overlaying with maps of potential anthropogenic pollution sources and areas 

where lobsters are under prolonged environmental-stress. Association of the marine disease 

to surrounding abiotic and biotic factors in many cases is poorly understood. The delta-GAM 

approach developed in this study can enhance our understanding of continuing lobster shell 

disease threats and monitoring effort by (1) quantifying the significance and association of 

environment and host characteristics in lobster shell disease prevalence, and (2) developing a 

parsimonious statistical modeling framework to predict the spatial distribution of shell 

disease prevalence from zero-inflated observations. 

 Our approach has a number of potential limitations. While one of the objectives of 

this study was to develop a simple, parsimonious modeling framework to complement both 

descriptive and predictive research priorities, GAM is a data driven approach that is often 

limited by the data available for model calibration. For example, a p-value of 0.05 was used 

as cut off for statistically significant associations, but it is important to acknowledge that 

some key covariates (e.g. host sex) may be determined not statistically significant and 

excluded simply due to; (1) the relatively small number of diseased lobsters in the original 

data, and (2) significant associations exerted by abiotic (e.g. bottom temperature) and spatial 

variables (e.g. latitude *longitude interaction) “masking” the weaker associations of these 

biological variables. The location variables (i.e. latitude and longitude) were used to capture 

the localized effects (Rooper et al. 2016; Winton et al. 2014); however, provided that the data 

are available, incorporating key variables such as pollution, pH level, surface chlorophyll, 
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hypoxia frequency, and population memory would likely allows us to further tune the delta-

GAM to be a more comprehensive management tool (Grüss et al. 2014; Loots et al. 2010). 

Further improvements could be made by applying models that explicitly account for 

progression of disease prevalence over time, integrate both measured and unmeasured 

covariates, and include the consideration of spatial and temporal autocorrelation (Grüss et al. 

2014; Shelton et al. 2014). However, while such an advanced model may yield better 

predictive performance, other aspects of model performance should also be considered (e.g. 

ecological realism as well as model usability to non-expert stakeholders)(Franklin 2010). It is 

also important to acknowledge that the best-fitting models identified in this study were 

developed for specificity over generality to allow interpolation in LIS (i.e. filling in the gaps 

in survey data and describing known disease distributions), and the model outcomes in the 

area outside of LIS should not be considered. A simpler model will be required to make more 

general but robust extrapolation through space or time (Franklin 2010; Hare et al. 2012). 

Finally, distinction and trade-off between empirical-based statistical modeling 

approaches (e.g., GAM) and process-based mechanistic modeling approaches (e.g., agent-

based model) should be addressed explicitly (Franklin 2010). In an epidemiological context, 

the strength of a statistical modeling approach lies in its ability to provide a mathematical 

basis for hypothesized associations between observed disease prevalence and environmental 

factors (Pedersen et al. 2014), while mechanistic modeling approaches can simulate 

underlying processes driving the disease prevalence (McCreesh et al. 2015). As for the trade-

off, both approaches are subject to specific sources of uncertainty. For instance, where 

empirical-statistical models are unable to incorporate source-sink processes, process-

mechanistic models are unlikely to capture the true complexity of ecosystems (Beale and 

Lennon 2012). The empirical-based statistical modeling framework presented in this study 

represents a first step toward comprehensive modeling efforts to better understand the 
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complex epizootic disease dynamics. For example, GAM can be used to incorporate 

ecological information associated with the geographical distribution and habitat suitability of 

diseased lobsters for more mechanistic approaches (Keith et al. 2008), which can potentially 

predict the habitat-dependent environmental impact on shell disease dynamics more 

accurately. 

4.5.3 Management Implications 

Harvell et al., (Harvell et al. 2004) identified several key marine disease management 

priorities, which can enhance the research, monitoring and management of emerging and 

continuing marine disease threats. These include pinpointing the role of biotic and abiotic 

factors in disease spread, developing forecasting models for outbreaks that are sensitive to 

environmental and climatic factors, and implementing ecosystem-based surveillance 

programs for emerging marine diseases. The combination of empirical data and modeling 

presented here aims to address these management priorities and provide a valuable tool for 

the management of inshore and offshore lobster fisheries, which were the highest valued 

commercial fishery in 2014, worth in excess of half a billion dollars (NMFS,  2016). The 

approach can be used to guide decision-making in monitoring and management of lobster 

shell disease. Ultimately, our findings will provide policy-relevant information for effective 

ecosystem-based disease surveillance programs, which could be of value for the fisheries.  

The modeling approach described here also provides the framework from which similar 

models could be developed for other marine organisms and marine diseases in the U.S. and 

international fisheries. Groner et al., (Groner et al. 2016) call for “data driven forecasting 

and predictive modeling” to adaptively manage emerging marine diseases. The delta-GAM 

outputs presented in this study can potentially facilitate an effective ecosystem-based 

management of the commercially important fisheries that are under disease threat. If data are 

available, the model can also investigate the impact of anthropogenic agents and pathogens. 
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The success of these actions are dependent upon the major environmental risk factors for the 

disease being known and that the relevant environmental data are of the appropriate temporal 

and spatial resolution for the organism under investigation (Groner et al. 2016). As the 

origins and spread of most marine diseases are poorly known (Harvell et al. 2004), the 

modeling approach described in this study renders a novel first step towards identifying the 

potential biotic and abiotic conditions contributing to marine diseases (Groner et al. 2016). 

Furthermore, through establishment of a framework whereby environmental contributions to 

disease presence and prevalence may be identified, this modeling approach can potentially 

provide reliable information for future mechanistic models that may provide the basis for 

models more predictive in nature, a need highlighted in recent work on marine disease 

(Groner et al. 2016; Maynard et al. 2016).  

Fisheries managers require flexible low-cost tools to help deal with the emerging threat of 

marine disease. This need is exacerbated by the increasing likelihood of abrupt, nonlinear 

environmental and climatic changes (Groner et al. 2016). Management strategies, such as 

closures to reduce fishing morality in order to help restore the stock at broad spatial scales 

can be costly to implement and to those whose livelihoods are dependent on the managed 

marine species. In addition, these ‘broad brush’ approaches may impact areas not impacted 

by disease, thus increasing their cost and impact unnecessarily. Reliable and up-to-date maps 

of marine diseases, like those provided by this modeling approach, can enhance the 

monitoring of emerging and continuing marine disease threats by improving the geographical 

targeting and cost-effectiveness of existing sampling programs which are often limited by 

logistical hurdles (e.g. cost, resources). Given the increasing uncertainty in the health of the 

marine resources upon which people rely driven by linear long-term climate trends and more 

abrupt climatic perturbations, the types of low-cost tools that leverage existing monitoring 
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datasets (e.g. trawl surveys) like the model outlined here can provide essential information in 

managing wild harvest fisheries that are constantly under disease threats. 
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5. CHAPTER 5 - CLIMATIC IMPACTS ON THE LOBSTER DISTRIBUTION 

5.1 Abstract 

 American lobster (Homarus americanus) supports one of the most valuable fisheries in 

the United States. Spatial distributions of H. americanus are hypothesized to be influenced by 

climate-driven environmental factors but such effects have not been quantified. We 

developed a Tweedie-generalized additive model (GAM) to quantify environmental effects 

on season, sex- and size-specific distributions of H. americanus in the inshore Gulf of Maine. 

Tweedie GAMs were coupled with regional circulation model output to predict 

spatiotemporal changes in distribution of H. americanus due to mesoscale climate variability. 

GAM results indicated that bottom temperature and salinity impacts on H. americanus 

distribution were more pronounced during spring. The coupled climate-niche model predicted 

significantly higher H. americanus abundance under a warm climate climatology scenario. 

This study provides a predictive climate-niche modelling framework that may be useful for 

planning fishery investments and anticipating management challenges given ongoing climate 

driven changes in the Northwest Atlantic.  

5.2 Introduction 

 American lobster (Homarus americanus) supports the most economically valuable 

single-species commercial fishery in the northeast USA and Atlantic Canada ($618 million 

ex-vessel value in the US during 2015; ACCSP, 2016). Over the last three decades, lobster 

landings increased dramatically in the US portion of the Gulf of Maine where abundance is at 

record high levels  (ASMFC, 2015). Commercial fishing activities for lobster in the Gulf of 

Maine are predominantly in near-shore waters because lobsters recently molted to legal size 

are found mainly in inshore waters less than 50 m depth (Maine DMR, 2014). Growth in both 

catch and production of the lobster fishery has led many coastal communities to become 

increasingly dependent on the fishery, leaving the coupled natural and human system 
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vulnerable to environmental change (Steneck et al., 2011).  

 Lobster movement and abundance in the coastal waters are closely tied to changes in 

water temperature (ASMFC, 2015a). Lobsters are cold blooded and tend to move to areas 

with more optimal water temperatures (Caputi et al., 2013) and climatic variability has been 

recognized as a key driver of seasonal changes in distribution (Mills et al., 2013; Pinsky et 

al., 2013; Boudreau et al., 2015). Lobsters are found across a wide range of water 

temperature, from -1 to 26 ˚C (Lawton and Lavalli, 1995; Quinn, 2016), but several 

laboratory studies have demonstrated that the species prefers a narrower temperature range 

by 12-18 ˚C and avoids temperature below 5 ˚C and above 19 ˚C (Crossin et al., 1998). 

Warmer water temperatures within preferred range allow lobsters to be more active and to 

utilize shallow nearshore areas with low salinity (Jury, 1994). Therefore, changes in thermal 

regime may influence lobster movements, migrations, and seasonal distribution patterns 

(Crossin et al., 1998; Lawton and Lavalli, 1995; Phillips, 2006; Caputi et al., 2013).  

 Water temperatures in the Gulf of Maine have increased over the last 30 years and 

further increases are likely (Fernandez et al., 2015; Pershing et al., 2015; Kleisner et al., 

2016; Saba et al., 2016). Rising water temperatures are expected to result in behavioral and 

phenological changes in lobster (e.g. early and more frequent molting) and ecological 

changes including increased seasonal migrations and shifts in distribution (Fogarty et al. 

2007; Pinsky et al. 2013). Mean bottom temperature on the northeast U.S. Continental Shelf 

system is expected to increase more than 1 °C by 2050 according to the Intergovernmental 

Panel on Climate Change Representative Concentration Pathway (IPCC-RCP) scenario with 

highest greenhouse gas emissions (RCP 8.5: IPCC, 2013; NOAA, 2015). This projected 

increase in bottom temperatures in the Gulf of Maine is not expected to exceed the species’ 

maximum physiological tolerance and it is possible that quality of lobster habitat will actually 

increase in the inshore Gulf of Maine (Tanaka and Chen, 2016).  
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 While the Gulf of Maine have experienced the long-term effect due to change in 

climate system, the region’s inshore waters have also experienced short term natural 

variability within the climate system. Climatic variability such as water temperature 

anomalies can trigger many ecological processes in marine ecosystems and affect abundances 

and distributions of many fish and shellfish species through habitat range expansions and 

contractions (Tian et al., 2009). In the case of American lobster, the species’ habitat condition 

was greatly affected by the 2012 northwest Atlantic heat wave, which generated abrupt and 

unexpected ecological and economic changes in the U.S. lobster fisheries (Mills et al., 2013). 

The ecological and economic impacts of the 2012 ocean heat wave raised the need to develop 

a tool that can better understand the associations between lobster abrupt climate variability 

events and lobster catch density, and development of a predictive tool to facilitate climate 

adaptation planning within fisheries management in the Gulf of Maine. 

 In the coastal US Gulf of Maine, fixed management boundaries divide the lobster 

fishery into seven coastal management zones (A-G: Acheson, 2013; ASMFC, 2015b). The 

lobster fishery management plan established in 1995 allows license holders in nearshore 

zones to operate a trap fishery which is independent of fishing in offshore areas for relatively 

large lobsters. Changes in lobster distribution inside these zones could lead to management 

issues stemming from population size increases in some zones and decreases in others while 

fishermen cannot easily reallocate their fishing effort between zones (Caputi et al. 2013). As 

the rate of climate variability is predicted to accelerate in the future (IPCC, 2013), there is a 

growing need to (1) evaluate the relative importance and impacts of environmental drivers of 

the lobster distribution, (2) develop the capacity for predicting spatiotemporal changes in the 

lobster distribution under different climatology, and (3) address management uncertainty due 

to potential changes in lobster distribution (Hare et al., 2012; ASMFC, 2015b).   

 In this study, a statistical climate-niche model was developed to predict spatiotemporal 
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changes in lobster distribution in the inshore Gulf of Maine. A climate-niche model is a type 

of species distribution models that is useful for predicting distributional responses to climatic 

variability (Cheung et al., 2009; Franklin, 2010; Stock et al., 2011; Hare et al., 2012; Tanaka 

and Chen, 2016). We used Tweedie-generalized additive models (GAMs) to quantify 

association between season, stage, and sex specific lobster catch density and key 

environmental variables. Fitted GAMs were coupled with the output from a regional 

circulation model to predict lobster distribution in a climatically altered environment. This 

study provides a step towards an adaptive ecosystem-based management of the commercially 

important lobster fishery in the US Gulf of Maine (ASMFC, 2014). 

5.3 Materials and Methods 

5.3.1 Study area 

 The study area covers the inshore US waters in the Gulf of Maine between Nova 

Scotia, Canada and Massachusetts, USA (42.85°-44.80° N and 70.80°-66.95° W) where 

depth ranges 4.6-221.3 m (Fig. 5.1). It is characterized by rough terrain, tidally-mixed coastal 

waters, and high biological productivity capable of supporting large productive fisheries 

(Townsend et al., 2006). The inshore Gulf of Maine is influenced by nutrient-rich deep waters 

transported by winter convective mixing and cross-isobath water fluxes. Rivers and streams 

contribute freshwater (Townsend et al. 2006). From 2000-2014, bottom temperatures as 

measured by the Maine-New Hampshire (ME-NH) Inshore Trawl survey in the study area 

increased at the average rate of 0.12 yr−1 in spring and 0.08 yr−1 in fall (Fig. 1). The analysis 

was structured around Maine’s seven lobster management zones (LMZs A-G: Fig. 5.1) to 

incorporate a spatial scale of management interest and to avoid focus on very small areas 

where model predictions could be less interpretable (Incze et al., 2010; Xue et al., 2008; 

Chang et al., 2016;).   
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Figure 5-1: left: Study area in the inshore Gulf of Maine covered by Maine/New Hampshire (ME-NH) inshore bottom trawl surveys with 

station locations during spring (blue, n = 1312) and fall (red, n = 830). The polygons A-G are lobster management zones. right: Bottom 

temperature trends in the ME-NH bottom trawl survey for spring (0.12 °C year-1, R2 = 0.34, p <0.05) and fall (0.08 °C year-1, R2 = 0.24, p 

<0.05). The gray land lines represent major river systems. 
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5.3.2 Data 

 Season, size, and stage specific lobster survey data used in modeling were collected by 

ME-NH Inshore Trawl surveys during 2000-2014 (Sherman et al., 2005). This fishery-

independent otter bottom trawl survey program is conducted biannually, covers ~16,000 km2 

per season, and targets about 115 random and additional fixed stations (Sherman et al., 2005). 

The survey is stratified by depth and position along the coast. Tows of 20 minutes at 2.5 

knots are made at each station to cover a mean distance of 1,509 m with average swept area 

of about 15,853 m2 per tow. The otter trawl is a modified shrimp net that can effectively 

capture bottom dwelling species such as lobster. The trawl net has a 21.34 m head rope, 6.35 

cm mesh size in the front end, 5.08 cm in the belly and a codend with a 1.27 cm mesh codend 

linear. A CTD profiler attached to the trawl net records depth, bottom salinity, and bottom 

temperature at each station. Observed depth ranged 4.57-221.29 m, bottom temperatures 2.6-

14.9 °C, and salinity 25.8-34.6 ppt.  

 A tow was considered satisfactory and used in analysis if it contained relevant 

biological information (carapace length, sex) for each lobster as well as all environmental 

(e.g. bottom water temperature, salinity and depth) and spatial (e.g. latitude and longitude) 

information. A precautionary analysis was applied to identify potential fixed stations, and 

stations that remained stationary within a 1 nm2 grid (a designated survey grid size) between 

2000-2014 were removed. The data for modeling was from 2,142 tows (Spring: n = 1312, 

Fall: n = 830) and 252,262 lobsters with carapace lengths (CL, mm) that ranged 10-203 mm 

(median 63 mm). The distribution of lobster differs by season, sex, and size class (Lawton 

and Lavalli, 1995; Chang et al., 2010; Tanaka and Chen, 2016), therefore the lobster catches 

were compiled separately for adults (> 60 mm CL) and juveniles (≤ 60 mm CL) and by 

season (spring: April-June and fall: September-November) and sex (male and female). 

Lobster catches were standardized as numbers caught per 792 m-2 min-1 of area swept (Chang 
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et al., 2010: hereafter referred as lobster catch density). In this study, lobster catch density 

was used as a proxy for distribution and abundance, which assumed that lobster catches 

reflected the presence/absence and density of the species at a given location within the study 

area, and not confounded by bias associated with sampling efficiency and environmental 

variability. 

5.3.3 Generalized additive models 

 A generalized additive model (GAM) was used to study the impact of climatic variation 

on lobster distribution. A GAM is a nonlinear extension of generalized linear models (Zuur et 

al., 2007). Environmental variables used to predict catch density (e.g. depth and temperature) 

are often correlated. Variance inflation factors (VIF) were therefore calculated and variables 

with VIF value > 3 were removed to minimize collinearity and improve model performance 

(Table 1; Zuur et al., 2007; Tanaka et al., 2017). Following Sagarese et al., (2014), boosted 

regression tree (BRT) analysis was used to identify potentially significant bivariate 

interaction terms, which were incorporated in the GAM fitting process. In this study, the 

general GAM formulation to estimate lobster catch density 𝜂 can be expressed as;  

𝑔(𝜂) = 𝛼 + ∑ 𝑠𝑗(𝑥𝑗) + 𝜀𝑝
𝑗=1     Eq. 5-1 

where g() represents the log link function between 𝜂 and each additive predictor; α denotes 

the intercept term; sj() denotes a cubic spline function that might be linear or nonlinear; 𝑥𝑗 is 

a single or pair of additive predictor; ε is the residual error. Smooth terms with a pair of 

predictors were used to model interactions. Maximum degrees of freedom for smooth terms 

was set at 5 (k = 5) for univariate smooth functions and 30 (k = 30) for bivariate smooth 

functions to prevent model over-fitting (Zuur et al., 2009; Sagarese et al., 2014; Rooper et al., 

2014). Model fitting and variable selection were carried separately for each of the eight 

combinations of size, season and sex (Chang et al., 2010). All statistical analyses were 

conducted in the R programing environment (R Core Team, 2016). VIF and BRT procedures 
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used the fmsb and dismo packages (Nakazawa, 2015; Hijmans et al., 2015). GAMs were 

fitted using mgcv package (Wood,  2011).  

 The likelihood used to measure GAM fit was based on a Tweedie distribution to 

account for the large proportion of zero-catch tows and skewness in the catch data (Fig. 5.2). 

A Tweedie distribution model is a type of exponential dispersion model (Jørgensen 1997; 

Shono 2008). The Tweedie distribution has three parameters: mean, dispersion and a power 

parameter p that ranges from 1 for the Poisson distribution to 2 for Gamma distribution to 3 

for inverse Gaussian distributions (Shono, 2008; Wood, 2011). The Tweedie distribution in 

this study was assumed to be a compound Poisson-Gamma distribution with 1 < p < 2 

(Wood,  2011). This assumption was shown to be appropriate with analysis of zero-catch 

fishery data (Shono 2008; Li et al., 2011), where a Tweedie distribution for 1 < p < 2 can 

support all non-negative real numbers with a point mass in zero (Berg et al., 2014). Tweedie 

GAMs were fitted by optimizing its profile likelihood and power parameter p was estimated 

within the range of 1 < p < 2 during model fitting process (Candy, 2004; Shono, 2008; Wood, 

2011; Berg et al., 2014). Shono (2008) and Li et al., (2011) showed that this Tweedie model 

as an extension of compound Poisson–Gamma distribution model performs well with zero-

inflated fisheries data. Its ability to handle zero inflated data uniformly along with the 

skewered positive data has shown to outperform the traditional non-Tweedie approaches such 

as quasi-Poisson, negative binomial, delta (two-stage) distributions and log transformation 

with an additive constant where the estimation results are sensitive to the choice of the 

constant and combining two sub-models can complicates the model interpretation (Tweedie 

1984; Candy 2004; Berg et al., 2014).  
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Figure 5-2: Frequency histograms of season, stage and sex specific standardized lobster 

catch (per 792 m2) from Maine/New Hampshire bottom trawl survey (2000-2014). 

Lobster catch larger than 15 was truncated as a plus group to enhance readability. 

5.3.4 Model selection and validation  

 Stepwise backward selection using chi-square statistical tests and Akaike’s information 

criteria (AIC) was used to reduce a full model (with univariate and bivariate terms identified 

through VIF and BRT analyses) to a parsimonious final model with lowest AIC and only 

significant variables (Tanaka et al., 2017). The stepwise model selection procedure was 

repeated as long as the removal of the variable with the lowest significant p-value reduced 

AIC. The proportion of deviance explained was used for model comparisons and to measure 

how well the final models explain the variance in the observation. Diagnostic plots using 

random-quantile residuals (Miller et al., 2017) were examined to identify lack of fit and 

evaluate model assumptions.  

 The predictive performance of final models for each group of lobsters was evaluated 

externally through a 100-fold manual cross-validation procedure. In this procedure, 80 % of 

the original data was randomly partitioned for model calibration (training set), while the 

remainder was used for model validation (testing set). The final model was fit to each 



106 
 

training set and used to predict the corresponding testing set (Miller and Franklin, 2002; 

Brotons et al., 2004; Tanaka and Chen, 2016; Tanaka et al., 2017). The cross-validation 

procedure was repeated with random partition of testing and training data in each iteration. 

The predictive power of a final model was evaluated by regressing model predictions on the 

validation data and comparing the distributions of regression intercepts (α), slopes (β), and 

adjusted R2 to expectations for a precise and unbiased model with α = 0, β = 1, and R2 = 1.  

5.3.5 Environmental data 

 Finite-Volume Community Ocean Model (FVCOM) runs configured for Northwest 

Atlantic Shelf region were used to estimate monthly bottom temperature and salinity in the 

study area during 1982 to 2013. The FVCOM is an advanced regional ocean circulation 

model developed by University of Massachusetts Dartmouth and Woods Hole Oceanographic 

Institution (Chen et al., 2006; Li et al., 2017). The horizontal resolution of FVCOM in the 

study area ranges between ~0.02 km in inshore waters to ~10 km offshore waters (Chen et al., 

2006). Bathymetry of the study area was derived from the Coastal Relief Model (CRM) with 

horizontal resolution of 3 arc-seconds (~90 m: NGDC 1999). To assess the skill of FVCOM 

and CRM in the study area, modeled bottom temperature, salinity and depth data were 

compared to spatially and temporally corresponding in situ data recorded in the ME-NH 

survey. For each assessed variable, a bivariate observation versus prediction plot and a set of 

linear regression coefficients such as the coefficient of determination (r2), slope (α), and 

intercept (β) were used to evaluate agreement between observed and modeled data (Stow et 

al., 2009; Li et al., 2017).  

5.3.6 Mesoscale climatic impacts on lobster distribution 

 Final GAMs were used to predict lobster catch density at every ME-NH survey station 

in the study area during 2000-2014. Spatiotemporal changes in lobster distributions due to 

mesoscale climatic variability was analyzed using the following approaches. Spatial centroids 
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for predicted and observed lobster catch densities were compared to evaluate the proportion 

of climatic effects on changes in lobster distribution (Broennimann et al. 2007; VanDerWal et 

al. 2013). The purpose of this approach was to determine how well model predictions based 

on climate data (bottom temperature and salinity variables) predicted recent changes in 

lobster distribution. Longitudinal and latitudinal centroids were calculated:  

𝐿𝑜𝑛𝑠,𝑦 =
∑ (𝐿𝑜𝑛𝑖∗𝐷𝑖)𝐾

𝑖=1

∑ 𝐷𝑖
𝐾
𝑖=1

     Eq. 5-2 

𝐿𝑎𝑡𝑠,𝑦 =
∑ (𝐿𝑎𝑡𝑖∗𝐷𝑖)𝐾

𝑖=1

∑ 𝐷𝑖
𝐾
𝑖=1

     Eq. 5-3 

where Loni and Lati are for ME-NH survey station i; Di denotes the predicted or observed 

lobster catch density at ME-NH survey station i; K is the total number of ME-NH survey 

stations in the study area.  

  Final GAMs were also used to project how lobster distribution may change under two 

thermally contrasting climatology (Sagarese et al. 2014). Predictive fields were interpolated 

using ordinary kriging to describe spatial variability in lobster catch density (Froeschke and 

Froeschke, 2016; Tanaka et al., 2017). Ordinary kriging procedures were conducted via the 

automap package (Hiemstra et al., 2008) and kriged maps were prepared at 0.03 × 0.03 

latitude/longitude grid. Model prediction using FVCOM outputs made projections under two 

hypotheses about climate variability possible. Hypothetical “cold” and “warm” climatology 

scenarios for the study area were constructed by averaging FVCOM bottom temperature and 

salinity fields during the five warmest and coldest modeled spring and fall survey periods 

(April-June & September-November) during 1982-2013 (Fig. 5.3). The purpose of this 

analysis was to investigate how two contrasting modes of regional climatology influences the 

relative lobster abundance. Average bottom temperatures were 5.1 °C during the spring and 

7.3 °C during fall in the “cold” climatology scenario and 9.7 °C during spring and 11.9 °C 

during fall in the “warm” climatology scenario. Predicted lobster density in each cell in the 
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warm and cool scenarios were subtracted to highlight potential differences in lobster 

distributions due to change in bottom temperature and salinity (Jones et al., 2016).  

 

 

Figure 5-3: Bottom temperature and salinity distributions in the study area for 

hypothetical cold and warm climatology scenarios from Finite Volume Community 

Ocean Model. The scenarios were based on five coldest and warmest springs and falls 

during 1982-2013. Temperatures averaged 9.7 °C (median 9.5 °C) during cold falls 

(1987, 1992-1993, 1998, 2007), 11.9 °C (median 11.5 °C) during warm falls (2002, 2010-

2013), 5.1°C (median 5.5 °C) during cold springs and 7.3°C (median 7.7 °C) during 

warm springs (2000, 2010-2013). Salinity averaged 29.7 ppt (median 32.1 ppt) during 

cold falls, 29.8 ppt (median 32.1 ppt) during warm falls, 28.9 ppt (median 31.7 ppt) 

during cold springs and 29.1 ppt (median 31.5 ppt) during warm springs. 
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5.4 Results 

5.4.1 GAMs 

 Latitude (°) and depth (m) with VIF values > 3 were omitted before fitting all GAMs 

(Table 5.1). Bottom temperature (°C) and distance offshore (m) were included as significant 

predictor variables in all final models (p < 0.001). Two-dimensional smooth terms for salinity 

and longitude were included in all final spring models and for adult models in fall because 

BRT analysis identified two-way interactions between salinity and longitude (Table 5.2). 

Univariate salinity and longitude terms were included in fall models where statistically 

significant (Table 5.2). Percent deviance explained ranged from 47% to 56% and was 

somewhat higher for spring (Table 5.2). The cross validation result suggested that the final 

models can predict lobster catch density well. The slope coefficients (β) in cross-validation 

analysis ranged from 0.96 to 1.08, while the intercept coefficients (α) ranged from -0.10 to 

0.04, indicating that the model performance was close to being ideal (1:1 slope; Table 5.3). 

However, variability in model accuracy increased at higher lobster catch density in every 

modeled group (Appendix A). 

Table 5-1: Candidate variables used generalized additive modeling of American lobster 

biannual Maine/New Hampshire bottom trawl survey catches in the inshore Gulf of 

Maine during 2000-2014. VIF: Variance Inflation Factors 

Variables Description 
VIF - 

Spring 

VIF - 

Fall 

Latitude (°) Mesurement of latitude trawl was conducted (mid trawl point) 15.5 13.2 

Longitude (°) 
Mesurement of longitude trawl was conducted (mid trawl 

point) 
15.3 12.6 

Distance Offshore (m) Mesurement of distance between a trawl location and coastline 3.9 3.9 

Depth (m) Observed depth at a trawl location 4.4 4.5 

Bottom Temperature 

(°C) 
Observed bottom temperature at a trawl location 1.5 1.4 

Bottom Salinity (ppt) Observed bottom salinity at a trawl location 1.8 1.9 

 

  



110 
 

Table 5-2: Best-fitting generalized additive models for season-, stage-, and sex specific American lobster catch densities in the 

Maine/New Hampshire bottom trawl survey with deviance explained by the model (Dev. Exp.) and Akaike Information Criteria (AIC). 

The terms in models are distance offshore (Do), bottom temperature (Te), bottom salinity (S) and longitude (Lo). edf; estimated degree 

of freedom.  

Season Sex Stage Model edf Dev.Exp AIC 

Spring Female Adult s(Do) + s(Te) + s(S, Lo) 4.49, 4.21, 23.75 0.50 3370.33 

    Juvenile s(Do) + s(Te) + s(S, Lo) 4.68, 4.45, 24.88 0.56 3115.12 

  Male Adult s(Do) + s(Te) + s(S, Lo) 4.21, 4.28, 24.08 0.53 3643.39 

    Juvenile s(Do) + s(Te) + s(S, Lo) 4.53, 4.14, 25.24 0.56 3017.63 

Fall Female Adult s(Do) + s(Te) + s(S, Lo) 4.92, 3.98, 19.87 0.47 2594.94 

    Juvenile s(Lo) + s(Do) + s(Te) 4.42, 4.33, 3.45 0.48 2334.61 

  Male Adult s(Do) + s(Te) + s(S, Lo) 4.47, 3.24, 19.58 0.47 2800.67 

    Juvenile s(Lo) + s(S) + s(Do) + s(Te) 4.46, 3.87, 6.05, 3.51 0.50 2334.91 

Spring: n = 1312, Fall: n = 830       
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Table 5-3: Summary of regression analyses from 100 runs of cross-validations for the season, stage and sex specific lobster generalized 

additive modelling (GAM) effort.  

Season Sex Stage 
Intercept     Slope     R-squared     GAM 

Adj. R-sq. Mean   95% CI     Mean   95% CI     Mean   95% CI     

Spring Female Adult -0.10 ( -0.42 , 0.15 )   1.08 ( 0.85 , 1.38 )   0.39 ( 0.32 , 0.46 )   0.37 

    Juvenile 0.04 ( -0.16 , 0.26 )   0.98 ( 0.70 , 1.20 )   0.36 ( 0.23 , 0.51 )   0.33 

  Male Adult 0.00 ( -0.27 , 0.24 )   1.00 ( 0.78 , 1.24 )   0.39 ( 0.31 , 0.47 )   0.38 

    Juvenile 0.04 ( -0.17 , 0.28 )   0.96 ( 0.70 , 1.27 )   0.35 ( 0.19 , 0.53 )   0.32 

Fall Female Adult 0.07 ( -0.32 , 0.42 )   0.96 ( 0.72 , 1.26 )   0.31 ( 0.22 , 0.41 )   0.28 

    Juvenile 0.03 ( -0.21 , 0.27 )   0.98 ( 0.75 , 1.26 )   0.32 ( 0.21 , 0.44 )   0.30 

  Male Adult 0.07 ( -0.32 , 0.42 )   0.96 ( 0.72 , 1.26 )   0.31 ( 0.22 , 0.41 )   0.28 

    Juvenile 0.03 ( -0.21 , 0.27 )   0.98 ( 0.75 , 1.26 )   0.32 ( 0.21 , 0.44 )   0.30 
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 Response curves for lobster catch density as a function of bottom temperature during 

spring were dome-shaped with highest lobster catch density between 6-10 ˚C (Fig. 5.4). In 

contrast, during the fall lobster catch densities increased across the range of bottom 

temperature but plateaued at higher temperature. The two-dimensional terms for interaction 

between salinity and longitude were significant in spring models and for male juvenile 

lobsters during fall (Appendix B). Response curves for distance offshore were similar in all 

models (Fig. 5.4), where lobster catch densities increased with increasing distance from 

coastline and peaked around ~4,000-4,500 m. Longitude was a part of significant interaction 

term in 6 out of 8 lobster models (Appendix A). Longitude response curves for female and 

male juvenile models in fall were similar, and indicated that study area between ~68.5°-69° 

W had the lowest effect on abundance of both male and female juvenile lobster groups in fall 

(Fig. 5.4).  
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Figure 5-4: Plots describing the partial effect of significant univariate explanatory 

variables in the best-fitting generalized additive models for lobster catches in 

Maine/New Hampshire bottom trawl surveys with 95% confidence intervals for the 

fitted line. The y-axis represents the degree of smoothing with its range showing the 

relative importance of the explanatory variable. Tick marks on the x-axis denote 

observations. 

5.4.2 FVCOM and CRM skill assessment 

FVCOM and CRM predictions for bottom temperature and depth were similar to 

observations but predicted and observed bottom salinities were less so (Fig. 5.5). Regression 

coefficients showed that FVCOM and CRM predictions were almost unbiased for depth and 

bottom temperature, but biased for bottom salinity. Despite these shortcomings, FVCOM 

salinity estimates were used because they provided best bottom salinity prediction in the 
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study area and captured general spatial and temporal trends in the observations. 

 

Figure 5-5: Bivariate observed versus predicted plots illustrating the similarity between 

modeled and observed environmental data. Total 2,982 modeled-observed match-ups 

were used to assess Coastal Relief Model (CRM) and Finite-Volume Community Ocean 

Model (FVCOM) skills in depth, bottom salinity, and bottom temperature. 

5.4.3 Mesoscale climatic impacts on lobster distribution 

 During 2000-2014, the spring centroids of observed and modeled lobster distribution 

were mainly between 69.3°-68.6° W, while observed and modeled fall centroids were farther 

east between 69.4°-68.8° W (zones C and D: Fig. 5.6). All observed spring centroids shifted 

northeast, while this unidirectional northeastward shift was generally captured by spring 

GAMs based on changes in bottom temperature and salinity. Observed and modeled 

centroids for adult lobster during fall initially shifted in different directions. Modeled fall 

centroids first shifted southwest then shifted northeast, while the corresponding observed 

centroids shifted east. Spatial discrepancies between modeled and observed centroids were 

larger during fall, and centroids of observed juvenile lobster distribution showed larger 

changes. Magnitude of spatial discrepancies between observed and modeled centroids were 

generally within 20 km (Fig. 5.6).  
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Figure 5-6: Changes in the centroids of predicted (red arrows) and observed (blue 

arrows) lobster catch densities in the Maine/New Hampshire bottom trawl survey (2000-

2014). The observed and modeled shifts in centroids were aggregated to 3-time blocks 

for ease of visual interpretation (2000-2005, 2006-2010, and 2011-2014). The arrows 

represent the direction of change in the annual centroids. SP-Spring, FL-Fall, ADU-

Adult, JUV-Juvenile, M-Male, F-Female 

 Median predicted lobster catch density in the study area ranged from 0.53 to 1.58 (Fig. 

5.7). Predicted lobster catch density was higher in inshore, for adults, and during fall (Fig 

5.7). Lobster catch density was projected to increase under the warm climatology scenario 
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than in the cold climatology scenario across the study area in both seasons and for all size 

groups (Figs. 8-9). Median predicted lobster catch density ranged from 0.32 to 1.22 under the 

cold climatology scenario and 0.65 to 2.02 under the warm climatology scenario (Fig. 5.8). 

Differences in lobster catch density were pronounced inshore, and largest for male adults in 

spring (0.89) and smallest for juvenile males in spring (0.33). Differences between the two 

climatology scenarios were generally larger mid-coast (zones B-F/G), and more pronounced 

during spring except for male juveniles (Fig. 5.9). Lobster catch density was projected to 

increase across the Gulf of Maine under the warm climatology scenario than in the cold 

climatology scenario by 65.3% (fall adult male) to 119.8% (fall juvenile male) (Fig. 5.9). 

 

Figure 5-7: Average predicted season-, stage-, and sex- specific lobster catch densities in 

inshore Gulf of Maine during 1982-2013. The color key indicates predicted number of 

lobsters per 792 m2. SP-Spring, FL-Fall, ADU-Adult, JUV-Juvenile, M-Male, F-Female. 
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Figure 5-8: Predicted lobster catch densities under warm (1st & 2nd rows) and cold (3rd 

and 4th rows) climate scenarios. The 5th and 6th row shows difference in catch density 

between warm and cold climate scenarios derived through cell-by-cell map subtraction. 

The rainbow color key indicates predicted number of lobsters per 792 m2, while the red-

blue color key indicates changes in lobster catch per 792 m2.
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Figure 5-9: Difference (top row) and percentage difference (bottom row) in predicted 

season, stage, and sex specific lobster catch density per 792 m2 between warm and cold 

climate scenarios in Maine Lobster Management Zones A–G.  

5.5 Discussion 

5.5.1 GAMs 

The GAMs with Tweedie distributions for zero-inflated survey catch data were useful 

prediction tools based on cross-validation results (Table 3 & Appendix A), and this study 

recommend the Tweedie models to be considered as a candidate modeling approach for 

similar future studies. Model results indicate that nonlinear relationships between lobster 

catch density and environmental variables were common in the ME-NH Inshore Trawl survey 

data. For example, the GAM response curves captured nonlinear lobster responses to bottom 

temperature and salinity within the specie’s known tolerable temperature and salinity ranges 

(Fig 6; Harding 1992; Mercaldo-Allen and Kuropat 1994; Lawton and Lavalli 1995). 

Lobsters are found across a wide range of water temperature (-1 to 26 ˚C; Lawton and 

Lavalli, 1995; Quinn, 2016) and salinity (10-32 ppt), but modeled nonlinear lobster responses 

likely reflect the species’ abilities to detect local environmental variabilities associated with 
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temperature and salinity and demonstrate the species’ sensory-based adaptive behaviors to 

avoid suboptimal habitats (Jury et al., 1994; Crossin et al., 1998).  

Bottom temperature was included in all final GAMs as a univariate term, indicating 

that this variable alone significantly influenced lobster catch density regardless of season, 

stage, or sex. Lobsters are capable of behavioral thermoregulation and actively seek seasonal 

optimal thermal habitats over others to maximize its growth or reproductive benefits (Crossin 

et al., 1998; Ennis, 1984; Jury and Watson III, 2013). Water temperature is considered to 

have a pervasive influence on the behaviors of ectothermic lobsters, and high lobster 

densities have been observed in range of 8-18 ˚C (Aiken and Waddy, 1986; Cooper and 

Uzmann, 1980; Ennis, 1984; Jury and Watson III, 2013). Season-specific temperature 

response curves likely reflect their responses to changes in water temperature that is 

dependent on the season or their thermal history (i.e. acclimation). Sex-and stage-based 

differences were not apparent in the final GAMs outputs; however, discrepancies concerning 

the sex and stage-specific responses to temperature reported in different studies may be due 

to the (1) spatial scale of this study area, (2) the range and timing of temperature data 

recorded by ME-NH survey that varied between 2.6-12 °C in spring and 5.7-14.3 °C in fall, 

and (3) potential unmeasured underlying ecological processes present in the in-situ survey 

data. 

The significance of univariate bottom salinity terms for juveniles but not adults in the 

fall models may be due to ontogenetic differences and water temperatures (Jury et al., 1994). 

For example, juvenile and adult lobsters are limited osmoregulators restricted to coastal 

waters, but juveniles have less salinity tolerance compared to adults and more susceptible to 

osmotic stress (Lawton and Lavalli, 1995; Mercaldo-Allen and Kuropat, 1994; Watson III et 

al., 1999). Furthermore, interactive effects of temperature and salinity on lobsters have also 

been observed that low salinity is causes higher osmotic stress at higher water temperature 
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(McLeese 1956; Mercaldo-Allen and Kuropat 1994). Therefore, the significant univariate 

bottom salinity terms included in the final fall juvenile models potentially reflect the 

combination of ontogenetic differences and interactive effects of temperature and salinity. 

With the exception of the model for juvenile lobsters in fall, all final GAMs included an 

interaction between bottom salinity and longitude (Fig. 5). The bivariate interactive terms 

indicate that bottom salinity exerted varying magnitude of influence on local lobster 

abundance along the coastline (i.e. longitude axis), especially when the study area was 

characterized by lower bottom salinity during spring (Table 2 & Appendix B & C). 

Furthermore, the effect of longitude shown in both univariate and bivariate terms slightly 

decreased around ~69° W where the Penobscot bay is located (Fig.1 & Appendix C). This 

localized salinity-longitude effect is likely linked to the changes in bottom salinity in area 

around Penobscot Bay, and the GAMs may have captured the systematic ecological response 

of lobsters. 

Distance offshore significantly influenced season, stage, and sex specific lobster catch 

density (Table 2). However, unlike bottom temperature and salinity that have direct influence 

on lobsters, distance offshore should be considered as an indirect variable (i.e. substitute or 

proxy) for unmeasured but more influential variables such as magnitude of both salinity and 

temperature variabilities or availability of prey or nesting opportunities. While these indirect 

variables are often not considered as key ecological niche constraints of lobsters, the 

feasibility of the correlative modeling approach can implicitly reflect the unmeasured 

ecological interactions and to predict the abundance of lobster within the “observed” range of 

environmental conditions.  

All four predictor variables (bottom temperature, bottom salinity, distance offshore, 

and longitude) were included in the final GAMs that explained 47-56% of the total deviance. 

Spring GAMs explained more deviance than fall GAMs, suggesting that the contribution 
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from the predictor variables, especially the two more direct and dynamic temperature and 

salinity variables were less significant during fall (Table 2). Boudreau et al., (2015) suggest 

that the effects of bottom-up forcing in regulating lobster abundance are likely higher at 

thermal range boundaries. Bottom temperature in the inshore Gulf of Maine varied between 

2.6-12 °C in spring and 5.7-14.3 °C in fall, where mean spring and fall bottom temperature 

were 5.5°C and 9.9 °C respectively. Several studies reported that the species preferred 

thermal range is in between 8-18 °C (Reynolds and Casterlin, 1979; Crossin et al., 1998; 

ASMFC, 2009; Tanaka and Chen, 2016), which suggest that the spring bottom temperature 

was closer to the lobsters’ lower thermal range boundary and lobsters were likely 

experiencing stronger bottom-up temperature control during spring. While not to same extent, 

reduced bottom salinity during spring also likely resulted in stronger bottom-up salinity 

control on lobster distribution as lobsters generally prefer higher salinity over lower salinity 

(Appendix C; McLeese, 1956; Mercaldo-Allen and Kuropat, 1994).  

5.5.2 Drivers of lobster distribution and abundance 

Changes in bottom-up (e.g., climate and temperature) and/or top-down (e.g. fishing 

and predation) forcing are both important mechanisms regulating the ecology of lobster 

(Grabowski et al., 2009; Steneck and Wahle, 2013; Boudreau et al., 2015). This study 

quantified partial bottom-up effects on changes in lobster distribution arising from bottom 

temperature and salinity. The inter-seasonal difference in the magnitude of bottom-up 

temperature and salinity control likely resulted in the difference in precision of GAM outputs. 

Seasonal changes in the GAM performances can be used to estimate inter-seasonal 

variabilities in the magnitude of bottom-up temperature and salinity forcing on lobster 

distribution in the inshore Gulf of Maine. Spring GAMs showed higher skill as larger 

spatiotemporal discrepancies between observed and modeled lobster centroids were found 

during fall. A unidirectional northeastward shift was exhibited by all observed centroids 
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except by fall adult lobsters, and spring GAMs were able to capture general trend in lobster 

distribution shift based on changes in bottom temperature and salinity. Larger spatiotemporal 

discrepancies between observed and modeled lobster centroids during fall suggest reduced 

bottom temperature and salinity controls on changes in lobster distribution, where the 

observed lobster centroids during fall initially shifted in the different direction from that 

expected on the basis of the bottom temperature and salinity controls (Fig. 6). It is likely that 

the bottom-up temperature and salinity control was stronger during spring when the bottom 

temperature and salinity were below the species’ preferred temperature and salinity ranges 

(Boudreau et al., 2015), and the bottom-up temperature and salinity control played a weaker 

role in regulating lobster distribution during fall when temperature and salinity were near 

optimum for lobsters.  

This study showed spatiotemporal changes in lobster catch density in the inshore Golf 

of Maine were not fully dictated by bottom-up temperature and salinity control but also 

driven by the number of top-down/bottom-up factors that were not considered in our 

modeling approach. For example, lobster in this region experienced several major ecological 

changes through the (1) demographic diffusion (e.g. intraspecific habitat competition), (2) 

decline in the predatory pressure from groundfish (e.g. Atlantic cod) and (3) an increase in 

fishing effort (e.g. number of traps) (Steneck, 2006; Mcmahan et al., 2013; Steneck and 

Wahle, 2013; Boudreau et al., 2015). Lobsters show strong agonistic behavior and seek more 

space as they grow larger. Due to high population density, habitat competition among 

lobsters is considered intense and widespread in the inshore Gulf of Maine (Lawton and 

Lavalli, 1995; Steneck, 2006; Steneck and Wahle, 2013). Larger lobsters avoid area of 

highest population densities (e.g. western inshore Gulf of Maine), which results in 

“demographic diffusion” (Steneck, 2006). Furthermore, as temperatures warmer than 12 °C 

facilitate settlement, increasing bottom water temperature likely opening new nursery 
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grounds and contributing to the increase of juvenile/legal-sized lobsters in the colder (i.e. 

northeastern) side of the study area (Maine DMR, 2016). Several studies have shown that 

decline in both abundance and body size of inshore predators has effectively removed 

predatory constraints on lobster population growth, while increasing fishing efforts have 

exerted a positive influence on lobster abundance due to its significant trophic contribution to 

lobsters from trap bait (Saila et al., 2002; Steneck and Wahle, 2013; Boudreau et al., 2015). 

Grabowski et al., (2009) indicated that a high proportion of the lobsters’ diet is now 

supplemented by herring bait used in the lobster trap, and substantial quantities of baits used 

in traps are luring and fueling lobster abundance in the inshore Gulf of Maine where fishing 

effort is extremely high. It is also noted that undersized lobsters benefit from a high-energy 

substance every time they are caught and released, further enhancing their growth (Saila et 

al., 2002; Grabowski et al., 2009). Furthermore, the center of lobster fishing efforts in the 

inshore Gulf of Maine has shifted northeast due to increased number of traps from zones A-D 

over the last 20 years (Dayton and Sun, 2012; Maine DMR, 2016). The increase in number of 

traps in zones A-D is likely due to lobster fishermen experiencing higher profit-per-trap in 

these zones where the fishery resource is not fully exploited, and also concerns among 

fisherman that maximum rates in zones E-G have already been achieved especially with 

regard to gear density in the near-shore fishing areas (Dayton and Sun 2012). It is likely that 

amount of bait subsidies increased faster in northeastern portion of study area (Zones A-D) 

during 2000-2014, resulting in spatial heterogeneity of the effect of fishing effort.  

Therefore, the general northeastward shift exhibited by the observed lobster centroids 

is likely driven by the composite effect of (1) seasonal difference in the magnitude of bottom-

up temperature and salinity control (2) demographic diffusion due to increase in lobster 

abundance by the depletion of their predators and subsequent intraspecific habitat 

competition (3) and geographically uneven changes in number of traps enhancing lobster 
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population growth in eastern portions of the Gulf of Maine through bait subsidies. The 

assumption of climate-driven unidirectional distribution shifts generally does not account for 

complex species-environment tolerances and interactions (VanDerWal et al. 2013) as well as 

geographically uneven bottom-up and top-down forcing (Steneck and Wahle, 2013). This 

study showed that the assumptions that poleward distribution shifts should be expected in 

response to climate variability is not always expected at a regional scale. While our statistical 

climate-niche modelling approach did not consider variables other than bottom temperature 

and salinity, the model outputs can be used to generate hypotheses about the role of 

additional factors affecting the spatiotemporal changes in lobster catch density for future 

investigation. 

5.5.3 Changes in lobster distribution and abundance 

The characterization and modeling of climate-driven fish and shellfish response in the 

marine ecosystem has become the central research topic within the coupled climate–fisheries 

discipline (Hollowed et al. 2015). Many climate impact investigations to date have focused 

on the 30+ year time frame, but it has long been recognized that commercial fish stocks can 

also show abrupt response to climate variability (Lehodey et al. 2006), with some of the most 

notable examples of climate variability effects on commercial fish stocks found in 

crustaceans and pelagic species (Lehodey et al., 2006; Finney et al., 2010; Mills et al., 2013). 

For example, lobsters showed unexpectedly quick biogeographical response to the intense 

2012 warming, which resulted in an economic crisis within the U.S. lobster fishery.  

This study provided a regional projection of changes in lobster abundance distribution 

under two contrasting hypothetical climatology scenarios, which were separated by more 

than 2 ℃ in the average bottom temperature for both spring and fall (Fig. 4). The spring and 

fall bottom water temperature increased across the study area over the course of the time 

series (Fig.1: Tanaka and Chen 2016). While the bottom temperature in this area is expected 
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to increase over the foreseeable future, the magnitude of the temperature anomalies through 

2060 (~1.5–3 ℃) was observed during the 2012 heat wave within the study area (Herbert et 

al., 2012; Shackell et al., 2014). The biogeographical response of lobsters to the 2012 Gulf of 

Maine heat wave demonstrates how changes in water temperature can lead to significant 

changes in lobster abundance in the inshore Gulf of Maine (Mills et al. 2013). Given the 

highest temperature extracted by the ME-NH bottom trawl survey was 14.3 ˚C and well 

above the hypothetical warm climatology scenario, further increase in bottom water 

temperature would likely have a further positive influence on lobster abundance in this study 

area. 

Our projections are based on quantified response of lobster to limited niche-

requirements and subject to process-based uncertainties. However, our simple statistical 

climate-niche modelling framework can provide local lobster resource managers appreciable 

‘first cut’ approximations of biogeographical responses of lobsters to major modes of climate 

variability in the inshore Gulf of Maine. The climatology scenario-based approach developed 

in this study can provide an initial triage to gauge the magnitude of impact of climate-driven 

thermal environment on the local lobster distribution. Such information could assist 

stakeholders to make an educated guess and prepare for the consequences of abrupt climate 

variability events and reduce potential management uncertainty as many living marine 

resource managements are also influenced by climate anomalies (e.g. warm vs cold 

years)(Sagarese et al. 2014; Shackell et al. 2014). Viewed at appropriate scales, the statistical 

climate-niche modeling framework presented in this study offers a flexible climate risk 

management tool for the stakeholders.  

Finally, the ME-NH survey data were used as a proxy in this study for lobster 

distribution and abundance, which assumed that lobster catches (1) reflected the 

presence/absence and density of the species at a given location, and (2) are not influenced by 
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bias associated with sampling procedure and environmental variability. This assumption was 

assumed to be reasonable for American lobster that have relatively stable and high survey 

catchability in the inshore Gulf of Maine (Runnebaum 2017). While there is little supporting 

empirical evidence around uncertainty for lobster catchability by active gears such as trawl, 

survey catchability changes due to the availability and behavioral pattern of lobsters that are 

further affected by factors such as water temperature and operating procedures. For example, 

water temperature is believed to be an important factor as colder water temperature is 

speculated to reduce lobster catchability (ASMFC, 2005); however, exact mechanisms are 

unknown as water temperature affects lobster behavior in many ways. Moreover, the inshore 

ME-NH survey area may have been relatively saturated any observed changes in lobster 

abundance may have been influenced by the changes in offshore lobster abundance (ASMFC, 

2015). While it is outside the scope of this study, future studies should address need to 

standardize surveys to generate consistent indices.  

5.5.4 Utility of climate-niche models within management context 

Within the context of climate adaptation strategies, application of climate-niche 

models has emerged as a useful tool to quantify the magnitude of bottom-up forcing and 

project the likely consequences of climatic variability on a species’ distribution (Cheung et 

al., 2009; Hare et al., 2013; Tanaka and Chen, 2016). The statistical climate-niche modeling 

approach developed in this study can be used to better understand the relationship between 

commercially important fish stocks and climatically-altered environment in the Gulf of 

Maine. The first signs of these changes might appear in coastal areas, where temperature 

gradients are more extreme.  

The lobster fisheries in the inshore Gulf of Maine waters are managed through fixed 

management boundaries and Maine lobster fishery is regulated through a system that limits 

the number of commercial licenses within each zone. Therefore, geographically uneven 
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change in lobster catch (i.e. abundance increases in some zones and decreases in others) 

could lead to a potential management issue as lobster fishermen cannot easily reallocate their 

fishing effort between zones (Dayton and Sun 2012). While this study did not identify clear 

“winners” among the lobster management zones, the impact of climatic forcing on lobster 

catch was more pronounced in the mid-coast, suggesting that the mid-coast zones are more 

likely to experience an increase in lobster catch density under the environment characterized 

by the warm climatology scenario (Fig. 9). Further modeling effort focusing on long term 

climate change effect on lobster fisheries can facilitate evaluation of management policy 

issues such as whether to maintain the current zone structure based on historical equity, or 

adjust the boundaries recognizing that there could be a significant long-term spatial change in 

lobster biomass. 

While lobsters may initially respond to climatic variation by tracking optimum 

temperature and changing distribution, changes in population dynamics, fishing pressure, 

physiological adaptation, and predator-prey interactions may have a more significant impact 

in the long-term (Cheung et al., 2008; Hale et al., 2011; Simpson et al., 2011; Shackell et al., 

2014). This study should be viewed as a first order approximation of changes in the lobster 

abundance and subject to future refinement. The future efforts towards advancing ensemble 

climate-niche modeling ( Thuiller et al., 2016) or include the incorporation of the mechanistic 

linkage between a species’ fitness and environment (Zurell et al. 2016) as well as 

downscaling of ensemble global climate models (Kearney, 2006; Wiens et al., 2009), which 

would enable the evaluation of the physiological consequences of a species under more 

robust climate change projections and trim the projections toward more probable outcomes.  
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6. CHAPTER 6 –INCORPORATING ENVIRONMEN INTO ASSESSMENT 

6.1 Abstract 

Changes in bottom-up forcing are fundamental drivers of the fish population dynamics. 

Recent literature has highlighted the need to incorporate the role of dynamic environmental 

conditions, particularly climate variability in the assessment of the fishery stocks as a key 

step toward the adaptive fishery management in a changing environment. Combining a 

bioclimate envelope model and a population dynamic model, we propose a model-based 

framework that can incorporate ecosystem products into single-species stock assessments. 

The proposed framework was applied to a commercially important American lobster stock in 

the Gulf of Maine - Georges Bank. The bioclimate envelope model was used to hindcast 

temporal variability in lobster recruitment habitat suitability index due solely to bottom 

temperature and salinity. The climate-driven habitat suitability index was used to inform the 

lobster recruitment dynamics within the size-structured population dynamics model. The 

performance of the assessment model with an environment-explicit recruitment function is 

evaluated by comparing relevant assessment outputs such as recruitment, annual fishing 

mortality, and magnitude of retrospective biases. The environmentally-informed lobster 

assessment model estimated (1) higher recruitment and lower fishing mortality in the late 

2000s and early 2010s, and (2) showed reduced retrospective patterns and improved model 

fit. This analysis indicates that climate-driven changes in lobster habitat suitability 

contributed to increased lobster recruitment and present potential improvement to the species’ 

assessment.  

 
6.2 Introduction 

The American lobster (Homarus americanus) is a commercially harvested benthic 

species in the Northwest Atlantic Ocean (ASMFC, 2015a). This species is an important 

fishery resource throughout its range and supports the most productive lobster fishery in the 



129 

 

world (Wahle et al., 2013; ASMFC, 2015b). The 2016 ex-vessel value of the U.S. American 

lobster fishery exceeded USD 669 million and represented an historic high (ACCSP, 2017). 

The population is assessed as two distinct stock units based on geographic differences in life 

history parameters: Gulf of Maine/Georges Bank (GOMGBK) and Southern New England 

(SNE). Thus, for the purposes of assessment, these are considered unit stocks. The latest 

2015 benchmark assessment found that the SNE stock is severely depleted while the 

GOMGBK stock is at record high abundance (ASMFC, 2015a). In 2016, the GOMGBK 

stock accounted for more than 95% of total American lobster landings, and approximately 

85% of all commercial fish landings in the State of Maine (Maine DMR, 2016; ACCSP, 

2017;). The dependence of New England’s commercial fishing economy on a limited number 

of species increases the vulnerability of this coupled natural and human system to 

environmental changes (Steneck et al. 2011). 

Climate-driven changes in the Northwest Atlantic ecosystem structure are a growing 

concern for the fishery because both mesoscale climate change and variability will (1) 

challenge equilibrium assumptions underlying the population dynamics and subsequent 

biological reference points of the lobster stocks (ASMFC, 2015b); and (2) introduce 

substantial uncertainty into management of the fishery (Caputi et al., 2013; Mills et al., 2013;  

Steneck and Wahle, 2013; ASMFC, 2015a; Le Bris et al., 2018). American lobsters are 

ectothermic and experience strong bottom-up control throughout their range and life stages 

(e.g., climate change; Caputi et al., 2013; ASMFC, 2015a; Boudreau et al., 2015). The Gulf 

of Maine sea surface temperature has increased 0.03 °C per year since 1982 (Pershing et al. 

2015) and bottom temperature showed similar increasing trend (Kleisner et al. 2016). 

According to the latest Intergovernmental Panel on Climate Change - Representative 

Concentration Pathways 8.5 Emissions Scenario (IPCC-RCP 8.5), average bottom 

temperature in the Northeast U.S. continental shelf system is expected to increase more than  
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Climate-driven changes in the ecosystem are likely to influence lobsters as the species 

is known to track its realized niche in space (e.g. distribution shifts) and time (e.g. 

phenological shifts) (Caputi et al., 2013; Fogarty et al., 2007; Qadri et al., 2007). Tanaka and 

Chen (2016) reconstructed the spatiotemporal variability of American lobster bioclimate 

envelopes (i.e. lobster habitat quality and boundaries defined by physical and climatic 

variables) from 1978 to 2013 and found an increasing trend in climate-driven habitat 

suitability in the inshore Gulf of Maine. Mills et al., (2013) reported that record warm 

temperatures in the Gulf of Maine during the 2012 Northwest Atlantic Ocean heatwave 

resulted in unusually early and high landings of newly recruited lobsters to the fishery, which 

ultimately contributed to a decline in total value of the fishery.  

Incorporating ecosystem variability into assessment of the US lobster stocks has been 

advocated as a key step towards implementing adaptive ecosystem-based fisheries 

management for this stock and potentially mitigating the negative effects of climate change 

(ASMFC, 2014). However, the current salient results of U.S. lobster stock assessments focus 

on harvest rates and spawning stock biomass (SSB) and do not explicitly incorporate the 

impact of environmental variability (ASMFC, 2015a). There remains a critical knowledge 

gap in evaluating the synergistic impacts of climate change on stock status as well as 

maximizing the efficiency and accuracy of the existing assessment program.  

To this end, this study presents a model-based framework that can incorporate 

ecosystem products into single-species stock assessments. The framework consists of the 

following two modeling components: (1) an empirical bioclimate envelope model that 

quantifies the spatiotemporal variability of lobster habitat suitability due solely to bottom 

temperature and salinity; and (2) a size-structured population dynamic model that 

incorporates environmental effects to inform recruitment dynamics.  
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It was hypothesized that the GOMGBK lobster recruitment dynamics were driven by 

the climate-driven environmental variability, therefore incorporating environmental signals 

can potentially improve recruitment estimates. To test this hypothesis, changes in annual 

median lobster recruit habitat suitability index (HSI) during 1984-2013 were treated as an 

index of environmental variability, which was assumed to have influenced the stock 

recruitment dynamics during the period. The climate-driven habitat suitability index was used 

to inform the lobster recruitment dynamics within the size-structured population dynamics 

model. The performance of the assessment model with an environment-explicit recruitment 

function is evaluated by comparing relevant assessment outputs such as recruitment, annual 

fishing mortality, and magnitude of retrospective biases.  

The framework was designed to improve assessment of the U.S. American lobster 

stocks but extendable to other fish populations that are impacted by environmental change. 

The proposed model-based framework can improve our understanding of environmental-

driven marine ecological processes and ability to assess the status of exploited fishery 

resources, which can potentially enhance our adaptive management capacity in changing 

environment.  

6.3 Materials and methods 

6.3.1 Description of the GOMGBK lobster fishery 

The fishery considered in this study encompasses portions of the Gulf of Maine and 

Georges Bank (Fig. 6.1). The commercial lobster fishery in the Gulf of Maine and Georges 

Bank started during the 19th century (Mateo et al., 2016). Total landings remained relatively 

low through the 1940s and began increasing during the 1970s. The fishery experienced 

increasing fishing effort throughout the region since 1984, and the total landing has increased 

by more than 600%. Commercial lobster landings in the Gulf of Maine were relatively stable 

through 1990 but increased substantially and reached a time series high of over 64,000 metric 
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tons in 2013. In 2016, the fishery became the most valuable single-species fishery in the US 

(ACCSP, 2017). The fishery is regulated through a series of conservation measurements such 

as minimum and maximum size limitations and v-notching of egg bearing females (A v-

notch is a cut on the tail flipper of a female lobster placed by commercial fishermen to 

identify and protect breeding individuals from harvest: ASMFC 2015a). The fishery is 

divided into several local co-management zones in state waters that regulate effort as well as 

a federally-managed offshore fishery. The GOMGBK stock is mainly harvested by boats 

homeported in the US states of Maine, New Hampshire and Massachusetts. More than 98% 

of the total lobster catch in the region was reported from the inshore fishery (< 3 nm from 

shore) which targets mainly lobsters newly molted to legal size. The dynamic of the fishery is 

modeled using a size-structured model that estimates numbers of lobster by size, sex, season, 

and year (Chen et al. 2005; ASMFC, 2015a). 

While the largest American lobster population is found in the Gulf of Maine, lobsters 

in the Gulf of Maine and Georges Bank are considered a single biological stock unit for the 

purposes of population assessment (ASMFC, 2015a). Sex ratio in the GOMGBK lobster 

stock is skewed towards females (ASMFC, 2015a). This is potentially due to region-wide 

conservation efforts targeting egg-bearing and v-notched females. Lobsters are long-lived; 

they can reach 70+ years in the wild. Molt frequency varies with life history stage and size, 

and tagging studies show that molting lobsters generally increase in size by about 15% in 

length and weight (Factor, 1995). Lobsters normally require 20-30 molts from the early larval 

stage to reach the minimum legal size of 81 mm carapace length (CL). Molt frequency 

declines after sexual maturity is reached. American lobster is assumed to be a k-selected 

species and the GOMGBK stock experiences relatively low natural mortality (M = 0.15 y-1 

assumed in the latest benchmark assessment; ASMFC 2015a).  
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Figure 6-1: Left: Gulf of Maine/Georges Bank (GOM/GBK) lobster stock management 

areas based on the NOAA statistical reporting areas. Right: Sampling locations from 

bottom trawl surveys during 1984-2013 used in this study (MA-Massachusetts, ME-

Maine New Hampshire, NEFSC-Northeast Fisheries Science Center).  

6.3.2 Data  

The data available for the bioclimate envelope model are 30 years of bottom trawl 

surveys and a selection of the associated biological (CL) and environmental (season, bottom 

temperature, bottom salinity and depth) variables (1984-2013: Fig. 6.1 & Appendix E). The 

data available for size-structured assessment model are 30 years of seasonal catch and effort, 

catch size compositions, and survey abundance indices and size-compositions (1984-2013: 

Appendix E). The following sections provide summaries of both fishery dependent and 

independent survey data used in this study.  

6.3.2.1 Fishery independent data 

The fishery-independent survey data used in this study were (1) bottom trawl survey 

data collected by the Northeast Fisheries Science Center (NEFSC: 1982-2013) that covers 

offshore continental shelf waters, and the Maine/New Hampshire (MENH: 2000-2013) and 

Massachusetts (MA: 1982-2013) state surveys that cover inshore waters; and (2) coast-wide 



134 

 

ventless trap surveys (VT: 2006-2012) that cover untrawlable substrate (Smith and Tremblay 

2003). All fishery-independent surveys employed a stratified random design. The inshore 

trawl surveys and the NEFSC offshore survey were conducted during the spring (Q2: April-

June) and fall (Q4: October-December) of each year. The coast-wide ventless trap surveys 

were conducted during the summer (Q3: July-September). Information from the coast-wide 

ventless trap survey data (2006-2012) were used for the size-structured assessment model but 

not the bioclimate envelope model because the ventless data lacked necessary spatial (e.g. 

latitude and longitude) and environmental data (e.g. bottom temperature). More detailed 

information on survey area and timing, years surveyed, sampling design, gear, and methods 

for each survey can be found in ASMFC (2015a).  

6.3.2.2 Fishery-dependent data 

Seasonal commercial catch and effort data during the 1984-2013 fishing years were 

analyzed. These fishery-dependent data include a time series of landings and catch size 

composition by season and sex. The size structure of the landed catch reflects the fishery’s 

minimum (81 mm) and maximum (128 mm) legal sizes and was relatively stable over the 

time series. Commercial catch data for the different fisheries that fish the GOMGBK lobster 

stock were aggregated into a single fleet as lobsters are caught using lobster traps of a single 

gear type and the fishery prohibits the landing of lobsters caught by other mobile gear 

(ASMFC, 2015a).  

6.3.3 Bioclimate envelope model 

Using bottom trawl survey data (1984-2013 for NEFSC and MA, 2000-2013 for 

MENH) and the empirical bioclimate envelope model developed by Tanaka and Chen (2015 

& 2016: Fig. 6.2), the impact of environmental variability on American lobster recruits 

during 1984-2013 was quantified as the climate-driven habitat suitability index (HSI) for the 

GOMGBK lobster recruits.  
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Figure 6-2: Schematic representation of the structure of the bioclimate envelope model 

developed in this study, implemented in R programming environment. 

A bioclimate envelope model is a type of species distribution model commonly used 

to evaluate species’ climate-driven habitat suitability based on quantitative associations 

between a set of physical/climatic variables and relative species abundance or occurrence 

(Cheung et al., 2008 & 2009; Tanaka and Chen 2015 & 2016). Lobster recruits were defined 

as lobster of 53–63 mm CL (ASMFC, 2015a). The nominal lobster recruit abundance index 

was calculated as a survey catch per unit of sampling effort (CPUE) at station i, in season j, 

and year y (Chang et al., 2012; Tanaka and Chen, 2015);  

𝐶𝑃𝑈𝐸𝑖𝑗𝑦 = (
𝐶𝑜𝑢𝑛𝑡𝑖𝑗𝑦

𝐴𝑟𝑒𝑎 𝑠𝑤𝑒𝑝𝑡𝑖𝑗𝑦
) ∗ 20     Eq. 6-1 

where Count represents the total quantity of individuals measuring 53-63 CL mm caught and 

Tow duration is measured in minutes. Continuous temperature, salinity and depth variables 
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were delineated into 20 classes using Fisher's natural breaks classification algorithm (Bivand, 

2013). The standardized lobster recruit index was used to develop suitability indices (SIs) for 

bottom temperature, salinity and depth that were treated as a key niche dimensions within the 

bioclimate envelope. The SI of class k for environment variable i was calculated as: 

𝑆𝐼𝑖,𝑘 =
𝐶𝑃𝑈𝐸𝑖,𝑘−𝐶𝑃𝑈𝐸𝑖,𝑚𝑖𝑛

𝐶𝑃𝑈𝐸𝑖,𝑚𝑎𝑥−𝐶𝑃𝑈𝐸𝑖,𝑚𝑖𝑛
     Eq. 6-2 

The SIs were combined to form composite habitat suitability index (HSI) also scaled 

from 0 to 1 following arithmetic mean equation.  

𝐻𝑆𝐼 =
∑ 𝑆𝐼𝑖

𝑛
𝑖=1

𝑛
      Eq. 6-3 

where 𝑆𝐼𝑖 is an SI value associated with the ith environmental variable and n is the number of 

environmental variables (n=3) included in the HSI. The unstructured-grid Finite-Volume 

Community Ocean Model configured in the Northwest Atlantic Shelf region was used to 

provide monthly estimates of bottom temperature and salinity by location and time in the 

Gulf of Maine and Georges Bank from 1984 to 2013 (Chen et al. 2006; Li et al. 2017). 

Bathymetry data were obtained from the U.S. Coastal Relief Model (NGDC, 1999). A 

detailed description of the model calibration and validation procedures can be found in 

Tanaka and Chen (2015 & 2016).  

Recruits were assumed to enter the population instantaneously at the end of the spring 

season; therefore, the bioclimate envelope model was applied to generate a climate-driven 

lobster recruit HSI for every spring between 1984 and 2013. Fall recruitment was not 

considered because this study focused on the primary molt which is assumed to occur at the 

end of spring (REF).  

6.3.4 Size-structured American lobster assessment model 

The stock assessment model used in this study is a modified version of a size-

structured model that was originally developed by Cao et al., (2016). The model 

configurations in this study followed the base case for the 2015 ASMFC GOMGBK lobster 
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stock benchmark assessment (Table 6.1: ASMFC, 2015a). The model uses multiple data 

sources and a prespecified number of size classes (5-mm size classes between 53 and 223 

mm CL; Table 6.1). Inshore and offshore survey data that include abundance indices and size 

compositions for the time period (1984-2013) were used in the population model. Seasonal 

commercial catch and size composition data were available for the whole study period (Q1-4 

& 1984-2013). The model was fitted over a 30-year period (1984-2013). The modelling time 

step is one season (Q1: January-March, Q2: April-June, Q3: July-September, and Q4: 

October-December) based on the management framework used in the GOMGBK lobster 

fishery. The model used the seasonal time step to account for strong seasonality in the 

GOMGBK lobster fishery dynamics (i.e. low fishing effort during the winter and spring, but 

extremely high fishing effort during summer). Pre-specified proportions of females-at-size at 

each time step was used to estimate male/female ratio at size/time. A detailed description and 

equations of this model can be found in Cao et al. (2016). 
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Table 6-1: Summary of data input and model configurations for the Gulf of Maine / 

Georges Bank lobster size-structured model. 

Component Description 

Year 1984-2013 

Season  4 

Number of sexes 1 

Size range 53-223 mm 

Size bins 5 mm 

Initial condition  First-year size composition assumed in the model  

Recruitment size bins 53-63 mm 

Spawner-recruit relationship No functional relationship 

Growth Prespecified growth transition matrices (n=4) 

Number of commercial fleet 1 

Commercial fleet selectivity at size Double logistic  

Survey data NEFSC spring (1984-2013) and fall (1984-2013) 

MA spring (1984-2013) and fall (1984-2013) 

MENH spring (2001-2013) and fall (2000-2013) 

Ventless Trap summer (2006-2012) 

Survey selectivity at size Double logistic  

Fishing mortality rate Instantaneous rates 

Natural mortality rate M = 0.15 y-1 for all size groups and seasons 

 

Basic size-structured population dynamic model: The number of lobsters in size bin k at 

the beginning of year t and season m, 𝑁𝑘,𝑡,𝑚, is formulated as:  

𝑁𝑘,𝑡,𝑚 = 𝑁𝑘,𝑡,𝑚−1𝑉𝑘,𝑡,𝑚−1𝐺𝑘,𝑚−1 + 𝑅̂𝑘,𝑡,𝑚    Eq. 6-4 

where Gk,m-1 is the growth transition matrix that describes the probabilities of a lobster 

growing from a size class in month m to another size class in month m+1 (no negative growth 

is allowed); 𝑉𝑘,𝑡,𝑚−1 is the survival rate from both fishing (F) and natural mortality (M) in the 

previous season of year t; and 𝑅̂𝑘,𝑡,𝑚 is the recruitment in year t that recruits to season m and 

size class k.  



139 

 

Initial Conditions: the numbers-at size-at the beginning of the first year specifies the state of 

population when the model starts. The initial condition (i.e. numbers-at-size, Nk, at the first-

time step, 1984 Q1) was calculated as: 

𝑁𝑘 = 𝑃𝑖𝑎𝑘𝑁      Eq. 6-5 

where Piak are pre-specified proportions-at-size used to estimate the total numbers (N; see 

appendix) for the first year. The observed size composition values from the 1984 spring 

surveys were used as the initial size composition 

Annual survival rate: Annual survival rate for lobsters in each size bin, season and year, 

Vk,t,m is calculated as: 

𝑉𝑘,𝑡,𝑚 = 𝑒𝑥𝑝 (−(∑(𝐹𝑚,𝑡,𝑘) + 𝑀)    Eq. 6-6 

Natural mortality was assumed to be time/size-constant and fixed at M = 0.15. Fishing 

mortality was modeled as an instantaneous rate and the product of fully-selected fishing 

mortality (Fmult) and selectivity-at-size (Sk). The fishing mortality for year t, season m, and 

size bin k was calculated as:  

𝐹𝑚,𝑡,𝑘 = 𝐹𝑚𝑢𝑙𝑡𝑚,𝑡𝑆𝑘      Eq. 6-7 

where Fmult is modeled as a random walk process and calculated in log space as;  

𝑙𝑜𝑔 (𝐹𝑚𝑢𝑙𝑡𝑚,𝑡) = 𝑙𝑜𝑔 (𝐹𝑚𝑢𝑙𝑡𝑚−1,𝑡) + 𝑙𝑜𝑔 (𝐹𝐷𝑒𝑣𝑚,𝑡)  Eq. 6-8 

𝐹𝑚𝑢𝑙𝑡𝑚,𝑡 is determined by two sets of parameters, 𝐹𝑚𝑢𝑙𝑡𝑚,1, the parameter for first year and 

each season, and, 𝐹𝐷𝑒𝑣𝑚,𝑡, the deviation of the parameter from the value in the first year. 

The model estimates Fmult,m,1 and a set of FDevm,t that is the error term of random walk that 

has mean of zero.  

A double logistic function was applied to quantify the bottom trawl and fixed trap 

survey selectivities with each of the four parameters estimated during model-fitting. The 

selectivity vector was rescaled to maximum value of 1;  

𝑆𝑘 =
1

1+𝑒𝑥 𝑝(𝑏(𝑎−𝐿𝑘))
(1 −

1

1+𝑒𝑥 𝑝(𝑑(𝑐−𝐿𝑘))
)   Eq. 6-9 
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𝑆𝑘 =
𝑆𝑘

𝑆𝑚𝑎𝑥
     Eq. 6-10 

Growth: Lobster growth was assumed to vary by season and occur only in summer (Q3) and 

fall (Q4). Seasonal growth transition matrices were estimated externally and pre-specified as 

inputs (Appendix E). Seasonal growth transition matrices were held constant over the model 

time-period.  

Recruitment: Lobster recruits were assumed to enter the first three size bins (53-63 mm CL) 

and recruit to the fishery at the beginning of summer. The proportion of the recruitment to the 

first three size bins was pre-specified (0.66, 0.33, 0.01). The proportion of recruitment in 

each season was also pre-specified (0, 0, 0.66 0.34). No functional relationship was assumed 

for the GOM-GBK lobster spawner-recruit relationship. Recruitment was modeled as the 

product of annual recruitment and the proportion of the annual recruitment (Rt) that recruits 

to each season (λm) and each size-class (λk): 

𝑅𝑡,𝑘,𝑚 = 𝑅𝑡𝜆𝑘𝜆𝑚    Eq. 6-11 

Annual recruits were estimated as:  

𝑅𝑡 = 𝑅̅𝑒𝑅𝑑𝑒𝑣𝑡−
𝜎𝑅

2

2     Eq. 6-12 

where 𝑅̅ is expected recruitment (i.e. the mean estimated by the model); Rdevt is the 

recruitment deviation in year t and assumed to follow normal distribution; σ𝑅 is the 

recruitment standard deviation in log space. Rdevt was a bounded vector with values that 

summed to zero ( 
𝜎𝑅

2

2
 is the lognormal bias correction so that the Rdevt is summed to zero). 

The recruitment model assumed that the recruitment deviations follow trends in 

environmental variability (e.g. water temperature). The environmental index was essentially 

treated as a survey of annual recruitment deviations, i.e., Rdevt (Schirripa et al., 2009). The 

model then scales the environment-dependent recruitment variability using information from 
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this source. The likelihood of the recruitment deviations, is added to the total likelihood and 

calculated as:  

𝐿𝑅𝑑𝑒𝑣 = ∑ (
𝐸𝑛𝑣𝑡−𝑅𝑑𝑒𝑣𝑡

𝜎𝑡
)

2

𝑡     Eq. 6-13 

where 𝐸𝑛𝑣𝑡 is the environmental index (i.e. lobster recruit HSI) in year t, and σ𝑡 is the 

standard deviation of the observation error of the environmental time series. Recruitment in 

the base case model (without environmental index) was treated as parameters and estimated 

without assuming any functional relationship with SSB.  

Weight & Maturity at size and Spawning Stock Biomass: Weight/maturity-at-size 

parameters were assumed known and used as inputs (Appendix E). While the model does not 

handle sex difference explicitly, a pre-specified proportion of females-at-size at each time 

step was used to estimate male/female ratio at size/time in calculating spawning stock 

biomass (Appendix). The spawning stock biomass as calculated using the population 

abundance at size (𝑁𝑘), the weight-at-size (𝑊𝑘), the pre-specified proportions mature-at-size 

(Pm), the pre-specified proportions of females-at-size (Ps), and the pre-specified proportion 

of total mortality during the year prior to spawning (pSSB) as: 

𝑆𝑆𝐵𝑡 = ∑ 𝑁𝑡,𝑘𝑘 𝑒−𝑝𝑆𝑆𝐵𝑍𝑡,𝑘
𝑊𝑡,𝑘𝑃𝑚𝑡,𝑘𝑃𝑠𝑡,𝑘   Eq. 6-14 

Model prediction: Predicted catch in weight for year t, season m, and size bin k was 

calculated using the Baranov catch equation and is based on corresponding population 

numbers, 𝑁𝑡,𝑘,𝑚, and fishing mortality, 𝐹𝑚,𝑡,𝑘:   

𝐶𝑚,𝑡,𝑘
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑛 =

𝐹𝑚,𝑡,𝑘

𝐹𝑚,𝑡,𝑘+𝑀
(1 − 𝑒(−(𝐹𝑚,𝑡,𝑘+𝑀))) 𝑁𝑚,𝑡,𝑘𝑊𝑡,𝑘   Eq. 6-15 

Survey-specific catchability, 𝑞𝑖, is calculated internally as: 

𝑙𝑛 (𝑞𝑖) =
1

𝑛𝑏
∑ 𝑙𝑛 (

𝐼𝑛𝑑𝑒𝑥𝑖,𝑡
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐵𝑖𝑜𝑚𝑎𝑠𝑠
𝑖,𝑡
𝑆𝑢𝑟𝑣𝑒𝑦)  𝑏     Eq. 6-16 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑖,𝑡
𝑆𝑢𝑟𝑣𝑒𝑦

= ∑ 𝑁𝑖,𝑡
𝑠𝑢𝑟𝑣𝑒𝑦

𝑊𝑡,𝑘 𝑘     Eq. 6-17 
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𝑁𝑖,𝑡
𝑠𝑢𝑟𝑣𝑒𝑦

= 𝑁𝑖,𝑡,𝑘𝑆𝑖,𝑡,𝑘     Eq. 6-18 

𝑁𝑖,𝑡,𝑘 = 𝑁𝑡,𝑘(1 − 𝑒𝑥𝑝(−(𝑝𝑆𝑢𝑟𝑣𝑒𝑦)𝑍𝑡,𝑘))    Eq. 6-19 

where Si,t,k is the selectivity of survey i, year t and size-class k, ; 𝑝𝑆𝑢𝑟𝑣𝑒𝑦 refers the 

proportion of year prior to the survey and allows model to adjust the timing of the survey and 

nb is the number of time block (nb =1). Predicted survey abundance index for survey i, in year 

t was calculated as  

𝐼𝑛𝑑𝑒𝑥𝑖,𝑡
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑞𝑖 ∑ 𝑁𝑖,𝑡,𝑘𝑘 𝑆𝑖,𝑡,𝑘    Eq. 6-20 

Predicted catch size composition is calculated as  

𝐶𝑆𝑚,𝑡,𝑘
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =

𝐶𝑚,𝑡,𝑘
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

∑ 𝐶𝑚,𝑡,𝑘
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑘

    Eq. 6-21 

where 𝐶𝑆𝑚,𝑡,𝑘
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

k is the proportion of predicted catch for year t, season m and size-class k. 

The predicted survey size composition was calculated as: 

𝑆𝑆𝑖,𝑡,𝑘
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =

𝑁𝑖,𝑡,𝑘
𝑆𝑢𝑟𝑣𝑒𝑦

∑ 𝑁
𝑖,𝑡,𝑘
𝑆𝑢𝑟𝑣𝑒𝑦

𝑘

     Eq. 6-22 

where 𝑆𝑆𝑖,𝑡,𝑘
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 is the proportion of abundance at the survey time of survey i, year t, and 

size-class k.  

Observational models and likelihood functions: Observational models are used to fit the 

population dynamics model to fishery independent and dependent data. Model fitting is 

conducted by maximizing the log-likelihood which is a function of several components (e.g., 

total commercial catches, total abundance indices from survey, and length composition of 

commercial and survey catches). The overall objective function is the sum of log likelihood 

functions linking observed and predicted values of various life history and fishery processes 

which were assumed that these are normally distributed on a log scale. A penalty function is 

included for estimated fishing mortality fishing mortality in the overall objective function to 

exclude biologically unrealistic estimate. The penalty is associated with any F greater than an 
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input maximum value, calculated as 1000*(F-max F)2 for F > max F, where max F should be 

a maximum fishing mortality level possible for the fishery and was defined as max F = 3.  

Prespecified effective sample size (ESS) and coefficient of variations (CV) was used 

to account for assumed errors and variations associated with total catch, survey abundance 

indices (CV) and size composition (ESS). The CVs of the survey abundance indices and 

commercial catch were set to be 0.25 and 0.1 respectively. The following multinomial 

distribution likelihood function was assumed for catch and survey size compositions:  

𝑙𝑛 (𝐿) = 𝑙𝑛(𝐸𝑆𝑆!) − ∑ 𝑙𝑛(𝑥𝑘!) + 𝐸𝑆𝑆 ∑ 𝑝𝑘
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑘 𝑙𝑛 (𝑝𝑘
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑘 ) Eq. 6-23 

where EES is the input effective sample size and is used to create the number of lobster in 

each size bin, 𝑥𝑘; 𝑝𝑘
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is an observed proportion and 𝑝𝑘

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
is the associated 

predicted proportion.  

The following lognormal distribution likelihood function was assumed for catch, 

survey indices and recruitment deviation. Furthermore, an environmental index (i.e. HSI) was 

treated as an indirect observation for recruitment deviations.  

𝑙𝑛(𝐿) = −𝑙𝑛 (√2𝜋𝜎𝐼
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) − 𝑙𝑛(𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) −

(𝑙𝑛(𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))2

2(𝜎𝐼
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2  Eq. 6-24 

Parameter estimations: All log likelihood functions were converted to negative log 

likelihoods for the minimization. Optimization was implemented using Automatic 

Differentiation Model Builder (ADMB; http://admb-foundation.org/), which was used to 

minimize the negative log-likelihood. The model outputs are predictions of relevant 

population and fishery parameters such as annual total catch, size composition for surveys 

and commercial catch, population abundance and biomass, and annual fishing mortality. The 

model generated estimates of abundance, spawning stock biomass, population size 

composition, recruitment, and annual fishing mortalities and exploitation rates. 

6.3.5 Incorporating environmental variability into the lobster assessment model 
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This model has the capacity to use environmental effects to inform recruitment 

dynamics. Changes in annual median HSI over 30 years were treated as an index of 

environmental variability, which was assumed to have influenced the lobster recruitment 

dynamics during 1984-2013. While this study did not consider a “lag” between the 

environmental conditions that produce recruits in year (t) and when they actually ‘recruit’ to 

the assessment model, two different running averages (3 and 5-year average) of the HSI time 

series were both considered given the egg-to-recruit process likely takes more than one year. 

The bioclimate envelope model was used to derive a time series of median spring lobster 

recruit HSI as a function of changes in bottom temperature and salinity, and it was assumed 

that the GOMGBK lobster recruitment deviation during 1984-2013 was assumed to be 

positively related to the HSI. The temporal variability in the spring lobster recruit HSI was 

used as a composite environmental variability index for tuning the lobster recruitment 

deviations.  

The performance of size-structured models with environmentally informed 

recruitment dynamics was evaluated by comparing relevant assessment outputs such as 

recruitment, annual fishing mortality, and magnitude of retrospective biases. The full 

assessment time series is compared with model runs of identical structure but with 1, 2, …, 7 

years of data sequentially removed to quantify magnitude of retrospective bias using a 

revised Mohn’s rho statistic. The Mohn’s rho value is zero when the peeled assessments 

match exactly with full time series assessment; Hurtado-Ferro et al., 2014).  

6.4 Results 

6.4.1 Bioclimate envelope analysis of the GOMGBK lobster recruitment 

Observed bottom temperature, salinity and depth varied between 1.2-14.0 ◦C, 25.7-

35.6 ppt, and 0-449 m during springs of 1984-2013. The suitable spring bottom temperature 

range (SI > 0.8) for GOMGBK lobster recruits was found in 10.2 -14.0 ◦C. The suitable 
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salinity range was observed at 31.2-32 ppt, and suitable depth range was observed at 28.3–

68.5 m (Fig. 6.3).  

 

Figure 6-3: Suitability Index (SI) curves of bottom temperature, bottom salinity and 

depth for American lobster recruit size classes in spring (April–June).  

Spatial variability of the bioclimate envelopes for American lobster recruits were 

visualized using the predicted HSI at every FVCOM grid in the GOMGBK statistical areas 
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(Fig. 6.4). Overall, the model predicted higher habitat suitability in inshore waters while 

offshore areas were charactarized by low habitat suitability during 1984-2013. The changes 

in climate-driven habitat suitability during 1978-2013 showed a ‘high-north: low-south’ 

spatial pattern (Fig. 6.4). In the spring, there was greater change toward higher habitat 

suitability in the southern Gulf of Maine/Georges Bank. Temporal variation in climate 

driven-habitat suitability during 1984-2013 showed an increasing trend in habitat suitability 

in 2007-2013 (Fig. 6.5). 
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Figure 6-4: Left: spatial distribution of the median American lobster recruitment habitat suitability index (HSI) over 1984-2013. 

Right: change in HSI where darker red indicates change toward higher habitat suitability at higher magnitude. Bottom: temporal 

variability of HSI with the 3 and 5-year average.  
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Figure 6-5: Temporal variability of American lobster recruit HSI with 3 and 5-year average  
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6.4.2 Fitting of observed data using size-structured lobster assessment model 

Overall, the size-structured model captured the fishery-independent size compositions 

accurately, suggesting that satisfactory performances of the size-structured model and survey 

gear selectivities (Fig. 6.6). The model showed a tendency to estimate smaller size modes for 

some surveys (e.g. NEFSC Q2 & MA Q2). The model also captured the mode between 

minimum (81 mm) and maximum (128 mm) legal sizes in the fishery-dependent size 

composition data, which implied the satisfactory performance of the lobster trap selectivity 

model (Fig. 6.7).  

The overall annual/seasonal trends in total landings were well estimated (Figs. 6.8). 

The predicted landings were closely aligned with the observed winter (Q1) and spring (Q2) 

landings, while the model slightly underestimated the summer (Q3) landings in 2005-2013. 

Temporal trends in the survey abundance indices were also well captured, but the model 

predicted the year effects in the surveys #4&5 (spring and fall MA surveys) with much 

smaller magnitudes (Fig. 6.9). Overall, larger discrepancies were observed in the survey 

abundance indices, which is likely due to the larger CV (0.25) associated with the abundance 

indices.  

Predicted recruitment increased throughout the time series, and the highest 

recruitment was predicted in 2013 (Fig. 6.10). Predicted spawning stock biomass (SSB) 

increased overall except during 2004-2008, with the lowest and highest SSB occurring in 

1984 and 2013 (Fig. 6.10). The stock–recruitment relationship was generally positive (Fig. 

6.10), where the strong year classes were associated with years of high SSB.  
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Figure 6-6: Observed (polygons) and estimated (solid lines) size compositions in fishery-independent surveys. Size compositions were 

aggregated across 1984-2013 by survey. Survey #1 - Ventless Trap (summer, 2006-2012); #2&3 - Northeast Fisheries Science Center 

(spring and fall, 1984-2013); #4&5 – Massachusetts (spring and fall, 1984-2013); #6&7 - Maine/New Hampshire (spring and fall, 2000-

2013).  
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Figure 6-7: Observed (polygons) and predicted (solid lines) annual/seasonal size compositions of commercial catches for the Gulf of 

Maine/Georges Bank lobster trap fishery. Size compositions were aggregated across Q1-4 and 1984-2013.   
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Figure 6-8: Observed (red dots) and predicted (solid lines) commercial catches from 1984 to 2013 for the Gulf of Maine/Georges Bank 

lobster trap fishery. 
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Figure 6-9: Observed (red dots) and predicted (solid lines) survey indices for the Gulf of Maine – Georges Bank lobster stock. 
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Figure 6-10: Estimated annual recruitment (top left). Estimated log recruitment 

deviations (top right). Estimated stock–recruitment relationship (bottom left). 

Estimated annual spawning stock biomass (bottom right).  
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The model estimated the highest fishing mortality during the summer (season 3; July-

September), and the lowest fishing mortality during the winter (season 1: January-March) 

(Fig. 6.11). The difference in predicted seasonal fishing mortality reflects that the majority of 

fishing in the Gulf of Maine/Georges Bank occurs during the summer. The estimated fishing 

mortality increased over time during the summer. The model also estimated a higher fishing 

morality rate in the 2000s during the fall, peaking in the mid-2000s and declining in 

subsequent years.  

 

Figure 6-11: Estimated instantaneous fishing mortality from 1984 to 2013 for the Gulf 

of Maine/Georges Bank lobster trap fishery. 

6.4.3 Incorporating environmental variability into the size-structured model 

The impacts of incorporating bottom temperature- and salinity-driven HSI within the 

size-structured model were investigated. The trend in the recruitment deviations from the 

baseline model was positively and significantly correlated with the HIS time series (Fig. 

6.12), indicating that the GOM-GBK lobster recruitments may have been driven in part by 

climatic environmental variability. The assessment model with an environmentally informed 

recruitment dynamics estimated higher recruitment and lower fishing mortality in the early 

2000s and late 2010s (Fig 6.13). 
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Figure 6-12: Left panels: estimated log recruitment deviations and habitat suitability 

index. Right panels: cross-correlation functions measuring correlations between the 

two-time series at different lags (years). Vertical lines indicate the magnitude of 

correlation and lines extending above or below the dotted lines shows statistical 

significance.  
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Figure 6-13: Comparison of estimated annual recruitment and fishing mortality with 

and without environmentally informed recruitment dynamics. 

Incorporating environmental variability on recruitment dynamics led to less 

retrospective bias more consistent recruitment and fishing mortality estimates during the 

period over which retrospective error was assessed (Fig. 6.14 & Table 6.2). Retrospective 

patterns were reduced when environmentally informed recruitment dynamics were 

considered. The recruitment model tuned by HSI with the 5-year running average led to the 

largest reduction in the Moth’s Rho value, while the changes were less significant when the 

recruitment model was tuned by bottom temperature or salinity covariate alone (Table 2).  
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Figure 6-14: Retrospective analysis of recruitment and fishing mortality estimates based on the model without (left panels) and with 

(right panels) environmentally informed recruitment dynamics.  
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Table 6-2: Comparisons of Mohn’s Rho values with different environmental covariates.  

 
Recruitment  Fishing Mortality  

Base model  -0.116 0.169 

HSI  -0.092 0.139 

HSI 3-year average -0.094 0.138 

HSI 5-year average -0.079 0.122 

Bottom temperature -0.102 0.155 

Bottom salinity -0.112 0.162 

 

6.5 Discussion 

Using the GOMGBK lobster stock as a case study, this study presented a modeling 

framework to incorporate environmental variability into stock assessment of commercial 

fisheries. The framework developed in this study integrated an empirical bioclimate envelope 

model, a regional circulation model, and a size-structured population model to demonstrate 

how inclusion of the climate-driven habitat suitability index can provide environmentally-

tuned recruitment and fishing mortality estimates as well as reduced retrospective biases. The 

study results highlight some key benefits of incorporating environmental variability into a 

stock assessment and a potential improvement to management of commercial fisheries.  

It has long been argued that incorporating environmental variability into a population 

dynamic model can reduce uncertainty in the stock assessment by improving parameter 

estimation and model predictions (Maunder and Watters 2003). While most studies have 

focused on linking recruitment to temperature and salinity (Myers 1998), incorporating 

modeled HSI values as an alternative recruitment covariate captures the composite effects of 

climate variability on the populations’ recruitment dynamics. Inclusion of HSI helped explain 

the historic recruitment trend, especially by better capturing the steep increase in recruitment 
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in the late 2000’s. This finding indicates that the base model potentially underestimated 

recruitment and overestimated fishing mortality later in the time series when the 

environmental variability was not considered. Decrease in the total and recruitment 

likelihoods as well as retrospective biases suggest the improvement in the model fits and 

performance.  

These results indicate enhanced model plausibility and justify the increased model 

complexity. However, environmentally-explicit assessment also requires a theoretical 

justification and a careful evaluation of the relationship between environmental variables and 

population dynamics. For example, water temperature is often chosen as a candidate 

environmental variable as temperature regulates physiological and biological processes of 

most marine organisms (Fry 1971, Deutsch et al., 2015). Studies have shown that the 

assumption of an environmental variable (e.g. water temperature) as a main driver of 

recruitment fluctuations can also diminish over time. For example, the link between water 

temperature and marine organisms is often indirect, non-stationary and generally based on 

empirical statistical relationships. Water temperature may represent complex and compound 

effects of bottom-up or top-down changes such as thermal habitat availability, food web 

dynamics, larval retention: (Lluch-Belda et al. 1991; Rykaczewski and Checkley 2008; Nieto 

et al. 2014).  

The use of HSI provides a flexible “optimal environmental window” framework that 

can integrate multiple ecologically-relevant environmental variables. While habitat suitability 

models can effectively combine multiple environmental indices to capture a species-

environment relationship, users should exercise caution because this approach is prone to 

multiple hypothesis testing and potential Type I error (i.e. combining multiple indices until 

significant results are obtained). Using model outputs as ‘data’ also requires a cautionary 

approach (Brooks and Deroba 2015) because they are subject to the assumptions of the 
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original model. Using a spurious environmental index without ecological and mechanistic 

support can lead to poor model predictions and hinders the incorporation of environmental 

variability into future stock assessments. A practitioner should develop criteria for inclusion 

of environmental variability that can address a balance between model performance and a 

plausible connection to population dynamics. For example, De Oliveira and Butterworth 

(2005) stated that an environmental index needs to explain at least ~50% of the variance in 

recruitment for it to be useful. Furthermore, this study showed that climate-driven HSI can 

improve estimation of the recruitment trend; however, the empirical environment–

recruitment relationships used here will not be able to assess potential effects of future 

climate change. It is generally acknowledged that lobster behavior is strongly regulated by 

temperature and salinity, and that the relationships between lobster density and bottom 

temperature is dome shaped (Crossin et al., 1998). In this study, neither observed bottom 

temperature and salinity ranges in the Gulf of Maine / Georges Bank have fully captured the 

dome-shaped relationships. For example, ASMFC proposed that the optimum temperature 

range for lobster recruitment is from 12° to 18° C, the highest bottom temperature recorded 

by the bottom trawl surveys was 14° C. Most fishery data cannot fully capture the functional 

relationship between fish population and environment, especially when the population 

dynamics is already altered by fishing. To this end, the qualitative habitat suitability 

modeling approach presented in this study allows users to correct potential data-driven biases 

and provide a flexible platform to develop and test their optimal environmental window 

hypothesis with appropriate mechanistic evaluation for why a HSI can affect certain 

parameters.  

The effect of climate change on American Lobster on the Northeast U.S. Shelf is 

estimated to be neutral, but with a moderate degree of uncertainty (Hare et al. 2016).For 

American lobster, the relationship between environmental variability and stage-specific 
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survival rate has been thoroughly investigated (Factor 1995, Wahle et al., 2013, ASMC 

2015). This study primarily focused on the lobster recruitment habitat suitability as a function 

of bottom temperature and salinity to better understand how climate-driven environmental 

variability can inform the historical recruitment trend. The bioclimate envelope model 

identified increasing trend in climate-driven habitat suitability for American lobster in 

recruitment size classes in recent years, which indicates an increasing number of days that 

bottom temperature and salinity falls within the species’ optimal range in this area during the 

spring. The selection of these variables was assumed reasonable as studies have shown that 

temperature and salinity can be key bottom-up variables regulating ecology and population 

dynamics of American lobster especially during its recruitment stages. For example, due to 

its ectothermic nature, water temperature has a significant impact on lobster life history, 

especially when coupled with non-optimal salinity conditions (Mercaldo-Allen and Kuropat, 

1994). Large fluctuation in these variables, whether in singularity or in combination, can 

create sublethal environment that is beyond the species’ adaptive capacity. Water temperature 

is a key climatic variable that can exert a pervasive and direct influence on all aspects of the 

American lobster life history especially on growth, survival, and reproduction (Mercaldo-

Allen and Kuropat, 1994). Temperature regulates the lobster phenology such as the timing 

and rate of molting cycle, which can have significant impact on the fishery recruitment. In the 

Gulf of Maine, approximately 90% of landings are comprised of lobsters molted into a legal-

size class within a same year (ASMFC, 2015; Aiken, 1973; Aiken and Waddy, 1975; Kelly, 

1993). Furthermore, changes in availability of thermal habitat (i.e. amount of time the 

temperature remains within the species’ preferred range, rather than annual mean 

temperatures has been proposed as a better indicator for providing ecological context relative 

to overall recruitment trends (Taylor et al., 1956, Nye 2010, Kelly, 1993, Fogarty et al., 

2007). Climate-driven temperature and salinity change will introduce significant uncertainty 
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in recruitment and other population parameters as well as biological reference points derived 

under the traditional “fishery under equilibrium paradigm” assumptions.  

Climate-driven changes in environment will introduce significant uncertainty in other 

population parameters such as growth, maturation, and natural mortality. Variations in 

growth rate and size at maturity has been related to the changes in water temperature. Growth 

rate of American lobster is slower in warmer water due to higher metabolic rate, molt 

frequency and subsequent smaller molt increment (Aiken, 1977, Aiken, 1980, Aiken & 

Waddy, 1986, Conan, 1985; Waddy et al., 1995; Aiken & Waddy, 1995). Studies also 

indicated smaller size at maturity for lobsters in warmer waters (Templeman, 1936, Estrella 

and McKiernan 1989). Parameters for the CL-W relationship (log(W)= -6.37+ 2.85*log(L)) 

and size at maturity (91 mm CL) were assumed to be known and held constant throughout the 

study period. Size at maturity for American lobster varies from approximately 70 mm CL in 

the warmer southern New England to 100 mm CL in the colder Bay of Fundy mature at 70-

80 mm CL (Factor, 1995, Wahle & Fogarty. 2006). The CL-W relationship is a key 

biological parameter used in many aspects of the assessment (i.e. determining the overall 

weight of lobsters from trawl survey catch). Progression of the molt cycle is primarily 

regulated by water temperature and a proportional relationship between temperature and 

growth rate was observed throughout the species’ geographical range (Waddy etal.,1995). 

The prespecified seasonal growth transition matrices assumed that lobster growth takes place 

during the summer and fall, with majority of lobster’s molt during the summer and relatively 

small immature individuals molting again during the fall. Furthermore, natural mortality 

value of 0.15 was assumed for all size classes in all years following the base case model 

configuration in the 2015 benchmark assessment. The depletion of groundfish may continue 

to contribute to the low natural mortality for the GOMGBK lobster stock (Steneck and 

Wahle, 2013). However, given the increase in habitat suitability and changing predator fields 
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driven by climactic shifts, alternative model runs to evaluate the impact of time/length-

varying natural mortality for the GOMGBK stock should be explored. Thomas et al., (2017) 

summarized changes in SST phenology across the entire North American northeastern 

continental shelf using a 33-year (1982-2014) time series. The shift in SST phenology was 

characterized by significant trends towards earlier summer starts, longer summer duration, 

and later summer ends throughout the species’ geographic range. Climate-driven changes 

(i.e. increasing summer duration) many have significant impacts on these base case model 

assumptions. Future applications of this integrated modeling framework should incorporate 

scenario-based approaches to investigate the effect of ignoring the effects of time-varying 

growth, maturity, and natural mortality, or incorrectly specifying the seasonal growth 

transition matrices.  

Environmental variability can affect the stock recruitment and fishery productivity in 

many ways, but this information is rarely included in assessment models (Skern-Mauritzen et 

al. 2016). For the Gulf of Maine lobster fishery, the landings are closely related to the timing 

and magnitude of overlap between lobster thermal habitat and fishing efforts in inshore 

waters (i.e. lobsters reaching a legal size and moving into nearshore waters to encounter 

traps: Cooper and Uzmann, 1971; Aiken, 1973; Aiken and Waddy, 1975; Ennis, 1984; 

Crossin et al., 1998). The results show that incorporating environmental variability into 

population models has the potential to improve the GOMGBK lobster stock assessment by 

informing the historic recruitment trend with a climate-driven HSI hypothesized as drivers of 

recruitment.  

With decades of declines in other fisheries, coastal communities around the Gulf of 

Maine became highly dependent on the lobster fishery, which accounted for 95% of total US 

landings in 2016. Climate-driven changes in the Gulf of Maine and Georges Bank 

ecosystems will have significant impacts on the life history and fishery of American lobster. 
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Studies have shown north-high/south-low recruitment trend in the fishery has been driven by 

climate-driven changes in environment and several other ecological effects (e.g. epizootic 

shell disease). The fishery is highly dependent on the lobster recruitment as approximately 

85% of landings are lobsters joined the minimum legal-size class within the same year. While 

the fishery is highly dependent on environmentally driven recruitment, the management is 

still based on an equilibrium paradigm and assumes that changes in population parameters 

and productivity are centered around a stationary mean at a given harvest rate and that stock 

production may be controlled through regulating the harvest rate. The traditional 

management strategy under the equilibrium assumptions project the expected performance of 

the stock and the yield is predominantly based on stock abundance and create socioeconomic 

uncertainty in a climatically-altered marine ecosystems. An emerging consensus calls for 

more adaptive ecosystem approach to fisheries management to enhance responsiveness and 

precision relative to unexpected changes in recruitment and stock production.  Fishery 

management in changing environmental conditions will require considerable effort to explore 

the implications of environmental variability on stock status as well as tools for new adaptive 

capacities. 

Stock assessments are often challenged by limited data and rely on assumed empirical 

relationships to derive the complex population dynamic processes. Recruitment is a critical 

component to most of population dynamic model. However, its complex processes is not 

fully understood because direct observation of recruitment is rarely available and the relevant 

parameters of is generally derived by the best-fit estimates of recruitment and biomass with 

deviations due to many top-down and bottom-up factors. Our study will contribute to the 

management of this valuable resource in the changing ecosystem by showing that the 

GOMGBK lobster recruitment estimate can be more reliable if environmental factors are 

considered in the assessment (Jacobson and McClatchie, 2013; Hill et al., 2014; Pershing et 
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al., 2015; Tommasi et al., 2017). make management of highly variable forage fish stocks 

more effective.  
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8. APPENDIX A: SUITABILITY INDEX CURVE OF BOTTOM SUBSTRATE 

TYPE 

A1: Suitability Index (SI) curve of bottom substrate type for four groups of Homarus 

americanus (2 sexes * 2 life stages).  Both spring (black line; April - June), and fall (red 

line; September - November) SI curves are plotted. cl = clay, st = silt, sd = sand, gr = 

gravel. 
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9. APPENDIX B: CROSS-VALIDATIONS FOR LOBSTER GAM  

B1: Observed versus predicted plots complemented by the graphical summary of 

regression analyses from 100 runs of cross-validations for the season, stage and sex 

specific lobster generalized additive modelling effort. The light gray lines represent 100 

linear regression lines. The black line represents the mean of 100 linear regression lines. 

The dashed line represents the 1:1 line and an ideal model performance.  
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10. APPENDIX C: INTERACTIVE EFFECT OF SALINITY-LONGITUDE  

C1: Partial generalized additive model (GAM) plots describing the significant 

interactive effect of bivariate bottom salinity-longitude variable in the best-fitting GAM. 
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11. APPENDIX D: BOTTOM SALINITY TREND IN MENH TRAWL SURVEY 

D1: Top: Seasonal spatial bottom salinity trend during 2000–2014 in Maine/New 

Hampshire (ME-NH) inshore bottom trawl survey. The color key represents salinity 

values in ppt. Bottom: Smooth trends of seasonal bottom salinity along the longitude 

values covered by the ME-NH bottom trawl survey. 
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12. APPENDIX E: SUPPLEMENTAL FIGURES FOR SIZE-STRUCTURED MODEL 

E1: Abundance indices (top left), centered abundance indices (bottom left), and size structures (right) based on bottom trawl surveys for 

Gulf of Maine / Georges Bank lobster stock. Ma – Massachusetts, MeNh – Maine/New Hampshire, Nefsc – Northeast Fisheries Science 

Center, VT – Ventless Trap. Q1: January-March, Q2: April-June, Q3: July-September, Q4: October-December. Carapace lengths were 

aggregated into 5 mm classes and ranged from 53 to 223 mm.  
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E2: Landings (top left), centered values (bottom left), and size compositions (right) of the Gulf of Maine / Georges Bank American 

lobster stock. Season 1: January-March 2: April-June 3: July-September 4: October-December. Carapace lengths were aggregated into 

5 mm classes and ranged from 53 to 223 mm. 
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 E3: Prespecified parameters of the population model. proportion mature by length and weight as a function of length. 
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E4: Growth of a cohort under no fishing mortality based on the prespecified growth transition matrices. Boxes represent the size 

distribution of the cohort in each year. 
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