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Differential length, area, and volume elements appear ubiquitously over the course of 

upper-division electricity and magnetism (E&M), used to sum the effects of or determine 

expressions for electric or magnetic fields. Given the plethora of tasks with spherical and 

cylindrical symmetry, non-Cartesian coordinates are commonly used, which include 

scaling factors as coefficients for the differential terms to account for the curvature of 

space. Furthermore, the application to vector fields means differential lengths and areas 

are vector quantities. So far, little of the education research in E&M has explored student 

understanding and construction of the non-Cartesian differential elements used in 

applications of vector calculus. This study contributes to the research base on the learning 

and teaching of these quantities. 

Following course observations of junior-level E&M, targeted investigations were 

conducted to categorize student understanding of the properties of these differentials as 



 

 

they are constructed in a coordinate system without a physics context and as they are 

determined within common physics tasks. In general, students did not have a strong 

understanding of the geometry of non-Cartesian coordinate systems. However, students 

who were able to construct differential area and volume elements as a product of 

differential lengths within a given coordinate system were more successful when 

applying vector calculus. The results of this study were used to develop preliminary 

instructional resources to aid in the teaching of this material. 

Lastly, this dissertation presents a theoretical model developed within the context of 

this study to describe students’ construction and interpretation of equations. The model 

joins existing theoretical frameworks: symbolic forms, used to describe students’ 

representational understanding of the structure of the constructed equation; and 

conceptual blending, which has been used to describe the ways in which students 

combine mathematics and physics knowledge when problem solving. In addition to 

providing a coherent picture for how the students in this study connect contextual 

information to symbolic representations, this model is broadly applicable as an analytical 

lens and allows for a detailed reinterpretation of similar analyses using these frameworks. 
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CHAPTER 1 

1 INTRODUCTION 

“So let us then try to climb the mountain, not by stepping on what is below us,  

but to pull us up at what is above us, for my part at the stars.” 

-M.C. Escher 

 

Those embarking on the endeavor of learning physics at any level, seeking to 

understand or shape the universe, are sure to find the strong mathematical undercurrents 

that influence reasoning, deepen understanding, and model the nature of physical 

systems. Modeling, in particular, is intricately tied to how physics is understood through 

conceptualizations of the underlying mathematics. In introductory physics, students from 

a variety of disciplines regularly engage with concepts of algebra and calculus. For those 

that advance further within a physics curriculum, the physics becomes more varied and 

sophisticated, and the associated mathematics follows suit: junior-level electricity and 

magnetism (E&M) involves vector calculus, vector differentials, and multivariable 

coordinate systems; upper-division thermodynamics includes manipulations of partial 

derivatives of multivariable functions of interdependent variables and Taylor series 

approximations; quantum mechanics incorporates many aspects of linear algebra with 

complex variables. Much of physics, especially at the upper division, exists at the 

interface of physics and mathematics.  

For over thirty years, physics education research (PER) has been carrying out detailed 

scientific investigations of how students learn, understand, and apply physics concepts 

across various topics in introductory physics (see  [1] for an overview). This work has 

included, but is certainly not limited to, an in-depth focus on introductory student 

understanding of mechanics [2,3], waves [4,5], and electric fields and circuits [6,7]. 
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As the field progressed, more research began to explore students’ conceptual 

understanding in upper-division physics courses, answering calls for more upper-

division/interdisciplinary work [8,9]. Research at this level has included 

mechanics [10,11], electricity and magnetism (E&M) [12–16], quantum mechanics [17–

20], and thermodynamics [21–23]. While much of the focus of PER has been an inquiry 

into the nature of students’ conceptualization of physics, the caveat of working in upper-

division physics is that both procedural and conceptual mathematics understandings are 

much more intricately tied to conceptual understanding than in some introductory 

courses. Given the ubiquity of mathematics in these upper-division courses, much of this 

work has involved specific investigation into student understanding of related 

mathematical topics [12,14,24–28].  

Notably, there are many cases in which the mathematics instruction relevant to these 

courses occurs in the physics department before it appears in a standard mathematics 

course sequence. One solution to this involves many departments supplementing their 

undergraduate physics curriculum with a “mathematical methods for physics” course to 

teach the relevant aspects of a myriad of mathematical concepts and procedures (e.g., 

complex variables, line integrals, diagonalization and change in basis, sequences and 

series, ordinary and partial differential equations), allowing upper-division content 

courses to focus on the physics and the ways in which the content incorporates the 

mathematics, rather than spending time developing the relevant mathematical formalism. 

This speaks largely to the importance placed on students’ mathematical competence 

within the physics curriculum.  
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The incorporation of mathematics into physics extends beyond calculation, as 

mathematics plays a role in reasoning about relationships between physical quantities or 

the state of the system to depiction and conveyance of these relationships with graphs or 

equations. Several physics education researchers have sought to describe and represent 

the way students incorporate mathematical concepts and reasoning in physics (Fig. 1.1). 

An early instantiation separated the mathematics and physics domains into two distinct 

spaces that students cycled between: the physical system and mathematical representation 

 [29]. Within this framing, “modeling” appears as the action that moves students from the 

physical system into a mathematical representation space (e.g., setting up an integral, 

abstracting a relationship between quantities). This representation is then processed 

within the mathematical domain (e.g., calculating an integral). Interpretation of this new 

representation brings one out of the physical system and back into the physics domain.  

Uhden and colleagues developed a more sophisticated representation that considers a 

blended space of mathematics and physics  [30]. Each level in this portrayal of the 

mathematics-physics interface represents a degree of mathematical modeling, which has 

also been referred to as mathematization. Moving up to a higher level corresponds to an 

abstraction from the physical system. As students model the physical system by defining 

proportionalities, writing equations to connect variables, or using various laws, theorems, 

or physics relationships, the level of mathematization increases. Interpretation of these  
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a)  b)  c)  

Figure 1.1.  Models of mathematization in physics. (a) Model from Redish and Kuo  [29]. 

(b) Model from Uhden and colleagues  [30]. (c) Model from Wilcox and 

colleagues  [31]. 

 

results corresponds to movement to a lower degree of mathematization. A third model of 

students’ use of mathematics resulted as a framework from work in upper-division E&M 

 [31]. The ACER framework designed a more student-centered script in which the arrows 

in the previous two diagrams are now where steps in problem solving occur. This 

framework designates spaces for the “activation of a tool” (tool referring to the choice of 

an equation), “construction of the model,” “execution of mathematics,” and “reflection on 

the results.” While each diagram represents students’ use of mathematics in a different 

way, they all include features to account for modeling, calculation, and interpretation.  

For the purposes of this project, we explore students’ mathematization in terms of 

their understanding and application of the underlying mathematics in upper-division 

electricity and magnetism, one course in particular where an understanding of physics is 

mediated by relevant and sophisticated mathematics. E&M is traditionally the first 

content course where students are reasoning with vector fields and using elements of 

vector calculus to develop and understand relationships between electrical charges, 

currents, electric and magnetic fields, and electric and magnetic potentials. Additionally, 

since many of the electric and magnetic fields have differing types of symmetry, students 

must often employ one of two multivariable non-Cartesian coordinate systems. 
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Recognition and use of symmetry often relieves the burden of heavy calculation, 

especially in relation to problems employing vector calculus. The caveat of curving 

coordinate planes to suit spherical and cylindrical symmetry, however, means that 

differential units take on scaling factors to account for the new mapping of three-

dimensional space, rather than maintaining the standard form of    for a change in the  -

coordinate direction. Appendix A discusses the mathematics surrounding the three 

coordinate systems employed in E&M – Cartesian, spherical, and cylindrical – including 

the nature of the systems and how differential elements are constructed and appear in 

each.  

Research on student understanding of mathematics in E&M found general student 

difficulties with setting up calculations, interpreting the results of calculations, and 

accounting for underlying spatial situations (symmetry) [12]. Other work, upon which 

this study was built, has explored students’ applications of Gauss’s and Ampère’s Laws 

 [12,15,16,24,32,33] or broadly addressed student understanding of integration and 

differentials  [14,25,34]. Despite this, few studies have explored student understanding of 

differential line, area, or volume elements as they are constructed or determined in the 

non-Cartesian coordinate systems employed in E&M. Relevant literature and pertinent 

theoretical frameworks are discussed in Chapter 2.  

Given the importance of the understanding and application of coordinate systems and 

differential vector elements to developing calculational proficiency and conceptual 

understanding throughout the whole of E&M, this research seeks to address the following 

questions: 

 To what extent do students understand the multivariable coordinate systems used 

for vector calculus in E&M? 
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 In what ways do students build and/or make determinations about differential 

vector elements (i.e., line, area, and volume elements) in these multivariable 

systems? 

- To what extent does student understanding of the symbolic expressions 

and conceptual aspects of differential vector elements, more specifically in 

non-Cartesian coordinate systems, impact element construction? 

Offering qualitative answers to these questions begins to address student 

understanding of multivariable coordinate systems and construction of differential vector 

elements in E&M and sets the groundwork for future study. Additionally, the results of 

such an analysis can be used to inform the instruction of differential elements within 

generic coordinate systems and for particular physical symmetries.  

The context of the research, methodologies, and discussions of applied frameworks is 

presented in Chapter 3. Chapter 4 describes preliminary investigations of the study 

relating to student performance and understanding of homework, quizzes, and tests given 

as part of regular course instruction. From this work, the author designed tasks to further 

probe student understanding of particular topics. Specific task design, implementation, 

and results related to student understanding of differential line elements are presented in 

Chapter 5*, while research related to differential volume and area elements is discussed 

in Chapters 6
*
 and 7, respectively. Since student understanding of particular coordinate 

systems is often closely tied to their choices of differential elements, results of this nature 

are discussed across these chapters. One result of this work includes in-class group 

activities with explicit focus on methods for construction of length and area elements. 

These efforts are elaborated on in the relevant chapters. Further analysis of students’ 

                                                 
*
 Chapters 6 and 8 represented self-contained portions of this study and are included here 

as manuscripts in preparation for publication. A portion of Chapter 5 (5.1.5) is from a 

draft of a manuscript being submitted for publication.  
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construction of differential elements has led to the development of a model for students’ 

construction of equations from the combination of two theoretical frameworks. This 

model and its affordances are detailed in Chapter 8*, and discussed in terms of the 

current literature utilizing these frameworks. Lastly, Chapter 9 presents conclusions and 

discussions of the topics, tying together specific themes found across investigations. 
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CHAPTER 2 

2 REVIEW OF RELEVANT LITERATURE 

“History is a race between education and catastrophe.” 

–H. G. Wells 

 

One area of focus in physics education research has been to understand the 

difficulties students have with the mathematics in upper-division electricity and 

magnetism courses (E&M). On a broader scale, research addressing student difficulties 

with mathematics in E&M has outlined several categories of difficulty including: 

(i) assessing the underlying physical symmetry, (ii) interpreting physical situations when 

setting up calculations, (iii) accessing the appropriate mathematical tools and (iv) 

interpreting results of calculation in terms of the given physical situation [12]. These 

difficulties spanned contexts from Gauss’s law to divergence and electric potential. 

This project adds to this literature base by exploring student understanding of 

differential vector quantities that appear in numerous calculations in E&M. 

Understanding and applying a differential vector element in E&M involves a 

consolidation of understanding of differentials, an understanding coordinate system 

geometry, and an ability to interpret underlying symmetry. While little work has 

previously addressed differential lengths, areas, and volume elements, there have been 

studies addressing the three areas of differentials, coordinate systems, and underlying 

symmetries of E&M systems.  

In an effort to gain a broader picture of what has been previously studied, the 

following sections address prior research. Section 2.1 addresses students’ attention to and 

understanding of underlying symmetry as part of applying Gauss’s law or Ampère's law, 
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and as part of interpreting vector fields in terms of gradient, divergence, and curl. The 

literature in this section represents the majority of literature addressing student 

understanding of vector calculus topics. 

Other research within E&M has attended to student understanding of integration and 

differential quantities (see section 2.2). This majority of this work has primarily dealt 

with one-dimensional systems or cases where the quantities being integrated are 

resistivity or capacitance. However, these works contribute to a larger body of literature 

which has addressed student understanding of differential quantities. Understanding this 

literature provides insight into the ways in which students within our study will likely 

approach integration or construction of differential quantities.  

Lastly, this chapter presents research on student understanding of coordinate systems 

(section 2.3). As much of the literature regarding students’ coordinate system 

understanding in E&M is subsumed with student application of symmetry in physical 

situations, little work has addressed students’ general understanding and use of three-

dimensional non-Cartesian coordinate systems. This section is thus supplemented with 

discussion of work addressing student use of polar coordinates to provide insight into 

how students in E&M will use and think about non-Cartesian coordinate systems. 

 

2.1 Student difficulties with vector calculus in electricity and magnetism 

When using vector calculus in E&M, the first step of problem solving involves 

recognizing the appropriate symmetry of vector fields. This has ramifications for choice 

of coordinate systems and associated differential elements. There has been considerable 

research addressing student understanding of symmetry in application of Gauss’s law and 
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Ampère's law, two common vector calculus expressions [12,15,16,32,33]. The section 

further addresses student understanding of differential vector operators (gradient, 

divergence, and curl) where it is connected to interpretation of vector fields [35,36]. 

Manogue and colleagues highlighted several aspects of Ampère's law, an equation 

often used to solve for the magnetic field in highly symmetric situations that could be the 

source of students’ difficulties  [15]. Unfortunately, while a high degree of symmetry 

makes Ampère's law a viable solution pathway, the desired information (the magnetic 

field) is part of a dot product quantity comprising the integrand in a line integral. Thus 

students have to unpack the dot product and constancy of the field under integration to 

solve the given task to isolate the targeted magnetic field. The authors classify this as an 

inverse problem. Analyzing students’ reasoning when solving Ampère's law problems, 

Wallace and Chasteen found that students often choose Ampèrian loops based on whether 

or not they enclose charge rather than on arguments of symmetry or the direction of the 

field, as one would expect of an expert physicist  [16]. In particular, students had 

difficulty breaking the integration of Ampère's law into parts along rectangular paths. 

Both of these papers discuss issues of recognizing symmetry as a student difficulty in 

E&M.  

Gauss’s law, which often involves solving for the electric field from within an electric 

flux integral, is another example of an inverse problem, requiring students to make 

appropriate symmetry arguments based on the physical situation to solve for the electric 

field. Research on student understanding of Gauss’s law has also found student difficulty 

with recognizing and appropriately applying symmetrical surfaces during problem 

solving  [32,33]. The particular inverse nature of Ampère’s and Gauss’s laws is unique to 
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how vector calculus is used in physics, but they are also pervasive and nearly ubiquitous 

in the E&M course. Additionally, students’ attention to symmetry often requires them to 

utilize non-Cartesian symmetry when working in these cases.  

Using questionnaires and interviews to highlight the similarity of student difficulties 

with the two laws, Guisasola and colleagues found that students tend to believe only the 

charges and currents enclosed by Gaussian surfaces or Ampèrian loops are responsible 

for the unknown fields  [24]. They also found that students tend to conflate ideas related 

to fields with those related to the integral of fields, or fluxes. This finding is consistent 

with interview results, where students were asked to find the electric field for a point 

within a “non-uniform blob” of constant charge density  [12]. Specifically in the context 

of electrostatics, Pepper and colleagues identified students equating the electric field (the 

integrand) with the electric flux (the integral). Students in these interviews also 

incorrectly attempted to use Gauss’s law by drawing a Gaussian surface within the 

uneven shape and arguing that only the enclosed charge was responsible for creating the 

electric field at the desired point. 

Other research has investigated student understanding related to vector differential 

operators (e.g., gradient, divergence, and curl) and how these properties connect to 

physical representations of vector fields. Students often responded to tasks with a belief 

that divergence was a property of a field, either zero or non-zero everywhere, rather than 

only true for points within a field  [36]. Additionally they would connect spreading field 

lines to a positive divergence, even if no source was present within the defined field. 

Bollen and colleagues conducted further observations to probe students’ conceptual 

meaning of the operators, interpretation of vector fields, and calculational proficiency 
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related to the vector differential operators  [37]. Utilizing the concept image framework 

 [38] from research in undergraduate mathematics education, they found that very few 

students were able to evoke a complete or correct concept image, claiming “the 

divergence is a measure of how the field is changing” or “the gradient of   is the vector 

normal to the plane.” However, when it came to calculation, more than half of the 

students could solve for the correct expressions (allowing for minor errors). Thus 

students’ ability to carry out correct mathematical procedures was not an indicator of 

their sensemaking abilities, which is consistent research at the introductory level. Further 

work explored how students tied together the physical, mathematical, and conceptual 

understandings related to divergence of vector fields by utilizing conceptual blending 

 [39]. Results showed that while multiple students were able to give appropriate 

descriptions of divergence and curl, they could not always link these understandings to 

graphical representations of fields. Despite relevant and correct elements being imported 

from the input spaces, incomplete or partial blending suggests a less robust understanding 

of the relationships between the mathematics and physics concepts. One student 

eventually recognized the need for an enclosed charge density (source of field) in order to 

measure a flux, but still struggled when connecting this idea to vector field diagrams, 

connecting positive flux to spreading lines within a region. This shows that improper 

blending of these conceptual and mathematical input spaces may be a source of student 

difficulties rather than lack of prior knowledge.  
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2.2 Student understanding of coordinate systems 

The majority of research in E&M has addressed underlying symmetry as a means of 

choosing an appropriate coordinate system. This section attends to research of student 

understanding of coordinate system representation.  

When addressing non-Cartesian coordinates, Dray and Manogue highlight a large 

concern as being the lack of standardization of polar, cylindrical, and spherical 

coordinates  [40]. The presentation of non-Cartesian coordinate systems in most 

mathematics sequences begins with polar coordinates. Here,   is used as the azimuthal 

angle (rotating about the  -axis) and   is used for the radial direction. When moving to a 

three-dimensional coordinate system, mathematics notation keeps   as the azimuthal 

angle and uses   as the polar angle (measured from the  -axis) and   for the three-

dimensional radius. This constrasts with physics convention, which uses   for the three-

dimensional radius and swaps the labels for the angles. While Dray and Manogue do not 

highlight any student work in particular, results from work published in 2010 on students’ 

abilities to write    in spherical coordinates for six points, each located on a Cartesian 

axis, revealed this as an aspect of student difficulty  [41]. Of the 28 volunteers, no student 

was able to correctly answer the original question by writing       , and only slightly 

fewer than half of the students were able to identify the correct  ,  , and   for each point. 

The most common mistakes were with the writing of the angles: 20% switched the values 

for   and  .  

Sayre and Wittmann used Hammer's resources perspective  [42] to analyze the 

plasticity of students’ understanding of two-dimensional polar coordinates and Cartesian 

coordinates in sophomore mechanics  [10]. The authors break down the coordinate 
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system resource into groupings that describe general properties of coordinate systems, 

when to use a particular system, and the specifics of each system. The plasticity of a 

particular resource is determined by the number of connections to other resources and the 

durability of the internal structure. Students were asked to derive an equation of motion 

for a simple pendulum during the fourth and tenth week of the semester. Results show 

that while one student recognized the ease of applying polar coordinates, the second 

made an attempt to apply Cartesian in both cases. Thus, this work highlights how even 

after explicit instruction, students maintain a preference for Cartesian coordinates, even 

when another system may be easier.  

Vega and colleagues further developed resources for unit vectors and coordinate 

systems from analysis of a task asking students to identify the direction of polar unit 

vectors on a spiral path  [43]. They found students were conflicted between the use of a 

position resource, which determines    as away from the origin, or a motion resource, 

where the inward motion of the path cued students to think of the direction of    as toward 

the origin. Students had similar difficulty with   , attempting to direct it tangent to the 

path or as a curling vector from the  -axis to    describing the point. This speaks to the 

difficulty for physics students in articulating the conventions of non-Cartesian coordinate 

systems where vector direction is a prominent piece of understanding, and further heralds 

the salience of path to students’ choices of unit vectors and motion in the context of line 

integration.  

Research in undergraduate mathematics education has predominantly addressed 

students’ covariational understanding of functions plotted on polar coordinate grids  [44–

46]. While students were not seen to use Cartesian coordinates to make sense of how   
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and   changed together, researchers found students often treat these graphs as pictorial 

objects, rather than as relationship between two variables. Furthermore, students often 

had trouble determining properties of the function, such as whether it was a linear 

relationship. These students were identified as being unable to translate graph and 

function meanings rooted within a Cartesian coordinate system to a polar coordinate 

system in which shapes and representational conventions are changed.  

 

2.3 Student difficulties with differentials and integration 

As mentioned above, little work has previously addressed student understanding of 

differential length, area, and volume elements. While investigating various aspects of 

student understanding in E&M, Pepper and colleagues cited two mistakes with 

differential elements from observations in homework help sessions [12]. One group of 

students incorrectly wrote a spherical differential area as          without the 

necessary scaling factor        to account for the curving of space in spherical 

coordinates. Another group used        as a length element when calculating a line 

integral and became confused when recognizing that the result resembled a volumetric 

integral. These instances speak to the larger concerns of students’ understanding of how 

differential elements are represented within coordinate systems, as well as difficulty with 

the dimensionality of differential elements.  

The majority of research on mathematics in E&M has attended to various aspects of 

student understanding of integration, including how students think about differential 

quantities as they are used to set up integrals. Using the resources framework [42] and 

symbolic forms [47], Meredith and Marrongelle identified the cues that led students to 



16 

 

integrate for a particular problem [48]. They found students were often cued to integrate 

based on recognizing similarity to other problems, recognizing the need to accumulate 

multiple parts, or seeing the dependence of one quantity on another. After adapting a 

concept image framework, Doughty and colleagues found that the recognition of 

dependence was the strongest cue for taking flux and surface integrals  [14]. 

Nguyen and Rebello found that while students were able to recognize the need for 

integration, they had difficulty during computation due to an inability to interpret the 

physical meaning of symbols  [34]. In particular, Nguyen & Rebello found that within the 

E&M context, the accumulation model of an integral, the adding up of parts of terms 

such as elements of charge, was more productive to students than area under the curve. 

They identified additional difficultly with discerning the meaning of the differential area 

element.  

Hu and Rebello adapted conceptual blending to address students’ mathematical 

understanding of integral and differential abstracted from the physics concepts and 

variables  [25]. Here they identified the how understanding of the differential as a small 

amount or variable of integration affected a blended understanding within the context of 

physics. This expanded upon earlier studies identifying resources and conceptual 

metaphors students used for differentials in E&M. While it was common for students to 

treat the differential as a small amount or as a cue for procedural differentiation, in many 

cases, students interpreted the differential as an indicator of which variable to integrate 

with respect to. Notably, treating the differential as a variable of integration did not attach 

any further physical meaning to the differential for students. This disregard for the true 

meaning of the differential when performing integration is a common finding in literature 
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 [28,34,49–51]. Very little work has addressed how these conceptions carry into 

understanding multivariable vector differentials.  

Work within the mathematics community outside the context of E&M has looked at 

students’ understanding of single and multivariable integrals. Similar to the finding of 

Nguyen and Rebello, in a comparison of mathematics and physics contexts, Jones found 

that an “adding up pieces” model of integration was more productive for solving physics 

problems than thinking of integrals in terms of areas or antiderivatives  [52]. Generalizing 

to multivariable integrals, Jones and Dorko extended this work to categorize student 

conceptions of integrals of functions over two variables  [53]. Rather than area under the 

curve from a Riemann sum interpretation, students invoked a volume under the plane 

representation where integrating involved adding up “rectangles,” or sometimes 

accumulating an infinite number of slices or strips as they integrated along one of the 

axes in the xy-plane.  

The ideas of symbolic forms were also used to interpret calculus students’ ideas 

when making sense of integrals  [50]; students’ exposed conceptual understandings often 

included graphical representations of given functions. 

Condensing the process of setting up a Riemann sum for definite integrals within a 

layers framework, Sealey identified four layers: product, summation, limit, and function 

 [54]. Students were given problems with a physics context, such as the force water exerts 

on a dam, which involved elements of pressure and area. Sealey identified an orienting 

pre-layer to correspond to students’ sense-making and construction of the integrand, 

    , and    terms. Physics education researchers looking at integration in electricity 

and magnetism expanded the layers to include direct attention to the differential term   , 
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which is commonly used by physicists as an infintesimal     [27]. This additionally 

accounted for summing discrete tangible amounts of quantities such as charge (Fig. 2.1). 

Explicitly addressing the idea of the differential as a small physical quantity in physics, 

Roundy and colleagues expanded upon Zandieh’s layers framework  [55] to include other 

contexts that are important for physical scenarios (numerical, experimental) but aren’t 

relevant in mathematics  [56]. This connects the mathematical understanding of 

derivatives to the way derivatives are conceptualized in physics, specifically calculation 

and measurement as part of experimentation (Fig. 2.2). This adds the conceptualization of 

the derivative as a ratio of small changes.  

 

 

 

Figure 2.1.  Extended layers framework of integration, representing possible routes for 

construction of the integral as a function. Image reproduced from Von Korff 

and Rebello  [27]. 
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Figure 2.2.  Extended layers framework for derivatives. The original process-objects 

layers, graphical, verbal, and symbolic  [55] and two more columns, 

numerical and physical, to account for others uses of derivatives in physics. 

Image reproduced from Roundy and colleagues  [56]. 

 

 

2.4 Summary and the gaps in the current literature on student understanding  

The most common hindrances for students in upper-division E&M lie in relating 

conceptual physics understanding to mathematical argumentation and in articulating 

complex symmetry arguments relating to vector calculus. Work on integration and 

differentials has shown two predominant conceptions: the first almost inherently 

procedural, where the differential is merely a variable of integration; and the second 

where differentials are small quantities that are added in the context of integration. In the 

context of vector calculus, the literature speaks to difficulty with interpretation of vector 

fields, including the conflation of conceptual understanding of the field with the results of 
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related integrals. These difficulties have regularly appeared in the contexts of Gauss’s 

and Ampère’s laws, which require complex symmetry arguments to determine the field 

within the integral and dot product, but have not branched into other aspects of vector 

calculus. 

Despite the attention of much of the vector research to symmetry, there has been little 

to no work addressing student understanding of the specific differential line, area, and 

volume elements as they are constructed or determined in the non-Cartesian symmetries 

of E&M or interpreted as vector quantities. Investigations of student understanding of 

these topics are the focus of the following work.  
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CHAPTER 3 

3 RESEARCH CONTEXT AND METHODOLOGY 

 

“We can’t understand what students are thinking unless we’re doing the mental 

equivalent of bombarding them with high energy photons.” 

–Dr. Kevin Van De Bogart  

 

Research on student understanding of vector calculus concepts occurred over a 

variety of courses, employing clinical interviews for further qualitative analysis exploring 

student understanding as they constructed or determined differential elements in 

multivariable coordinates.  

At the outset of this project, data collection and analysis were focused on course 

observations to identify any specific difficulties [57] students encountered as they used 

vector calculus in non-Cartesian coordinate systems. This first phase of the project, which 

is detailed in Chapter 4, led to the development of targeted research questions, which then 

spurred further investigation during which specific interview protocols were designed to 

isolate student understanding around these difficulties. Student interviews conducted 

during the second and more extensive phase of this project compromise the main body of 

this work and are the data from which the larger conclusions are derived. 

This chapter provides an overview of the courses studied (section 3.1), types of data 

collected (section 3.2), and analytical methodologies (section 3.3). The guiding 

theoretical frameworks, concept images [38] and symbolic forms [47], are elaborated 

upon in section 3.3, with particular focus on how they are used to gain insight into 

student work. The task-specific details pertaining to the particular style of interview, the 
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specific population of students interviewed, and the guiding theoretical lens(es) for 

interpreting data are identified with the descriptions of each task (See Chapters 5-7). 

 

3.1 Overview of relevant courses 

In order to cover the breadth of vector calculus concepts, investigations and data 

collection were carried out over four courses at one university, University A. Three of 

these courses were physics courses, including both semesters of the two-semester 

sequence of Electricity and Magnetism (E&M), and one semester of Mathematical 

Methods in Physics. This study also involved course observations in a special topics 

course covering vector calculus topics in the mathematics and statistics department.  

To supplement interview data, investigations also involved several interviews from 

the second semester of E&M at a second university, University B. While it is known that 

the course structure and sequencing within the curriculum is similar to that at University 

A, no formal course observation was conducted, so we omit further discussion of this 

course from this section. Both courses used Griffiths’ Introduction to Electrodynamics 

textbook [58]. 

 

3.1.1 Electricity and Magnetism I 

Within the physics curriculum at the University A, E&M I is the first course where 

students are introduced to a working understanding of spherical and cylindrical 

coordinates in the context of differential vector elements and unit vectors. As such this 

course is the primary source of data collection; extensive course observations were 

conducted here as well. 
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E&M I is typically taken in the fall of the junior year for three credits towards the 

physics major. Over the course of the project, enrollment ranged from 10-25 students, 

with the majority to all of students majoring in physics or engineering physics 

(approximately 50% were engineering physics majors). Occasionally graduate students 

are enrolled in the course for credit upon the discretion of the graduate coordinator. 

The course uses a standard textbook: Griffiths, Introduction to Electricity and 

Magnetism [58]. The first chapter of the textbook is a review of mathematical content 

utilized throughout the rest of the book, including vector products, differential vector 

operators, vector calculus theorems, and coordinate systems. The course itself covers 

material starting in the second chapter of electrostatics up through Chapter 4, “Electric 

Fields in Matter,” returning to the relevant mathematics as needed. Homework was 

generally assigned on a weekly basis and consisted of problems from the text. The course 

included two exams and a final. While the final was non-cumulative, the ideas within the 

course are continually built upon what is taught before (i.e., calculation of electric field 

using methods from the beginning of the course, is relevant to problem solving of other 

quantities later in the course).  

Spherical coordinates are introduced early and used for a couple weeks. Specific 

emphasis is given to the construction of the spherical differential length vector and 

students are quizzed on this coordinate system following instruction. Spherical 

coordinates are then used for Coulomb’s Law (                         
 

 ), which 

represents a first-principles approach where the effects of differential charges, dq, are 

added over a given distribution. After several more classes, Gauss’s Law (         

         

  
) is introduced as a secondary approach for solving for the electric field when there 
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is an appropriately symmetric charge distribution (i.e., constant or 

spherically/cylindrically symmetric). Cylindrical coordinates are introduced within this 

context. 

 

3.1.2 Mathematical Methods for Physics 

As is common practice in undergraduate physics programs, the physics curriculum at 

University A includes a Mathematical Methods course. The goal of a typical 

Mathematical Methods course is to prepare students with much of the sophisticated 

mathematical knowledge (conceptual and procedural) that goes into the teaching of the 

content in upper-division courses. Therefore, this course covers a wide variety of 

mathematical topics essential to upper-division content, including aspects of vector 

calculus and coordinate systems. 

Mathematical Methods is taken for 3 credits and is a major requirement of the major. 

During the span of this project, the course was regularly offered in the fall of students’ 

junior year as a co-requisite with E&M I and there is typically significant overlap 

between student populations. 

The course textbook is standard and widely used: Boas, Mathematical Methods in the 

Physical Sciences. Coordinate systems and vector calculus concepts are taught in 

Chapters 5 and 6, respectively, and thus covered later in the semester. There are some 

differences here in representations when compared to the E&M text, which are discussed 

in Chapter 5 of this dissertation. 

Given the timing of Mathematical Methods with respect to E&M I, which were taken 

during the same semester, the course content is covered asynchronously, with students 
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having learned and used vector calculus and non-Cartesian coordinate systems for the 

better part of a semester in E&M I before the content is covered in Mathematical 

Methods. This, coupled with the overlap of students enrolled, made E&M I an 

appropriate environment for focus. 

 

3.1.3 Electricity and Magnetism II 

In the semester following E&M I, students typically enroll in E&M II for three credits 

as a requirement of the major. This course begins with Chapter 5 of Griffiths, 

“Magnetostatics.” Course observations were conducted in E&M II, up through Chapter 7, 

“Electrodynamics.” The remainder of the course focused on electromagnetic waves and 

involved little use of differential vector elements and non-Cartesian coordinate systems. 

Course enrollment in E&M II typically mirrors that of E&M I, given the sequencing 

of the course, and also occasionally includes graduate students at the discretion of the 

graduate coordinator. 

The introduction of magnetic fields and currents offers both new applications of 

vector calculus and different vector field symmetries, which affect the choice of 

coordinate systems and differential elements. As such, the course served as the primary 

data source for these topics. 

 

3.1.4 Special Topics: Vector Calculus 

Offered as an 400-level elective with the mathematics and statistics department, 

Vector Calculus is a three-credit course colloquially considered “Calculus IV” and 

typically offered during alternate fall semesters. At the time of course observations, nine 
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students were enrolled in the class. There was no overlap between students taking this 

course and students enrolled in the targeted physics courses at the time of this study. 

However, there were some physics and engineering physics majors registered in the 

course. While Vector Calculus is not a major requirement for the physics, students 

wishing to complete a mathematics minor need only one additional mathematics course 

beyond what the physics department requires. Vector Calculus is a commonly considered 

an option given the ties to upper-division physics.  

It should be noted that this course does not emphasize or explicitly teach the use of 

coordinate systems outside of the traditional Cartesian coordinates. However, the class 

does cover relevant mathematical concepts that are often expected to be in the repertoire 

of upper-division physics students: gradient, divergence, curl, and related theorems; 

motion along lines, and calculus of level surfaces, including multidimensional scalar 

functions and flux integrals. Due to the differences in the use of vector calculus 

discovered during course observations, no interviews were solicited from this population 

of students. Rather, I draw upon this course to illuminate differences in disciplinary 

conventions and practices given the specific mathematical focus of this project. 

 

3.2 Data Sources and Collection 

During the first phase of research, data collection involved extensive field notes from 

course observations in the E&M I and Vector Calculus courses described in the previous 

section. Analysis of these field notes and of the content presented by the textbooks 

provided a sense of what students are expected to be familiar with. Field notes were also 
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taken in Vector Calculus to provide a record of the way vector calculus is presented as a 

topic in a mathematics course. 

Students’ homework, quizzes, and exams given as part of the regular course were 

collected and scanned for later data analysis before being graded by the instructor to 

allow for an unbiased analysis. The problems given to students as part of regular 

instruction provided a range of content that the students are expected to have learned and 

be familiar with.  

During the second phase of this project, interviews were solicited from students in 

both E&M courses. Interviews provide more insight into student responses and choices 

when compared with written data because they offer a means to capture students’ 

procedural and conceptual understanding and reasoning as they think about and solve 

tasks in physics, whereas written data only provides a final result with no opportunity to 

follow up in the moment and extract additional information from a student. Interviews 

conducted in the fall semester were solicited from students in E&M I after the relevant 

content on coordinate systems and vector calculus had been covered in the corequisite 

Mathematical Methods course. Interviews solicited during the spring semester were of 

the population in E&M II after students covered the relevant material through dynamic 

magnetic fields. Students took part in the interviews on a volunteer basis. 

Clinical interviews [59] were conducted with tasks primarily designed around typical 

E&M problems, with the protocol targeting specific areas of interest, including 

coordinate systems and choice of differential elements, to draw out student understanding 

of associated concepts as well as the influence of physics context. Other questions were 

designed to have students work within a given coordinate system and construct the 
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related differential elements. Detailed discussions of the design, solution, and target of 

each interview task are provided in the chapter in which the resulting data is discussed 

(Chapters 5-7). While some tasks involve students determining various vector calculus 

expressions from particular situations/geometries, there are no numerical calculations. 

This is typical of many E&M tasks that ask students to derive expressions for quantities. 

This design also allows us to track students’ use and treatment of variables used during 

problem solving. The full suite of interview tasks is presented as part of Appendix B. 

Interviews are particularly useful in exploring student understanding of mathematics 

in upper-division physics since for problems seen earlier in the course sequence, rote 

memorization may take the place of conceptual understanding without hampering 

students’ ability to arrive at the correct answer. This is reminiscent of findings presented 

by Bollen and colleagues, in which students were able to correctly solve calculations 

involving differential vector operators but were unable to recall the meaning of the result 

conceptually  [37].  

Interviews were conducted using a think-aloud protocol [60–62]. As a part of this 

protocol, students are presented with a task and asked to work through the task while 

explaining their thought processes. The think-aloud nature allows the researcher to make 

the assumption that the student completely shares their thoughts while engaging with the 

task. However, the interviewer may prompt the student for explanations in the absence of 

a spontaneous response and may ask students to clarify statements or actions without 

affecting the students' line of reasoning.  

For this particular study, student interviews were designed to involve the 

administration of three to four tasks over an hour. In practice, the length of a few 
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interviews were shorter given the level of a student’s familiarity and understanding of the 

material. Students are solicited after the material has been covered in the class in order to 

determine what was learned as a result of the typical course. Coupled with analysis of the 

field notes, this shows what specific concepts are difficult for students and need to be 

supplemented with additional instructional material. Analysis here also shows what ideas 

help students access requisite ideas and productively respond to tasks.  

Pair interviews [60–62] were sometimes used to allow for a more authentic 

interaction and sharing of ideas between students with minimal influence from the 

interviewer. Students were paired for interviews primarily based on availability, but 

sometimes matched on course performance (strong, medium, weak) based on analysis of 

course observation data. Matching students by course performance kept strong students 

from overshadowing others who might have had more difficulty with course material. 

Pair interviews treat students as a unit within which information and understanding can 

be shared between students, consistent with a social constructivist perspective [63]. This 

style of interviews has been used extensively within physics education research, 

including studies on students’ mathematical understanding (e.g., [10,47,64]). For this 

project, pair interviews were used explicitly with some presumably difficult tasks or 

those being piloted to be incorporated with later instructional development, such as 

construction of a differential length element in an unconventional (made-up) spherical 

coordinate system, as the task was atypical and more to gauge structural understanding of 

coordinate systems (see Chapter 5). The vision for instructional development included 

tutorial design [65,66] which focuses on small-group work so students can share and 

build ideas together. 
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Individual interviews were preferred when the selected tasks more closely resembled 

problems seen in E&M. Here the emphasis of research is gaining a larger breadth of what 

individual students understand and what choices they make in regards to coordinate 

systems and differential elements. Interviewing students as individuals on these more 

procedural tasks allows for a greater number of responses and for subtle variations to be 

attributed to the individual student. 

Interviews were videotaped and audio recorded. Transcripts were then created as a 

record of student interaction including relevant nonverbal aspects such as gestures, 

drawings, and written expressions. The analysis methodologies are described in the 

following section. As interviews are the primary source of data for this project, these 

methodologies and frameworks are given in more detail. 

 

3.3 Analysis Methodologies 

The data collected as part of this project are primarily qualitative as we are 

investigating and categorizing students’ conceptual understanding as they reason about 

and construct differential vector elements. Furthermore, the limitation of working within 

upper-division courses is a small student population prevents large-scale quantitative 

analysis. Thus, instead of being able to make claims of the likelihood or frequency with 

which students have a certain idea, this work addresses the existence of common 

responses, understanding, and treatments of differential vector elements within and 

without physics contexts. 

Student understanding is fundamentally approached from a constructivist 

perspective [67,68] in which the student is not a blank slate when solving a task, but 
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instead continually builds upon their own experiences. In this case, as students encounter 

unfamiliar experiences, these new aspects are reconciled with previous understanding. 

Furthermore, the system in which construction occurs is subject to certain laws, 

transformations, and self-regulation [67]. A specific facet of constructivism includes 

reflective abstraction, in which meaning is learned by drawing out similarity in objects 

(i.e., learning the concept of red by being shown a red ball, red shirt, red block, etc.) [67]. 

In an integration context, students could learn the meaning of particular components of 

the definite integral by performing multiple integrations and recognizing the particular 

role of each component over multiple iterations in different calculations [69]. With this in 

mind, the goal of analysis using more targeted frameworks is to identify the 

understanding of target concepts that students have constructed as part of course 

instruction.  

A first pass at analysis during both course observations and interviews used a 

modified grounded theory approach [70,71] with open coding to identify commonalities 

and trends in students’ choices of coordinate systems and differential elements. Grounded 

theory focuses on categorization of what students are doing in response to a task. Codes 

evolved as data were interpreted and were combined along common themes. However, 

where pure grounded theory starts from a blank slate with no preconceptions of student 

understanding, the modified analysis was informed by relevant literature within the area 

of focus.  

Initial analysis also grouped students based on specific difficulties [57], which 

represent incorrect or inappropriate ideas expressed by students. This method of analysis 

was used for written data given as part of course instruction, where only the students’ 
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final responses were able to be analyzed. By classifying these responses, common 

difficulties could be seen to emerge from the data, which suggested similar patterns of 

thinking exhibited by the students. Similarly, as some of the material, such as differential 

elements, is used progressively throughout the course, changes in student responses and 

use of differential elements from assignment to assignment could be tracked 

longitudinally through the term. This analysis draws a comparison of students’ ideas 

within the context of this project to previous literature and contributes new findings to the 

current research base.  

Beyond identification of student difficulties, data analysis of the interviews was 

informed by relevant approaches and frameworks already established in the literature at 

the interface between mathematics and physics, specifically concept image  [38] and 

symbolic forms  [47], which are outlined in the following subsections. These frameworks 

focus on identifying elements of students’ conceptual and representational understanding 

as they work within a particular context and construct equations. Thus they provided 

suitable categorizations for qualitative analysis and address the research questions 

targeting student understanding and construction of differential vector elements. 

 

3.3.1 Overview of the concept image framework and application 

Similar to the use of resources  [42] or knowledge-in-pieces  [72] in physics 

education research, mathematics education research offers a broader frame for studying 

conceptual understanding through a concept image  [38]. Originally developed as a way 

to examine student understanding of limits, a students’ concept image is a multifaceted 

construct that represents a student’s entire cognitive structure about a particular idea. This 
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can include properties, processes, mental pictures and any other aspects of a concept a 

student may access. Unlike the concept definition, which accounts for formal textbook 

definitions and theorems, a concept image is a dynamic construct, in that it can 

accumulate additional ideas and interpretations from relevant contexts as new 

information is learned or old understanding is applied in new context. In many cases, a 

concept image can contain elements that are contradictory or false, much in the way a 

resources perspective can be productive or unproductive. The concept image framework 

was chosen over a resources approach to better enable comparison with the previous 

research in mathematics education and physics education in this domain. 

By analyzing the evoked concept image that is elicited within a specific context, 

researchers can gain specific insights how students think about that concept. For example, 

an integration task may elicit one of several concept images, such as a Riemann sum or 

the area under the curve depending on the task being administered (Fig. 3.1) [14]. While 

particular concept images of integration may contain similar elements, knowing whether 

the students’ evoked concept image is something reminiscent of Riemann sums or area 

under the curve tells one how students interpret particular problems. Likewise, it is also 

telling if a student’s concept image for integration only involves procedural aspects, such 

that the integral of         is     , without being able to recall the specific meaning 

of the process. As per the concept image being a multifaceted construct, one student may 

express both of the above ideas given two distinct contexts (e.g., graph vs. formula). 

 



34 

 

 

Figure 3.1.  Diagram of an evoked concept image. Representation of students’ evoking an 

area under the curve concept image for integration within a given context, 

despite having multiple other concept images for integration. 

 

According to Tall and Vinner, a restricted concept image can develop when students 

work for long periods repeatedly applying a given conceptual idea in a formulaic manner. 

While students may initially be presented with the formal definition or other approaches, 

they may be unable to evoke a more appropriate concept image aspect when met with a 

broader context. For example, students regularly calculating derivatives of functions may 

dissociate dy/dx from a ratio of small changes, or how y changes with respect to a 

differential change along the  -axis . 

The idea of concept image has recently been adopted by physics education 

researchers as a way to gain insight into student understanding of mathematics concepts 

in E&M, particularly in the context of integration [14] and vector differential 

operators [37].  

The concept image framework [38] comprises the base of the theoretical analysis for 

this project addressing differential vector elements and non-Cartesian coordinate systems. 

Chapter 7 describes analyses identifying students’ concept images of differential area 

elements when solving two physics tasks. In this case, I describe the different ways 

students treat or invoke differential areas when problem solving, similar to the example 
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describing a student’s invocation of Riemann Sums, area under the curve, or a 

rule/procedure.   

A concept image analysis is also employed while analyzing students’ construction of 

differential length vectors in an unconventional coordinate system (see Chapter 5). 

However, rather than address the treatment or invocation of differential length elements, 

the analysis of this chapter seeks to identify what common properties or ideas that 

students invoke during the construction with differential length vectors in non-Cartesian 

coordinate systems. This analysis then looks at how students use and make sense of these 

concept image aspects in the context of element construction in order to gain insight into 

students’ understanding of the differential length vector and curvilinear coordinates as a 

whole. 

Each property or associated idea was made a code as it was identified as being 

commonly used across multiple interviews. These were then refined through discussion 

and rereading of the interview transcripts. 

 

3.3.2 Overview of the symbolic forms framework and application 

Utilizing the perspective of the knowledge-in-pieces model, symbolic forms  [47] 

identifies students’ representational understanding of the structural components of 

equations as they construct and interpret expressions. Sherin’s initial study involved 

interviews of students in a third-semester introductory physics course, in which students 

were provided with several word problems modeling physical situations common to 

introductory physics. The equations students constructed for given situations involved 

scalar quantities and the mathematics was limited to basic algebraic manipulation. Sherin 
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found that rather than trying to derive an expression by manipulating known equations, 

students built or attempted to build equations from a sense of what they wanted the 

equation to express. The development of symbolic forms was driven by the analysis of 

student work within these interviews in an effort to provide a critical lens for the 

investigation of students’ construction and sense-making of equations at the introductory 

level.  

The specific nature of a symbolic form comes from the combination of a symbol 

template with a conceptual schema. A symbol template is an externalized structure of an 

equation. A student’s conceptual schema is the intuitive internalized mathematical idea 

that the student expresses in the template.  

One example of a symbol template is ; each box represents one or more 

variables and/or numbers, depending on what a student deems fit. The template belongs 

to the parts-of-a-whole symbolic form, which has a conceptual schema in which parts of 

a substance or quantity are summed to contribute to the whole. This means that one term 

can change and would affect the whole but not necessarily the other parts. 

Sherin defines the conceptual schemata as simple structures, similar to 

phenomenological primitives  [72]. Furthermore, these schemata can vary for the same 

mathematical operation. One reason to add quantities is when the sum represents a whole 

quantity and each term in the addition – each box – represents one component of that 

quantity. For example, in the expression for the surface area of a cylinder of radius R and 

length L, there is an area term for the side (2πRL) and a term for the (two) ends (2πR
2
). 

The symbolic form associated with this particular template-schema pair is known as 

parts-of-a-whole  [47]. A student could also interpret the expression        as an initial 
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velocity quantity plus some increase or decrease depending on the acceleration. The 

schema behind this addition is identified as base + change, and has the associated 

template      [47]. In short, the conceptual schema is what informs how students 

need to write particular expressions and accounts for their understanding of the template. 

The symbol template is then the manifestation of the conceptual schemata as a reified, or 

physicalized, symbolic pattern.  

An understanding involving symbolic forms buys students the ability to “(a) construct 

expressions, (b) reconstruct partly remembered expressions, (c) judge the reasonableness 

of a derived expression, and (d) extract implications from a derived expression”  [47] (pg. 

499). In the knowledge-in-pieces tradition, the correctness of the equation is irrelevant. It 

is important to recognize that symbolic forms analysis only considers a structural 

understanding of the equations, as defined by Sherin, and not the context in which they 

are being used. 

As such, symbolic forms analysis lives almost entirely in the structural realm of the 

equations; the conceptual schema is conceptual in the sense of justifying the 

mathematical operation, but not the conceptual understanding of the physical scenario 

that leads to it. In other words, symbolic forms were not developed to interpret student 

understanding of the physics represented by a particular equation.  

This work utilizes a symbolic forms framework to give specific focus on the 

construction of differential elements. A symbolic forms approach allows the 

identification of the specific structures (symbol templates) students created as well as 

insight into the mathematical understanding that students attach to the structures 

(conceptual schemata) as they are combined to be represented in the final equation. 
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Symbolic forms were identified by isolating the smallest units of structure that students 

wrote during equation construction and by finding explicit attachment of that structure to 

students’ mathematical understanding as expressed in the associated transcript.  

Notably, a strict symbolic forms analysis neglects the content basis for choices, using 

only procedurally based mathematical justifications for the symbolic arrangements that 

indicate only that a student needs a particular structure in their expression. In these cases, 

the concept image analysis is used to provide a depiction of the content understanding 

connected to students’ invocation of symbolic forms.  

By combining these two frameworks for the study of various tasks involving 

students’ construction of differential elements, analysis illustrates both the mathematical 

and physics understandings that go into students’ construction of these expressions. 
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CHAPTER 4 

4 PRELIMINARY INVESTIGATIONS 

“Do what I do. Hold tight and pretend it’s the plan!” 

-The Doctor, Season 7, Christmas Special 

 

In this chapter, I summarize preliminary findings and observations from the 

beginning phases of the project, specifically attending to student understanding of non-

Cartesian coordinate systems and construction of the subsequent differential elements 

which become the focus of my later study. While this chapter does not represent a formal 

presentation of research, it provides the context to understand how material is presented 

to students and leads to the development of the research questions addressed in chapters 

5-7. 

Section 4.1 discusses course observations in the mathematics department to outline 

differences in disciplinary conventions within the departments at University A; the 

disciplinary differences represented here have been previously outlined in the 

literature [73,40]. I shed further light on these differences here to discuss the treatment of 

material at the institution at which this project was undertaken and as further evidence for 

why student understanding of the specific instantiation of vector calculus used in E&M is 

something to be studied by physicists and in physics classes. These differences show that 

it is in physics classes and not mathematics classes that students are learning the specific 

mathematics of vector calculus used to model E&M systems. 

In section 4.2, there are informal discussions of both the course textbooks from E&M 

I and Mathematical Methods to give a sense of the basic treatment of non-Cartesian 

coordinate systems and differential elements in the two physics courses. Several 
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discrepancies are presented here that suggest students are learning material in two 

different ways within the same curriculum structure. This further isolated E&M as the 

main course of study as this course is where the targeted content is first presented and 

given the most context. 

Following this discussion, preliminary findings from course observations conducted 

in E&M I during the fall of 2015 are discussed in section 4.3 to provide background for 

the motivations of the larger project. Findings show that while students’ performance 

with writing spherical differential elements improves over E&M I, they still have 

difficulties with element construction in cylindrical coordinates, even at the end of a full 

semester of E&M. This contradicts results of earlier course quizzes showing students 

were more successful when writing differential length vectors in cylindrical coordinates. 

The subsequent development of research questions and transition to the full study is 

synthesized in section 4.4.  

 

4.1 Observations of the Vector Calculus course 

As stated in Chapter 3, Vector Calculus is offered as an upper-division mathematics 

special topics course in alternating fall semesters. Course observations were conducted 

during the fall of 2015, concurrently with observations in E&M I. The class was lecture-

based and was taught three times a week for 50 minutes.  

The material covered for roughly the first month of the course included an 

introduction of vectors as quantities, using vectors to define a plane, and the 

conceptualization and calculation of vector products. Following this, students began to 

discuss curve parameterization and vector fields, which come into use later when 
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calculating line integrals. This occurred well into the semester and notably, the material 

was taught in Cartesian coordinates. The course then covered area integrals, using scalar 

differential area elements and an    to specify the direction of a particular surface. Vector 

differential operators were also taught in Cartesian coordinates, with specific focus given 

to a conceptual understanding of what gradient, divergence, and curl mean. Lastly, tying 

all of these concepts together, the course covers vector calculus theorems (e.g., 

Divergence Theorem and Stoke’s Theorem). 

The presentation of line integrals using curve parameterization and the explicit use of 

Cartesian coordinates verify earlier claims of a “vector calculus gap” mentioned by Dray 

and Manogue [74,73], identifying these areas among the differences between the 

mathematics and physics disciplines. However, the use of Cartesian coordinates in a 

mathematics discipline makes sense, as the variables and unit vectors remain fixed and 

independent of position in space and since application of vector calculus here could be 

considered more universal (i.e., for any instantiation of line or surface), whereas 

cylindrical and spherical coordinates only make calculation “easier” for the specific 

subset of situations that are common to E&M.  

In this case, while students often incorporate other calculus ideas that are taught 

within a mathematics curriculum, such as an understanding of differentials, derivatives, 

and integrals, the specific use of differential length and area vectors in spherical and 

cylindrical coordinates is something unique to a physics conceptualization of 

mathematics. This is at least the case at the institution in which this project was 

conducted, although given such publications as those identifying a “vector calculus gap,” 

it is unlikely that this discrepancy is localized to a few departments.  
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As such, this project explores the specific instantiation of mathematics used in E&M, 

focusing investigations on the physics curriculum where vector calculus is almost 

uniquely applied to non-Cartesian coordinate systems; we also address at physics 

students’ understanding of the mathematics as they connect the ideas to physics concepts.  

 

4.2 Treatment of coordinate systems in physics course texts 

In this section, there is discussion of the common course texts used within the physics 

curriculum used at University A, Introduction to Electrodynamics [58] and Mathematical 

Methods in the Physical Sciences [75], used for the E&M course sequence and 

mathematical methods course, respectively. This does not represent a formal analysis, but 

instead is provided as a context of how material is presented to students as part of course 

instruction and as a means to present differences in presentation between courses taught 

in a physics curriculum. 

The first chapter of Griffiths, Introduction to Electrodynamics, [58] includes a 

plethora of mathematical background relevant to the student and learning of E&M 

concepts (e.g., vector analysis, integral calculus, vector fields, etc.). After presenting the 

Cartesian coordinate and unit vector transformations, the text gives the differential length 

component in each spherical direction and provides a depiction of the changes within the 

coordinate system (Fig. 4.1). However, the text does not explicitly connect these 

constructions to the ideas of arc length and projection that go into the component 

determination (see Appendix A). Next, the text presents the construction of a differential 

volume element as the product of three differential lengths and offers two examples of  
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Figure 4.1.  Construction of differential length components in spherical coordinates. A 

differential change in each variable produces a differential length component 

traced by the vector,   . Image reproduced from E&M course text  [58]. 

 

differential areas in spherical coordinates that result from a product of two differential 

lengths chosen based on analysis of the geometry (Fig. 4.2). 

When it comes to a presentation of cylindrical coordinates, the text only provides the 

variable and unit vector transformations and a statement of the differential length vector 

and volume element. What is lacking in this section is a discussion of the differential area 

vectors offered in spherical coordinates. Arguably, the inclusion of the construction of 

differential areas in this system is of more importance given that each of the three 

differential areas in cylindrical coordinates is used in various E&M equations (Fig. 4.3).  

When students are first introduced to cylindrical coordinates in problem solving, it is 

 

Figure 4.2.  Two differential areas in spherical coordinates.     and     depict 

differential areas for the surface of a sphere and one in the   -plane, 

respectively. Each is constructed as a product of two differential length 

components representing changes in each of the angles. Image reproduced 

from E&M course text  [58]. 
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(a) (b) (c)  

Figure 4.3.  Images for tasks that use different cylindrical differential areas. (a) The 

curved cylindrical surface has a differential area of        . (b) The curling 

magnetic field resulting from the current,  , dictates a differential area for the 

square of       . (c) Current can be determined from integrating the current 

density,  , through a cross sectional area. The differential area for a 

cylindrical wire is        . Images reproduced from E&M course text  [58]. 

 

in the context of Gauss’s Law, where now the writing of the differential area is made 

superfluous by symmetry arguments (Figure 4.4). Upon further review, there is no 

example that involves writing a cylindrical differential area until current density is 

introduced, in the fifth chapter.   

Mathematical Methods is the second place within a physics curriculum, at University 

A and many other universities, where students encounter non-Cartesian coordinate 

systems. In contrast to the E&M text, Boas [75] introduces the coordinate systems prior 

to the discussion of vector analysis. As such, the differential lengths and areas are 

presented as scalar quantities (Figure 4.5) due to their future representation in vector 

calculus. The differential length element is first  

 

 

Figure 4.4.  Example of application of Gauss’s law within the course textbook. The 

symmetry of the problem means the differential area doesn’t need to be 

written out if the final surface area of the shape is known. Image reproduced 

from E&M course text  [58]. 



45 

 

 

Figure 4.5.  Comparative coordinate system in Mathematical Methods textbook, showing 

notational differences between variable use and representation as vectors. 

Image reproduced from  [75]. 

 

defined as    via a Pythagorean expression for Cartesian differentials as a    .This is 

defined this way as an arc length for multivariable path integrals before the introduction 

of vector calculus in a later chapter. This particular representation obscures the 

underlying construction of the length components as vectors, which is how they are 

employed in E&M. In fact, the construction of the differential length vector in this 

manner is absent from the text.  

 Rather than building the length elements within the coordinate system as is done 

in Griffiths [58], Boas presents the Cartesian terms and determines the new coordinate 

differential elements via a Jacobian transformation rather than from the differential length 

elements [75]. Noticeably, the text presents a single differential area element for each 

coordinate system, where again, all three differential elements for cylindrical coordinates 

are eventually used.  

This depiction of vector quantities as purely magnitudes extends to representation of 

integration. Integration involving the effects of vector fields over an area is presented in 

the typical mathematics fashion. Rather than embedding the unit vector in the differential 

area vector,        , the unit vector describing any given surface of interest is represented as 
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an independent part of the expression (e.g.,       ). Upon defining the surface,    is 

specified in a given coordinate system. This provides a distinct difference from 

Griffiths’s treatment of differential area as a vector in its own right. In mathematics, this 

is a sensible representation as it accounts for any possible case. However in E&M, the 

high symmetry allows for the change in representation and the choice of one differential 

area element to represent a highly symmetric surface. Yet the conventional differences 

are, once again, another area to be on guard for student difficulties.  

 

4.3 Course observation and preliminary data collection in E&M I 

Observation in E&M I took place during the Fall 2015 semester. Class met twice a 

week for an hour and fifteen minutes. Information was generally presented to students via 

Power Point slides, but students were often sent to the board to work through problems in 

small groups. Extensive field notes were taken and all assignments were scanned before 

being graded by the instructor. This section addresses the presentation of non-Cartesian 

coordinates and differential elements, which subsequently became the focus of the 

project. 

Spherical coordinates were introduced around the second week of class after time was 

spent familiarizing students with the concepts of electric fields. The introduction of 

spherical coordinates followed closely with the section of course text. Students were then 

shown an example of how spherical coordinates are applied in the context of Coulomb’s 

Law. After the introduction of the spherical coordinate system, students were quizzed on 

a number of mathematical aspects presented so far. This included labeling the variables 

of a spherical coordinate system and writing the system’s differential length vector. The 

results of this quiz are presented in section 4.3.1 as preliminary data. 
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Over the next several classes students continued to work with spherical coordinates as 

they used it to find the electric field due to spherical surfaces and volumes, as well as to 

construct vectors for the calculation of Coulomb’s Law. In the third or fourth week, 

students were introduced to Gauss’s Law and explicitly shown when and how to make 

the appropriate symmetry arguments to isolate and solve for the electric field. Students 

used this new solution method for earlier charge distributions having the appropriate 

symmetries as a way to show the relative ease of Gauss’s Law compared to the more 

general Coulomb’s Law (Fig. 4.6). Around this time cylindrical coordinates were 

formalized in accordance with the course text. 

 

 
Figure 4.6.  Comparison between application of Gauss’s law and Coulomb’s law. 

Coulomb’s law involves several mathematical steps, vector decomposition, 

and symmetry argumentation. By comparison, Gauss’s law is primarily 

solved using symmetry argumentation. 
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Following these classes, students were given a second quiz, as part of regular course 

instruction, which entailed students drawing a representation for Cartesian, cylindrical,  

and spherical coordinates as well as writing the differential length vector and differential 

volume elements for each. The results of the second quiz are presented in section 4.3.2 as 

preliminary data to compare with earlier results. 

As the students progressed throughout the rest of the semester, they used the 

coordinate systems and differential elements in almost every problem given as homework 

or on an exam. Section 4.3.3 discusses an overview of students’ written work throughout 

the semester in terms of expressing differential elements.  

The results of these course observations and open coding of students’ written work 

led to the development of the research questions presented again at the end of this chapter 

in section 4.4. As with the textbook review, the following sections do not represent a 

formal presentation of research but a background for the reader to provide the context of 

student understanding upon which this study was developed.  

 

4.3.1 First quiz given on spherical coordinates and the differential length vector 

The last question of the math quiz given after the introduction of spherical 

coordinates included a picture of the coordinate system as given in the text, with both the 

variables and unit vectors replaced with empty boxes. Students were asked to fill in each 

box with the appropriate coordinate variables or unit vector. Lastly students were asked 

to construct a generic differential length vector for the system. 

Of the twenty-one students present for the quiz, only twelve correctly labeled the 

physics coordinate system variables (Fig. 4.7a). All but one of the remaining students 
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used the mathematics representation where the angles are switchted (Fig. 4.7b). As the 

quizzes were returned, one student mentioned “Oh, I was confused with the way I learned 

it in math,” referencing the differences in convention between the two disciplines. This 

has been identified as a possible obstacle to student learning in physics in the 

literature [40]. 

Student responses for the spherical differential length vector proved to be 

significantly variable, with only one student writing a correct vector. Most notable 

however was the initial disconnect between the dimensionality of terms and the number 

of components needed. Only about half of the class was able to write a term with the 

correct dimensions of length, while others were a mixture of lengths, areas, and volumes. 

Looking at the class as a whole nine students included multiple terms in their vector. Of 

these students, three constructed    as a magnitude of Cartesian elements. This 

construction generally included the Cartesian-to-spherical transformations.  

 

 

a)  b)  

Figure 4.7.  Two most common student responses for labeling spherical coordinates. (a) 

Correct (physics) spherical coordinate system representation. (b) 

Mathematics representation of the spherical coordinate system with swapped 

angles, and most common incorrect response on coordinate system quiz. 
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4.3.2 Second quiz given on coordinate system understanding and differential 

length construction 

Two weeks after the initial quiz on spherical coordinates, students were given a 

second quiz in which they drew each coordinate system by hand and wrote differential 

length and volume elements. Results here show marked improvement on spherical 

coordinate notation, yet construction of length elements in any coordinate system, while 

better, still remained somewhat mixed. 

Twenty-two students were present for the administration of the second quiz. Fifteen 

students correctly represented the coordinate angles (Fig. 4.8). Of the remaining students, 

only two used the conventional mathematics representation. Four students depicted the 

angle theta as being measured from the   -plane (Fig. 4.8); this response arose only 

when the students had to draw the coordinate systems from scratch rather than just label 

the angles. All but three students correctly depicted cylindrical coordinates.  

For the differential length vector, all but one student (who wrote a differential volume 

element instead) accounted for the fact that there needed to be three terms. Additionally, 

most attended correctly to the dimensionality of each term. However, only ten students 

(approximately half) had an appropriate differential length vector expression. Common 

difficulties included writing length elements with Cartesian unit vectors and attempting to 

make unnecessary projections to specific Cartesian axes while still using spherical unit 

vectors (Table 4.1). These mistakes suggest that students were uncomfortable working 

within spherical coordinates independent of Cartesian and are most likely trying to recall 

the decomposition of radial vectors when they had written "script-r" for spherical 

symmetry problems using the general method. Just as Sayre and Wittmann [10] have 
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identified in sophomore-level mechanics, students have a strong preference for Cartesian 

coordinates, even after explicit instruction in problem solving. 

When it came to writing a differential length vector within the cylindrical and 

Cartesian systems on the second quiz, we see students performing no better than with 

spherical coordinates. Almost half of the twenty-two students wrote the correct 

differential length element in Cartesian, with the most common difficulty being not 

including the differentials themselves. In cylindrical coordinates, only nine students could 

reproduce a representation of the coordinate system and write the differential length 

element correctly. This speaks to student difficulty solidifying these concepts as tools for 

future problem solving, even after practice with drawing coordinate systems and explicit 

instruction on constructing differential elements. 

 

 

 

 

 

 

Figure 4.8.  Sample student responses for depicting spherical coordinates on a later quiz.  
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Type of response (# /22) Example of student response 

Correct 10 

 

                         

Partial axis projection 4 

 
                    

Cartesian elements 3 

 

                                       

Differential as a vector 1 

 

                        
Volume  1 

 

                 

Angle confusion  1 

 

                         

No projection 1 

 

                    
Only differentials 1 

 

                   

Table 4.1.  List of student responses for spherical differential length element on the 

second quiz  
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4.3.3 Student use of differential elements during problem solving throughout the 

remainder of the semester 

Qualitative analysis of student homework and test data over the semester highlights 

an increased percentage of correct differential element use for spherical coordinates, with 

almost all students using the correct spherical volume and area elements by the end of the 

semester.  

Correctness of students’ cylindrical elements over the course of the semester also 

increased, but fewer students were able to write correct cylindrical elements when 

compared to student writing of correct spherical elements. On an early homework 

assignment, only nine of 22 students constructed a differential area element, while eight 

skipped the writing of the differential area, as is done in the example in the text (Fig. 4.9).  

On the first exam, fewer than half of students were able to write the correct cylindrical 

differential area when using Coulomb’s law. The most common difficulties included 

writing only the differentials without the scaling factor(s) (e.g.,       or writing the 

differential area for the end cap of the cylinder,      , when the problem needed the 

differential area for a curved shell,        On a later problem, 17 of 21 students wrote 

the correct differential area element for spherical coordinates.  

 

 

Figure 4.9.  Student application of Gauss’s law on a homework assignment. Here, one 

student bypasses the writing of the differential area by taking advantage of 

coordinate symmetry. 
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The percentages of students writing correct differential area elements remained low at 

the end of the semester, with only 60-75% of the students using the correct differential 

area across later homework assignments and tests. Notably, while working on homework, 

students could easily access the coordinate system information in the text. Despite this, 

they still underperformed on cylindrical coordinates: only 12 of 19 wrote the correct 

differential area on a later homework. The difficulty with cylindrical coordinates seen in 

the remainder of the semester contradicted the results of the second quiz on multivariable 

coordinate systems, which showed more students writing the correct cylindrical 

differential element. This juxtaposition, as well as the general difficulty students 

displayed with writing differential elements within non-Cartesian coordinate systems, 

motivated the development of the project. 

 

4.4 Conclusions and Transition to Further Investigations 

A review of courses in which vector calculus is taught and of common textbooks 

show a variety of differences in the way differential length, area, and volume elements 

are used and taught at University A, and likely other universities. The discussion presents 

several disparities in the language of vector calculus between mathematics and physics 

curricula and between physics courses themselves. Following the larger overview, the 

study focused on the E&M I course, where vector calculus concepts were most 

commonly being applied in a physics contexts. 

After initial course observations in E&M I, students’ facility with coordinate systems 

emerged as a particular area of interest. Cylindrical coordinates are arguably easier than 

spherical coordinates, given that there is still a single Cartesian component and thus only 
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one angle to work with. However, answers to the quiz early in the semester coupled with 

the use of incorrect differential elements over the progression of the semester suggest that 

cylindrical coordinates are the harder system for students to use. One difficulty could 

come from the selection of appropriate differential area elements. While students 

typically only integrate over one area in spherical coordinates (the surface of the sphere at 

a fixed radius), there are three possible areas used when it comes to integration in a task 

with cylindrical symmetry.  

As only a few students have been documented as using area elements for the wrong 

surface area, it seemed more likely that there was difficulty working within both systems. 

The supposed “ease” with spherical coordinates was then hypothesized to be due to the 

repeated use over similar tasks given over a long period. Repeated use would then lead to 

memorization of the elements abstracted from understanding, which is consistent with the 

development of a restricted concept image resulting from repetitive use of a formal 

definition [38]. A student having a restricted concept image is unable to work in a 

broader context (e.g., cylindrical coordinates), due to the focus on memorization. The 

suggestion is then that students have difficulty recognizing the origin of differential 

elements even in spherical coordinates.  

At this stage the main research questions were determined. Following the subsequent 

immersion into the previously described theoretical frameworks, the questions were 

developed into the broadened ones described at the outset of this dissertation: 

 To what extent do students understand the multivariable coordinate systems used 

for vector calculus in E&M? 
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 In what ways do students build and/or make determinations about differential 

vector elements (i.e., line, area, and volume elements) in these multivariable 

systems? 

- To what extent does student understanding of the symbolic expressions 

and conceptual aspects of differential vector elements, more specifically in 

non-Cartesian coordinate systems, impact element construction? 

Additionally, such questions marked a need to depart from the analysis of written 

data. Typically a solution to a vector calculus problem in E&M does not require students 

to express their reason for coordinate system choice or why a differential element is 

expressed in a particular way. While written data provide some idea of students’ ability to 

arrive at the right answer, the quizzes and problems generated as part of the course were 

not optimized to extract student thinking about differential elements. Even more, 

students’ use of coordinate systems and differential vector elements is often more 

peripheral to problem solving, as it is typically only a step in the process of a larger 

problem. Thus, interviews become the primary source of student data. Within an 

interview, students are given the space to discuss the motivations and underlying ideas 

that ultimately lead to a choice of coordinate system and the final representation of these 

differential elements. 

Several interview tasks are outlined in the chapters that follow. These have been 

developed to further explore student understanding of these topics and answer the 

research questions.  
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CHAPTER 5 

5 STUDENT CONSTRUCTION AND DETERMINATION OF 

DIFFERENTIAL LENGTH VECTORS 

“Just when you think you know something, you have to look at it another way. 

Even though it may seem silly or wrong, you must try.” 

-Robin Williams, Dead Poets Society 

 

For vector calculus use in E&M, the differential length vector,    , is a fundamental 

quantity in the sense that while it is used individually in problems for change in potential,  

               
 

 
, 

Ampère’s law, 

                    , 

or Biot-Savart’s law, 

    
  

  
 

        

     
, 

to name a few examples, the components of a differential length vector within a given 

coordinate system are used to determine the representation of differential areas depending 

on which variables are changing and which are held constant, as detailed in Appendix A. 

For example, multiplying           and              , two differential length 

components in spherical coordinates, yields the differential area for the surface of a 

sphere, a differential area commonly used in Coulomb’s and Gauss’s Laws. Problems 

necessitating non-Cartesian differential elements (as scalars or vectors) appear early in a 

typical E&M course text and are used consistently throughout (e.g., Griffiths [58]). 

Therefore, an understanding of the differential length vector across each coordinate 
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system emerges as a fundamental mathematical construct in the application of vector 

calculus in our upper-division electricity and magnetism courses.  

The determination of an appropriate differential length element for tasks that involve 

equations such as those above is predicated largely on two aspects: the relevant 

coordinate system and the direction of the associated field or targeted quantity. The 

relevant coordinate system selects the subset of differential length elements, typically 

expressed as the three-component differential length vector. The direction of the field or 

current then isolates the component needed for the integration as an application of the 

embedded vector product.  

Given the importance of the differential length vector in problem solving and its use 

in determining the other differential elements, the following research questions were 

identified as areas for investigation: 

 In what ways do students build and/or make determinations about differential 

vector elements (i.e., line, area, and volume elements) in these multivariable 

systems? 

- To what extent does student understanding of the symbolic expressions 

and conceptual aspects of differential vector elements, more specifically in 

non-Cartesian coordinate systems, impact element construction? 

In order to address these research questions, I discuss the analysis of data from two 

tasks in the following sections. The first provides students with an unconventional 

spherical coordinate system and asks them to construct a generic differential length 

vector (section 5.1). This allows us to isolate student understanding of the construction of 

these elements within curved space coordinates, providing a picture of student level of 
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understanding of the origin of differential length components in each coordinate 

direction. The second task involves students solving for a change in potential over a 

spiral path (section 5.2). This was designed to provide insight into students’ 

understanding of differential length vectors as part of problem solving within a physics 

context. Analysis of student understanding of differential length construction within and 

without context provides a larger picture of students’ conceptual understanding of 

mathematics and how it is applied in physics, as well as help identify students’ 

difficulties [57] and successes when employing non-Cartesian coordinate systems in 

problem solving. 

Data analysis employs two theoretical perspectives: concept image [38] and symbolic 

forms [47]. The former addresses students conceptual understanding related to 

construction of differential length elements while the latter attends to the mathematical 

understanding of equation construction. As each framework addresses aspects of 

construction in a complementary fashion, results of this work led to theoretical 

development, fully detailed in Chapter 8, which ties the individual analyses together 

using a conceptual blending framework [76]. 

 

5.1 Construction of a differential length element in an unconventional spherical 

system 

5.1.1 Research task design 

In order to investigate student understanding of how differential vector elements are 

constructed in non-Cartesian coordinate systems, I developed an interview task based on 

an unconventional spherical coordinate system (Fig. 5.1, Appendix B1). As part of the 

task, students were asked to conclude whether the system was feasible, and to build and 
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verify the differential line and volume elements. The goal of using an unconventional 

coordinate system are to be able to determine students’ abilities to work with the 

underlying conceptual ideas, rather than their ability to recall a memorized answer.  

The unconventional system, which I will hence call “schmerical coordinates,” is designed 

with several features to distinguish it from traditional spherical coordinates. Firstly, it is a 

left-handed coordinate system, with the  - and  -axes swapped from their usual 

representations. The left-handed nature allows us to determine if any Cartesian elements 

presented by students are the result of recall or accurate (but unnecessary) projections 

within the Cartesian system. The swapped location of Cartesian axes also means that the 

polar angle,  , is placed differently than the analogous   in spherical coordinates. This 

shift, however, does not impact the expression for the length element.  

Likewise, the placement of the polar angle   is different than that of  . However, this 

change in coordinate representation does influence the expression for the differential 

length. As discussed in the mathematical background (Appendix A), the      in the   -

component results from a projection of the radial vector into the xy-plane. This projection 

 

 

Figure 5.1.  Comparison of spherical coordinates and unconventional system given to 

students. (a) Conventional (physics) spherical coordinates; (b) an 

unconventional spherical coordinate system (“schmerical coordinates”) given 

to students, for which they were to construct differential length and volume 

elements. The correct elements for each system are in (c) and (d), 

respectively. 
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is the radius used in the definition of the differential arc length for a differential change in 

angle,   . Thus within schmerical coordinates, the      term is needed to describe the 

new differential length component. 

The variation in the placement of the angles from spherical coordinates sought to 

require students to critically assess and employ the various techniques of building 

differential elements. 

 

5.1.2 Methodology for analysis of the schmerical task 

Clinical think-aloud interviews were conducted at two (public) universities with 

students enrolled in junior-level E&M. Both universities teach E&M as a two-semester 

sequence following the same textbook [58]. Four pairs of students (N=8) were 

interviewed at University A at the end of the first semester and two pairs and a single 

student (N=5) at University B at the beginning of the second semester of E&M. As 

described in section 3.3, pair interviews facilitated more authentic student discussion and 

allowed them access to each other’s conceptual understanding, thus minimizing the input 

and influence of the interviewer. In some cases, it may be noted where ideas are 

introduced by one student and not understood by the other. However, in general, 

knowledge is treated as belonging to the pair as a whole. Groups are identified as AB, 

CD, EF, and GH for the first university and PQ, RS, and T for the second. These 

identifiers signify pairings of students with pseudonyms Adam and Bart, Carol and Dan, 

etc. The interview population included two graduate students, Adam and Bart, who were 

enrolled in the course for credit. 
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Each interview was videotaped and transcribed; transcriptions at University A were 

analyzed to compile elements of students’ evoked concept images [38] of the differential 

length vector (see section 3.3.1 for overview of concept image framework and 

methodology). Elements were identified as belonging to a concept image of a differential 

length vector if they appeared across multiple groups (productively or unproductively) 

and were used by students to construct some aspect the differential length vector 

expressions. Once aspects of the concept image were identified, the data were re-

examined to determine the order and/or grouping of these ideas over the course of the 

task. The specific ordering of ideas is described later in this chapter. 

Analysis of transcripts from University B did not involve a progression or grouping 

of concept image aspects, as these interviews were performed just over a year after those 

at University A and because students at University B had greater difficulty with the task, 

relying more heavily on aspects of recall and less on aspects of construction. 

In order to provide a larger picture of students’ understanding of the mathematical 

representation of the differential length vector, students’ expressions was analyzed 

throughout the stages of construction to identify uniform templates that might be 

connected to symbolic forms [47], either those identified by Sherin [47] or new forms 

specific to this context (see section 3.3.2 for overview of symbolic forms framework and 

methodology). Symbolic forms were identified as invoked by pairs if students included 

the template within their expression and discussed some level of mathematical 

justification for the structuring of that part of the expression in that way. 

All transcripts were analyzed for students’ invocation of symbolic forms and the 

concept images associated with the moments focused on construction. 



63 

 

Analysis of evoked concept images in the unconventional coordinate system allowed 

us to develop a clearer picture of student understanding, as well as to identify specific 

student difficulties [57] and successes when working with coordinate systems that they 

apply to particular problems throughout the semester.  

 

5.1.3 Overview of Results  

All students were able to complete the first aspect of the task, which discusses the 

feasibility or validity of the system. Each group identified schmerical coordinates as 

similar to spherical coordinates and at least one of the required properties of a coordinate 

system (e.g., span all space, unique mapping to points). Upon recognizing that   and   

covered the same range of   radians, students easily claimed similarity between the two 

systems. As such, the students were able to recognize schmerical coordinates as a non-

Cartesian coordinate system; they were then asked to construct a differential length 

element for the unconventional system. 

The remainder of this section focuses only on the analysis of the initial stages of 

construction of the differential length element. 

Upon completing their first attempt at constructing a differential length vector, prior 

to being asked to construct a differential volume, no group was able to construct an 

appropriate expression due to inattention or misapplication of certain ideas such as arc 

length or dimensionality.  

Three pairs of students at University A (AB, CD, EF) explicitly discussed their 

construction during the interview, elaborating on their choices of how they structured the 

equation and their inclusion or exclusion of certain terms, while others used recall from 
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other coordinate systems. Due to the focus of the research questions on students’ 

conceptual ideas associated with construction, the data corpus presented here is primarily 

derived from these three groups that attend to the properties needed to build the 

differential element. However, common elements of reasoning did appear for other 

groups as they constructed terms, and thus these interviews provide additional supporting 

data to the existence of particular concept images and symbolic forms.  

Despite emphasis on construction, none of the initial three groups constructed a 

correct differential length vector: they either included a      following mapping to 

spherical coordinates (AB, CD), or excluded the trigonometric function altogether (EF). 

Students in the remaining groups had more significant difficulty reasoning about the 

construction of the differential length vector, despite being able to connect the unfamiliar 

system with spherical coordinates. PQ, as well as the fourth group at the first university, 

GH, relied on recall. In these interviews students spent a significant amount of time 

trying to remember the forms of equations learned in classes. Both groups ended up 

working within the structure of a recalled Cartesian differential length. The other two 

groups had difficulty with ideas of arc length or failed to recognize the need to express 

multiple components.  

The remainder of this section will present the findings of both the concept image 

analysis at University A (section 5.1.4) and the symbolic forms analysis. The symbolic 

forms analysis is accompanied with a discussion of the concept image aspects that 

warranted the inclusion of a particular template. 
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5.1.4 Results of Concept Image Analysis 

Analysis of students' concept images allowed us to identify four particular aspects 

that students commonly associated with the construction of a differential element as part 

of our interviews. Table 5.1 defines each aspect and provides an example of how students 

attended to and drew upon these aspects during construction. Elements were identified as 

belonging to a concept image of a differential length vector if they appeared across 

multiple groups and were used by students to construct some aspect the differential 

length vector expressions. 

The component and direction aspect involved students’ attention to the summation of 

three different components as well as the idea that each component of the vector equation 

is displaced independently. Many of the students placed emphasis on the aspects of 

dimensionality, specifically attending to the need of each component to have units of 

length. Students used the aspect of differential to talk about needing small displacements  

 
 

Concept Image 

Aspect  

Specific Idea  Example (in bold) 

Component 

& Direction 

Recognition of multiple 

components, each 

displaced independently 

Frank: Yeah, so like there,   , there are 

three different   's. There is    with 

respect to  ,    with respect to a,  , and 

   with respect to  …  

Dimensionality Each term needs units of 

length  

Adam:… This doesn't have any units 

of length…so, it needs to have some   

term. 

Differential Small changes (of 

displacements) 

Carol: Right. So you have a change in 

your    is going to be your   , it's 

your change in your  .  

Projection Use of cosine/sine 

explicitly 

(not rote recall) 

Elliot: …but if we're pointed way up 

here, then we need to take the cosine so 

that we're, we have the component of   

that is actually in the   plane. 

Table 5.1.  Aspects of students’ concept image of a differential length vector in a non-

Cartesian coordinate system. 
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or changes in specific directions. Due to the nature of the coordinate system, the aspect of 

projection (obtaining a component of a vector in a particular plane) is relevant to 

appropriately explain the need for a      in the β-component. However, many students 

did not apply this last aspect to their construction. 

In a number of groups, emphasis was put on matching terms to differential elements 

in known coordinate systems. Because of the variability in student responses, analysis 

needed to expand beyond identifying only the properties that students associated as 

belonging to the differential length vector. In addition to identifying necessary concepts 

for building, there were several actions that students took during the interviews: rote 

recall of length elements from other systems; mapping of the variables to spherical or 

Cartesian coordinates; and grouping of elements, typically based on variable (Table 5.2). 

Actions are distinguished from aspects in that, while they are still seen commonly across 

groups, they are not properties students associated with the differential length vector. 

Instead, an action is defined as something students did during construction as a means to 

 
 

Construction 

action  

Specific Idea  Example (in bold) 

Grouping Combining elements by 

like variables or terms 
Harold: You've got        plus, is it 

       or is there an   in there? 

Rote Recall Writing or remembering 

elements from Cartesian 

or spherical coordinate 

systems 

Greg: dτ in spherical is        =... 

=     =...=  . 

Transliteration Direct matching of 

variables from existing 

coordinate system 

 Bart:...so now we have just to 

compare so we have   it is  ,   is 

 =...=  is  . 

Table 5.2.  Actions taken by students during construction of a differential length vector 

for schmerical coordinates. 
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build and understand components. Grouping as we identify it here is distinguishable from 

the grouping resource identified by Wittmann and Black [64], where terms in a 

differential equation are combined into a single combined term. 

In order to illustrate what concept image aspects and building actions students 

invoked as they progressed through construction of the various differential components, 

flow charts were designed for the analysis of the order in which concept image aspects 

appeared and were connected for students. (e.g., Fig. 5.2). These flow charts further 

allowed for a juxtaposition of construction from conceptual ideas with the use of recall to 

determine the schmerical length element. The use of these diagrams also aided the  

 

 

Figure 5.2.  Concept image flow chart for Adam (solid outline) and Bart (dotted outline). 

Excerpts from transcripts are provided to show coding for elements. The final 

element to the right is followed uninterrupted by the first element on the left 

in the next row. 
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discussion of themes identified within students’ construction. In these representations, 

concept image aspects are identified using circles and building actions as squares. Each 

aspect and action is color-coded. Solid and dotted lines are used to distinguished which 

student is using the action or aspect at a given point in time. When ideas or actions were 

used incorrectly or produce an incorrect element in the expression, the lines around the 

shape are colored red. Each element or grouping of elements represents a complete 

sentence or phrase pertaining to a section of construction. As a proof of concept, the chart 

is illustrated in Figure 5.2 with connections between the transcript excerpt and the 

abstracted concept image component or building action. In the diagrams presented in the 

remainder of this section, I remove these elements to show only the introduction and 

progression of ideas.  

The remainder of this section discusses students’ approaches to differential 

construction (section 5.1.4.1) as well as themes across groups in terms of the way concept 

image aspects were invoked and applied (5.1.4.2). Notably, there was high variability in 

the extent to which students constructed a differential length vector by building in terms 

of concepts or matched terms to a recalled differential element. Concept image aspects, 

such as component and direction, dimensionality, and differential were used in common 

ways across groups. 

 

5.1.4.1 Student application of recall and mapping versus building of length terms 

Each group of students appeared to approach the problem in a different way. Some 

attempted to reason about the length elements through direct mapping from spherical or 

Cartesian coordinates. Whether a student chose to build the differential length element 

from the necessary concepts and ideas or recalled and mapped from previous differential 
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elements provided insight into how students approach multivariable differential elements 

in integration in E&M. All but one group at University A began by working with the 

unfamiliar coordinate system and purposefully building components. Each of these 

groups eventually experienced difficulty centered around the projection aspect, in terms 

of whether or how to include a trigonometric function. At this point, two groups switched 

to making comparison to spherical coordinates. The fourth group began by incorrectly 

recalling a Cartesian differential element and mapping the schmerical differential element 

to this form. 

When asked to construct a differential length element, the graduate students (AB) 

each initially took a different approach.  

Adam: Alright, let's try,   , well let's do the easy one first,   , and I 

know you don't like this but= 

Bart: Yes. [laughs] 

Adam: =it's easy for me, um [draws   ] So these angles are a bit more 

difficult, say you do this   . This doesn't have any units of 

length= 

Bart: [independently writes differential length element from 

spherical coordinates] 

Adam: =so, it needs to have some   term. I think it is just like that, 

isn't it [writes    ]. For α? [sweeps arm down as if covering 

the space of the angle] Yeah. 

Bart: You can, you can check from this, um… 

Adam: For   it doesn't have any dependence on this other angle over 

here, but when you're talking about  , um [looking at the 

spherical        that B wrote] 

Bart: So this is    [gestures to spherical differential he wrote], okay? 

     [hat],       [hat],= 

Adam: No, I have this backwards. (erases   terms)  

Bart: =             [hat], so now we have just to compare so we 

have   it is  ,   is  = 

Adam: (writes  's in place of   terms) 

Bart: =  is  . 
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We see from this exchange that Adam attempted to reason using the aspects of 

component and direction and dimensionality, while Bart made use of the existing 

spherical coordinates using recall and mapping. Once Bart articulated the direct mapping, 

the two students worked together and finished the construction of the differential element 

so that it mirrored the spherical length element and includes      (Fig. 5.2).  

It is notable that the actions made by Adam in the last few lines of the transcript were 

later illuminated as confusion between mathematical and physical convention for 

spherical coordinates. This would have been acceptable as long as the angles were also 

changed in the description of the differential element, which was not the case for Adam. 

Using limits for the angles from the mathematical convention of spherical coordinates 

coupled with a physics interpretation of the spherical differential volume element results 

in a value of zero for integration (due to the integral of        from 0 to 2π) along with 

potential for several conceptual inconsistencies, as seen here. The two students drew a 

spherical coordinate system and Bart instituted the physics convention, allowing Adam to 

fix his mistake. Adam then isolated the  -component in his diagram to reason about 

motion in that direction before agreeing with Bart about the use of     . 

Carol and Dan initially progressed through the task by reasoning about the building 

aspects, but spent more time discussing the choices and reasons for their actions than AB. 

The pair began building using all four aspects, relying on ideas of dimensionality and 

component and direction (Fig. 5.3). 

Carol: So we're going to have, um, we're going to have this [writes 

  ], this [leaves space and writes   ], and some    [writes   ]. 

That’s what we usually do and then they each need to be a 

length. You need a length vector…This is, there is going to be 

a plus here [writes “ ” after first two unit vectors]. 
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Dan:  [Writes   with    as shown in Fig 5.3] 

This attention allows CD to structure the differential length vector as three components 

with a unit vector for each direction. They did not attend appropriately to aspects of 

projection or the differential later, when constructing the  -length-component.  

Dan: I mean, it's like       would put us where we're =... = 

down in the b[ ]-hat range. And so judging by what 

you're saying is we just need that there [writes a "d" in 

front of       to make a   ]. 

After further difficulties in building and difficulty determining the expressions for the 

angular components, Carol and Dan recalled the differential volume element from  

 

 

Figure 5.3.  Concept image flow chart for Carol and Dan. Student began with building 

elements, but difficulty with the differential and projection aspects (coded 

with red outline) lead to the pair switching to recall and mapping. 
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spherical coordinates to reason about the components of the differential length element 

for schmerical coordinates. While they had previously recognized the appropriate term 

for projection, the direct mapping resulted in the incorrect use of      in the   length 

component, as it had for the graduate student pair AB. 

EF provided a contrast to the previous two groups. While still focusing largely on 

building terms within the schmerical geometry, the two students resolved to build the 

integral from scratch and made a deliberate choice to not “fog their minds with 

preconceived notions of how things should work.” They spent the interview weaving 

together aspects of component and direction, differential, and dimensionality, building 

each component of the length vector independently; later they added each component 

together to represent the entire differential length element (Fig. 5.4). Upon recognizing 

that spherical coordinates had a trigonometric function, the pair chose to forgo using the 

familiar coordinate system. As a result, the aspect of projection was entirely absent from 

their reasoning, and thus does not appear in the concept image flow chart for this group. 

At one point they made a comparison to spherical but agreed that they should not include 

a      term, given that they could not justify the need. As a result, their differential 

element lacked any trigonometric function. 

The final pair, GH, focused entirely on rote recall and mapping. Neither student, 

however, could appropriately construct a spherical differential length element, due to lack 

of consideration of dimensionality coupled with the grouping of terms by variable (as is 

done in integration) rather than by appropriate length component. This grouping 

difficulty pushed them toward building an element in Cartesian coordinates using the 

form                    . They then decomposed      into  -,  -, and  -components 
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Figure 5.4. Concept image flow chart for Elliot and Frank. The pair methodically 

constructed each component but failed to elicit the projection aspect (as 

shown by the absence of that code). 

 

for a right-handed system, rather than the given left-handed coordinates. Recognizing that 

the determined differential element was in Cartesian coordinates and not in schmerical 

coordinates, the students returned to the idea of building the differential length element 

later in the interview by recalling the method of construction they had learned in class at 

the beginning of the semester.  

 

5.1.4.2 Themes in differential element construction  

Identification of these four building aspects and three actions afforded us the ability 

to determine the order and grouping of these aspects as students progressed through the 

interviews. Generalizations across the interviews led to the observation of recurring 

patterns in students’ construction. This focus addresses the research questions of the 



74 

 

project, by attempting to identify the extent that the identified conceptual aspects 

impacted the construction of the differential length vector. 

We identified aspects or combination of aspects that were used productively, in that 

attention to the aspects led students towards construction of a correct differential length 

element. The absence, or misapplication, of particular aspects also commonly hampered 

further construction. Analysis across all of the interviews identified specific 

difficulties [57] faced by individual groups or incorrect ideas that were commonly held 

by several students. 

The following subsections address three themes in the findings from interviews. The 

first subsection addresses the productive combination of component and direction and 

dimensionality concept image aspects. Students commonly invoked these elements 

together or in sequence as they focused in on each component. The remaining two 

subsections address the common ways in which students invoked the dimensionality and 

differential concept image aspects. In some cases students employed the concept image 

aspects correctly, but in other instances students knew they needed to incorporate these 

aspects and did so in incorrect ways, such as including a    in the   -component. More 

attention is given to these ideas in section 5.1.5, where the concept images aspects are 

connected to the mathematical structures invoked during construction. 

 

5.1.4.2.1 Productive combinations:  Component and direction and dimensionality 

Analysis across groups identified that the use of component and direction coupled 

with dimensionality was very productive for students in the first three pairs when 

considering the differential length element as a whole. For the third pair of students, the 
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combination of these two aspects was additionally beneficial when constructing each 

individual components of the differential. 

Frank: So then if you have  / 

Elliot:     

Frank: Oh, yeah. 

Elliot: So you're going to have a length component in the  -hat direction. 

For each term, the pair would isolate a specific direction of movement and then 

discuss what a length element in that direction was comprised of. As such, the Concept 

Image Flow Chart depicts several instances of these ideas being used together, especially 

when the students turn to the next component (Fig. 5.4). 

 

5.1.4.2.2 The role of dimensionality 

In general, students invoking dimensionality were very explicit in checking that each 

component contained appropriate units of length. Carol and Dan were particularly 

adamant about accounting for units of length. 

Carol: ...it's going to be like, so if it's going to be some trig thing 

but sine of something isn't a length so we're going to 

have to also have something else in there.  

Carol and Dan used the aspect of dimensionality to reason about the variables of each 

term, to such an extent that later in the interview they could not recall whether or not 

differential angles or unit vectors gave units of length to their vector components. While 

the pair made a comparison to the spherical volume element, the concern persisted as 

they continued to construct terms. Other students often did not provide additional 

reasoning for including an   in their construction, as was seen in early transcripts.  

Adam: … This doesn't have any units of length…so it needs to 

have some   term. 
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However, Elliot specifically addressed the idea of arc length, combining aspects of 

direction, dimensionality, and differential, which made using the radius of length   

apparent (Fig. 5.4). 

Elliot: So it's   times some  , I think it's M times   , a small  , 

because it's like if you take   times its small   then that is the arc 

length= 

Frank: Yeah. 

Elliot: =around a circle. 

Frank: Yeah, okay. 

Elliot: Right, so like     would be like the length component around a 

circle, so this would be    . 

The final pair of students did not attend to dimensionality and subsequently had 

difficulty with early recall from spherical and Cartesian coordinate systems. 

 

5.1.4.2.3 The role of differential  

Not surprisingly, students’ concept image of a differential length element involved a 

discussion of ideas related to the differential. Particular ideas of differentials were 

important to students’ reasoning approaches. The treatment of differentials in terms of 

small amounts of motion [27,49,56] was helpful to the building of terms. This idea is 

trivial for students here, but other views may be coming into play. Carol and Dan had 

particular trouble constructing the α and   components due to difficulties reasoning about 

the differential, thinking only in terms of changes rather than small motions applied to the 

    , and more specifically not attending to the need to have a    with the   -term. This is 

discussed more in a following section while highlighting the differential symbolic form.  
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5.1.5 Results of symbolic forms analysis 

To further explore student understanding of the construction and understanding of 

differential length vectors, analysis incorporated a symbolic forms perspective [47] (see 

section 3.3.2 for detailed overview). While the concept image [38] analysis provided 

insight into students’ conceptual understanding, symbolic forms provide a means to 

analyze student understanding of the mathematical representation in terms of the 

structures students incorporated to construct the differential length vector. 

Analysis of interview data revealed several emergent symbolic forms (Table 5.3). 

Symbolic forms were identified by attending to common elements of structure (symbol 

template) included in students’ written expressions, as well as common mathematical 

justification leading to structuring of the expression in that way (conceptual schema). 

Some of the symbolic forms invoked by students during differential length vector 

construction were consistent with forms previously identified at the introductory 

level [47]: parts-of-a-whole, coefficient, and no dependence. Additionally, we identified 

other forms that represented novel template-schema pairings: magnitude-direction, and 

differential. The newly identified symbolic forms account for the increase of 

mathematical sophistication with the need to express vectors and calculus concepts 

absent from the introductory problems given in the original literature.  

The remainder of the section provides the details of each symbolic form as well as 

student data to support its invocation within the context of differential length 

construction. Students’ invocation of symbolic forms is addressed by isolating the 

symbolic forms into two generalized stages of construction, consistent with student work.  
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Table 5.3.  Existing and novel symbolic forms identified in students’ construction of a 

differential length element. 

 

In the beginning of construction, most groups attended to the vector/component 

nature of the differential length element. At this stage, groups constructed templates 

consistent with parts-of-a-whole and magnitude-direction forms. Subsequently, groups 

typically discussed the structure of each component, attending to the ideas related to the 

magnitudes of each component, which involved developing the templates associated with 

the differential, coefficient, and no dependence symbolic forms.  

At various stages students’ concept images motivated the need for various symbolic 

forms as well as helped students determine the particular variables needed to complete 

construction (Table 5.1). Analysis, described in the previous section (5.1.4), has 

identified four aspects of student’s concept images associated with constructing a non-

Cartesian differential length vector: component and direction, dimensionality, 

differential, and projection. Similarly, three processes were also identified across student 

 

Symbolic Form 
Symbol 

Template 
Conceptual Schema 

Parts-of-a-whole    
Accounts for multiple components that contribute 

to a larger whole (Sherin, 2001) 

No dependence  [...]  
Indicates an expression is independent of, or not a 

function of, a specific variable (Sherin, 2001) 

Coefficient ...][  

Represents a quantity seen as just a number or a 

constant (possibly having units) put in front of an 

expression (Sherin, 2001) 

Magnitude-

direction  
ˆ

 

Used to denote a vector expression including the 

magnitude of a quantity (having units) and a unit 

vector to indicate a specific direction 

Differential  d  
Represents taking a small amount of or 

infinitesimal change in a quantity 
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work that played a role in construction: grouping of like terms, transliteration, and rote 

recall (Table 5.2).  

This section has three purposes: presenting the symbolic forms that students invoke 

during construction; introducing and arguing for the adoption of the two newly identified 

symbolic forms; and connecting students’ invocation of symbolic forms with students’ 

application of concept image aspects. Combining the two theoretical frameworks in this 

manner provides a more complete picture of the things students are doing and understand 

about a non-Cartesian differential length vector. 

 

5.1.5.1 Symbolic forms related to vector properties 

As shown in the concept image analysis, the majority of student groups at the outset 

of construction attended to the component and direction aspect of differential length 

elements, highlighting the need for a summation of three different components as well as 

the idea that each component of the vector equation is an independent displacement of the 

vector M in each of the variable directions. In each group, the component and direction 

aspect manifested as a combination of two symbolic forms: parts-of-a-whole [47], which 

accounts for the inclusion of multiple terms, and magnitude-direction, which expressed 

the direction associated with each component term. 

Students were generally successful with construction of these larger templates. 

Almost all groups recognized the need to express multiple components and expressed 

vectors in terms of a magnitude and direction.  
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5.1.5.1.1 Parts-of-a-whole 

The need for multiple components to completely express a differential length vector 

resulted in the invocation of the parts-of-a-whole symbolic form by almost all groups. 

Frank demonstrated a requisite conceptual schema when starting construction: 

Frank: There are three different   ’s. There is    with respect to  ,  

   with respect to   and    with respect to  .  

 [pair constructs components independently] 

Elliot: You sum them, so        is those added together: 

                . 

Elliot and Frank worked on each component independently; Elliot then summed these 

components to express their full (incorrect) vector differential at the end of their 

construction. Similarly the pair AB built their differential length term-by-term.  

Adam:  Alright, let's try, dl, well let's do the easy one first,    =...=it's easy 

for me, um (writes   ) So these angles are a bit more difficult, say 

you do this   . This doesn't have any units of length. 

As a slight contrast, CD started by writing the overall structure, accounting for the 

unit vector of each component, and subsequently filled in each term (Fig. 5.5). Each of 

these groups recognized the need for and express the multiple components associated 

with the differential vector element in this coordinate system. The expression of multiple 

terms with the conceptual schema of “three different dl’s” that must be summed or 

“added together” makes this consistent with Sherin’s parts-of-a-whole symbolic 

form [47].  

Perry and Quinn recognized the need to sum multiple components but were unable to 

disentangle themselves from Cartesian coordinates. They initially structured their 

differential length as the addition of three dl’s for each Cartesian direction (Fig. 5.6), 

invoking the parts-of-a-whole template but for the incorrect coordinate system.  
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Figure 5.5.  Beginning stages of construction for Carol and Dan showing the coupling of 

the parts-of-a-whole and magnitude-direction symbolic forms. 

 

 

Figure 5.6.  Perry’s and Quinn’s final expression for a differential length vector showing 

the invocation of parts-of-a-whole.  

 

RS, having first decided that       was sufficient to describe the differential length 

element, later remembered having also used    as a description of circular paths and 

recognized the need for multiple terms. 

Rachel: ... it's like a path along something so like that is fine if 

the path is like in the    direction but if it is not then 

[  ] is not very generic... there would have to be three 

components to it...because it has three dimensions. 

Rachel and Silas then represented this new    using bracket notation for vectors (Fig. 

5.7). While the group encodes their length vector using bracket vector notation, their 

conceptual schema is illustrative of parts-of-a-whole and explicitly explains students’ 

summation of only three terms. 

Following construction of the template for the full differential length element, several 

groups attended explicitly to the dimensionality of each component.  

Carol: ...and then they each need to be a length. 

  

Elliot: ...and each of them need to be a length. 

This need for dimensionality, while recognized early in construction, became 

increasingly relevant as students made decisions about what terms belonged in each 

component. 
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Figure 5.7.  Rachel’s and Silas’s final expression for a differential length vector including 

three components. 

 

5.1.5.1.2 Magnitude-Direction 

Either following or coupled with the parts-of-a-whole symbolic form, students’ 

attended to the vector nature of components. Students split each component into a pair of 

two distinct parts, one that displays the magnitude of the differential length term, and the 

other the direction each component is associated with. We identify this particular product 

as the magnitude-direction symbolic form with the template    . Group CD’s work 

displays this explicitly, as they left space to write the magnitudes of the components in 

their expression (Fig. 5.5). During a second attempt to construct a differential length 

element motivated entirely by rote recall, GH completed their expression by adding a 

unit vector to each of the summed differential length magnitudes (Fig. 5.8). 

While some students inherently included the vector nature when constructing 

components, other students paid particular attention to the unit vector of the component, 

using it to reason about the preceding magnitude in that direction.  

Carol: So,    is like you just have some path. So I’m trying to think, 

like, if I was going to walk in the   -direction...  

  

Elliot: So you’re going to have a length component in the   -direction… 

 

a)      b)  

Figure 5.8.  Greg’s and Harold’s differential length vector (a) before and (b) after 

recognizing the need to include unit vectors.  
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Each student here isolates the specific direction or unit vector and then attends to the 

magnitude of the component as a second entity. After reasoning about the nature of what 

is included in the magnitude of the component, students automatically write the 

magnitude of the vector component as preceding the unit vector as it is typically 

expressed in physics.   

 

5.1.5.2 Elements related to construction of the magnitude of the components 

After developing a sense of the overall structure for the equation, groups attended to 

the individual components, accessing various concept image aspects to fill the 

magnitude-direction template. Most specifically, this involved a combination of Sherin’s 

coefficient [47] and the newly labeled differential symbolic forms. While the differential 

symbolic form involved reasoning about small changes and infinitesimally sized 

quantities, the coefficient form had more varied justification for its invocation, involving 

attention to dimensionality and geometrical reasoning as well as rote recall and mapping. 

Several students also invoked the no dependence symbolic form to distinguish which 

variables depend upon the others in the coordinate system (i.e., the arc length in the   -

direction being dependent on the angle  ). 

 

5.1.5.2.1 Differential 

In addition to the identification of differential as an aspect of students’ concept image 

for a differential length vector, students expressed a common template with the 

differential. This depicting was connected to student attention to needing small 

displacements or small changes in specific directions, as seen in the following excerpts.  
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Carol: Right. So you have a change in your    is going to be your 

  , it’s your change in your  . 

  

Rachel: Um,       ] represents a tiny portion of like, a length, or a 

change in the radial component of the vector. 

Given the importance of the differential and the distinct meanings students associated 

with it, we identify a differential symbolic form,   , from students’ work. The form itself 

is similar to what appears in graphically oriented symbolic forms for integration, where 

students describe    as a “small portion of each graph,” width of rectangle in a sum, a 

specific shape depending on the shape of the function (e.g., circle or square), or 

commonly just a cue for integration [50]. For students constructing differential vector 

elements, the differential is not (yet) associated with a particular integral expression, and 

thus is treated as a standalone quantity with its own attached schemata as a need to 

represent a small quantity. When removed from the context of integration, there are a 

number of other conceptual ideas attached to differentials, especially in E&M [25]. The 

treatment of differentials in terms of small amounts of motion or changes of a 

quantity [25,27,49,56] was helpful to the building of terms. This idea is trivial for a 

number of students, while for others different views of the differential impact the 

construction of their differential lengths. 

Tyler initially represented    as a pattern-matched form of a vector in Cartesian 

coordinates [77], then attempted to determine partial derivatives from particular 

components. 

Tyler:  So any vector r, that’s an            ...so is, I mean/ 

we’re not looking for like the total dr but like      ? 

With particular difficulty, Tyler begins to express this as           , explaining his 

    as a need to take the derivative of the unit vector to account for any “phase or time 
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dependence.” This type of view of the differential as a cue to take a derivative is 

consistent with treatment of the differential as a “machine” that outputs another 

function [25]. After being assured there was no time or phase dependence, he attempted 

to recall to specific coordinate transformations between spherical and Cartesian 

coordinate systems.  

In some cases, difficulty reasoning about how to incorporate the differential led to 

students forcefully trying to insert a differential into their expressions. After 

recognizing       as a projection into the   -plane, CD wrote a “ ” in front of the 

whole expression (Fig. 5.9a). Soon after, they labeled this an incorrect expression, and 

turned to recall of spherical coordinates to complete the task. Similarly, Frank tried to 

express an infinitesimal arc length as        as a way to also explain where the 

differential and trigonometric function would appear (Fig. 5.9b). Elliot corrected him by 

defining arc length for a differential change in angle.  

Elliot: There’s actually a little bit on the circle; there is a little 

curvature. This length is    . 

Following this, the pair EF focused their construction on having a differential length 

component in a particular direction containing a differential with that variable.  

Frank: so then if you have  / 

Elliot:   . 

Frank: Oh, yeah... 

Elliot: So you’re going to have a length component in the  -hat direction…so, 

basically we’re going to need… an  … so it’s   times some  , I think 

it’s M times   , a small  , because it’s like if you take r times its small   

then that is the arc length (Fig. 5.10). 

EF finally articulated this as the length component,       
       , which now only lacked 

the needed trigonometric term, but correctly connected the expression of    with needing 

a small change in the angle.  
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a)   b)  

Figure 5.9.  Students’ incorrect insertion of differentials into their components. (a) Carol 

and Dan incorrectly incorporating the idea of a differential by writing “d” 

before their    term. (b) Frank attempting to account for the arc length of a 

small angle and forcibly inserting both a differential and trigonometric 

function into his expression. 

 

Elliot and Frank’s discussion here highlights another aspect of students’ attention to 

the differential that ties into the magnitude-direction symbolic form. As part of students’ 

conceptual schema during construction, students eventually used the same variable from 

the differential symbolic form ( ,  , or  ) as the variable corresponding to the unit 

vector (i.e.,      ,      , and       ). Greg and Harold do this inherently as they attend 

to the magnitude-direction symbolic form (Fig. 5.8), while Carol and Dan explicitly 

recognize the need for pairing this after correcting a grouping error in a recalled spherical 

volume element. Both GH and CD initially combined the       with the   -term, 

resulting with an   -component having        . After recognizing this mistake, they 

first switched only the differentials for the terms before recognizing the unit vectors 

would need to be switched as well, in order to keep the    term with the   -component. 

 

 

a)            b)  

Figure 5.10.  Pair EF constructing the beta component of the differential length. (a) 

Initially they leave space to write the needed coefficient and unit vector. (b) 

After discussion they include a coefficient lacking the projection term 

    . 
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5.1.5.2.2 Coefficient 

The appearance of the coefficient symbolic form as a prefix to the differential form 

was most often predicated by the need for appropriate dimensions, recognition of arc 

length, or some level of rote recall to the more familiar spherical coordinate system. The 

coefficient form is generally invoked to include a space for specific factors or constants 

that appear in typical physics equations [47]. Students will often treat coefficients as a 

parameters that “define circumstances under which [physics] is occurring.”  [47] This 

symbolic form manifests physically in the equation as a term multiplied on the far left of 

a product of terms. While functionally similar to the scaling symbolic form [47], the 

coefficient form is used to account for quantities with specific units. This distinction 

makes the coefficient symbolic form more applicable to describe students’ construction 

because of the explicit attention to dimensionality. 

The most prominent and prescient evoked concept image was the need to include 

dimensionality, as seen in the following two (independent) excerpts. 

Adam:  

 

…This doesn’t have any units of length, so it needs to have 

some M term. (Fig. 5.11) 

  

Carol:  …So, if it’s going to be some trig thing but sine of 

something isn’t a length so we’re going to have to also 

have something else in there.  

Students accessing of the dimensionality concept image aspect, both for the 

coefficient symbolic form and when discussing the magnitude portion of their 

 

        

Figure 5.11.  Adam’s inclusion of “ ” based on dimensional reasoning. 
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components, resulted in the inclusion of an   or a    term. Recognizing that the    

term satisfied the dimensionality, differential, and component and direction aspects, 

students did not include any more terms in the   -component. 

Group EF was the only group that invoked arc length as the actual physical 

justification for the   and       in the    and    components respectively.  

Elliot: Just like when you get the circumference, it's equal to     , 

well it's taking all of the radians, instead [you take] a tiny 

amount of radians, which would give you a tiny arc length. 

Elliot and Frank then constructed the two angular components, but failed to recognize 

that for the    component they needed to account for the projection of   in the   -plane 

and end up with       
        as shown above. While for the   -term,   is the important 

dynamic variable that the component depends on, for the angle components where only 

the angles are changing it is a static variable representing a radius in an arc length.  

Rachel and Silas expressed arc length when constructing sides for a differential 

volume as   ,    , and      They make no attempt at reconciliation between the 

volume element and their single differential length component,     and fail to recognize 

the need to do so. This is most likely due to a restricted concept image, where only the 

radial component of the differential length is used to account for line integrals in radial 

fields common in electrostatics. Upon recalling that differential lengths are used to 

describe circular paths in magnetostatics, RS decide three terms are needed. However, 

their new components no longer include scaling factors to account for arc length (Fig. 

5.7). 

Rachel: I think it would be like, the first if it’s in r would be   . 

Right? So you want it in Cartesian or in spherical? 

Interviewer: I want it for this coordinate system. 
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Rachel: So I think dl is just         , like commas in between 

those because that is how you figure out path...you have your 

change in your   direction, then you have your change in 

your [   direction.... 

The expression of dl as           , is sufficient for them since it accounts for the 

change in each direction. It is likely the students were attempting to map to a Cartesian 

representation of a differential length element, where the individual components are 

solely expressed as the differential for a variable and its corresponding unit vector.  

Rote recall and transliteration often occurred when students faced difficulties with the 

application of concept images or when geometric ideas were inaccessible. This is 

reminiscent of a symbolic forms analysis of physical chemistry students’ construction of 

partial differential equations in the context of thermodynamics  [78]. In these cases recall 

mediated students construction of equations in terms of particular processes, such as 

taking the total derivative, or as recall of specific concepts, such as      if   is a 

constant. 

While group EF chose to avoid recall to spherical coordinates and focused 

construction specifically within the schmerical system (with subsequent lack of attention 

to the projection aspect), groups AB and CD incorrectly included a      due to heavy 

reliance on spherical coordinates to complete the differential length vector.  

After initial difficulty with construction, Tyler decided that “length is really only the 

radial component,” and expressed        as    . 

Tyler:  ...Yeah, because it’s the amount of M for every little dM that I 

move… It’s so much easier in Cartesian...but I think the only 

reason the   is there because when you transform coordinate 

systems your length is no longer just   . 
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Tyler then justifies his extraneous invocation of the coefficient form by citing the scaling 

factors gained by the spherical volume element when making the transformation from 

Cartesian coordinates.  

In many cases the coefficient symbolic form appeared as a means to complete an 

expression, driven most often by what Carol expressed as a “need to have something else 

in there.” To accommodate for the need for further terms, students commonly left blank 

spaces in the equation as if calling forth a particular template to fill in later. Specifically 

we see this for AB’s (Fig. 5.11) and EF’s (Fig. 5.10) inclusion of   as the coefficient, but 

also earlier with CD (Fig. 5.5) as they separated out the necessary components when 

invoking the parts-of-a-whole symbolic form. 

 

5.1.5.2.3 No Dependence 

The no dependence symbolic form appears when students explicitly address the 

absence of a variable in an expression. Frank and Elliot invoke this symbolic form while 

constructing the radial component.  

Frank:  If you change [    ] a little bit, α, and β doesn't change at all. This 

is just   because it’s just the radius. 

Here Frank, is articulating that a differential length in the radial direction is independent 

of the angles and thus writes       
       without inscribing either angle into this 

component.  

While the invocation of no dependence may seem trivial for a radial component, it 

played a larger role for Adam and Bart during the construction of the angular 

components. The need to project our vector      into the plane of β to get the requisite arc 

length results in the    component being a function of the angle α. In comparison, the arc 
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length of the   -component uses the full radius,  , and ignores the coordinates system’s 

polar angle. Adam explicitly addressed this during construction of the   -component. 

Adam:  For α, it doesn't have any dependence on this other angle.  

Here Adam recognized and addressed that constructing the arc length term resulting 

from a change in α is independent of the angle β. As a result, students explicitly omit a β 

term in the component.  

 

5.1.6 Summary of findings from the schmerical task 

Analysis of student construction of a differential length vector through the symbolic 

forms and concept image frameworks enabled the identification of specific structures that 

students associated with vector expressions as well as of the concepts students connected 

to these structures and the associated variables. Our results suggest students do not have a 

robust understanding of how to build non-Cartesian differential elements. When working 

in an unconventional spherical coordinate system, students used a mixture of approaches 

to construct differential length and volume elements. Some attempted to reason about the 

length elements through direct mapping from spherical or Cartesian coordinates. We 

found students could implement successful strategies using necessary concepts. Particular 

attention to component and direction as well as dimensionality, both individually and 

combined, allowed students to think productively about terms. Using differential to think 

in terms of small changes was also useful to students. 

Interviews also highlighted a number of difficulties students faced when working 

with differential length elements, including an overreliance on rote recall and mapping 

without underlying understanding. It was also noted that students had particular difficulty 
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grouping terms within recalled spherical length and volume elements. Students' 

inattention to dimensionality and projection hampered construction of terms. The 

successes and difficulties surrounding dimensionality speak to the importance of 

reasoning about units and dimensions when it comes to modeling physical quantities in 

terms of mathematical representation.  

The explicit context of vectors and the increased mathematical sophistication of the 

upper-division content led to the identification of new symbolic forms in addition to 

forms previously identified. The symbol templates and associated schemata for the new 

differential and magnitude-direction symbolic forms were consistent across groups, but 

the ideas motivating the invocation of the symbolic forms varied. For example, students 

often explained the need for the differential as having to account for a change or small 

amount of a quantity. 

Further analysis identified that students at University A were able to recognize the 

general structure needed for the equation and invoke the correct template. The primary 

difficulties here were connected to the conceptual information needed to express the 

appropriate terms in the symbol templates. For example, students constructed an 

appropriate expression for the  -component in terms of dimensional and differential 

considerations, but the projection aspect of the concept image responsible for introducing 

the      term was either misapplied or inaccessible. Students interviewed from 

University B were less successful invoking and combining necessary symbol templates 

and had difficulty accessing or applying ideas related to dimensionality or component and 

direction. As discussed in previous chapters, classroom observations at the first 

institution suggest students were able to arrive at the general structure due to explicit and 
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repeated emphasis on construction of differential length elements early in the semester. 

However, students still were unable to connect the necessary ideas for differential length 

construction at this university. The exact nature of the difference in performance between 

the two universities is beyond the scope of this study, as we do not possess comparable 

data from classroom instruction at each site. Furthermore, limitations in the number of 

participants prevent any large-scale claims about differences between courses.  

Dimensionality and geometric reasoning were especially prominent in the more 

successful efforts. In these cases, dimensionality and component and direction were 

closely tied, appearing when discussing overall structure and when isolating the change 

in each individual component. While reasoning about dimensionality and units was 

relevant to student construction, in some cases students struggled to determine the units 

of certain terms, such as angles and unit vectors. Findings suggesting the generalized use 

of units to support expression construction are especially important as previous research 

on symbolic forms does not address how students’ attention to units impacts their 

problem solving [47].  

Geometric reasoning proved to be a more productive approach during construction. In 

many cases, students attempted to visualize the paths traced by      as small changes were 

made to individual variables in the coordinate system. Most groups recognized the need 

for multiple components to properly express the differential length vector and 

appropriately connected the differentials to unit vectors of the same variable.  

In cases where segments of construction proved difficult for students, recall mediated 

expression construction, similar to upper-division physical chemistry findings dealing 

with partial derivatives [78]. In our study, however, recall of spherical coordinates, 
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despite having the potential to be productive, led students to construct expressions that 

incorrectly included a      term. In several instances, students attempted recall from 

Cartesian coordinates or tried to find the component of      in the direction of a Cartesian 

axis. While this was in many cases only an attempt to understand the nature of the 

unconventional system, two groups explicitly constructed elements with Cartesian unit 

vectors. This supports earlier literature that students have more familiarity with Cartesian 

coordinates [10,46] and further suggests students have difficulty isolating ideas needed to 

construct differential vector elements in non-Cartesian coordinate systems. 

Chapter 6 has a discussion of students’ understanding of differential volume elements 

and their connection to students understanding of the length vector. A few groups 

recalled a spherical volume element in an attempt to reason about components during 

construction. More importantly, some students constructed the differential volume 

element from the terms in their length vector; the checking of a differential volume led 

these students to correct their initial mistakes.  

Results indicate instructional changes should focus on the concepts associated with 

the building of the differential, specifically making explicit the connection from the 

coefficients for the angle components to the idea of arc length and coordinate system 

geometry. Findings of this task has led to the development of a student-centered 

tutorial [65], to be used as part of instruction in E&M and/or mathematical methods of 

physics courses. The tutorial is designed as a more structured version of the schmerical 

task focusing on differential length and volume construction (see Chapter 6 for discussion 

of volume element construction). More detail on the specifics of each tutorial component 

is in section 9.5 and Appendix C. This tutorial is the first of a two-tutorial sequence 
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building off of the findings from this task and from student construction and 

determination of differential area elements discussed in Chapter 7. 

Continued analysis of student construction of these equations has integrated the 

symbolic forms and concept image frameworks further using a conceptual blending 

framework [76], to more completely account for students’ integration of conceptual 

understanding with symbolic expression during differential length construction. 

Connecting the frameworks in this way provides structure for the use of blending to 

interpret student application of mathematics in physics. Chapter 8 presents the theoretical 

model derived from the empirical data analysis in the context of this work. 

 

5.2 Student differential length construction for a spiral task in a physics context 

Previous work on generic differential length construction in an unfamiliar system (as 

described in the previous section) gives specific insight into students’ fundamental 

understanding of the differential length vector. However, students rarely encounter such 

an abstracted task in typical course instruction. The construction and determination of 

differential elements is often mediated by the given physical systems, which include 

charge distributions or current densities, and associated vector fields. As such, the 

research questions were extended to include the construction and determination of 

differential length elements within a physics context. This provides insight into the extent 

to which the physics influences the expression of differential elements as well as what 

features of the context influence construction.   
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5.2.1 Research Design and Methodology 

In order to investigate students’ performance on more typical E&M problems, a task was 

designed involving the change in potential due to a point charge,  , centered at the origin 

(Fig. 5.12). Students were asked to find the differential length vector for a spiral path 

given by        in the   -plane and to find the change in potential experienced by a 

test charge as it moved along the path from the point (4,0,0) to (0,0,-7) around the central 

point charge. The electric field due to a point charge is a highly symmetric case where 

change in electric potential depends only on changes in position in the radial direction. 

Any task involving a purely radial field only needs the      term and can exclude any 

angular components for the purposes of computing this line integral. By using a spiral 

path and explicitly asking students first to construct the generalized differential length 

vector, the task required both differential length components to describe it completely:  

 

 

Figure 5.12.  Image of the spiral task provided to students, depicting the charges and 

spiral path of the test charge. The figure shows the section of the path along 

with the test charge travels. 
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              . Incidentally, expressing the differential as a sum of vector 

components is relatively independent to physics problem solving, as vector calculus in 

mathematics typically taught with parameterization of the path [79]. 

The task was administered as part of two clinical think-aloud settings; first with two 

pairs of students (B&H, D&V) and again the following year as part of a different 

interview protocol with six individual students (J, K, L, M, N, O) at University A and one 

individual (T) at University B. All students were enrolled in the second semester of a 

two-semester, junior-level E&M sequence. Pseudonyms are provided for students 

corresponding to their identifying letter (i.e., Jake for J). (Repeated letters from above 

indicate the same students as for the schmerical coordinates tasks.) This particular 

question took students about 10-20 minutes in interviews. As before, Bart is a graduate 

student enrolled in the course for credit. 

This section focuses mainly on students’ construction of     within a physics context 

to make comparison to generic     construction. Video interview data were transcribed, 

taking student writing and drawing into account. The transcripts were analyzed under the 

same methodological guidelines as the schmerical coordinate system task with the goal of 

identifying student attention to symbolic forms and the associated aspects of students’ 

concept images in line with previous findings. Analysis additionally looked for new 

aspects now appearing because of the applied context. 

 

5.2.2 Results in comparison to schmerical data 

Data analysis showed attention to many of the relevant symbolic forms and concept 

images identified in the schmerical differential length task, but among fewer students. 
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Surprisingly, a number of students wrote a differential length vector accounting for the 

angular motion as the sole component and neglected the inclusion of   , which is the 

only component dictated by the physics. We draw on discussions of students’ invocation 

of parts-of-a-whole, magnitude-direction, and differential symbolic forms explicitly as a 

means to discuss the results of this task with differential length construction in the 

schmerical task in the previous section. We attribute differences in student responses not 

only to the physics nature of the task, but also other features, such as the spiral path. The 

inclusion of a specific path means the task is not isomorphic to schmerical coordinates 

but still provides a different context for students’ differential length construction. 

In particular, parts-of-a-whole and magnitude-direction, both prominent in the 

acontextual task, did not appear as often during students’ construction in the spiral task. 

Five students invoked parts-of-a-whole, described earlier as students’ recognition of parts 

summing up to a whole with the template   . However, only one student applied 

a polar coordinate system and initially included magnitude-direction. Magnitude-

direction accounts for the magnitude and unit vector parts of a vector quantity and is 

associated with the template 
ˆ . Both these symbolic forms are associated with the 

component and direction concept image, where students would recognize that differential 

length vectors need multiple components, and that each component corresponds to 

motion in a specific direction. The following transcript illustrates a correct response and 

highlights the component and direction aspect needed for differential length vector 

construction. 
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Molly:  Yeah, and then you go a little bit…I’m picturing you go from 

this point to this point …So first I travel in the   direction so I 

go dr in the   , and then I travel in the    direction and the arc 

length of a circle is the radius times the angle that you move so 

that is    , here in the   . (Fig. 5.13a) 

Molly appropriately separated each component as two distinct motions (“I travel”), then 

encodes each length as the magnitude and the corresponding direction as the unit vector, 

resulting in a correct    . 

Two other students invoked parts-of-a-whole without encoding components with a 

magnitude-direction template. Neither student specifically attended to the directions each 

component traced out, resulting in differential length components absent of unit vectors 

(Figure 5.13b, 5.13c). Kyle’s transcript demonstrates this.  

Kyle:  We stay in the one plane… so we’re only changing by   and  , 

so it we have some    or let’s say   , then    is going to be 

     , so the actual length is the change in the radius and the 

change in the angle times the radius so that we stay in units of 

length. 

Upon recognizing a need to account for a dot product during the later integration, both 

students added unit vectors to each of their terms. 

Both of the above transcripts also highlight multiple concept images of the 

differential, accounting for “a little bit” of or “changes” in variables, consistent with 

students’ ideas of differentials identified in the literature  [25,27,49,56]. These ideas cue 

 

a)    b)    c)  

Figure 5.13.  Various responses of students who expressed two components. (a) Molly’s 

correct differential length elements. (b) Kyle’s and (c) Jake’s differential 

length elements absent of unit vectors. 
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students’ invocation of the differential symbolic form: representing a differential quantity 

with template d . 

The last two students to invoke the parts-of-a-whole template used Cartesian 

coordinates. They both mentioned needing small changes in   and  , rather than starting 

in the more appropriate polar coordinate system. Oliver attempted to differentiate 

coordinate transformations for   and   with respect to   in order to express    and   . 

Tyler began similarly but then suggested that a spherical transformation would produce 

             . He reduced his    down to one component without addressing a 

need to maintain a sum of two components, or directionality. 

The remaining interview subjects only attended to one component, neglecting both 

the parts-of-a-whole and magnitude-direction symbolic forms. Dan and Victor addressed 

just the change in the   direction, addressing the change in   as irrelevant to calculation 

of the electric potential (Fig. 5.14a). While this does lead to the correct solution for the 

potential difference, the length element for the path is incomplete without the θ-

component. 

 

a)   b)   c)  

Figure 5.14.  Various responses of students who expressed one component. (a) Dan and 

Victor’s accounting for only change in  -direction and converting to terms 

of  . (b) Nate’s   , with function replacing   in    . (c) Bart and Harold’s 

  , where the function for   is written with the term to account for changes 

in   along the path. 
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The three remaining students only accounted for the  -component (Figs. 5.14b, 

5.14c), correctly including the   in the arc length and including the functional 

relationship to write the length component in terms of  . 

Nate:  I think I’m going to move just a tiny bit. This point changes, 

and so   is going to change and [ ] is going to change…   is 

going to be obvious because I think it’s going to be [    ] 

and then [ ] would just change some d[ ]… To me it makes 

sense, because you’re moving some infinitesimal amount in 

  and then you have that   change. 

This reasoning appeared across multiple interviews in which students only expressed the 

 -component. Students still recognize the need for change in particular variables, an 

evoked concept image that results in the differential symbolic form. Here students use the 

functionality of   on   and the inclusion of   in arc length to account for   changing. This 

appears to supersede their need to include change in   as a separate component of the 

differential length. The need to include a    is entirely absent from their constructions. 

Notably, as one of these students, Lenny, was asked to find the change in potential 

experienced by the test charge, he immediately switched to a thinking dominated by the 

electric field. 

Interviewer: Okay. How do you account for the change in the radius there?  

Lenny: That would just be the r being a function of θ, so as θ goes from 

0 to 3/2 π. Yeah, so as θ increases, r increases which is what we 

see here in that figure. 

Interviewer: Ok, …what is the change in potential experienced by the test 

charge? 

Lenny: Well, so I guess if I call that the   ,  -direction, even though it is 

spinning and getting bigger, the potential on that charge would 

only change in that direction.  

Once shifting from the mathematical formalism of determining the expression for the 

differential length vector to the physics context, Lenny immediately addresses the 

directionality of the field and makes an argument as to why only the radial change of the 
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path is relevant to calculation. However, he does not connect this reasoning back to his 

expression for the differential lengths and incorrectly attempts another solution pathway. 

This appears to be a point of disconnect between Lenny’s expression of mathematical 

formalism and the given context of the task, as he does not connect any of the physics 

argumentation to the construction of the differential length vector.  

 

5.2.3 Conclusions of spiral task  

Analysis of student interviews on differential length construction in a more typical 

E&M task reveal that the reasoning that students employ changes with task structure. In 

the previous “schmerical” task, students were asked to construct a generic differential 

length vector in the absence of a path and physics context. Here, students easily recognize 

the need for multiple components for the general expression of the differential length 

vector, most likely due to the more formal mathematical nature of the task. Results from 

the spiral task, which includes an embedded physics context and includes a specific path 

for which students are asked to determine the differential element, suggest that students 

have difficulty recognizing that the path accounted for multiple component directions.  

In general, students’ attention to   was prominent across all interviews, not just for 

students who constructed a single component in the  -direction. In both Molly’s, and 

Dan’s and Victor’s interviews, the students correctly determined that only the radial 

component is necessary for calculation of potential, but continued to write and carry out 

integration in terms of   (which is more complicated given the substitution of  
  

 
   in 

place of   , and       in place of dr).  
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While calculation in terms of theta still yields the right expression, a number of 

students interviewed on the spiral task only included the  -component in their differential 

length. This points to student difficulty recognizing the possibility for multiple 

components, but also with attending to the underlying physics; the latter was an area of 

difficulty noted for students’ use of mathematics in E&M [12].  

The specific attention to the theta direction can possibly be attributed to a number of 

factors. The curvature of the spiral path and functional representation of r in terms of 

theta appear to be salient distracting features  [80]. As such, they attract student focus and 

result in attention to those quantities.  

Additionally, the focus on theta may be due to the typical instantiation of the high 

symmetry for many tasks in E&M that allow students to select one component of a length 

or area vector and disregard others. For a task involving a spherically symmetric electric 

field, students would usually select the   -component. However, as the students were all 

enrolled in E&M II, which predominately involves cases with circular symmetry (e.g. 

Ampère’s Law for curling magnetic fields), this could be the reason some students only 

expressed the theta component.  

Notably, these students additionally recognize the need for a change in   given that 

the path terminates at a higher value for radius. However, because of the focus on the 

functional dependence of   in terms of   and the existence of   in the     , students can 

further justify their original expression of single differential length component.  

Future work is needed investigate students’ work on these tasks and to investigate the 

influence of providing an explicit function for the path as well as whether attention to the 

theta direction is as prominent for students enrolled in E&M I. These extensions to the 
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investigation would result in the generalization of these claims and student 

difficulties [57] in this context.  

 

5.3 Summary of student understanding of differential length construction in non-

Cartesian coordinates 

The previous chapter has outlined two efforts to investigate student understanding of 

differential length vectors in terms of how they are constructed within non-Cartesian 

coordinate systems. In the first interview task, students were provided with an 

unconventional spherical coordinate system and asked to construct a generic differential 

length vector. The second interview task involved students expressing the differential 

length vector for a spiral path with an additional context of electric potential experienced 

by a test charge due to a point charge. 

Findings from the generic task show pervasive difficulty connecting the curvature of 

coordinate geometry to the expression of differential components. This most commonly 

appeared as a failure to account for the meaning of the trigonometric function as a 

projected radius. Other difficulties included expressing the differential in terms of 

Cartesian unit vectors and only including one component as a change in the radius.  

The expressing of the differential as a single component was more prevalent in the 

second task. However, rather than expressing only a radial component, which was the 

only component necessary to calculate change in potential in a radial field, students 

expressed the angular component instead. This is most likely attributed to the use of 

circular paths in E&M II and/or the salience of the spiral path. Additionally, students in 
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the spiral task were more successful in connecting arc length to the     expression, 

whereas during the generic construction task only one group used this idea explicitly. 

Notably, the high symmetry of E&M means that when working in the context of a 

specific problem students only need to attend to one component of a differential length 

vector. In E&M I students commonly work with radial fields and often only need the 

radial component, while E&M II involves curling magnetic fields and thus necessitates 

the angular component of a differential length vector. This most likely accounts for some 

student responses in both tasks, given that the generic construction task and the spiral 

task were given in E&M I and E&M II, respectively. 

Findings suggest that instruction should focus more on the connection of geometry of 

coordinate systems to the writing of the generic differential length vector as well as 

connecting the generic expression to the choice of components within a context. To 

address the building of generic differential length vectors, an instructional task was 

designed around the interview task (Appendix C) as a means to explicitly connect 

changes on a three-dimensional spherical surface to the scaling factors appearing in 

differential length components (see section 9.5 or Appendix C for more details). 
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CHAPTER 6 

6 PHYSICS STUDENTS’ CONSTRUCTION AND CHECKING OF 

DIFFERENTIAL VOLUME ELEMENTS IN AN  

UNCONVENTIONAL SPHERICAL  

COORDINATE SYSTEM 

“Many a small thing has been made large  

by the right kind of advertising.” 

-Mark Twain 

 

This chapter presents a continuation of the “schmerical” coordinates task (see section 

5.1). Following the construction of a differential length vector, students’ were asked to 

construct a differential volume element and then subsequently check the correctness of 

the element. This portion of the task addressed student understanding of non-Cartesian 

differential volume elements, specifically as a product of differential length elements. 

Volume element construction occurred either by combining associated lengths, an 

attempt to determine sides of a differential cube, or mapping from the existing spherical 

coordinate system. None of the students were able to arrive at a correct differential length 

element in the initial task; however, students who constructed volume elements from 

differential length components corrected their length element terms as a result of 

checking the volume element expression by integration. Students relying heavily on 

spherical coordinates displayed further difficulty connecting dimensionality and 

projection ideas to differential construction. This work continues to add to the literature 

on students’ understanding of differential elements and student understanding of the 

geometry of multivariable coordinate systems in E&M.  
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This chapter is being submitted as an article for publication as a companion article to 

a paper presenting a concept image [38] and symbolic forms [47] analysis of students’ 

differential length construction in the schmerical coordinate system (see section 5.1.5 for 

overview of these results). 

 

6.1 Introduction 

An understanding of mathematical systems, equations, and expressions is often key to 

the foundational understanding of upper-division physics. Research on student learning in 

electricity and magnetism (E&M) has indicated several categories of difficulty related to 

student use of mathematics, including accounting for underlying physical symmetry, 

extracting information from physical situations for calculation, and interpreting the 

results of calculations physically [12]. Vector calculus, including vector integration and 

vector differential operators, is ubiquitous across the E&M curriculum, often providing 

the underlying representation for relationships between various concepts. A crucial aspect 

of problem solving in E&M is setting up the mathematical expressions for desired 

quantities, often in integral or differential form, based on the physical scenario. The 

prominent role of multivariable calculus operators requires students to have a reasonable 

command of differential quantities in a two- or three-dimensional space. Additionally, 

due to the high instantiation of non-Cartesian symmetry, understanding of these 

differential quantities is often mitigated by an understanding of spherical or cylindrical 

coordinate systems and the associated differential length, area, and volume elements. 

The variation in the use of coordinate systems is one of the key factors in the “vector-

calculus gap” [74,73], which represents the pedagogical and conceptual differences 
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between mathematics and physics. Among the differences is the idea that mathematics 

courses predominantly use Cartesian coordinates, whereas physicists often choose a 

coordinate system from the symmetry of the physical scenario. Other work in this area 

notes a large concern over the lack of standardization of variable labeling conventions in 

non-Cartesian coordinates between disciplines [40]. For this work, we will use the 

physics convention for spherical coordinates, which labels the azimuthal angle as   and 

the polar angle as  . 

Beyond this, volume integration in mathematics typically unfolds from thinking about 

the area between two functions and finding the volume of rotating that area about a 

specific axis, or finding the volume enclosed between two planar surfaces. In E&M, 

volume integration is commonly used to determine the total charge of a given object 

(e.g., sphere or cylinder) with a given charge distribution. In these tasks, students are 

expected to integrate the product of the charge density and a differential volume element 

expressed in the appropriate coordinate system. As many of the physical scenarios in 

E&M are most easily solved in a non-Cartesian coordinate system, differential volume 

elements include scaling factors that account for the curving of spherical (   

            ) or cylindrical (          ) space, rather than the straightforward 

       from a rectangular coordinate system.  

While scaling factors can be determined through a Jacobian/coordinate 

transformation, they can also be constructed less formally with an understanding of the 

underlying geometry. The latter involves recognizing that the curvature of the space 

necessitates arc lengths to represent some of differential length components and that the 

resultant volume element is composed of a product of the magnitude of the length 
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components. The length component and subsequent volume component for spherical 

coordinates are shown below. 

                         

                                                            

However, as shown in the final form of the volume element above, most conventions for 

writing the differential volume element involve the scaling factors written in front of the 

set of differentials, obscuring the origin of the terms as differential lengths.  

Previous research has addressed student use and understanding of many aspects of 

vector calculus quantities in the context of E&M, including differential elements [25], 

integration [14,48,81], applications of symmetries for Gauss’s Law and Ampère’s 

Law [12,15,16,24,32,33], and vector differential equations in mathematics and physics 

settings [37,82]. However, despite the centrality and ubiquity of non-Cartesian symmetry 

in E&M problems requiring vector calculus operations, little attention has been given to 

student understanding of differential elements in non-Cartesian coordinate systems, and 

the extent to which these elements are used in a rote procedural fashion or whether the 

structure of the expressions has meaning to students when employed. As part of a broader 

study to investigate these issues, we developed an interview task in which students were 

asked to construct a differential length vector and a differential volume element for a 

spherical coordinate system where variable labels and placement are changed from 

standard conventions. Findings from the differential length construction part of the task 

are presented in the previous chapter (see section 5.1 for broad overview, 5.1.5 for 

specific results). The results presented here address the second portion of the task, 
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students’ construction of differential volume elements to gain insight into student 

treatment of this type of differential element used commonly in E&M.  

 

6.2 Context for Research 

Course observations were conducted in the first semester of junior-level E&M at the 

first of two universities (University A). Informal review of student written data on 

homework and quizzes throughout the semester showed discrepancies in students’ 

performance when writing differential elements for spherical and cylindrical coordinate 

systems (see section 4.3). It is in this course that students first encountered these 

multivariable coordinate systems and differential vector elements. Spherical coordinates 

were introduced and used for several class periods before the introduction of cylindrical 

coordinates. An in-class quiz was subsequently administered as part of regular 

instruction. At this point in the class, more students were able to construct differential 

length vectors in cylindrical coordinates in comparison to spherical coordinates; as the 

course progressed, homework and exam data suggested students were more proficient 

with spherical differential elements when solving various integration tasks. This 

suggested underlying difficulties in students’ understanding of how differential elements 

are constructed and used in particular coordinate systems, and suggested that 

performance on spherical coordinates was due to extended use early in the semester.  

These observations prompted further investigations into students’ conceptual and 

symbolic understanding of differential elements in non-Cartesian coordinate systems 

within and without physics context. As reported in the previous chapter (see section 5.1.5 

for results), analysis of differential length construction showed student attention to 
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various conceptual aspects and symbolic structures needed to construct a three-

dimensional differential length vector. However, no student was initially able to 

completely construct a correct length element. In the following sections, students’ 

construction and checking of the differential volume element for the unfamiliar system is 

explored in terms of the ideas accessed during the initial length construction, as well as 

the connections made between the differential length vector and differential volume 

element for the given coordinate system. This provides further insight into the ways in 

which students construct and understand this type of differential element that is 

commonly used in E&M, as well as the ways in which students understand the geometry 

of non-Cartesian coordinate systems in which these elements are often expressed.  

 

6.3 Relevant literature 

Research on student understanding of vector calculus in E&M has addressed topics in 

several key areas. Much of this work has explored student understanding of Gauss’s and 

Ampère’s laws, expressed as a flux and line integral, respectively [12,15,16,24,32,33]. 

These laws are frequently employed in E&M in the abundance of highly symmetric 

cases. Thus, much of the literature in either case focuses on students’ recognition and/or 

application of symmetry. It is common for students to overgeneralize the use of either 

law to include cases where symmetry is not present, or attempt to apply any given 

coordinate symmetry as long as the Gaussian surface or Ampèrian loop encloses the 

desired charge or current.  

Other work within the realm of vector calculus has explored student understanding of 

vector differential operators and students’ interpretations of vector fields [37,82]. 
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Researchers found students were adept at the procedural calculation when provided tasks 

of gradient, divergence, and curl, but were unable to appropriately express the conceptual 

meaning of the operations [37]. These difficulties speak to the larger encompassing 

difficulties students have with the application and interpretation of mathematics at this 

level, as categorized by Pepper and colleagues: assessing underlying physical symmetry, 

establishing mathematical representations of physical situations for the purpose of 

calculation, and interpreting the results of calculation in terms of the given physical 

situation [12].  

Pepper and colleagues also briefly noted two cases of difficulties with construction of 

differential elements. In one case, students neglected to include the necessary scaling 

factors when writing spherical differential areas, using        , rather than    

          . This is reminiscent of students’ attempts to pattern-match a product of 

two differentials in a non-Cartesian system from their understanding in Cartesian 

coordinates [44,77]. Students at various levels are less comfortable when working within 

polar coordinate systems [10,44,83]. In a second example presented by Pepper and 

colleagues, a group attempted a three-dimensional line integral using        as a path 

length element [12]. These types of errors speak to a larger difficulty with students’ 

understanding and construction of differential elements in multivariable coordinate 

systems that has been relatively unexplored before now. 

Student understanding of calculus concepts has been another area of focus in E&M. 

Hu and Rebello have investigated student understanding of differentials in the context of 

integration of charge or resistivity along one dimension [25]. Several resources and 

conceptual metaphors were used by students across these tasks, establishing four 
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common treatments of differential quantities: derivatives as small amounts, as unitless 

points, as a cue to differentiate a formula to derive a second differential quantity, and as 

an indicator of the variable of integration. The identification of the differential as a small 

amount can be connected to a specific cue for students to integrate, where students 

identify the need to add up “little chunks” using an integral [14,48]. However, research in 

mathematics education has commonly reported student treatment of the differential as a 

meaningless quantity that only serves to identify the variable of integration [28,49–51]. 

The sum of this work highlights the fact that many students do not connect the 

differential quantity to a physical meaning, even when given a specific context. While 

addressing larger concerns about students’ treatment of integration and differentials, 

these studies primarily focused on integration in one dimension, or on quantities such as 

resistance or capacitance.  

Therefore, despite significant forays into various levels of mathematical 

understanding, little work has explored student understanding of the differential vector 

element, in particular as expressed in the non-Cartesian coordinate systems used in 

physics problems. This work takes a next step toward analysis of student understanding 

of one of these elements – the differential volume element – as it appears in non-

Cartesian coordinate systems used in E&M. 

 

6.4 Theoretical Perspectives 

Building largely off of work on student construction of differential length elements 

within the same task, we analyze student construction of differential volume elements 
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using a concept image framework [38] to make explicit connections to earlier work as 

well as address new ideas related specifically to differential volume elements. 

A student’s concept image is the multifaceted cognitive structure that includes all the 

properties, processes, mental pictures, or ideas that students associate with a particular 

topic. For example, students may have multiple ways to think about integration: with a 

Riemann sum, area under the curve, or anti-derivative approach. The sum of these ideas 

that the student associates with integration make up the student’s full concept image; 

however, a specific task or context may only elicit one of these approaches  [14]; this is 

referred to as the evoked concept image for that task or context. While a student may 

have other ideas related to integration, determining a student’s evoked concept image for 

a particular task (e.g., area under the curve) allows insight into how a student approaches 

a problem in a given context. Likewise a student’s evoked concept image may only have 

a rule-based understanding, e.g., the integral of         is     , without an 

understanding of the underlying meaning.  

Notably, as a student continues to apply and extend an idea, their concept image 

grows and may pick up ideas that are false or contradictory with earlier aspects. In some 

cases, a restricted concept image can develop if a student learns and applies a concept in 

a very specific way for an extended period of time. When this occurs, a student later 

meeting a broader context is unable to extend the concept to cope with the change. For 

example, a student learning Coulomb’s law who then spends several weeks using Gauss’s 

law may develop a restricted concept image of integration of electric fields, and may 

attempt to apply Gauss’s law in a case where symmetry is absent, a situation well 

documented in the literature  [12,24,33]. The formation of a restricted concept image is a 
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reasonable way to describe procedural knowledge without conceptual understanding. In 

these cases, students have only learned a particular concept as a computational entity 

(e.g., integrals as antiderivatives) and have not been asked to interpret or make sense of 

the computation. 

The use of concept image as an analytical perspective has recently been adopted by 

physics education researchers studying students’ mathematical reasoning in the context of 

integration  [14] and differential vector operators in electromagnetism courses  [37], as 

well as to identify the specific properties and associations students used (or neglected to 

use) when constructing the differential length element for an unconventional coordinate 

(see section 5.1). 

 

6.5 Research Design and Methodology 

In order to investigate student understanding of associated differential elements, a 

task was developed in which students were asked to construct expressions for differential 

elements of an unconventional spherical coordinate system that we called “schmerical 

coordinates” (Fig. 6.1). The use of an unconventional coordinate system enabled 

observation of conceptual exposition in the construction process and reduced the effect of 

recall of memorized quantities as static knowledge. While schmerical coordinates are 

left-handed, the most noticeable difference in the system from spherical coordinates is the 

placement of the polar angle: while   is measured down from the  -axis and ranges from 

  (the  -axis) to  , schmerical coordinates measures alpha up, ranging from      to   

 , with     corresponding to the   -plane. This necessitates the use of      rather 

than      to describe the projection used to construct the azimuthal component. This 
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change then carries through to the construction of the differential volume element, but 

becomes abstracted from its origin as a projection. In the first part of the task, students 

were asked to judge the reasonableness of the coordinate system and to construct a 

differential length vector (see section 6.1). The second part of the task had students 

construct a differential volume element and subsequently check the correctness of that 

element.  

Clinical think-aloud interviews were conducted with students in a junior-level E&M 

sequence at two universities. Four pairs of students (N=8) were interviewed at one 

university (University A) at the end of the first semester of a two-semester sequence; two 

pairs and a single student (N=5) were interviewed at a second university (University B) at 

the beginning of the second semester of this same sequence. The use of pair interviews 

facilitated authentic discussion between students where they could arrive at a single 

answer with minimal input or influence from the interview. Groups are identified as AB, 

CD, etc., with individual students given pseudonyms associated with the letters (e.g., 

Adam and Bart for AB).  

Interviews were videotaped and fully transcribed. Analysis used open coding to 

identify common actions and recurring ideas across interview groups. This highlighted 

the ways students treated and constructed these non-Cartesian differential volume 

elements. Analysis additionally sought to address student understanding of differential 

volume elements in terms of previously identified concept image aspects associated with 

differential lengths. This initial analysis categorized these ideas as aspects of students’ 

concept images [38]. Concept image aspects associated with differential length 

construction include 
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Figure 6.1.  Comparison of spherical coordinates and unconventional system given to 

students. (a) Conventional (physics) spherical coordinates; (b) an 

unconventional spherical coordinate system (“schmerical coordinates”) given 

to students, for which they were to construct differential length and volume 

elements. The correct elements for each system are in (c) and (d), 

respectively. 

 

component and direction, dimensionality, differential, and projection (see section 5.1.4 

for definitions). Building actions involved recall of and mapping from other coordinate 

systems, as well as grouping of specific terms. 

 

6.6 Results and Discussion 

The schmerical coordinates differential volume,   , task took place after completion 

of a task where students were asked to construct the differential length vector,       , for the 

system. As mentioned above, there were two segments to the volume element task: 

element construction and checking of the expression. 

Groups constructed the schmerical differential volume elements in three distinct 

ways. Some pairs recognized    as the product of their previously established length 

vector components, making this a relatively quick process. With mixed results, two of 

these student pairs had previously attempted to capitalize upon this product 

understanding by recalling a spherical differential volume element and extracting the 

length components for comparison to their schmerical        construction. Utilizing a 
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different approach for the construction of a differential volume element, one group 

attempted to determine the differential volume element by expressing the sides of a 

differential volume within the geometry of the coordinate system. We distinguish this as 

a separate approach because this group had not accounted for multiple components in 

their differential length vector and had not connected the sides of their constructed 

differential volume to the need for three components of a differential length vector. 

Lastly, the remaining groups could not exploit the “product of length components” 

understanding at all, typically either expressing a length element in Cartesian components 

or expressing the differential length as a single component in the   -direction. They 

determined    by mapping to the more familiar spherical volume element.  

The last phase of the task involved the checking of the differential volume element. 

This most often involved integration to obtain the expression for the volume of a sphere 

of constant radius, but in some cases additionally involved a dimensional analysis. 

Students were asked to check their differential volume element if they used terms 

associated with their (incorrect) differential length vector or mapped incorrectly from 

spherical coordinates and thus had an incorrect term within their differential volume. 

Students who mapped correctly were not asked to check their differential volume, as the 

connection between their differential volume and length elements was weaker and a 

correct differential volume would not likely lead towards reconciliation between the 

terms. 

For students with differential length elements in which only the trigonometric 

function was missing or incorrect, the checking of the differential volume elements led to 

the eventual correction of the differential length vector and solidification of the 
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connection between the trigonometric function and the projection aspect. Groups using 

recall and transliteration to construct the differential volume element were still not able to 

recognize the need to invoke projection: the use of cosine remained a mathematical 

transformation rather than acquiring a geometric justification. This further supports 

student difficulty found in the differential length study where students had specific 

difficulty with understanding the role of the trigonometric function 

 

6.6.1 Construction of a schmerical differential volume element 

6.6.1.1 Volume as a product of differential length components 

When asked to construct a volume element for schmerical coordinates, AB, CD, and 

EF immediately knew to take a product of differential length magnitudes.  

Interviewer: Okay, so can you make a differential volume element? 

Adam:  Sure just multiply them all together. 

Each of these groups had constructed a differential length vector with three components 

based on the unit vectors of the unconventional system (see section 5.1). However due to 

errors with differential length construction, the constructed differential volumes included 

an incorrect trigonometric function or lacked the trigonometric function entirely. 

While the creation of a differential volume as a product may seem trivial, during 

length construction (the second of four tasks), students having difficulty with direct recall 

to a spherical differential length vector struggled to isolate the length components from 

the more easily recalled spherical volume. For example, after recalling the spherical 

differential volume expression, Carol explicitly recognized that the differential volume 

element is constructed from a product of length components and that the terms are 

grouped differently in the volume element.  
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Carol: ... I was trying to figure out which, I guess, um, I don't 

know, vector direction each come from, um, because I feel 

like, right? This is right, right? We just write it    for 

convenience, right? It comes from separated out [terms]. 

Carol and Dan then began to check the units (dimensionality) of terms to confirm their 

choices for the separated components. Similarly, Greg and Harold recalled the spherical 

   in an attempt to reconstruct the spherical length vector. 

However, rather than recreating the appropriate length components, both pairs 

grouped angular terms based on variables (Fig. 6.2), pairing the      with the    similar 

to how the terms would appear in multivariable integration. Because this is what the  

differentials are typically used for in solving E&M problems, the typical expressions for 

differential volume elements (e.g.,              for spherical coordinates) involve a 

grouping of terms in a way that dissociates the variables from their particular length 

component. Students’ coupling of the theta terms and ease of recalling the spherical 

volume element over the assembly of the volume element from the differential length 

components supports the idea that students do not have the fundamental understanding of 

non-Cartesian systems necessary for interpreting vector calculus in E&M. 

After some time, Carol and Dan were able to correct the grouping error, when Dan 

made the explicit connection to length vector construction in spherical coordinates and  

 

(a)   (b)  

Figure 6.2.  Two examples of incorrect recall of a spherical differential volume element. 

(a) Incorrectly distributed length terms in a spherical differential volume 

written by Carol and Dan. (b) Unsuccessful attempt to reconstruct differential 

spherical length element by Greg and Harold. 
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Figure 6.3.  Final differential volume constructed by Carol and Dan including incorrect 

trigonometric function. 

 

connected the      to a projection into the plane of the polar angle. Due to 

transliteration of terms, this lead to a      in their length component that carried over 

into their    as they multiplied length terms (Fig. 6.3). 

For Greg and Harold, the dissociation from length components was much more 

complicated, as neither student attended to the necessary dimensionality. 

Harold:  You've got          plus is it        or is there an   in there? 

Greg: I think there is an   there, it's an   because you want, you 

want at that radius uh, plus a small angle. 

Harold seemed to have a concept image in which the grouping of terms based on like 

variables rather than the grouping based on correct ideas for each length component. If he 

had only been concerned with the grouping of variables, all the   terms in the differential 

length component would have been grouped with   . As they decomposed the volume 

element, they ran out of components to be able to express the remaining  -component. 

The pair then abandoned this method of construction and began to express the differential 

length in terms of Cartesian unit vectors (see section 5.1). This goes further to show how 

a lack of reasoning about dimensionality can hamper problem solving in E&M. 

 

6.6.1.2 Volume as product of sides of a differential cube 

Rachel and Silas entered the volume construction phase of the task after first 

constructing a differential length vector as a single component accounting only for 
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change in the radial direction. Without the three components, which pairs AB, CD, and 

EF relied upon, Rachel and Silas started their volume construction attempt by drawing a 

small volume at the end of      (Fig. 6.4a). This construction elicited a discussion of arc 

length to account for the sides of the volume element, but did not cause the students to 

reflect upon the single-component differential length vector constructed in the earlier 

phase of the task. 

Rachel:  That is like the differential volume element right here with dM 

as the thickness. So if alpha changes you have this arc length.  

This shows that students’ difficulties with length construction may not have been due to 

lacking the prerequisite ideas, but to having a limited concept image of the differential 

length vector as a whole. Given that the majority of problem solving in the electrostatics 

portion of E&M involves calculating a change in potential over a radial field, the 

predominance of such problems early in E&M may restrict students’ concept image to 

only needing to account for the radial component of the differential.  

Yet the ideas of dimensionality and arc length – ideas that other groups correctly 

attributed to the length component – were elicited from Rachel and Silas once they were 

 

(a)    (b)  

Figure 6.4.  Physical construction of a differential volume element by Rachel and Silas. 

(a) Beginning of volume construction where       represents the pair’s       . (b) 

Final differential volume, where location of    has changed. Students do not 

connect the sides of this volume to the        components. 
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able to build the differential volume geometrically. As RS continued in their construction, 

they correctly represented     as the side resulting from a small change in alpha, but 

placed     where    had previously been on their diagram. As a result,    took the 

role of the “thickness” into and out of the page rather than in the radial direction, as 

previously depicted (Fig. 6.4b). This highlights a difficulty of visualizing the geometric 

directions of the schmerical unit vectors. This difficulty could be connected to a student 

difficulty reasoning about three-dimensional objects within a two-dimensional space, 

something sparsely studied in mathematics education research  [84,85]. At the end of this 

differential volume construction, Rachel and Silas were unsatisfied with their differential 

volume lacking a trigonometric function, and began to build a volume by making a 

comparison of variables (transliteration) to spherical coordinates. 

 

6.6.1.3 Construction of volume by comparison to spherical coordinates 

Students who had difficulty with length construction, either constructing a differential 

length vector with one component (RS, T) or without scaling factors (RS), or who 

represented the differential length vector in terms of Cartesian symmetry (GH, PQ), could 

not draw on the same product of terms as the first three groups. 

Rather than finding a solution pattern to determine the volume element in schmerical 

coordinates, students recalled the spherical volume element and then mapped the 

schmerical variables to the spherical terms. This problem-solving approach is consistent 

with the “transliteration to mathematics” epistemic game [86]: students identified the task 

target quantity, found a related solution pattern, mapped new quantities into the related 

solution, and ended by evaluating the mapping.  
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After attempting to construct a physical volume and expressing a need to include 

trigonometric function in their schmerical differential volume, RS began to match 

variables to the spherical coordinate system (Fig. 6.5a). Here they appropriately 

accounted for the relationship between theta and alpha, as [        ]. The pair then 

connected the differentials and rewrote the spherical volume in terms of the associated 

schmerical variables. They recognized mathematically that the     shift of alpha from 

the original theta turns      to     , but they did not connect the change or original 

trigonometric function to the physical justification of projection.  

Rachel: Well okay, so if we have it down in this plane then wait, set alpha 

equal to   right? So it’s down in [  ] plane. I can convince myself 

that this is cosine. No, no, that’s beta. Hold on. I don’t even know.  

Silas: Well I know that is right. I know that much. 

Rachel: Yeah, ... I just don’t know why it is right.  

Here Rachel and Silas are able to arrive at the correct expression for the differential 

volume element by a change in variable but do not recognize that the trigonometric 

function scales the specific arc length of the beta component. Without being able to 

connect the cosine to a physical justification, their epistemological stance is to trust the  

 

 (a)  

(b)  

Figure 6.5.  Student work constructing a differential volume by comparison to spherical 

coordinates. (a) Work of Rachel and Silas accounting for the changes in the 

variables. (b) Work of Tyler directly replacing variables with mathematics 

conventions. 
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mathematics  [87]. This lack of understanding of the reason behind the projection is 

pervasive across all groups, especially during length construction (see section 5.1). 

After arriving at a correct volume element, RS returned to their differential length 

vector, but again due to the lack of a trigonometric function in the drawn volume 

element, they did not connect the length and volume differential expressions. Rachel and 

Silas then augmented their length vector to include a    and   , in their respective 

directions, but failed to recognize the need for arc length discussed previously during the 

construction of the volume. Additionally they did seek to reconcile the differences 

between the differential elements as the previous groups did during the checking phase of 

the task.  

Individual subject Tyler and group PQ also attempted to map onto a spherical 

differential element but did so unsuccessfully, connecting the physics variation of the  

differential element with the mathematical conventions for the spherical coordinate 

system ( as polar angle,  as azimuthal). Compounded with the missing idea of 

projection in the polar length component, this resulted in differential volume elements 

that include a      instead of a      (Fig. 6.5b).  

Having had particular trouble with construction of a differential length vector, Greg 

and Harold quickly constructed their new    from a direct mapping of the previously 

recalled spherical differential element. Greg initially accounted for the different 

placement of alpha by writing (   – ) as the argument of the sine function, but then 

decided a direct replacement of the variable would be sufficient. 

Greg:  Actually, if you just said      I think it would work. You 

would just have to know that it points in a different direction.  
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At this point, they returned to the differential length element upon request of the 

interviewer and eventually reconstructed a correct differential length element based on 

the process in the course text [58] (see Fig. A.6). When asked if they were still satisfied 

with their differential volume element, they had difficulty recognizing the need to 

reconcile the cosine in their length vector with the sine in their volume element. 

Harold: I still like our volume element= 

Greg: Yeah, I think so. 

Harold: = I don't know about you, this one over here, I still think 

that/ 

Greg: They're the same, yeah. 

Interviewer: Okay, and can you check that that volume element is 

correct? 

Greg: Isn't that kind of the same question? 

Harold: Oh, you want us to actually do this integral out. 

Greg: Oh. No, but see in down here we've gone with the     . 

Harold: Oh, we've gone cosine, oh yeah. 

Greg: And so we might want cosine. Yeah, I think we do, oh 

wait, let's see. Oh no, that's, alright, yeah we do want these, 

we want these to agree so they need to be, this needs to be 

a cosine [in the volume element]. 

Despite GH’s attempt to deconstruct the volume element as a product of terms, their 

hesitancy to connect the length and volume terms, coupled with the difficulty 

deconstructing the volume element due to misuse of the grouping of terms and inattention 

to dimensionality, show that Greg and Harold did not have a strong understanding of the 

structure of these differential elements. 

Generally, students who struggled with differential length construction were better 

able to recall the form of the differential volume element in spherical coordinates but had 

further difficulty connecting the geometry of the coordinate system to the terms in the 



127 

 

differential volume element. This appeared specifically as a difficulty associating the 

trigonometric function as a projection. 

 

6.6.2 Checking of the schmerical differential volume 

6.6.2.1 Checking volumes from products of differential length components  

Upon checking their differential volume elements, both AB and CD easily recognized 

that integration of their differential volume would give the expression for the volume of a 

sphere of radius M, but due to their incorrect trigonometric function, integration over the 

bounds of α yielded a volume of   for both groups. This alerted the groups to an error in 

their length components, which they quickly traced to the      term. Adam immediately 

recognized the mistaken projection that resulted from directly substituting alpha for theta 

during their mapping. He articulated that the change in the placement of the angle meant 

a      was needed to obtain the appropriate length component. Carol and Dan were able 

to recognize that      was the cause of their unexpected result, but did not immediately 

connect this to the idea of projection. 

Carol:  , which means our volume is wrong. Which means, should this 

be cosine? No, we need. 

 ... 

Dan: I mean, well our trig might be wrong but we also could be 

running into the problem that we were incorrect about. Oh... 

when you assumed     , you assumed you were basing it off 

     where theta was on a different part of the graph. 

Carol first suggested cosine as a way to make the mathematics work. It is not until after a 

couple of incomplete exchanges that Dan connected the mathematical implications of 

change in trigonometry to the physical difference in the geometry of schmerical 
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coordinates. The construction and checking of the volume component cued projection, 

the absence of which had previously led to a shift to recall during length construction. 

When asked to check the volume element, Frank reasoned using dimensionality, 

saying that integration of the M terms would give units of length cubed and therefore it 

didn’t matter what the remaining integrals gave as a result. Unconvinced, Elliot suggested 

integration of the full differential volume element,         . As their expression 

contained no trigonometric function, their integration yielded a result with    
in their 

answer. 

Frank:   , so – 

Elliot: We needed that sine in there. 

Frank: We need a sine or a cosine so we can get rid of a pi. 

Elliot: But I don’t know where it comes from. 

 [...] 

Elliot: [audible gasp]Oh, I remember where it comes from... like if r 

is pointing way up here, then we need to get the component 

that's in the flat plane and then that is times d beta.  

The pair recognized they need a trigonometric function to get the appropriate 

mathematical result, but as with their difficulty during length construction, they could not 

figure out the particular reason for the inclusion of the term. Shortly after this discussion, 

Elliot recognized the need for a cosine function to account for the necessary projection 

and the group corrected their length vector. Just as with CD, EF recognized the 

mathematical need for cosine but was not immediately able to connect it to the radius 

term in the   -component.  

For students constructing a differential length vector with the three components of 

schmerical coordinates, the checking of the differential volume element provided 



129 

 

students not only with the correction to their earlier differential length element, but led to 

the connection of the trigonometric function to the idea of projection. 

 

6.6.2.2 Checking volumes constructed from recall and transliteration 

As the pair GH checked their differential volume element, Greg became unsure about 

the reason for the cosine term, despite earlier work during their second attempt at length 

construction.  

Greg: Why did we change it to cosine? 

Harold: I'm sorry? 

Greg: Actually wait, no, because the negative sign, the negative 

   
 

 
 is one= 

 This further suggests that projection is not strongly tied to this pair’s 

understanding of the differential elements here. It was upon seeing that the computation 

resulted in the expected answer that Greg regained comfort with the use of the cosine 

function.  

 The result of Tyler’s checking of his volume element,             , via 

integration yielded  , but he was unable to connect this to the discipline-specific variable 

label conventions or to the projection. At this time the interviewer conveyed the physics 

convention for the spherical coordinate system and Tyler changed the      to     . A 

second attempt at integration still yielded  , which Tyler connected to the difference in 

how theta and alpha are defined. However, Tyler still did not connect this to his 

differential length element or recognize the need for the length vector to have three 

components. Tyler further drew upon graphical representations of sine and cosine 

functions to illustrate the change in the angle as a mathematical shift. The rote-
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computational reasoning resulting in the change in the trigonometric expression 

substituted for a connection to the projection, as it did for Rachel and Silas.  

Notably, even in the interviews in which students treated the differential as a product 

of lengths, mathematical formalism appeared before geometric reasoning: groups CD and 

EF first see the shift as mathematical transformation before identifying the geometric 

motivation. Students here engaged with the “doing” of mathematics first and sense-

making second. Furthermore, geometric reasoning was not easily accessed, even though 

the task involved quantities directly related to coordinate system geometry. This shows 

that students do not necessarily have a strong conceptual understanding of the 

relationship between coordinate system geometry and differential element construction. 

 

6.7 Conclusions  

The construction of and ability to reason about non-Cartesian differential length and 

volume elements are keys to many of the concepts in E&M that make use of vector 

calculus. Addressing students’ conceptual understanding of the differential elements and 

how they are constructed in non-Cartesian coordinates, this work shows that students do 

not necessarily have a strong understanding of the geometrical aspects of three 

dimensional polar coordinate systems that are important to the invocation or construction 

of these differential elements in physics contexts in particular.  

Our results suggest that students struggle to think critically about the aspects that go 

into the construction of differential elements, but that some are able to check the validity 

of their expressions and make appropriate adjustments when prompted. Following 

construction of a differential length vector in an unconventional spherical coordinate 
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system, analysis of differential volume construction showed three approaches taken by 

students: multiplication of length components, determination of the sides of a differential 

cube, or recall and transliteration from a spherical differential volume element. The group 

initially using the second approach did not include a trigonometric term and subsequently 

switched to recall and transliteration after not being able to determine the justification for 

inclusion of the term. In general, recall and transliteration was used in groups that had 

greater difficulty with construction of the differential lengths. These groups either had 

difficulty recognizing the need to account for multiple components, suggesting that the 

task did not evoke the component and direction aspect of the differential vector concept 

image, or instead constructed a differential length vector with Cartesian unit vectors. 

Additionally, these groups did not try to connect the expressions for the differential 

length vector and differential volume element. 

Furthermore, the construction and checking aspects of these tasks provide stark 

contrast between those groups who could connect the necessary geometric ideas to the 

differential volume and those who could not. The checking process only cued projection 

to students who were already performing more strongly on the task and had accessed arc 

length or projection during length construction (see section 5.1), while others only saw 

the use of cosine as the result of a variable change from theta to alpha into the sine term 

in the spherical differential volume. Thus some students have an incomplete 

understanding of the coordinate systems due to misapplication of particular ideas, while 

for other students the prerequisite ideas are sometimes present but not accessed or 

activated in this particular context. 
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Regardless of variations in students’ geometric reasoning ability, the differential 

volume element appeared more accessible to students than the differential length vector, 

CD, GH, PQ, RS, and T were all able to recall the spherical differential volume element, 

but only CD was able to reconstruct the differential length components from the volume. 

The disconnect between the differential length and volume elements for students made it 

difficult for students to construct or correct their length elements accordingly. CD and 

GH, in particular, explicitly attempted to use the spherical differential volume element to 

make sense of their schmerical length vector after failing to directly recall a spherical 

length vector. Students’ difficulty reconstructing a spherical differential length from these 

terms, as well as a blanket difficulty recognizing the need for a trigonometric projection, 

further supports earlier work reporting student difficulty accessing necessary aspects for 

the construction of a differential length vector (see section 5.1).  

Lastly, overreliance on spherical coordinates and attempts to map trigonometric 

functions directly are findings reminiscent of x,y syndrome [88], in which a particular 

process is remembered in terms of symbols rather than underlying relationships between 

quantities. Likewise, the symbols and trigonometric functions of the differential volume 

element are remembered in the way they are first taught and lose particular meaning over 

continued use. This is consistent with the formation of a restricted concept image [38]: 

prolonged use of a particular idea in a formulaic context or limited range of situations can 

obscure underlying understanding. Thus, when students meet a broader context, they 

struggle with the application of fundamental ideas. Bollen and colleagues similarly report 

that students are able to perform calculations with differential vector operators but 

struggle to interpret the conceptual meaning [37]. In our work, students’ mostly 
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computational use of spherical volume and area elements earlier in the semester appears 

to obscure the underlying understanding of how these elements are constructed. Meeting 

the broader context of the unconventional system, students then struggle to apply 

appropriate concepts.  

This accessibility of the differential volume elements, and students’ failure in 

connecting mathematical aspects to geometric aspects, imply that in order to improve 

instruction of non-Cartesian differential elements in E&M, more focus should be given to 

how length, area, and volume elements are constructed and determined when problem 

solving, with explicit emphasis on building the requisite ideas by connecting them to 

geometric aspects and motions within the space of the coordinate systems. 

In order to address these concerns, results of this study have been used to develop 

preliminary instructional materials in the style of Tutorials in Introductory Physics [65] 

to be used at the beginning of E&M or in a mathematical methods for physics course 

(Appendix C). These activities structure students’ construction of a differential length 

element in schmerical coordinates in order to engage them with the act of element 

construction within a non-Cartesian system, and additionally use 3D physical 

manipulatives to allow students to construct the elements within a physical space in order 

to elicit geometric reasoning. Based on the pedagogical value of the differential volume 

construction and checking tasks in helping students recognize issues with the differential 

length expressions in the interviews, these tasks are included in the materials. Preliminary 

results of the implementation are promising; the materials seem to generate discussions 

similar to those in the interviews but allow students to harness an understanding of the 

physical space, to realize the geometric features of the differential length elements, and to 
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connect those features to properties of the differential volume element. Ongoing testing 

and development are occurring.  
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CHAPTER 7 

7 STUDENT CONSTRUCTION AND DETERMINATION OF 

DIFFERENTIAL AREA ELEMENTS 

“Great things are done by a series of small things being brought together.” 

-Vincent Van Gogh 

 

The differential area is one of the more ubiquitous differential quantities, especially in 

the electrostatics portion of E&M. While much of the literature has addressed student 

understanding in various areas of E&M (see Chapter 2), little of this research has given 

specific attention to differential areas [12,34]. Nguyen and Rebello [34] have also shown 

cases in which students were unable to interpret the meaning of    in integration. As part 

of a project to determine student understanding of differential elements used in vector 

calculus, this chapter addresses students’ conceptual understanding of the differential 

area element and the construction or determination of the differential area.  

The differential area is commonly used as both a vector and a scalar quantity 

throughout E&M. When applying Coulomb’s Law to a surface charge distribution the 

integral takes the form, 

      
  

           
           

   

                     

Here, students solve for the electric field by accumulating the effects of infinitesimal 

charges expressed in terms of a scalar differential area. The differential area, da, is 

represented based on the coordinate symmetry of the charge distribution (i.e., 

           for a spherical shell of charge). Conversely, the vectors    and    , which 

represent vectors from the origin to the location of the differential charge and from the 
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differential charge to the point of interest, are then constructed in terms of their Cartesian 

elements.  

The differential area also appears when calculating electric flux,            , or 

magnetic flux,            , due to varying electric and magnetic fields respectively. 

The dot product isolates the amount of field passing through differential portions of area, 

and the integral then accumulates these effects over the whole of the defined surface. To 

account for relative vector directions, the differential area is a vector but still takes the 

shape of the chosen coordinate system.  

This chapter explores students’ treatment of differential area elements, as vectors and 

scalars, with specific attention to how these elements are built or determined in 

multivariable coordinate systems. The first sections addresses data collected over the 

breadth of this project as a depiction of students’ treatment and understanding of the 

differential area, including students’ use of Gauss’s Law to find the electric field of the 

point charge during the spiral task (Section 7.1.1), and interviews in which students’ were 

asked to check an imaginary student’s solution containing an incorrect differential area 

(section 7.1.2). Then I contrast two sets of pair interviews in which students were asked 

to construct a generic differential area vector for spherical and cylindrical coordinates 

(Section 7.2). This chapter then reports on students’ understanding of differential areas, 

categorizing the various evoked concept images [38] as students construct differential 

areas in two physics contexts (Section 7.3). This set of tasks address student 

understanding of the differential area as used in a common equation, the relation of 

differential areas in terms of coordinate geometry, and the construction of differential 

areas in specific physics contexts. 
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7.1 Gauss’s Law and the hidden differential area 

The work presented in this section addresses student understanding and use of the 

differential area as part of Gauss’s law, one of the most common instantiation of a flux 

integral. The full expression is given as, 

            
         

  
, 

where the flux through a defined closed surface is proportional to the charge enclosed by 

that surface. As an “inverse problem” [15], the use of Gauss’s Law involves highly 

symmetric argumentation to isolate the electric field as the target quantity. This involves 

defining a Gaussian surface where the electric field is perpendicular to the surface at all 

points (resolves the dot product) and has a constant magnitude over the whole of the 

surface (allows the electric field to be pulled out of the integral as a constant). Common 

Gaussian surfaces include cylinders and spheres, where the surface area is a known 

quantity. In these case, as the penultimate mathematical step,     can be replaced with 

the appropriate surface area of the given shape.  

The complete bypassing of the writing of the differential area can potentially be 

obscuring students’ understanding in problems where    construction is necessitated. 

Preliminary classroom observations and review of student work show that students are 

much less successful with constructing cylindrical differential area elements on course 

assignments and employ Gauss’s Law in cases where the underlying symmetry does not 

dictate Gauss’s law as an appropriate solution pathway (see Chapter 4). The current 

literature has shown the latter is a common difficulty for students [12,24,32,33].  

In the main task described here, students are given an imaginary student’s solution 

employing Gauss’s law (section 7.1.1). This task provides insight into students’ attention 
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to differential areas as part of a common solution pathway where the writing of the 

differential area can be bypassed in favor of expressing the final area of the surface. In 

the remaining subsection, there is discussion of two students who employed Gauss’s law 

during the spiral task (section 5.2) to provide additional insight into students’ use of 

Gauss’s law as a solution. 

 

7.1.1 Check solution of Gauss’s law task 

7.1.1.1 Research design and methodology  

As part of an attempt to assess students’ attention to the differential area used in Gauss’s 

Law, a task was designed in which students were asked to check the solution of an 

imaginary student trying to find the change in potential between two points at different 

distances from a line charge (Appendix B.5; Fig. 7.1). To solve for the change in 

potential, the imaginary student first uses Gauss’s Law with a cylindrical Gaussian 

surface of radius,  , and length,   (depicted in task). The student then uses Gauss’s Law 

to solve for the electric field, with some mistakes. Using this incorrect electric field, the 

student then derives an expression for the change in potential, to which the student 

incorrectly attributes a unit vector. This type of task assesses students’ ability to follow 

and critically reason about a given solution as well as gauges students’ attention to the 

differential area as part of a solution method where it is commonly ignored. 

The actual focus of this task was the solution for the electric field prior to the 

calculation of change in potential, given that the writing of the differential area for 
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Figure 7.1.  Figure provided for check solution task. Students were given the image of a 

long wire with cylindrical Gaussian surface and imaginary student’s solution.  

 

Gauss’s Law can be bypassed in favor of plugging in the full area of the targeted 

Gaussian surface. As such, the writing of the differential area was added as a step in the 

process, but replaced the correct differential area,      , with one used by an actual 

student on a homework assignment during course observations,            (note that 

  and   may be used interchangeably as the radius). The incorrect differential area 

includes both spherical and cylindrical components but is suited to neither system. 

Purposefully, this area also yields a result that is close enough the actual surface area of 

the outer cylindrical shell,      (rather than 2   ) so that students could decide that the 
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final area was correct and overlook the differential area. This would support the idea that 

the emphasis on the final area obscures the understanding or attention to the underlying 

coordinate representation. 

The incorrect unit vector was added as a mistake so that students could be satisfied if 

they felt they had to find an error in the students’ solution. If they could then not 

determine whether the area was incorrect, they could claim to have completed the task. 

Clinical think-aloud interviews were conducted with pairs of students (N=8) at 

University A at the end of the first semester of a two-semester junior-level E&M course 

sequence. Pair interviews facilitated more authentic student discussion and allowed them 

access to each other’s conceptual understanding, thus minimizing the input and influence 

of the interviewer. Groups are identified as AB, CD, EF, and GH, to label pairings of 

students (given pseudonyms) Adam and Bart, Carol and Dan, etc. Adam and Bart were 

graduate students enrolled in the course for credit. The four pairs identified here are the 

same pairs interviewed at University A on the Schmerical Task.  

As with other tasks, interviews were videotaped and transcribed. Both the transcripts 

and video data were analyzed to isolate which aspect of the imaginary solution students 

attended to as well as the understanding of the differential area.  

 

7.1.1.2 Results and Discussion 

Three of the four pairs recognized that differential area was wrong, while the fourth 

accepted the final answer as correct. However, two of the pairs claimed the differential 

was correct and attributed it either to spherical coordinates or a second cylindrical 

differential area. This shows that students don’t necessarily recognize the appropriateness 



141 

 

of differential areas. Furthermore, as part of the derivation of the correct response, each 

of the three pairs restarted the task. 

Students in groups EF and CD immediately identified the differential area as 

incorrect. Elliot and Frank made this realization while writing out the students’ work, but 

Frank attempted to correct the students’ response by replacing the differential area with 

the cylindrical volume element, which Elliot immediately corrected. 

Elliot: So we're integrating the electric field dotted with the area 

element, which is, I don't think that is right. 

Frank: Yeah, that is wrong... So this should just be        .  

Elliot: ...   though? Because you're not going to do a   . You're 

not going to increase the size of the cylinder. You're staying 

at  . 

Notably, after supplementing the correct differential area element, Elliot continued to 

analyze the incorrect differential area by identifying it as the wrong coordinate system. 

Then Elliot momentarily suggested the final area was still correct before recognizing it 

should be     . 

Elliot: There is only a change in   , this is, no. He is using the 

wrong coordinates. First of all, if you use cylindrical 

coordinates, there is not going to be a   in there. 

Frank: Yeah, so that is problem number one, that probably the main 

problem. 

Elliot: But he still gets the right area. 

 

a)  b)  c)  

Figure 7.2. Students work showing restarting of Gauss’s law for the check solution task.  

a) Elliot and Frank. b) Carol and Dan. c) Adam and Bart. 
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Carol and Dan also immediately recognized the differential area as incorrect and 

attempted to correct the differential area but could not immediately recall the correct 

element. Dan then tried to reason about the final area so they could correct their element. 

Dan: Do they have their         right? 

Carol: Um, no. 

Dan: It's gross, who the [heck] did that? 

Carol: A cylindrical area should be... so they should be taking a 

cylindrical area 

Dan: Of a side, so it should be a circumference, so      sounds 

right to me. I don't know where they're getting     . That's 

the part that disturbs me. 

Carol: I think it's their sine. 

Dan: Well that gave them an extra 2, so, but I mean, I know the 

circumference of a circle is whatever it is. 

The two students eventually restarted the calculation so that they could determine the 

correct differential area (Fig. 7.2b). After arriving at the correct answer, they sought to 

identify the source of the imaginary student’s mistake. Dan claimed the student (which he 

engenders as male) incorrectly used the differential area for the end cap because the 

imaginary student had not been paying attention to the directionality of the electric field. 

Dan: Right, so the way he is looking at it is he's taking them to be 

perpendicular [gestures E parallel to line charge] which 

would make the dot product 0. 

Interviewer: So what is he doing wrong? 

Dan: I think the student is looking at the end caps of the cylinder. 

Interviewer: Okay. 

Dan: When he is doing his    integral, which is incorrect if we 

have a line charge, and the electric field we assume is 

pointing straight up. 

Interviewer: So the            is, that's from the end cap? 

Dan: Yes. 
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Dan here did not attend to the incorrect use of two angles for cylindrical coordinates in 

the way that Elliot did and had little qualm claiming it to be the differential area for the 

end cap. 

When asked to explain where the terms of the correct differential element came from, 

Dan’s attempt to unroll the cylinder into a sheet shows he had a less robust understanding 

of cylindrical coordinates. In doing so, he labeled the radius as what would actually be 

half of the circumference (Fig. 7.3). Carol interjected and offered an alternative (and 

correct) explanation despite not being able to quickly recall the element earlier. 

Dan: So, our Gaussian surface, we want it to be perpendicular to 

the electric field. We want it to be perpendicular to this 

chunk, which we can unroll the cylinder= 

Carol: Oh, yeah. 

Dan: =and get a square, a square with some radius,  , because 

squares have radii, or rectangles sorry, has some radius,  . If 

we're still picturing this like a circle, this side goes from 0 to 

   and  , as we know, goes from o to  . 

Interviewer: So how does the s end up in there? 

Carol: Or you can do what I do, which is just treat this like a circle. 

So, you have your radius   and    all around and then you 

push it through the cylinder    

Dan:    all the way around and    

Carol: That's how I, that's how I think of it because you want just 

what is on the outside of the cylinder, which is like the 

edges of the circle all the way through. 

 

 

Figure 7.3.  Figure drawn by Carol and Dan in order to explain expression for the 

differential area. 
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Despite being unable to produce the element without restarting the problem, Carol’s 

explanation depicts a richer understanding of the underlying coordinate systems, showing 

that she would be able to reconstruct the elements to describe the given area. 

As Adam and Bart approach the problem, Adam suggested there is something wrong 

with the imaginary student’s work. He attributed this to the differential area, despite 

having arrived at a final answer he “would expect.” Following Adam’s lead, Bart 

identified the differential area as incorrect but claims the final area is what they should be 

getting. 

Adam: There is something I don't like about this. Look at, look at 

their limits, the area they've chosen. They're using cylin/, er, 

spherical coordinates for a cylindrical symmetry.... I don't 

think   is okay though. It looks, like that is kind of the answer 

I would expect. Okay, I'm going to write it out just to check it 

with myself. [starts recalculating Gauss’s Law] 

Bart: B: This is correct [points to     ] and this is wrong [  ]. 

Adam restarted the problem for himself and determined the correct differential area 

(Fig. 7.2c). After calculating the integrals, he then also determined the final area as 

incorrect. It isn’t until the end of the interview that Adam recognized the correct surface 

area as      and suggested the    came from another coordinate system. 

Adam: I don't, I don't think this is right, though. Shouldn't it be   , 

because you were going   to   . So they were off by a factor 

of two. That is a part of them using the wrong coordinate 

system. 

In contrast to the other three groups, Greg immediately determined the differential 

area to be correct after reading off of the final result times the area. 

Greg:            , so we have our     , so that's correct. 

Harold also tried to restart the problem, but drew two Gaussian surfaces and quickly 

became confused. GH eventually recognized the incorrect unit vector and engaged in a 
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discussion about whether the potential integral needed another negative sign, but at no 

point returned to the Gauss’s Law calculation. 

Overall, students were generally able to recognize that the differential area was 

inappropriate for the particular task. However, the focus of some groups on the final area 

and the claim of the differential area belonging to other surfaces show that students 

possessed an incomplete concept image of the differential area element in terms of 

coordinate geometry. 

 

7.1.2 Student use of differential areas for Gauss’s law during the spiral task 

During student interviews of the spiral task (see section 5.2 for task and 

methodology), two students in separate interviews attempted to derive the electric field 

due to a point charge. These students then intended to use the electric field to solve for 

the change in potential. Most students in the remaining interviews simply recalled 

    
 

        . As the focus of the interview was students’ construction of a differential 

length element while determining a change in electric potential (described previously in 

section 5.2), their determination of the electric field was not subject to scrutiny. Lenny 

and Nate however, could not recall the formula, and attempted to use Gauss’s law to 

rederive the expression. While a point charge has sufficient symmetry for this solution 

pathway, neither student in this case applied the right area element. 

Both students, being in the second semester of E&M, struggled with the use of 

Gauss’s law. After first being provided with the correct expression for the electric field, 

Lenny dismissed it as being the result of Coulomb’s law (an equally valid solution 

pathway) and instead began to employ Gauss’s law. 
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Lenny: I guess I would start by using Gauss’s law to find the 

electric field that we got I guess. 

Interviewer: Which I gave you. 

Lenny: That’s Coulomb’s Law. 

Interviewer: What do you mean? 

Lenny: Uh, [starts writing Gauss’s law]. 

Interviewer: Alright, go ahead then. 

As Lenny continued to work out the electric field, he made the requisite symmetry 

arguments for a Gaussian surface, until he has isolated the integral of the differential area 

(Fig. 7.4). At this point, he wrote a separate integral where he used rdθdr for his 

differential area, yielding     as his surface area. Without completely defining his 

Gaussian surface, Lenny arrived at the differential area for a circular sheet, rather than the 

spherical shell necessary to enclose the point charge with sufficient symmetry. He 

questioned the absence of the “ ” that would appear with the correct surface area, but 

reasoned it away, apparently associating it with the      coefficient term.  

Lenny:  Uh, so, I guess I got to draw it out [draws a dotted circle 

around a point charge]. So my Gaussian surface, I call that r, 

or big R, so it doesn’t get too confusing. E is constant as we 

go furt/ or, uh, it’s parallel to the area so that is just E da is 

equal to q enclosed, which q is just equal to big Q, over 

epsilon not. uh, yeah, so E is constant over the Gaussian 

surface, so it will just be E closed integral da, q over , where 

da is just equal to θ from 0 to 2π, big R from 0 to r, rdθdr. So 

it’d just be 2πr squared over 2, so it’ll just be     which we 

know is the area and I guess that’s just the same thing. Oh, am 

I forgetting the 4π? No that’s different, okay. 

Despite making the appropriate symmetry arguments and being able to recall a 

differential area, Lenny did not recall the correct differential area or seek to rectify his 

use of Gauss’s law with appropriate coordinate symmetry. Having arrived at what he 



147 

 

 

Figure 7.4.  Lenny’s incorrect use of Gauss’s law. Lenny uses symmetry but includes the 

incorrect surface area. 

 

considered the right area (“it’ll just be     which we know is the area”), he was satisfied 

with the difference from the correct provided formula.  

Nate, also enrolled in the second semester of E&M, at first did not recognize that he 

could use Gauss’s law for a point charge. After not being able to recall the electric field, 

the interviewer asked how he would go about getting the electric field if he couldn’t 

remember, then offered the idea of Gauss’s law. 

Interviewer: How would you go about it [solving for the electric field] if 

you couldn’t remember it? 

Nate: I would look it up in a book. 

Interviewer: Uh, so like Gauss’s law then. 

Nate: Hmm? 

Interviewer: Do you think you could use Gauss’s law? 

Nate: For this? 

Interviewer: For a point charge. 

Nate: For a single point charge? To my knowledge, the way I 

learned Gauss’s Law is that if you have an object that is 

symmetrical, you can draw a Gaussian surface around it and 

solve for that electric field at that Gaussian surface but I 

don’t think we ever did that for a point charge. We did it for 

a sphere. We did it for a cylinder, for a plane. 

Interviewer: What is a sphere but a really big point charge? 
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Nate: I, I see what you’re trying to say.  

In order to see how Nate would go about using Gauss’s Law, I gave him the equation 

after he spent some time trying to remember it himself, and only being able to recall 

pieces of the finally result which he attempted to attribute to the original expression for 

Gauss’s Law. Once I wrote out the flux integral part of the expression, he finished the 

equation. Without reasoning through any of the steps as Lenny did, he immediately wrote 

“    ” (Fig. 7.5). 

Nate: [Writes E2πr] um, so when we do q enclosed that’s when we 

have to, um. God it’s been a long time, um, so that like. I 

guess I’m confused when using a point charge because my 

instinct says it will also be, um,   times     over    because 

when we do the/ When we do the um/ When we integrate 

over/... I mean   enclosed is just going to be   times some 

area, so it would be, because its   . um/  

 [...] 

Interviewer: I: So what is your     here? 

Nate: N: It’s the point. 

Interviewer: I: The     is the point? 

Nate: N: But, well no it’s the Gaussian surface around the point, but 

 / So this is where I could use some assistance when talking 

about a point charge, when we’re doing the Gaussian surface 

around the point we can make   really, really, tiny to the 

point where it is just infinitesimal. 

 

 

Figure 7.5.  Nate’s incorrect use of Gauss’s law. Nate doesn’t make symmetry arguments, 

but instead just includes an incorrect surface area. 
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Nate struggled to define this aspect of Gauss’s law and at several instances attempted 

to use portions of partially remembered equations. This, followed by the forceful 

insertion of an incorrect surface area, which also lacked the proper dimensionality, shows 

Nate sufficiently struggled with the use of a fundamental E&M equation or the 

implementation of the appropriate coordinate system to this task. While Lenny explicitly 

attended to the differential area element, he did not appropriately attend to the underlying 

symmetry that went into the construction of their differential area, showing that even 

after two semesters of E&M students struggle to account for the underlying symmetry. 

 

7.1.3 Conclusions 

Findings from this section focus on students’ attention to differential areas within a 

solution employing Gauss’s law, a high symmetry technique that typically bypasses the 

writing of the differential area. In the first task, students were provided students with a 

mock Gauss’s law solution with an incorrect differential area. Within four interviews, 

students generally recognized that the differential area was incorrect. Only one group 

failed to recognize the mistake in the solution after accepting the final expression for area 

as correct, despite it being a factor of two off. When solving the spiral task, two students 

attempted solving for the electric field using Gauss’s law but ended up with incorrect 

areas. 

In order to verify the differential area was incorrect, each group restarted the problem 

from Gauss’s Law and rederived the differential element in order to determine the correct 

expression. Additionally, students in two pairs wrongly attributed the incorrect 

differential area as being part of another coordinate system or as the end cap of the 
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cylinder. Another student attempted to use the differential volume, a common mistake 

seen during course observations. In the spiral task, Lenny and Nate both incorporate areas 

that are inappropriate for describing the type of spherical Gaussian surface needed for a 

point charge. Instead, they introduced an area for the end cap of a cylinder and a 

circumference of a circle as stand-ins. These aspects of the interview findings suggest 

that not all students have a completely robust understanding of coordinate system 

geometry and how the geometry connects to the representation of the differential area 

element.  

However, when asked to explain where the terms in the correct differential area 

originated, several students were able to do so. Elliot attended to the ideas of arc length as 

he did in the previous schmerical task (section 5.1). Carol was able to describe the 

construction of a differential area using the differentials to define a circle via a radius and 

differential angle which was then added up over the length of the cylinder. Notably, she 

was now able to access the ideas of arc length, which the group was unable to attribute 

the unfamiliar schmerical system. 

Lastly, while students were generally able to recognize the incorrect differential area 

expression, they initially accepted      as the surface area for a cylindrical shell, 

focusing on the final area result as correct. Upon deciding the final area was correct, Greg 

accepted the incorrect differential area despite it being inappropriate for any coordinate 

system. Similarly, Adam and Bart did not recognize the final area was wrong until the 

end of the task, as it looked like what they “would expect.” For the spiral task, where 

students actually calculated Gauss’s law, Nate, who struggles to remember Gauss’s Law 

at all, did not attempt to construct a differential area and shifts from Gauss’s law to the 
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expression of electric field multiplied with his determined area. Distrusting the correct 

electric field expression obtained via Coulomb’s law, Lenny went through the application 

of Gauss’s law. During this analysis, he stated that the electric field is parallel with the 

area vectors and constant over his surface, but he does not connect these back to the 

actual coordinate system and thus doesn’t recognize the incorrect area element. These 

instances suggest that students do not necessarily recognize the final expressions for 

surface area despite the common use of Gauss’s-law-type problems. 

 

7.2 Generic differential area element task 

7.2.1 Research design and methodology 

In an effort to see if students could spontaneously construct the three differential area 

elements in both spherical and cylindrical coordinates, clinical think-aloud interviews 

were conducted at the end of the second semester of junior-level E&M at University A. 

These interviews were conducted with two pairs of students: Bart and Harold, and Dan 

and Victor. Given the limitation in the number of interviews conducted, the purpose of 

this section is to add to the current presentation of student understanding of construction 

of differential elements within specific coordinate geometry. 

Designed to be similar to the schmerical length construction task, students were first 

asked to construct a generic differential area vector for spherical coordinates. A correct 

response would include three components, one for each pairing of differential lengths, as 

derived in Appendix A. Once students were satisfied with their response, they were asked 

to construct a generic differential area vector for cylindrical coordinates. This sequence 

of questions on the generic differential area followed three other tasks; two of which were 
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the flux task (see section 7.3; Appendix B.3), and third task involving current density 

through a section of circular wire (not described in this work). Purposefully, the flux and 

current density tasks involved a different differential area vector from cylindrical 

coordinates so that they could be used as references for students.  

The protocol was designed to allow the interviewer to ask how this differential area 

compared to either task, should the student only construct one component. Should the 

students recognize the existence of multiple differential area vectors for a cylindrical 

coordinate system but not for spherical coordinates, then they could be asked to compare 

the two systems. 

The interviews were videotaped and transcripts were written to account for student 

dialogue, writing and drawing. As only two pairs of students were interviewed, this set of 

data was not collected to make broad claims about student understanding, but to pilot a 

possible instructional activity building conceptual understanding of differential area 

elements. This line of questioning represented an early attempt at eliciting and building 

student understanding of differential areas. As the results stand now, I use the data to 

contribute to the discussion in this chapter on students’ understanding of differential area 

elements in curvilinear coordinates. A more robust data collection is presented in section 

7.3, which in turn guided the actual development of instructional materials described in 

section 9.5 and Appendix D. 

 

7.2.2 Results and Discussion 

Victor immediately constructed the differential area for the surface of a spherical 

shell, which he drew in order to get a sense of the shape (Fig. 7.6). After drawing the 
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differential area on the shell, Victor next determined one contributing differential length 

component accounting for the changing theta component, then tried to reason about how 

the side lengths would change as it was moved to higher position on the sphere. Dan 

interrupted at this point, suggesting the addition of a   , which Victor dismissed as it is 

not a component of this coordinate system. Victor then added terms for the second 

differential length: an arc length of     to which he then added a      based on the 

geometry of the sphere. 

Victor: Assuming this is a small angle, which it is because it’s   . So 

this is    . Then this part could be at any height. 

Dan:      . 

Victor: Well we don’t have  ...then this bit would be     but then we 

need a      because this area could also be higher. 

After constructing the surface differential area, Victor immediately stated that others 

could be constructed based on combinations of different coordinate variations. While he 

initially listed off an area and direction that were incompatible, he was able to construct 

the component through attention to the geometry of the coordinate system. Dan 

mentioned that he was able to integrate to an area, showing a focus on getting to the final 

resulting area. He attempted to follow this reasoning and ended up rederiving the 

differential area for the outer shell.   

Victor: But you could also do, like the area, depending on you could pick 

any two of the varying variables. We could do like a      area if 

we needed to, which would point, uh, it’s be like a square in that 

direction, in the   -direction. 

Interviewer: What are you thinking Dan?  

Dan: That if I was to integrate that I’d get exactly what I’d want. You’d 

get an area...I agree with what you said, that we could alter it 

based on how things change... based on what variable we’re 

looking at there are different ways to rewrite things that give you 

like an area product, if like    was, if like we could fix   then you 

get the       . 
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At this point, Victor stepped in and constructed one of the remaining differential areas by 

drawing the coordinate changes on his diagram and reasoning through labeling each side 

of the constructed area (Fig. 7.6).  

Victor: I’m just working in the plane of    . We’d have some flat 

plane. This would be   , this would be    . That would be a 

legitimate area vector too, in the theta direction and if we move 

this up to some different theta location, this would get small with 

the     ...That would be a legitimate area vector too if we 

wanted to integrate over an area slicing into a sphere. 

Dan then attempted to construct the last differential area in the   -direction. He initially 

included a     , showing further difficulty with the construction process, as these types 

of areas are not ones he would have used in calculation or been directed to think about. 

Victor questioned the inclusion of the trigonometric function, at which point Dan 

assumed he needed a sine of the other angle. The difficulties centered around the      

term and its specific role in differential area construction in these interviews support 

previous findings where students were unsure of the origin of trigonometric functions 

when constructing differential length vectors (section 5.1).  

Victor attempted to help Dan by suggesting he needs to figure out what the sides of 

the differential area are, at which point Dan mentioned the motion of  . Knowing   was 

 

 

Figure 7.6. Dan’s and Victor’s construction of differential areas in both coordinate 

systems. 
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being kept constant, Victor then constructed the differential area by tracing out the sides 

corresponding to the changing variables. 

Victor: Why do you have a     ? 

Dan: Is it     ? 

Victor: Well, it was helping me to draw it, because it’d be like a little 

square, and this one would be in the   direction and the   

direction. Just have to figure out what these side length are. 

Dan: So   is going around. 

Victor: It’s theta that is varying. We’re keeping it at a constant   

[construct with    and    ]. The question is, does it need 

another angle. If I put this at a different  , does it look the 

same...where I had the other one before if I took it and moved it 

up to a different  , it would decrease in size because the angle 

goes up. 

While considering the construction of the term and how the differential area would 

look at different measurements of  , Victor reengaged with his earlier decision to include 

a      in    . Thus, while Victor proved fairly adept at geometric reasoning within the 

coordinate system, he wasn’t explicitly connecting the differential areas to the differential 

length components. As he sought to justify the inclusion of the trigonometric function 

beyond his assumed geometric conceptions, he connected the differential areas and 

volumes, recognizing that multiplying any area by the missing change yields the 

differential volume element. This solidified all the differential elements for the pair. 

Victor: I’m not sure. Maybe this doesn’t need a      either 

Dan: I think you’re right. If you were like at    , that is where sine 

is at its largest, then it gets smaller as you go you, and I agree 

with [   ] 

Victor: I mean, I guess you can kind of check because if you multiply 

[surface   ] by   , you get your volume element, and if you 

multiple [   ] by     which is the missing thing, you get the 

volume thing...  

The construction of terms in cylindrical coordinates was more successful for Dan and 

Victor as they were able to construct each differential area component without difficulty. 
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Victor was successful in constructing the multiple differential areas of spherical 

coordinates due to a specific attention to the geometry and changes in variables. 

However, despite his success, Victor still struggled with the inclusion of the sine 

function, until he was able to connect the area and volume elements. Dan was less adept 

at construction and struggled to construct either of the two unfamiliar components, 

suggesting that Victor’s recognition and ease with construction of the other two 

differential elements is not common among most students.  

Bart and Harold had significantly more difficulty being able to construct any 

differential areas in either coordinate system. When first asked to construct a differential 

area vector in spherical coordinates, each student simultaneously wrote a different 

incorrect element.  

Bart: [writes      ] 

Harold: That’s going to be, spherical,              

Bart: Spherical? 

Interviewer: Spherical. 

Harold: Yes, spherical. No, that’s cylindrical. 

Bart: Sorry. I forget. 

Harold: Unless I made a mistake. Spherical or cylindrical? 

Interviewer: Spherical. 

Bart: Okay. Let me try something. The area is     . So if I take 

the integral. This is correct. 

Harold: Oh. I did a volumetric sphere. 

After verifying that they should be doing spherical coordinates, Bart suggested his 

answer was correct because it would integrate to the correct area. Harold, accepting this, 

claimed his response was a volume element. They each simultaneously calculated an 

integral of Bart’s differential area element but didn’t get the correct area. In order to fix 

this, Bart added a    to his differential area, which still does not yield the desired     .  
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After Bart changed the   to   , and still failed to get the correct area, the interviewer 

asked them to construct a differential area vector in cylindrical coordinates, hoping that 

this would be an easier system for them to work in. Harold wrote a correct element, 

     , and Bart returned to an        deciding that now the final area needed to be 

    .  

Harold then incorrectly included an   in his differential area so that it would integrate 

to what he deemed the correct term. Notably, this shows an inattention to dimensionality 

of terms, as the expression was already in units of area. When then asked for the direction 

of their differential area, Bart initially suggested the    direction, then replaced that with 

an    to show that it depends on which surface of the cylinder is chosen. The “  ” would 

then be replaced with the unit vector for that surface. Notably, in his depiction,    is 

incorrectly depicted as radially outward (Fig. 7.7). The correct unit vector for a 

differential area on this surface is   , which is written but not attributed to any surface on 

the diagram.   

 

 

Figure 7.7. Attempts to depict cylindrical coordinates by Bart and Harold. 
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Interviewer: So what would the direction be then? 

Bart:  . 

Interviewer: Okay. Why  ? 

Bart: No, n,    . So when/ It depends. 

At this point Harold also constructs a cylindrical coordinate system with the angles   

and   (Fig. 7.7). Harold then articulated that he couldn’t decide between the    or    as the 

unit vector for his differential area. Due to time constraints and the difficulties 

encountered in both either coordinate systems, the pair was not asked to return to 

spherical coordinates. 

Compared to Dan and Victor, Bart and Harold struggled immensely and were unable 

to settle on one correct differential area. The pair spent most of each task tacking 

elements onto a differential area so that it yielded the final area upon integration. While 

they recognized the correct surface area of a sphere, they used the volume of the cylinder 

instead of either area. In order to arrive at this post-integration, Harold unknowingly 

altered his correct differential area into a differential volume element, failing to recognize 

the incorrect dimensionality of this expression. The group then struggled to determine the 

unit vector for the area, revealing some underlying misunderstandings about basic 

properties of cylindrical coordinates, notably Harold’s use of two angles to describe the 

coordinate system. Bart insisted that the area is sufficient for whichever direction is 

needed by including an   . This shows that even after two semesters of E&M, some 

students struggle with basic properties of coordinate system representation and 

connecting those properties to differential element construction. 
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7.3 Construction of differential areas in physics contexts 

Extending the investigations of student understanding of the construction of 

differential areas, two tasks were designed involving integration over a given area. The 

main purpose of constructing differentials in E&M is for use in integration to find 

physical quantities. Both tasks were adapted from standard problems in the widely used 

course text[14]. This examination allowed for identification of students’ conceptual 

understanding of differential areas in terms of students attention to geometric 

representation and aspects of the physical system. 

 

7.3.1 Research design and methodology 

In the first of the two tasks, students were given the expression for the magnitude of 

the magnetic field induced by a long straight current-carrying wire and asked the find the 

magnetic flux through a square loop (Fig. 7.8). The task as it was presented to students is 

included in Appendix, B.3. The varying magnetic field requires an integral expression for 

flux,            . This leads students to consider the differential area as a vector  

 

a)                     b)   

Figure 7.8.  Figures provided for the flux task. (a) Depiction of a square loop (shaded) of 

side length   at a distance   from a current-carrying wire. (b) Figure showing 

a rotated loop given to students that worked only in Cartesian coordinates. 
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quantity. Given the curling nature of the magnetic field, cylindrical coordinates are 

optimal, but Cartesian coordinates can be used if students rewrite the magnetic field with 

the appropriate variable. The magnetic field was purposefully written as a magnitude so 

that the unit vector,   , did not influence student choice of coordinate system. Students 

invoking a Cartesian differential element were asked how their answer would change if 

the square were rotated out of the board by some angle; the students were given a second 

figure to illustrate this (Fig 7.8b).  

In the second task, students were asked to construct an integral to solve for the 

electric field a distance   from a circular sheet of constant charge density,   (Fig. 7.9). 

The full task as it was presented to students is provided in Appendix, A5. The typically 

approach for this problem, given the distance between where the field is being measured 

and the charges, involves using Coulomb’s Law,                             , where 

   is a differential charge and          is a displacement vector from the location of    

to the electric field measurement. Since the charge is distributed over a circular sheet,    

can be expressed as the product of the surface charge density and a differential area 

representing the charged surface.  

 

 

Figure 7.9.  Figure provided for the charged sheet task. Depiction of a charged sheet 

(shaded), with front and rotated view. 
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These tasks were administered as parts of multi-task interviews to students in the 

second semester of junior-level E&M at two universities. Two pair interviews (student 

designations B&H and D&V) were conducted at University A, followed by six other 

individual interviews (J, K, L, M, N, and O) with a different set of tasks the subsequent 

year. Interviews at University B involved two pairs and one individual student (P&Q, 

R&S, and T). Students in pair interviews were only given the flux task. Individual 

interviews featured both of the described tasks, separated by a line integral task. 

Pseudonyms are provided for students corresponding to their identifying letter (i.e., Jake 

for J). 

As part of both interview questions, after completing the task students were asked to 

elaborate on their choices of differential areas in terms of how they was chosen or why 

they contained particular components. Interviews were videotaped and later transcribed. 

Transcriptions and video data were analyzed to seek commonalities in students’ treatment 

of differential areas, as well as related difficulties, using a concept image [38] framework 

from mathematics education. A student’s concept image is a multifaceted and dynamic 

construct, including any ideas, processes and figures the student associates with a topic. 

The particular aspect(s) called forth, referred to as the evoked concept image(s), depends 

on the task and context. Our analysis sought to identify evoked concept images of 

differential areas elicited during integration in E&M tasks. This categorizing of students’ 

treatment and invocation of the quantity provides insight into students’ use of differential 

area quantities as part of problem solving in class. 
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7.3.2 Results  

From students’ progression through the interviews, we identified several particular 

concept images of the differential area evoked across students’ integral construction. In 

approximately a third of interviews, students treated the differential area as a small 

quantity, which is a common treatment of differential quantities by physics 

students [49,56,81]. Students commonly treated the differential area as constructed of 

differential lengths, which was largely productive. Due to the focus of students’ attention, 

the specific nature of the concept image ranged from a product of differential lengths to 

an incorrect sum of differential lengths to the product of a constant length with a 

differential in one direction. Other representations of the differential area included the 

derivative of the expression for the given area and the full area itself. Ideas related to 

using the full area to construct dA were a hindrance to students in the absence of high 

symmetry. These five processes for constructing the differential area encapsulate all 

interviewed students’ choices for these two specific tasks. Additionally, several students’ 

evoked concept images varied over the course of the interview task, reflecting a 

multifaceted concept image. 

 

7.3.2.1 Small portion of area constructed from differential lengths 

Students commonly associated the differential area as a small quantity. However, due 

to the focus of students’ attention, the specific construction of terms ranged from a 

product of differential lengths to an incorrect sum of differential lengths to the product of 

a constant length with a differential in one direction. 
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7.3.2.1.1 Product of differential lengths 

Treatment of the differential area as a product of differential lengths was productive 

for students and most typically led to the correct expression. This entailed students 

recognizing a differential area on a particular surface as a product of two small changes 

in two given directions, respective to the needed area and the given coordinate system. 

Despite recognizing the curling magnetic field, students typically approached the first 

task with a Cartesian coordinate system, attending more to the square shape of the loop.  

Molly: Since it’s a square, Cartesian coordinates would just 

be the easiest to integrate over it, so that would just be 

like a little bit, like the differential area is just a little 

bit in the   and then a little bit in the  .  

Thus the two differentials here were a combination of a    and   , or    and   , 

depending on how students placed their Cartesian axes. Three other students, Kyle, 

Oliver, and Tyler, expressed similar reasoning with their choices of differentials, using 

either the idea of little changes in the necessary variables or referring to specific 

Cartesian axes. 

While the use of Cartesian coordinates are sufficient for solving the flux task and 

otherwise appropriate, cylindrical coordinates are more appropriate given the curling 

nature of the magnetic field, the direction of which is defined with   . Molly displayed no 

difficulty in solving the task in cylindrical coordinates as opposed to her earlier solution 

using Cartesian. However, when asked how their answer would change if the square were 

rotated out of their Cartesian plane, the three other interviewees responded that the 

differential area would now include a trigonometric function to account for the decrease 

in flux. Students in two of these cases indicated that the magnetic field would still be 
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directed perpendicular to the board, despite not being in the plane of the board, which is 

physically incorrect. 

Kyle: So if we do it like that...where the angle relative to the    
direction is     so it ends up being a, you get a dz where 

we only want the component in the   -direction, so that’s 

going to be *mumbles* the cosine...yeah, so what it would 

end up being is         , where    is just our 

magnitude, still in the    direction. 

Interviewer: Okay, so the magnetic field is still in the    direction when 

we’re rotated our plane out? 

Kyle: Yeah, the magnetic field should still be in that [  ] 
direction since it’s just induced by the wire. 

Oliver, while reasoning about this portion of the task, defined the magnetic field with 

the unit vector,   , and still insisted that the amount of flux through the rotated loop 

would be less.  

Oliver: So it adds a sine or cosine component because you’re 

changing the amount of field lines by like . 

 ... 

Oliver: Yeah, I would need the equation that relates B and I to do 

that. ...I mean, it’s a curl. I’m pretty sure it’s a curl, so if I is 

in the direction, I’m pretty sure it would be around the wire 

in the    direction.[rewrites given magnetic field with   ] 

 ... 

Interviewer: Yes, talk more about the    and does that change anything 

for you.  

Oliver: Does it change anything for me. 

Interviewer: It may not. That’s just the only way I can phrase it. 

Oliver: No, it really doesn’t. So it means that I’m thinking that/ So 

like this is what I mean by the  , B in the    equals. that is 

equal to the/ ...And so it’s I were to draw the magnetic field 

this would be curling around to go through this loop and 

when you change it, the amount of them would change. 

Interviewer: Okay, so you’re saying when you rotate, you’re still going 

to have that trig function there.  

Oliver: Yes, yeah, because it doesn’t change that. 
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Rather than thinking in terms of cylindrical coordinates or arguing that a rotation of 

the plane preserves the parallel nature of the magnetic field and area vector, these 

students continue to express their differential area in Cartesian components with the 

addition of the trigonometric function of the given angle.  

When solving the circular charged sheet task, where students more easily associated 

the task with polar coordinates, the product of differential length concept image was 

equally productive for students in defining a differential area. Because the differential 

area in polar coordinates is not exactly a simple square, students needed to include the 

necessary scaling factors.  

Molly: ...to create a differential area on this circle we have we’d move a 

little bit    and then we’d move a little   , which is, well, a 

little bit in the   -direction. Which is     because of the arc 

length formula. 

Only two other students were able to correctly include the radius in the expression for 

arc length. Kyle specifically wrote out the differential length for spherical coordinates, 

from which he’d chosen the two appropriate lengths, explaining    as “length times 

length” (Fig. 7.10). A fourth student recognized the need for two lengths but used the full 

radius of the circle for his arc length, which he treated as a constant during his integration 

(Fig. 7.11). Thus while he demonstrated an understanding of how to construct a 

differential area, he was unable to arrive at the appropriate expression. 

 

 

Figure 7.10. Kyle’s explanation for his choice of    in the charged sheet task, where he 

selects appropriate differential length elements from the generic length 

vector. 
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Figure 7.11.  Oliver’s solution for the charged sheet task, where he treats   in     as 

constant. 

 

7.3.2.1.2 Rectangle with constant height and differential width 

The last categorization, where students treated the differential area as a strip of 

height,  , and width,     is specific to the flux task. This is an appropriate solution as the 

magnetic field only changed in the direction of increasing distance from the wire. In two 

interviews, students reasoned about the physical symmetry and implicitly integrated in 

the direction parallel to the wire, producing an   in the equation. While Dan and Victor 

quickly asserted this solution, Lenny struggled with his solution, first attempting to define 

the current direction as the vector representing the magnetic field. After further analysis 

of the task he decides upon    , noting that the differential area has the proper 

dimensionality. 

Lenny:  …     in the   -direction…    being the length to integrate the 

field over… that   I’d assume to be this one   right here, which 

would make the area, but I wouldn’t feel like I’d have to 

integrate because the field is constant on that portion... If [ ] was 

the distance away, so that would be like    maybe. (Fig. 7.12) 

In effect, this method adds up the magnetic flux through rectangular strips of height   and 

width   . Students reasoning this way used the physical geometry to obtain the right 

solution but bypassed a choice of a coordinate system.  
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Figure 7.12.  Lenny’s second attempt on the flux task, where he reasons about only 

adding up the magnetic field in one direction. 

 

7.3.2.1.3 Sum of differential lengths 

Jake expressed dA as a sum of lengths rather than as a product for both tasks for 

reasons expressed in the charged sheet task:  

Jake: Actually no, it will be      because it’s a surface area so I’ll 

need two dimensions that my dθ is probably going to come in 

from my   . Because I should have a differential area shouldn’t 
I, and a differential area should be      [writes         ]. 

(Fig. 7.13) 

Jake’s can be interpreted as a symbolic forms error [47]. He clearly stated a need to 

include two dimensions for an area but instead of representing this as a product, he 

invoked an additive template, such as parts-of-a-whole. Similarly in the flux task, Jake 

represents his differential area as           , using an incorrect differential length.  

The representation of an area as a sum of lengths appears also in Lenny’s initial 

approach to the flux task, which involved attempting to skip integration by multiplying 

the field and the area of the shape. He also failed to account for the changing magnetic  

 

 

Figure 7.13.  Jake’s second attempt to express dq for the charged sheet task. To account 

for the need to integrate over “theta,” expressed “da” as the sum of two 

differential lengths. 

 



168 

 

field over the square, which he mentions earlier, and uses just the value of the magnetic 

field at the first side of the shape. Yet, rather than   , his depiction of the whole area is 

represented as   , corresponding to an addition of the two sides of the square rather than 

a multiplication (Fig. 7.14). 

Lenny: I guess         if that was the area.   would be   because that’s 

the distance away is equal to   . 

In Lenny’s solution, he skips the dot product and integration aspects to arrive at a 

final expression of the magnetic field times an area element. This is reminiscent of 

students’ treatment of Gauss’s law problems where the symmetry aspects can be reasoned 

away. Here, however, Lenny’s final area is incorrect. He then returned his attention to the 

s dependence on the field and decided upon the     expression above. 

 

7.3.2.2 Derivative of the area expression 

Students attempted to functionalize the given area and take a derivative to gain an 

expression for the differential area across three interviews. This is consistent with 

students’ treatment of the derivative as a machine[8] that acts on a function: students 

 

 

Figure 7.14.  Lenny’s initial solution for the flux task, where he expresses the area of the 

square as 2l. 
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interpret the   in    as a cue to differentiate the function represented by the second 

variable. For Jake and Tyler, the ensuing difficulty was which variable to take their 

derivative with respect to. Both decide to integrate with respect to   (Fig. 7.15), which 

neglected the integrand’s dependence on  . This caused Jake to switch back to his sum of 

differential lengths concept image.  

A pair of students employed this idea for the flux task. 

Percy: You still need…   something. I mean, what is your area? The 

area equals    so da equals…     … What we would do is 

say: “Oh look at this, what I have is: integral of some   . 

Well, what is the area of this? Oh, that's   ”… We would just 

recognize the fact that it's an integral of… an area element, so 

we take the area of the object and we'd do it easy. 

Here, Percy reasons about the differential area represented in their flux equation as just 

the derivative of the area in an attempt to justify his final answer as just the multiplication 

of the magnetic field with the area of the square. Neither student attends to the fact that 

the magnetic field is changing in one direction or would need to be constant to bypass the 

use of   . This particular reasoning speaks more to the treatment of    as something that 

gets replaced with the expression for area after integration rather than a geometrical 

object accounting for integration of a quantity in two different coordinate directions.   

 

 

Figure 7.15.  Jake’s first attempt to express dq for the charged sheet task. 
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7.3.2.3 The area of the region itself 

A third overall approach was to insert a functional form of the area for the whole 

region as   . This was often the result of inattention to differentials and/or students’ 

perceived need to plug in the area.  

Bart: The    is the area of the square…you want just the square loop. I 

mean, there is flux everywhere but you want just the square loop. 

This is   [gestures to summing of fields at each edge of the loop] 

and [  ] is   . (Fig. 7.16) 

Throughout the interview, Bart was persistent about plugging in the area, much in the 

way Percy was above. However for Bart, the area being    was subsumed into the 

integral, which then resulted in a multiplication of his (incorrect) magnetic field and the 

full area. This was not something on which these students sought consistency.  

Nate applied this reasoning to both tasks, replacing    with the perceived area of the 

given space.  

Nate:  ...but with   , when we’re talking about this, we’re talking about the 

area inside, so you’d think it’d be    but I’m never confident in my 

ability to figure out what da is...It makes sense to me that it would be l
2
 

Nate included these differentials in his integrals in an attempt to identify what 

quantities needed to be integrated over (Fig. 7.17). Nate’s explanation later in the 

interview of the flux task illustrated an understanding of the physical nature of    as a  

 

 

Figure 7.16.  Bart’s and Harold’s expressions of magnetic field and da for the flux task. 

Bart explicitly writes an incorrect “ ” and “  ” before taking the product 
of the terms for the purposes of integration.  
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Figure 7.17.  Nate’s solution for the flux task. He explains his choice of    as    and the 

inclusion of      due to the need to integrate over the given boundaries. 

 

“little chunk of area,” an idea that Nate failed to connect to his earlier representation or to 

his addition of differentials. Nate’s treatment of the differentials    and    is 

consistent with the differential as a nonphysical quantity, or just a variable of integration 

[8]. These conceptions of both    and differentials persisted into the charged sheet task, 

where Nate described the area of a circle as      , which would be multiplied by   to 

express the differential charge   . 

As depicted, students attempting to express the differential area with an equation for 

the area of the full region have additional trouble with other parts of the tasks. This type 

of solution appears on a similar order as students who are taking a derivative in order to 

arrive at the final area, but represents a higher level of student difficulty, as the 

differential aspect remains unused. 

 

7.3.3 Conclusions 

Analysis of student interviews about differential area in the context of typical E&M 

tasks allowed us to identify several evoked concept images and to gauge student 

understanding of differential quantities as they are used in typical E&M problem solving. 

As part of a larger integration task, the differential area was commonly treated as a small 

portion of area constructed from differential lengths, as the derivative of the given area, 

or as the given area itself. Notably, the particular solution method employed was 
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independent of coordinate system, suggesting students’ methods for determining 

differential areas are detached from students’ choice of coordinate systems.  

The most productive instantiation of students’ concept images was to express the 

differential area in terms of a product of differential lengths. This was especially 

productive for students working in polar coordinates, where they were not able to use 

aspects of the physical system to bypass defining a differential area. Other students 

possessed correct ideas pertaining to differential area but either had difficulty with the 

correct expression of individual differential lengths or displayed confusion with the 

overall symbolic template of the expression (e.g., added lengths).   

All students using the product of differential lengths concept image for the flux task 

expressed their area in Cartesian coordinates, despite the curling nature of the field. 

While this is a reasonable solution pathway, when asked how their response would 

change for the square being rotated out of the plane of the board, three students failed to 

recognize the magnetic field still remained entirely parallel to the area vector for the 

square, even as one student explicitly labeled the magnetic field with a cylindrical unit 

vector. This suggests that cylindrical coordinates are not as readily accessed by students, 

as they still show preference to a Cartesian system and incorrectly adjust their 

expressions because of that preference. This connects to work in both physics and 

mathematics education research where students show preference for Cartesian systems 

over polar ones  [10,44] and also have difficulty employing the various resources of the 

systems relating to unit vectors  [10,43].  

Students incorrectly expressing differential areas most commonly focused on the final 

area of the given region, whether attempting to take a derivative to account for the need 



173 

 

to integrate or by forcibly inserting a function for the full area into the integral. Emphasis 

on plugging in the area is most likely an artifact of generalizing common textbook 

problems that are highly symmetric, such as Gauss’s law, where they can “do it easy,” as 

Percy states, and neglect the dot product and vector nature of the   . At this point, they 

can simply express the integral as a product of the field and the area of a Gaussian 

surface. Lenny attempted to treat the flux task as a Gauss’s Law problem and ended up 

using an incorrect final area. While in very specific cases inserting a given area after 

integration or taking a derivative of the area to use in the integrand may produce a correct 

result (e.g., Jake’s derivative of area response for the charged sheet task, where 

symmetry eliminates the need to integrate over  ), these methods are not as universal as 

students perceive them to be. Students’ use of area in this way is another example of 

overuse of symmetry arguments in problems where symmetry is not present [12,32,89]. 

Results suggest that an explicit instructional focus on the construction of differential 

areas as the product of differential lengths in specific coordinate systems, even in high-

symmetry situations, may help dissuade students’ overemphasis on a “plugging in the 

area” approach. Preliminary versions of instructional materials were developed in the 

style of Tutorials in Introductory Physics [65] to build the understanding of differential 

areas in Cartesian, cylindrical, and spherical coordinates as a product of associated 

differential length components (see section 9.5 and Appendix D for details). 
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7.4 Summary of findings on student understanding of differential areas in non-

Cartesian coordinates 

This chapter presents findings from targeted research tasks evoking students’ 

conceptual understanding of differential area elements in non-Cartesian coordinate 

systems. Little prior research on student understanding in E&M has addressed these 

quantities [34,90]. Interview tasks were designed as part of a larger project to investigate 

the extent to which students understand the construction of the differential area element 

in terms of non-Cartesian coordinates. 

Findings from various tasks involving students reasoning about or constructing 

differential area elements show that students struggle connecting differential areas to the  

underlying geometry of a particular coordinate system. During the check solution task 

(7.1.1) some pairs incorrectly identified the nonsensical differential area,           , 

as belonging to spherical coordinates or another cylindrical surface. In other cases, such 

as the spiral task (7.1.2) or the generic differential area construction task (7.2), students 

struggled to construct an appropriate differential area. When constructing generic 

differential areas, students were still seen to have difficulty including or accounting for 

the trigonometric function in spherical coordinates, which verifies earlier difficulty in 

differential length construction (see section 5.1).  

Across multiple interviews and tasks, several students placed emphasis on expressing 

the final area rather than interpreting the geometry of a given coordinate system or 

physical scenario. In both the flux task and the charged sheet task (7.3), several students 

attempted to represent the differential area as a derivative or as the full surface area, 

rather than reasoning about the geometric motions within the targeted surface. This idea 
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echoes student responses in earlier tasks. In the check solution task, one group accepted 

the nonsensical differential area because they incorrectly acknowledged the final area, 

    , as correct for the curved side of a cylinder. In the generic differential area 

construction, Bart and Harold invoked incorrect surfaces areas in an attempt to construct 

differential areas. They added or subtracted terms from a given differential area based on 

whether integration of the term was giving the targeted result. 

This emphasis on the final area is most likely connected to the invocation of Gauss’s 

law, 

            
         

  
. 

This expression is taught early in E&M as a method to solve for the electric field due 

to a charge distribution requires a high degree of symmetry. Furthermore, due to the high 

symmetry, students can bypass the writing of the differential area in favor of replacing 

the integral with a product of the electric field and given surface area. Research has 

shown students often use this solution pathway in cases where the symmetry is 

inappropriate [12,24,32,33]. Students emphasis on the final area is likely a manifestation 

of a familiarity with this high-symmetry type of problem solving that, as shown by the 

findings in the last section, hampers students’ problem solving in tasks where the explicit 

writing of the differential area as part of the integrand is necessary (e.g., the flux task has 

a magnetic field which decreases over the width of the square loop, requiring integration 

to be carried out in this direction). This is consistent with the formation of a restricted 

concept image [38], where students have worked within the context of high symmetry for 

such a long period of time that they experience difficulty in contexts where such 

symmetry is absent. 
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In contrast, a number of students were able to invoke a product understanding to 

connect the differential area to differential length and volume quantities. This was 

productive in the flux and charged sheet tasks for students who constructed the 

differential area in terms of coordinate system geometry, as it allowed students to 

expediently carry out calculation. The product understanding was also productive for 

Victor and Dan, allowing them to more easily determine all three differential areas in 

spherical coordinates. Beyond this, the pair checked the correctness of these elements by 

multiplying each by the missing component to verify that it gave them the volume 

element.  

Following these findings, a tutorial [65] was developed to place more emphasis on the 

construction of differential areas as a product of differential lengths and foster further 

understanding of the construction of differential elements in terms of coordinate system 

geometry (Appendix D). This activity was specifically made as part of a sequence with a 

prior tutorial on differential length construction (Appendix C) and also includes the use 

of three-dimensional manipulatives to connect motions in three-dimensional space to the 

expressions for differential elements. 
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CHAPTER 8 

8 INCORPORATING SYMBOLIC FORMS IN CONCEPTUAL BLENDING 

TO INTERPRET STUDENT MATHEMATIZATION: CONSTRUCTING 

EXPRESSIONS FOR DIFFERENTIAL ELEMENTS  

IN VECTOR CALCULUS 

“My goal is simple. It is a complete understanding of the universe, 

why it is as it is and why it exists at all.” 

– Stephen Hawking 

 

Application of symbolic forms [47] and concept image [38] frameworks to students’ 

construction of differential length vectors in schmerical coordinates (see section 5.1, 

 [91,92]) provided two complementary analyses of students’ structural understanding of 

the expressions and conceptual understanding of the differential element. Findings from 

these analyses showed that students generally understood the structure of the differential 

length vector but not the expression of terms based on coordinate system geometry. 

In order to better describe the way in which students connected the structural 

representation and conceptual understanding, the conceptual blending framework [76] 

was applied. From this, a model was developed to described students construction and 

interpretation of equations. This incorporation of conceptual blending provides contextual 

understanding to a symbolic forms analysis, while the incorporation of the conceptual 

schema from symbolic forms provides an underlying structure previously absent from 

literature describing the blending of mathematics and physics [39,81,93] and further 

addresses the research question concerning the way in which students’ conceptual 

understanding and knowledge of symbolic expressions impact differential element 
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construction. This chapter outlines the model that connects these frameworks and the 

particular affordances of such a model in the analysis of students’ work with equations.  

This chapter is in preparation for submission for journal publication.  

 

8.1 Introduction  

One of the fundamental drives of physics education research has been in interpreting 

the way students use and understand the mathematics used in physics. There is great 

purpose in this venture as mathematics forms the underlying foundation for 

representation of physics content. We use mathematics to construct expressions that 

allow us to relay information, manipulate expressions to further advance this 

understanding, and interpret derivations to gain new insight into physical systems. From 

kinematic equations like         , to divergence of an electric field in electricity and 

magnetism (E&M), to Dirac notation and linear algebra in quantum mechanics, 

mathematics provide us fundamental language for physics.  

Researchers in physics education have previously described mathematics as the 

language of physics [29] and developed theoretical models to frame the ways in which 

mathematics and physics interact in problem solving [29–31]. A common feature of these 

diagrams is mathematical modeling or “mathematization,” in which a physical system is 

abstracted, often into a mathematical expression. 

The theoretical framework of symbolic forms was developed specifically to address 

how students construct and understand the mathematical underpinnings that provide the 

structure to equations [47]. Building off of a knowledge-in-pieces approach [72], 

symbolic forms account for what Sherin saw as students writing an equation from a 
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“sense of what they wanted to express” [47]. The purpose of identifying the underlying 

mathematical-based structures through which students understand equations speaks to the 

larger goal of how mathematics is used by students and ties to their understanding of 

mathematization in physics. Symbolic forms, however, were designed as acontextual 

constructs with explicit focus on the mathematical justifications for equations, and 

therefore were not intended to address students’ conceptual understanding of the 

associated physics. 

Other researchers have incorporated conceptual blending [76], a theoretical 

framework from linguistics that describes the connection and combination of elements 

from separate domains of knowledge (referred to as mental spaces) into a blended 

domain. Conceptual blending has served as a means to describe the ways in which 

mathematics and physics are woven together, both at the introductory [94,95] and upper 

levels [39,81]. Previous adaptations of conceptual blending to discuss the interaction of 

mathematics and physics have generally not included a generic space, which serves as an 

underlying structure for each of the two input domains and determines which pieces 

combine to form a new blended concept. 

Extending from the depth of the theoretical work and its applications in physics and 

mathematics education literature, the concept of an equation emerges as a statement of a 

physical-mathematical language where meaning is embedded (or modeled) in the way 

variables and procedures are embedded into specific forms. Much in the way that the 

rules of writing a sentence govern structure, punctuation, and clauses, and thus put forth a 

certain meaning, the way an equation is written conveys a very specific message of 

meaning and of how the quantities relate.  
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As such, we present a model for analysis of students’ construction and interpretation 

of equations by connecting students’ use of symbolic forms [47] with their physics 

conceptual understanding through the use of formal conceptual blending theory [76]. In 

this model, aspects of symbolic forms serve as the underlying structure for the blending 

of mathematics and physics, while the incorporation of symbolic forms brings conceptual 

understanding to an acontextual symbolic forms analysis. To fully explore this theoretical 

model, we use data from our research in upper-division E&M, where we asked students 

to construct a differential length vector for an unconventional spherical coordinate system 

(see section 5.1,  [91,92]). However, this model can be extended to analyze students’ 

connection of structural/mathematical understanding to any physics context. 

In this chapter, we first review the development of previous models for 

mathematization in physics to situate our work within the realm of physics education 

research on students understanding of mathematics. As a continuation of a review of 

relevant literature, we include detailed overviews of the symbolic forms and conceptual 

blending frameworks and discuss each of the instantiations of these frameworks within 

the physics and mathematics education research. We then introduce and critique previous 

work, which attempted to connect symbolic forms and conceptual blending theories [93].  

In section 8.3, we present the proposed model for students’ construction of equations. 

We argue that the combination of the aforementioned frameworks is complementary in 

that we can use the aspects of each framework to fill missing analytical aspects within the 

other. Extending this, we present the affordances of our model by further connecting 

various analytical pieces of each framework as a means to show the scope and reach of 

the model. Lastly, we summarize the model and discuss future work, specifically in line 
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with Sherin’s suggestions for extending symbolic forms literature to account for further 

physics contexts, as well as other kinds of mathematical representation.  

 

8.2 Review of relevant theoretical literature  

The following section presents an overview of the relevant theoretical lens for 

interpreting students’ use and understanding of mathematics in physics as background for 

the development of the theoretical model described in section 8.3. The first subsection 

describes the large-scale models that have been developed to describe student work at the 

mathematics-physics interface. Section 8.2.2 introduces the specific perspective of 

symbolic forms framework [47] as it has been used to describe students’ construction of 

equations as mathematical objects. Section 8.2.3 introduces the conceptual blending 

framework [38] as an additional means to describe the interaction between physics and 

mathematics. Lastly, we draw attention to previous work within the literature that has 

used a conceptual blending framework to describe students use of symbolic forms in 

physics. 

 

8.2.1 Review of models for students’ mathematization within physics 

The incorporation of mathematics in physics goes beyond calculation, as mathematics 

plays a role in reasoning about relationships between physical quantities or state of the 

system, as well as conveying these relationships with graphs or equations. Several 

physics education researchers have sought to describe and represent the way students 

incorporate mathematical concepts throughout physics (Fig. 8.1). Notably, these models 

involve a number of common elements, suggesting key areas of mathematics  
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a)  b)  c)  

Figure 8.1.  Models of mathematization. (a) Model from Redish and Kuo  [29]. (b) 

Model from Uhden and colleagues  [30]. (c) Model from Wilcox and 

colleagues  [31]. 

 

understanding necessary for physics. An early instantiation separated the mathematics 

and physics domains into two distinct spaces that students cycled between: the physical 

system and mathematical representation [29]. Within this framing, modeling appears as 

the action that moves students from the physical system into a mathematical 

representation space (e.g., setting up an integral). This representation is then processed 

within the mathematical domain (e.g., calculating an integral). Interpretation of this new 

representation brings one out of the physical system and back into the physics domain.  

Uhden and colleagues developed a more sophisticated representation that considers a 

blended space of mathematics and physics [30]. Each level in this portrayal of the 

mathematics-physics interface represents a degree of mathematical modeling, which has 

also been referred to as mathematization. The closer to the bottom of the vertical axis, the 

more grounded in the physical system. As students model the physical system by defining 

proportionalities, writing equations to connect variables, or using various laws, theorems, 

or physics relationships, the level of mathematization increases. Interpretation of these 

results corresponds to a lesser degree of mathematization.  

A third model of students’ use of mathematics resulted from work in upper-division 

E&M [31]. The ACER framework designed a more student-centered script in which the 
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arrows in the previous two diagrams are now where steps in problem solving occur. This 

framework designates spaces for the “activation of a tool” (tool referring to the choice of 

an equation), “construction of the [mathematical] model,” “execution of mathematics,” 

and “reflection on the results.” While each diagram represents students’ use of 

mathematics in a different way, they all include features to account for modeling, 

calculation, and interpretation.  

The idea that physics is a combination of these two spaces is not isolated to the 

physical-mathematical-model of Uhden and colleagues. Other researchers have used 

ideas related to conceptual blending [76] to depict the interaction of the physical world 

with conceptual understanding of mathematical operation (or “mathematical machinery”) 

within introductory physics [94,95]. This work has spilled over to the upper division, 

specifically in research into student understanding of the mathematics in E&M, where 

both the mathematics knowledge and physics knowledge required of students becomes 

more sophisticated. Use of mathematics at this level has led researchers to identify broad 

student difficulties related to interpretation of underlying physical symmetry, connecting 

mathematical calculation to physics ideas in terms of setting up representations and 

interpreting results, and recognizing the appropriate method of solution or “mathematical 

tool” [12]. The plethora of models suggests that identifying students’ interaction with 

mathematics in physics in non-trivial. However, the presence of common features 

(modeling, processing, interpretation) suggests these are several key aspects to student 

understanding and use of mathematics in physics. The work presented in this paper deals 

with the idea of modeling as a means of creating mathematical representation, 

specifically during the process of equation construction. We further use the analysis from 
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the construction of equations to describe students’ interpretation of equations as they read 

information out from these abstracted representations. 

 

8.2.2 Development and use of symbolic forms to address students’ understanding 

of physics equations in terms of mathematical structures 

Analysis using symbolic forms [47] provides a means to address student 

understanding of the mathematical representation used in equations. In this section, we 

provide an overview of symbolic forms and describe its use in the literature. Lastly, an 

overview of the use of symbolic forms within our work is provided to lay the groundwork 

for the presentation of the model. 

 

8.2.2.1 Overview of symbolic forms 

In an effort to explore the mathematical structures in equations students use to 

construct and interpret equations, Sherin [47] asked junior physics majors several 

introductory physics problems. Sherin found that rather than trying to derive an 

expression or manipulating known equations, students built or attempted to build an 

equation from a sense of what they wanted it to express. Motivated by this analysis, 

Sherin developed an analytical tool for interpreting symbolic forms to provide a critical 

lens for the investigation of students’ construction and sense-making of equations in 

terms of mathematical understanding.  

A symbolic form, in line with a knowledge-in-pieces model [72], is an element of a 

mathematical expression defined in a pairing of two parts. The main element of a 

symbolic form is the symbol template, the externalized structure of the equation. For 

example ( ) would be a template in which the students would place  
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terms/numbers/variables to add them. The particular associations underlying or 

motivating the template are what Sherin refers to as the conceptual schema. For 

, the associated schema is identified by Sherin as “amounts of a generic 

substance contributing to a whole.” Sherin identifies this symbolic form as parts-of-a-

whole. 

The conceptual schema comes from the idea that students learn to associate meanings 

with structures in equations. Thus the conceptual schemata are acontextual, meaning that 

they don’t rely on a particular physics context, but on an underlying mathematical 

understanding of how the equation is written. Parts-of-a-whole could be seen in a 

student’s writing of an expression for the total energy of a system in terms of kinetic and 

potential energy, 
 

 
       , or in an attempt to express the surface area for a cylinder 

of radius, r, and length, l, as a sum of the end caps and shell,          . While these 

equations contain drastically different variables and physical meanings, they share the 

symbolic structure of parts-of-a-whole. Sherin illustrates parts-of-a-whole through 

students’ construction of an equation around an incorrect idea of the coefficient of 

friction.  

Karl:  …the frictional force as having two components. One that goes to 

zero and the other one that’s constant. [47] (Fig. 8.2) 

 

 

Figure 8.2. Mike and Karl’s final equation depicting the invocations of the parts-of-a-

whole symbol template. Image reproduced from  [47]. 
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It is important to note here that symbolic forms can be used correctly even when 

students have incorrect conceptual ideas of the associated physics. In this example,  

students’ invoke parts-of-a-whole because it is consistent with their underlying idea that 

two quantities need to be added. 

Sherin identified the base-plus-change symbolic form in a one pair of students’ 

expression of a kinematics equation,        
 

 
   , despite the equation not having 

any physical meaning. 

Mark: ‘Cause we have initial velocity [circles   ] plus if you have an 

acceleration over a certain time [circles 
 

 
   ]. Yeah I think that is 

right. [47] 

As before, students’ conceptual schema is illustrated during the construction and 

connected explicitly to the associated structures in the base-plus-change template.  

It is important to note that parts-of-a-whole and base-plus-change both describe an 

identical mathematical operation: addition. While parts-of-a-whole describes addition of 

independent quantities, base plus change, , is a specific case where the first term is 

a fixed quantity augmented by a variable second term. While this may seem to be cued 

primarily by a physics understanding as seen in kinematics equations, it is also the form 

for the equation of a line (    ) and thus can be imagined to appear in many other 

physics equations, connected explicitly to graphical representations.  

Returning to the coefficient of friction example, Sherin describes the conceptual 

schema for the parts-of-a-whole template as “seen behind Karl’s statement that the 

coefficient of friction consists of two components” [47]. This further supports the idea 

that despite an incorrect physics understanding, students can show correct use of a 

symbolic form and that the symbolic forms are divorced from physics understanding. For 
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Sherin, the conceptual schemata are simple acontexual structures similar to diSessa’s 

phenomonological primitives (p-prims). P-prims are intuitive knowledge elements that 

aren’t learned but intrinsically held by individuals, such as the idea that larger objects are 

heavier [72]. While addition is certainly a learned mathematical skill, the idea of it is 

built up by years and years of association to the operation, so that students arguably 

develop an intrinsic sense of what it means to express two quantities contributing to a 

whole. In this sense, the conceptual schemata of symbolic forms can be thought of as the 

intuitive knowledge elements through which students intrinsically understand the written 

structures in an equation. 

Beyond this, it is important to note that equation construction on the whole involves 

the invocation of several symbolic forms, which when used together carry the associated 

meaning of the symbols. Students’ construction of an expression to describe the 

coefficient of friction invoked the prop- ( 
   

 
  , coefficient (  ), and no dependence 

([...]) symbolic forms [47] to express the full mathematical meaning students attached to 

the variables in the equation. Symbolic forms can thus be nested within each other in 

whatever manner is deemed necessary to convey the full meaning of the equation. In 

order to interpret or convey this meaning beyond reading the mathematical structures, we 

must bring in another piece, the conceptual understanding, which is the aim of section 

8.3.  

 

8.2.2.2 Previous application of symbolic forms in related literature 

Meredith and Marrongelle [48] adapted the conceptual schemata of symbolic forms to 

account for the features of electrostatics problems that cued integration among students. 
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They found students invoking the conceptual schema of the dependence form, a symbolic 

form that establishes the need for a particular variable that an expression “depends on.” 

Students invoked this conceptual schema when eliciting the reliance of an integral on a 

particular variable. Students invoked the parts-of-a-whole form when acknowledging the 

need to sum up multiple small charges along a charged rod. While this study does not 

identify invocation of the accompanying symbol templates for these schemata, the 

underlying ideas of parts-of-a-whole and dependence were revealed as aspects driving 

students choices to integrate.  

Attempting to expand symbolic forms to the realm of integration, the ideas of 

symbolic forms were additionally used to analyze calculus students’ ideas when making 

sense of integrals [50]. Jones identified variation in students’ conceptual understanding 

when interpreting the various structures associated with (mostly definite) integrals given 

as part of the tasks. This led to the creation of several distinct symbolic forms, some of 

which possessed the same template to distinguish between Riemann sum, area and 

perimeter, and function matching interpretations. Some of these forms were duplicated to 

account for an integral expression without limits on the integrand, while others had more 

varied templates to account for types of integration: area between two functions or 

integration over a physical shape. Notably, students’ exposed conceptual understandings 

often led to depictions graphical representations of the given functions and use of the 

depictions to explain the integration.  

The symbolic forms framework has been further extended to analysis of physical 

chemistry students’ use of partial derivatives in a thermodynamics context [78]. This 

work illustrated the ways in which students understood and applied symbolic forms 
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reasoning when working with common mathematical expressions in physical chemistry. 

In several cases students recalled specific processes, such as that of taking the total 

derivative, or concepts, such as      when   is constant. This showed the specific role 

of recall in mediating student construction of and reasoning about expressions when 

working with upper-division content, consistent with findings of analyses of student 

construction of differential vector elements (see section 5.1). 

 

8.2.2.3 Symbolic forms analysis of differential length vector construction 

As part of work looking at students’ understanding of mathematics and mathematical 

methods in upper-division physics, we identified symbolic forms appearing in students’ 

construction of differential length vectors for an unconventional spherical coordinate 

system we called “schmerical coordinates” (see section 5.1,  [91,92]). Differential length 

and area elements, the latter constructed as products of the former, appear in vector and 

scalar integration involving electric and magnetic fields. Due to the symmetry of physical 

situations, much of vector calculus in physics uses non-Cartesian coordinate systems, 

such as spherical and cylindrical coordinates. The development of schmerical coordinates 

allowed us to assess students’ underlying understanding in terms of arc lengths and 

differential changes without allowing them to explicitly recall the differential length 

vector for spherical coordinates.  

Pair interviews were conducted at two universities. Pair interviews facilitated more 

student-driven interaction with less input or influence from the interviewer. Interviews 

were videotaped and later transcribed for analysis.  
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Interviewed pairs were asked to construct a differential length vector in schmerical 

coordinates. Preliminary analysis (see section 5.1,  [92]) identified student’s concept 

images [38] associated with the differential length vector as a means to identify the 

specific ideas or properties that students’ associated with such elements. The concept 

image analysis is born from mathematics education research and is similar in many 

aspects to resources [42] or knowledge-in-pieces [72]. While students focused on several 

key aspects, such as a need for appropriate dimensions or for multiple components, other 

aspects were not employed by students (see section 5.1,  [91,92]). With further desire to 

understand the construction process and the terms with which students wrote their 

expressions, secondary analysis [91] involved identification of symbolic forms [47] by 

attending to the structures students expressed in equations and their understanding of that 

structure. We incorporated this analysis into the upper division to investigate students’ 

structural understanding of differential length vectors as they constructed a generic 

differential length vector for a non-Cartesian coordinate system. 

Our analysis identified several symbolic forms from the original literature (parts-of-a-

whole, coefficient, no-dependence), as well as new symbolic forms that emerged due to 

the increased sophistication of the mathematics in upper-division physics (differential, 

magnitude-direction) (see section 5.1.5,  [91]). With the concept image analysis in mind, 

we noticed that students’ inclusion of specific structures in their expressions sometimes 

resulted from differing conceptual ideas that were not accounted for in a strict symbolic 

forms analysis.  

For example, Carol and Dan often motivated the inclusion of a differential as a 

change in a particular quantity, without reference to size. 
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Carol: ...you have a change  in your    is going to be your   , it's your 

change in your  . 

Elliot and Frank, however, emphasized the infinitesimal aspect of the differential, often 

articulating it as a “little” amount of a given quantity.   

Here there are two differing ideas contributing to the same symbolic structure. 

Varying conceptual representations of a differential make sense, given that literature has 

identified several ways in which students use and understand differential 

quantities [25,28,49,51,52]. Our interpretation of symbolic forms as acontextual 

constructs does not account for these varying conceptual understandings that lead to 

students expression of terms in equations, only the recognition of the need for structures 

to express specific mathematical ideas, such as a vector being composed of distinct 

magnitude and direction terms. The why of writing the components this way is not 

addressed. If, indeed, symbolic forms accounted for contextual analysis it would then 

have to describe symbolic forms in a way that distinguishes variability between physics 

contexts, which would inevitably confound analysis and obscures the understanding of 

the underlying mathematical reasoning for symbol arrangement and representation. 

A more stark depiction of how varying conceptual understandings can motivate the 

same symbolic structure can be seen when looking at students’ reasoning about the 

inclusion of the scaling factors. Given the curvature of non-Cartesian coordinate systems, 

the differential length components in the angular directions are arc lengths. For spherical 

coordinates this yields     for the   -direction and         for the   -direction. As 

students constructed differential length vectors, one pair of students recognized the nature 

of the component as an arc length using geometrical reasoning, while others often only 
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reasoned about the inclusion of the radius terms as necessary to give the appropriate 

dimensions.  

Adam: This doesn't have any units of length, so it needs to have some 

  term. (Fig. 8.3) 

Here, Adam recognizes that the differential angle component doesn’t have the units of 

length and thus fills the blank space in front of    with an  . 

Others still, engaged in a third line of reasoning, recognized that the coefficient box 

needed to be filled; but as the groups lacked the requisite knowledge to derive the terms 

via conceptual understanding, these students used a process of recall to a more familiar 

spherical coordinate system and mapped quantities to schmerical coordinates. 

Bart:  so now we have just to compare so we have   it is  ,   is  , 

  is   

Students in each of these groups recognized that an extra term was needed in their 

expressions. We identify their treatment of this space before the differential angle terms 

as coefficient, in line with Sherin’s form, (  ). The associated conceptual schema 

describes the coefficient form as a factor or constant multiplied on the left of an 

expression that attenuates the value of the quantities. In the case of Sherin’s coefficient of 

friction task, the constant,  , was added “almost as an afterthought” [47]. In our case, 

students reasoning geometrically can easily see how increasing the radius would 

attenuate the value of the arc length, while those using dimensionality express the 

inclusion of   as just a factor that contributes needed units to the term without explicitly 

 

 

Figure 8.3.  Adam’s inclusion of “M” based on dimensional reasoning. 
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accessing the underlying idea. Students using recall display little underlying conceptual 

reasoning, only arguing that some term needs to fill the spot because it needs to 

bearresemblance to an earlier problem. While each of these cases invoke the coefficient 

symbolic form, the particular reasoning for the invocation is distinct and not addressed 

with attention to the underlying mathematical schema.  

Recall, specifically, presents an interesting mechanism for the invocation of symbolic 

forms, as it sidesteps attention to the underlying conceptual schema. Yet previous 

literature has shown that recall of specific ideas is relevant to equation construction at the 

upper-level [78]. Utilizing a conceptual blending framework [76], we later address the 

role of recall as it is connected to the students’ construction of expressions or equations. 

 

8.2.3 Connection of mathematics and physics through Conceptual Blending 

analyses 

As a means to address the integration and networking of conceptual ideas with 

students’ understanding of the symbolic structures in an equation, we draw on the theory 

of conceptual blending [76]. 

8.2.3.1 Overview of conceptual blending 

Conceptual blending originated from the study of linguistics as a way to discuss the 

interaction of form and meaning in the development of language and human 

understanding. At its most basic, a conceptual blend describes the compression of ideas 

from two distinct mental spaces, often containing information connected to one’s 

previous experiences. The result is a blended space where new meaning/understanding 

emerges. 
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One of the more accessible examples involves two rival CEOs in a business 

competition: 

We say that one CEO landed a blow but the other recovered, one of them 

tripped and the other took advantage, one of them knocked the other out 

cold. [76] 

 

This example represents a compression of two input spaces: the business space, which 

contains the CEOs and market strategies; and the boxing space, which contains two 

competitors engaging in fisticuffs. Each input space represents a collection of individual 

ideas that do not inherently belong to one narrative. It isn’t until we connect a CEO to a 

boxer or a blow to an effective business strategy within the blended space that we can 

make sense of “one knocked the other out cold,” as the CEOs are not engaged in actual 

physical combat or being rendered unconscious by shifts in the market.   

The typical figure presented to illustrate blending shows the compression of these 

spaces into the blend, as well as a generic space (Fig. 8.4). The generic space is a fourth 

space used in conceptual blending to provide the underlying structure to the two input 

spaces, identifying the commonalities within each space and allowing one to see which 

element in each space is being mapped to an element in a second space. This often drives 

blending as an active process of compression of elements into the emergent blended 

space (solid line). Using this representation, we can develop a conceptual blending 

diagram for the boxers/CEO blend (Fig. 8.4). Here we see the connections laid out as the 

conception of boxing CEOs emerges as an amalgamation of the two different spaces.  

The boxing CEOs example represents a specific type of blending network identified 

as a single-scope blend. In such a blend, the frame of one space (boxing) provides the  
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Figure 8.4.  Basic diagrams depicting conceptual blending. (a) Generic model of a 

conceptual blend. Image reproduced from  [76]. (b) Model for the boxing 

CEO blend. Adapted from  [76]. 

 

organization of the blend, bringing the two CEOs into spatial and temporal proximity. 

The boxing input space is mapped entirely onto the business frame to provide a lens of 

physical combat onto business adversaries. As such, single scope blending provides the 

prototypical network for most conventional metaphors [76]. 

The other commonly cited type of network is identified as a double-scope blend. In 

this type of blend, the organizing frame of the blended space is integrated from both 

spaces. Drawing on conceptual blending literature [76], when one describes your foolish 

investments as “digging your own grave,” there is a conceptual blend of grave digging 

and foolish actions. While the grave digging provides most of the framing, presenting 

you as the grave digger and your actions as the “che che” of a shovel sinking into the 

earth, the causality is projected from the foolish action space, since the completion of 

one’s grave plot does not immediately imply death within the space of grave digging. Yet 

the implication is emergent in the blended space, as the causality of foolish action leads 
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to failure is brought into the blend. Whereas in a single-scope blend one input space 

contributes the entirety of the organizing frame, in a double-scope blend the other input 

space provides more beyond the elements it contains. Double-scope blends incorporate 

aspects of structure as well, such as causation, and time- and space-compressions as 

well [76]. 

In some cases, with either conceptual blending network, backward projection can 

occur, in which the blended space provides guiding information back to an initial input 

space. For example, the blending of mathematics and physics ideas may provide insight 

into the meaning of a particular mathematics operation or physics concept [39]. While 

reasoning about the curl of a given field, a student had difficulty connecting the symbolic 

interpretation of Maxwell-Ampère’s law to the graphical representation of the field. 

Bollen and colleagues [39] describe that a fluent calculation allowed the student to 

reinterpret the curl (how much the field rotates) at a given location without needing 

further intervention.  

This makes sense, if the changing electric field vanishes, the curl of the 

magnetic field should vanish as well. However, the magnetic field itself is 

non-zero. [...] the drawing confused me at first, but now I can see that a 

paddle wheel would not spin here. [39] 

In this case, the students’ calculation and subsequent interpretation of the equation leads 

them to reevaluate the nature of the physical system and arrive at the correct expression. 

The student then recognizes the curl is 0, by invoking the imagery of a paddle wheel 

spinning in the field (a common visual test used for quickly determining curl at a point). 

The backward projection is the use of the blended mathematics-physics space to make 

sense of one of the input spaces, in this case the physics input space. 
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8.2.3.2 Previous application of conceptual blending in related literature 

Given the tilt of conceptual blending toward providing a lens for understanding how 

ideas are connected and combined in the learning process, conceptual blending has been 

specifically adapted to physics education research to explain how students connect 

mathematics and physics [39,81,93–95], and to explain the interplay of various physics 

principles in terms of wave mechanics  [5] and energy [96]. 

At the introductory level, Bing and Redish [94] have adapted the language of 

conceptual blending to discuss the ways in which students combine mathematical and 

physics knowledge using two examples of air drag and kinematics. In these examples, the 

two input spaces are defined as “mathematical machinery” and “physics world.” An 

example of a blend here takes “positive and negative quantities” as mathematical 

machinery and maps it with “up and down directions” to arrive at a typically defined one-

dimensional coordinate system with “+” meaning up. In the single-scope example, 

students map a mathematical template for equating two fractions onto the numeric values 

of a given velocity and distance, without regard to the physical meaning or units of the 

quantities (Fig. 8.5). Since students focus on the mathematical process without attention 

to units, Bing and Redish identified this as a single-scope blend. Furthermore, the 

researchers distinguish this from double-scope blending, in which students use the signs 

as algebraic rules that encode the physical direction of the forces. 

Researchers have adapted conceptual blending to upper-division physics in order to 

explain how students connected concepts in electricity and magnetism to the 

mathematical ideas of integration [81] and vector differential operators [39]. The 

blending at this level takes a similar form to the work at the introductory level, separating 
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Figure 8.5. Math-physics blending diagram from Bing & Redish  [94]. 

 

out three spaces as “math notation space,” “symbolic space,” and “physics space” (Fig. 

8.6). Across the conceptual blends at this level, the physics space and symbolic space 

remain uniform lists of quantities (electric field, charge density, etc., for the physics 

space) or equations (e.g.,          in symbolic space) [39]. The blended spaces, 

then, are dictated by changes in the mathematics notation space, or the ways in which 

students understand or express concepts of integration, differentials, or divergence of a 

vector field. By separating out various realms that function together to establish a 

students’ conceptual understanding, the results of this work establish several cases where 

students’ conceptual understanding of an equation or mathematical idea leads to an 

incorrect response.  

Wittmann adapted conceptual blending to explain the origin and intricacy of students’ 

emergent conceptualizations of wave pulses with intuitive ideas related to throwing a ball 
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Figure 8.6.  Math-physics blending diagrams from Hu & Rebello [81] and Bollen and 

colleagues [39], respectively. 

 

 (Fig. 8.7) [5]. Depending on the aspect of the physical system that students attend to, he 

identified a “wave-ball blend,” where a faster flick corresponds to faster movement in the 

way a harder throw means a faster ball, and a “beaded-string blend,” where the nearest-

neighbor interactions are responsible for pulse speed. The blends here are depicted with 

concise compressions by connecting elements directly between input spaces and then 

subsequently to an element representing the blend. This representation is similar to that in 

work depicting integration of location and substance metaphors for energy into a coherent 

picture of “absorbing energy makes things go up” (Fig. 8.8) [96]. 

 

 

Figure 8.7. Wave-ball blending diagram from Wittmann  [5]. 
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Figure 8.8. Energy-stuff blending diagram from Dreyfus and colleagues [96]. 

 

It is notable that none of the examples presented here make use of the generic space 

within conceptual blending literature. For the latter two examples, this space is arguably 

tacit and redundant (as in the boxing example): the compressions of the two input spaces 

are concise in that elements that share analogous aspects in other input spaces are 

explicitly connected by a dotted line (representing a compression in the original blending 

literature [76]). In the examples connecting mathematics realms to physics realms, the 

input spaces represent three distinct spaces from which students draw knowledge, without 

structure or connection among the input spaces (Fig. 8.6). As such, the active nature of a 

students’ blending process is obfuscated. We argue that the generic space, or depiction of 

compression, is necessary to the invocation of blending, especially in cases for which the 

blending is not so clear cut and students’ combination of ideas is unclear from a 

conceptual standpoint, in order to highlight underlying ideas that drive the compression 

of two elements.  
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8.2.4 Previous attempts to argue symbolic forms as elements of a conceptual blend  

Recognizing the role of symbolic forms in the constructing of equations within 

physics, Kuo and colleagues framed symbolic forms as a conceptual blend of the symbol 

template and conceptual schema [93]. They addressed students’ qualitative reasoning or 

“processing” of equations by presenting two contrasting case studies in which students 

interpret the kinematics equation (       ). Here,   is a function of time,  . 

Additionally,    is the velocity of an object at    , and represents an acceleration, the 

rate at which a velocity changes in a given time. While one student reasons formulaically, 

the other is said to engage in a blended process of mathematics and physics as they 

interpret the mathematical structure of the equation in terms of the physical situation.  

The authors then discuss students’ reading or failure to read out a base+change 

symbol template, , from the given equation, and connect this to students’ 

responses to the second prompt. 

Pat:  Because I mean, if you look at it from the unit side, it’s clear 

that acceleration times time is a velocity, but it might be easier 

if you think about, you start from an initial velocity and then the 

acceleration for a certain period of time increases or decreases 

that velocity.  [93] 

Pat’s attention to the “  ” component as changing the velocity is the key aspect of the 

reasoning that evokes the base+change formalism.  

The authors identify this as conceptual blending of the symbol template and 

conceptual schema of the base+change symbolic form. However, symbolic forms are 

acontextual: ideas of velocity and acceleration are not included in the definition of base + 

change. A base+change symbolic form only accounts for the summation of terms in 

which “one is the base value; the other is a change to that base” [47]. It is only through an 
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understanding of physics principles that we recognize that acceleration is related to a 

change in velocity, which shares the same underlying conceptual schema as the  

template.  

Whereas in introductory physics, a symbolic form’s conceptual schema and students’ 

conceptual understanding are closely related, the conceptual schema is not the content 

idea itself, but the underlying mathematical essence of the idea. The parts-of-a-whole 

template appears in equations when there is a need to add aspects of a substance together. 

As an argument in semantics, this does not stipulate why such quantities need to be 

added. Kuo and colleagues present the conceptual schemata of parts-of-a-whole with an 

example of how guests at a wedding belong to multiple groups: close relatives, close 

friends, business contacts, and others [93]. The idea that wedding guests can be split into 

various groups that can be summed to give the guest list is a property of the wedding in 

the same way vectors can be represented as a sum of components. In both cases, the 

conceptual schema appears buried within the property of the target quantity, but is 

defined by neither, as “substances contributing to a whole” maintains it acontextual 

nature so it may be applied across multiple physical laws. The representation of vector 

quantities using equations, while guest lists for weddings are often devoid of 

mathematical symbology, is related to the mental integration of the properties of vector 

quantities with the appropriate mathematical template. This becomes the essence of what 

has driven the theoretical lens that we later describe.  

Notably, while the work speaks of symbolic forms as an act of conceptual blending, 

there is very little attention to the actual blending process or the associated formalism, as 

this is not the focus of their work. As such, an underlying structure to the blend is not 
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addressed. Blending is adopted as a broader process within this model, leaving room for 

deeper interpretation and further efforts connecting students’ conceptual understanding to 

symbolic forms in general.  

In the next section, we present an argument as to why symbolic forms is not a full 

blend in and of itself. We address the missing analytical aspects in previous literature, 

such as the underlying generic space, and provide theoretical structure for how blending 

occurs when constructing equations. In particular, we argue that students’ interpretation 

of equations, such as in the task presented by Kuo and colleagues, is actually an act of 

backward projection rather than of forward blending.  

 

8.3 Blending forms: Structuring students’ use of symbolic forms as a conceptual 

blend  

In the same way conceptual blending was used to attach meaning to form in the 

development of language, our goal for analysis of differential length vector construction 

has been to connect conceptual meaning (understanding) to symbolic forms as students 

develop equations. The writing of an equation in physics serves as the creation of a 

mathematical representation of the relationships between measurable or quantifiable 

entities. As such, there is need of an understanding of the physical system or variables, 

and of the mathematical representations. In analysis of student work, these mathematical 

relationships appear as symbolic forms.  

While a strict symbolic forms analysis reveals students’ structural understanding and 

associations related to the mathematics context, it does little to draw out or assess the 

students’ conceptual understanding that dictates the need for the specific form. That is, 
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the content basis for choices made as to the symbolic arrangement of expressions is 

neglected within the formal theory. As discussed previously, the literature utilizing 

symbolic forms often bypasses this by equating the student’s the mathematical 

understanding of the expression with the understanding of the physics content, such as 

the ideas of velocity and acceleration describing the base+change symbolic form in the 

previous section.  

This model proposes the two aspects of symbolic forms as spaces within a conceptual 

blend. This combination gives a focus on content knowledge to extend symbolic forms, 

in a way that students’ varied conceptual understanding can be tied to explicit 

representations in their equations. This allows us to look at the physics justification for 

the representation of terms, which is irrelevant to the structural focus of a symbolic forms 

approach. 

Furthermore, the generic space that structures the blending of elements within the 

input spaces has typically been absent in previous analyses of students blending of 

mathematics and physics. The incorporation of symbolic forms establishes this 

underlying structure for the blending of mathematics and physics in terms of constructing 

and interpreting equations.  

We present this model in the context of earlier work investigating students 

construction of differential vector elements in upper-division E&M (see section 5.1, 

 [91,92]). Upper-division physics provides several boons in regard to parsing students’ 

conceptual understanding and expression of equations. By the time a student has entered 

upper-division physics, they have encountered and used symbols for addition, notation 

for vectors, and calculated numerous integrals and derivatives in both mathematics and 
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physics courses. Therefore, we expect the symbol templates used during construction are 

often fairly ingrained in what we could call a students’ conceptual toolbox. Thus, we can 

think of this process as a blending of these template understandings with physics 

understanding rather than a spontaneous creative process. 

In this section, we present the model of equation construction by interpreting 

symbolic forms in terms of conceptual blending. We further show the affordances of this 

model in terms of other analyses, both from our own work and in previous literature. 

Here, we further elucidate the importance of the generic space in conceptual blending in 

terms of accounting for variation in conceptual understanding. We also show how such a 

model can account for how variations in representation can account for the same 

conceptual information. Next, discussion focuses on the role of recall and backward 

projection in construction in terms of such a model with heavy focus on conceptual 

understanding. Lastly we elaborate on the utility of this particular model in interpreting 

students’ errors while constructing equations as belonging to either structural or 

conceptual understanding.  

  

8.3.1 Proposal of the model of conceptual blending and symbolic forms 

Armed with some level of conceptual understanding, students can condense their 

understanding of a physical situation into an equation, choosing from various symbolic 

representations, such as choosing to add when it is dictated by the relationship between 

physical quantities. Additionally, keeping symbolic forms in mind to account for 

mathematical understanding, two large input spaces appear. One of these spaces includes 

a selection of the mathematical representations, which we identify as the symbol template 
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piece of Sherin’s symbolic forms. The remaining input space contains the sum of 

students’ conceptual understanding regarding a specific topic, including associated 

variable representations.
†
 As students combine aspects of these input spaces, the equation 

is constructed: a sentence in a physics-mathematics language, given form by the 

understanding of mathematical relationships but meaning because of the physics 

conceptual understanding. This leads to a final representation or emergence of an 

equation within the blended space. 

Further still, the conceptual schema of symbolic forms, which describes the 

justification for the mathematical structures of an equation, serves as the underlying 

generic space in a conceptual blending framing of students’ construction of equations. As 

such, the conceptual schema is preserved as the underlying mathematical schema of a 

template but now also appears as the underlying understanding of students’ ideas. With 

the conceptual schema appearing as the underlying understanding, it drives the blend of 

two input spaces. We discuss the deeper role of the generic space in the next section. 

By sufficiently mapping symbolic forms and conceptual understanding onto 

conceptual blending, we can create a blanket blending diagram that can later be used to 

parse students’ construction of equations (Fig. 8.9). Blending of this sort, involving the 

connection of physics and mathematics ideas, can take either a single- or double-scope 

form. The distinctions are discussed by Bing and Redish [94], who present two cases  

                                                 
†
 This allows a smoother depiction of physics ideas and equation construction and 

detracts little from the construction process as most students who, at this level, are now 

more expert-like physicists and have much familiarity with treating a concept and the 

variable used to represent it as one in the same. 
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Figure 8.9. Diagram of conceptual blending for the modeling equation construction, 

 

discussed in a previous section, one in which the mathematics structures the physics and 

another where mathematical and physical statements interact (e.g., +/- signs behave given 

algebraic rules but also convey physical meaning). Interpreting this model into work with 

symbolic forms means in some cases the conceptual understanding may entirely drive the 

construction of an equation (single-scope), while in others the external template may 

have more emphasis on guiding students conceptual physics ideas (double-scope).  

As an example of how students blend conceptual information with symbolic 

representation, consider a pair of students, Eliot and Frank, as they constructed a 

differential length vector for schmerical coordinates. 

Frank: Yeah, so like there,   , there are three different   's. There is 

   with respect to  ,    with respect to  , and    with respect 

to [ ] 

 [construct each component individually] 

Elliot: You sum them, so it is those added together [Fig. 8.10] 

Looking at the conceptual ideas here, there is focus on the component nature of a 

vector; specifically, these two students focus on the idea that a differential length vector  
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Figure 8.10.  Blending of symbol template and conceptual understanding for Elliot and 

Frank 

 

has three components for each of the three directions of motion. The idea of three 

components is a property belonging to the essence of a differential length vector, which 

students understand as three components (or parts) being summed to define the 

differential length vector. Likewise students associate each component as being taken 

“with respect to” a given variable direction, which is expressed in the final magnitude-

direction pairing of a vector. Elliot and Frank articulate the “with respect to” later as they 

specifically express things like “now you’re going to have a length component in the 

beta-hat direction.” With a symbolic forms perspective, observations of students’ written 

work and discussion of the expression reveal two main structures: parts-of-a-whole [47] 

to account for students’ addition of the multiple components and the newly defined 

magnitude-direction symbolic form to account for the specific instantiation of the vector 

notation (see section 5.1.5,  [91]). 

We argue that these specific combinations of students’ conceptual knowledge and 

symbolic representation can be treated as a conceptual blend of the two understandings as 
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it results in the construction of complete or partial expressions, which only have meaning 

when understood through both of the initial input spaces.  

The generic space then consists of the conceptual schema of symbolic forms. In the 

symbolic forms literature, behind the template [ ] is this conceptual schema of 

amounts of a substance contribute to a whole. Of course we want to remember here that 

the conceptual schemata of symbolic forms are the underlying mathematical 

understandings of those external structures. Bringing in the conceptual understanding 

side of this, we can also see that essence behind the understanding of the vector 

component property of a differential length vector. This symbol template and the 

conceptual understanding of three-dimensional vectors are then compressed in a 

conceptual blend into the final result of the equation, which depicts the summation of 

individual components of the differential length vector. Put another way, combining the 

knowledge that a vector in three dimensions can be represented as three magnitude-

direction pairings pursuant to the coordinate system (in schmerical coordinates these 

being   ,   , and   ) with the understanding of the template for addition of substances that 

contribute to a whole results in an final equation that is the sum of vector components. 

The final equation is a product of the blend. Similar to the earlier statement “the CEO 

knocked out his competition,” which only makes sense in a space where business and 

boxing are blended, an equation only has interpretable meaning when there are symbolic 

and contextual spaces from which to draw information.  

While the previous example depicts Elliot and Frank’s broader characterizations of 

the differential length vector, this model for conceptual blending can be mapped onto 
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students’ processes of construction, connecting the pieces of the template to the physical 

reasoning and discussion as the template is filled out.  

Carol and Dan begin their interview by calling forth the need to have the three unit 

vectors of each component, leaving space between each to fill in the magnitudes. 

Carol: So we're going to have, um, we're going to have [  ], [  ], 
and some   . That’s what we usually do and then they each 

need to be a length (boxes each component with hands). 

You need a length vector…This is, there is going to be a 

plus here. 

Dan: Dan: (writes   with the   ) 

Carol: Carol: Okay, yup, so some   in the   . Isn't this   ? 

Dan: Dan: Yeah, because it is   , yup. 

Carol: Carol: Right. So you have a change  in your    is going to 

be your   , it's your change in your  . 

While Carol and Dan do not elaborate on the specific underlying reasoning as they 

hybridize the parts-of-a-whole and magnitude-direction symbolic forms, the statement 

“that’s what we usually do” suggests a level of recall moderating the construction. 

Notably, invoking forms together, rather than each independently, is not unexpected for 

upper-division students [25]. Using this perspective, it then also makes sense that Carol’s 

and Dan’s dual invocation was accompanied by a level of recall. The students have 

become familiar with these quantities and representations to a specific extent and they 

believe they recognize how the differential length vector needs to be structured. Here, 

Carol and Dan are correct with the structures that they have carved out from memory. 

While recall has been shown to mediate students’ construction of equations and use of 

symbolic forms [78], here recall plays a role in the conceptual input space (Fig. 8.11). 

Students access the underlying mathematical understanding of the need for vectors of 

multiple components through this recall and blend the requisite elements of the  
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Figure 8.11. Blending diagram for Carol and Dan as they begin construction. 

 

coordinate system with the symbol template. Had the students been asked to elaborate on 

why they had written the trappings of this expression in such a way, we can imagine, they 

would say something similar to that of Elliot and Frank above. The further role of recall 

in this type of model will be discussed later. 

Following the structuring of their differential length vector, Carol articulates that each 

component needs to be a length and then curves her hands into a parenthetical shape and 

isolates each magnitude and unit vector pairing. This statement then cues Dan to write an 

  in the space before the   . In terms of symbolic forms, they’re attending to the 

magnitude direction template nestled in the parts-of-a-whole structure and identifying 

that each needs to contain an element of length. Carol emphasizes the existence of 

structure of this template at this moment by articulating “yup, some   in the   .” 

Students’ emphasis on dimensionality in other places in the interview appeared as an 

invocation of the coefficient symbolic form (see section 5.1.5,  [91]). In these cases, 
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groups of students (e.g., Carol and Dan) were building angular components and 

recognized that a differential angle did not carry the needed units of length,  

Adam:  …This doesn’t have any units of length, so it needs to have 

some   term. 

 

These represented manifestations of the coefficient symbolic form, because students 

explicitly argued that something else needed to be included just to account for the units of 

length. With the coefficient symbolic form representing a constant or static factor that 

“defines the circumstances under which physics is occurring,” [47] we can see the 

placement and treatment of   within this light. Our blending diagram for Adam and Bart 

in this moment of the interview accounts for this treatment. In the case of the angular 

components,   is a constant radius at which the differential length would be traced out in 

an angular direction.  

When considering motions in the   -direction, the variable   is no longer static but 

needs to account for variation in the length of the coordinate vector. Carol and Dan 

invoke a new symbolic form representation upon recognizing this. They represent this as 

a   , as the differential length vector component in the    direction needs to account for 

the change in  . The differential concept image aspect and differential symbolic form 

identified in previous work (see section 5.1,  [91,92]) go hand in hand, as students’ 

invocation of the differential symbolic form is easily related to differential ideas. The 

conceptual blending template now allows the connection of these two ideas from 

different theoretical lenses, and dually allows on to model variations in students’ 

conceptual ideas related to the differential. For example, Elliot and Frank invoke the 
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differential symbolic form, but do so by attending to the infinitesimal nature of the 

differential.   

Elliot: So it's   times some  . I think it's   times   , a small  . 

(Fig. 8.12) 

The pairs CD and EF both invoke the differential with “change in quantity” and 

“small quantity,” respectively. While both conceptual understandings are appropriate in 

the given context, we consider these distinct evoked concept images. The connection of 

multiple conceptual ideas to the same symbol template highlights the importance of 

including the generic space, which is discussed in greater detail as part of section 8.3.2.1.  

The last of the symbolic forms identified in this study was the no-dependence form, 

which accounts for the absence of a variable or quantity in an expression after a student 

explicitly dictates that the expression is independent of said quantity. This appeared in 

two sets of interviews, where students attended to components in the angular directions. 

When constructing the    component, Adam and Bart correctly decide that the term  

 

 

Figure 8.12.  Blending diagram for differential template with varied conceptual 

understanding. 
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should not include any aspect of the other angle. This no-dependence form appears 

because of a comparison to the   -component, which does scale with the placement of the 

azimuthal angle.  

 Adam:  (sweeps arm vertically) For [motion in]  , it doesn't have 

any dependence on this other angle.  

As with the other symbolic forms, we can now elaborate upon students’ use of the no 

dependence form and connect it explicitly to students reasoning about the geometric 

motions by using conceptual blending (Fig. 8.13). Again, Sherin’s conceptual schema “a 

whole does not depend on a quantity” takes the role of the generic space. Then Adam’s 

explicit exclusion of a β-term in the α-component can be compressed with the symbol 

template that shows the absence.   

By importing a conceptual blending framework, we gain a sense of the mechanism 

through which symbolic forms are activated as students make sense of the mathematics 

used in physics. As such, a depiction of deeper conceptual physics and mathematics 

understanding emerges, one that is needed by students in upper-division physics.  

 

 

Figure 8.13.  Blending diagram including no dependence symbolic form. 
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The introductory kinematics context involved connecting acceleration to changing 

velocity, which is a portion of the way in which the concept of acceleration is defined in 

kinematics. As such, the line between the conceptual schema of “change in base 

quantity” and the contextual understanding of “acceleration as a change in an object’s 

initial velocity” is difficult to distinguish. The conflation of the conceptual schema and 

contextual understanding by Kuo and colleagues [93] indicates that their suggestion of a 

model of blending between the two components of symbolic forms (conceptual schema 

and symbol template) was, in essence, a blend of contextual understanding and symbolic 

expression. In this section, we have fully articulated such a model by representing the 

conceptual schema as the generic space in a blend of contextual understanding and 

symbol template.  

In upper-division physics, the expression of an equation often involves a substantial 

background of conceptual understanding in terms of physics concepts. Expressions of 

vector calculus connect to various coordinate systems, vectors fields, and charge/current 

distributions, which are built into students’ expressing of equations and in turn can be 

interpreted from the expressions. As shown above, variations of students’ conceptual 

understanding of quantities, such as the differential are now present. The presented model 

accounts for such variation by separating the conceptual schema and conceptual 

understanding in the analysis of students’ in-the-moment construction of equations, 

which becomes increasingly important to developing an understanding of students’ work 

as they move beyond algebraic contexts to include ideas such as those that involve vector 

calculus.  
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8.3.2 Affordances of the model 

8.3.2.1 Connecting the underlying generic space and variations in conceptual 

understanding 

In conceptual blending, the generic space does the work of providing the underlying 

connections between two distinct input spaces. These underlying connections drive the 

compression of these ideas and the emergence of the blend. To analyze how students 

engage in the construction of equations, we have equate the generic space as the 

conceptual schema of symbolic forms. Just as before, it is important to note that Sherin’s 

conceptual schema is not a stand-in for physics conceptual understanding. This is even 

more true in upper-division work, where students’ conceptual understanding pertains to 

more complex and intricate mathematical and physical ideas.  

We have argued that the conceptual schema that underlies a symbol template also 

underlies the student’s contextual knowledge or understanding. In line with Sherin’s 

depiction of the underlying conceptual schema as consistent with phenomenological 

primitives [72], we see the conceptual schema as the fundamental “behind-the-

scenes” [47] understanding of the conceptual input of the blend. We elaborate upon this 

by returning to the discussion of varying conceptual ideas being attached to the 

representation of a differential element   . By the time students make it to upper-

division physics, the ideas related to vector and differentials have been largely ingrained, 

in that the structures are generally identifiable and understood by many students. The 

differential has become a fundamental quantity involved in everyday calculation, but the 

meaning of the quantity can vary. As Carol and Dan worked on constructing their 

differential length vector, they only referenced the differential as a change in a quantity, 
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while Elliot and Frank were mostly focused on the size of the quantity, invoking the 

differential as part of a need for a small bit of a variable. Other research in E&M has 

identified other ways in which students treat or conceptualize the differential: as a small 

amount, a dimensionless point, a cue to differentiate, and an identification of what to 

integrate with respect to [25]. Investigations of calculus students’ interpretation of 

integrals revealed interpretations of the differential related to the width of a Riemann 

rectangle, shape in space, and “way to obtain the original function” [50]. Small quantities 

or changes are often the more prevalent understanding of the quantity for students using 

mathematics in physics problem solving [25,27,49], but that does not prevent the other 

ideas from appearing in physics students’ problem solving. 

In a symbolic forms sense, the box of the template for the differential is not large 

enough to encapsulate the entirety of those ideas. Instead, we put forth that there is some 

underlying conceptual schema, a fundamental essence of what is a differential, that exists 

beneath these ideas. This idea is consistent with Sherin’s association of the conceptual 

schema with phenomenological primitives. However this becomes difficult to define, 

given the difference in conventions and pedagogical emphases between disciplines. For 

the sake of our work, we retain the conceptual schema as “a differential quantity,” in 

order to maintain that such an idea can extend to the various conceptualizations 

depending on the given context.  

Isolating Sherin’s conceptual schema in such a way now allows a reengagement with 

prior literature utilizing symbolic forms, specifically work with integration, without 

detracting from the value of that work. Meredith and Marrongelle [48] originally 

identified the conceptual schema of parts of a whole and dependence as cues for 
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integration. Our model of conceptual blending identifies these cues as the underlying 

mathematical understanding of the generic space connected to students’ conceptual 

understanding, not necessarily the conceptual schema given that students would invoke 

different symbol templates.  

Separating the conceptual and symbolic input spaces, we allow a different 

categorization of Jones’s integration symbolic forms [50]. Now, rather than having 

multiple symbolic forms tied to the same symbol template, we can see each template as 

the manifestation of one symbolic form with a single conceptual schema tied to the use of 

each box in the template (Fig. 8.14). Much like the conceptual ideas associated with the 

differential, the ideas of adding up pieces, adding up the integrand, perimeter and area, 

and function matching, which all utilize the same template are now multiple departures 

from a more representational understanding of what the arrangement of symbols within 

the integration means. It is further likely that these templates for integrals may exists as 

an amalgamation of smaller units of symbolic forms, in the way that students often  

 

 

Figure 8.14. Interpreting symbolic forms for integration using conceptual blending. 
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combine multiple templates to express more complex physical relationships among 

numerous quantities. However, by utilizing the generic space, what was originally 

identified as a conceptual schema takes the place of the conceptual understanding input 

space, separating out students’ conceptual ideas from the more fundamental template 

understanding as done in the original symbolic forms literature. 

 

8.3.2.2 Recall, backward projection, and reading-out 

While Carol and Dan were able to produce the appropriate structural representations 

from repeated use and teachings within the classroom, students across several interviews 

experienced difficulty in generating or applying the correct conceptual ideas as they 

constructed the beta-hat component. In order to fill in the template, students recall the 

similar spherical coordinates in order to make sense of the unfamiliar system.  

Bart: You can, you can check from [spherical   ], um 

Adam: For α it doesn't have any dependence on this other angle over 

here, but when you're talking about β, um/  

Bart: So this is    (g. to spherical        he wrote), okay,      [hat], 

      [hat],=...=          [hat], so now we have just to 

compare so we have   it is  ,   is  ...   is  . Go ahead 

[Adam] 

 ... 

Adam: Yeah I can see now, this α here is independent of whatever β 

is, yeah, so          

Here we see Adam working within the coordinate system to construct the differential 

length vector. In contrast, Bart immediately begins to map spherical coordinates, drawing 

on the spherical differential to finish the construction. After an attempt to redraw the 

coordinate system, and some confusion between the mathematics and physics 

representations of spherical coordinates, Adam finally settles on the mapping of      
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into the   -component. For Adam and Bart, the recall of a spherical differential takes the 

place of conceptual understanding and neither student draws back on the conceptual 

understanding that went into the construction of the spherical differential length element 

(Fig. 8.15). Within conceptual blending, we would here only insert the recalled element 

into the conceptual input space regardless of its correctness.  

In contrast, other groups attempt to use recall as a sensemaking tool. Carol and Dan 

recall the spherical volume element as well as the Cartesian coordinate transformations 

to, as Carol states, “make sense of the new coordinate system.” However, the group 

struggles to find anything to dissuade them from a direct mapping of variables and thus 

settles on the      as part of the beta component. In contrast, Elliot and Frank 

acknowledge the differences between the two coordinate systems. Frank correctly 

dictates the comparable spherical component as, but unable to discover conceptual basis 

for the inclusion of a trigonometric function, Elliot was hesitant to use recall as a 

justification.  

 

 

Figure 8.15. Students’ conceptual blending involving recall and backward projection.  
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Elliot: Yeah, because if it were spherical coordinates, you'd have a 

     somewhere in there, you know...which it's very similar, I 

agree, but I feel like we should just work only by what we see 

here and try not to fog our mind with preconceived notions of 

how this should work. 

At this point the group settles on    , relying on their conceptual understanding of arc 

length but still missing the necessary projection aspect that explains the trigonometric 

function. Later the group returns to this idea, as Frank feels the need to have their 

differential length resemble the one in spherical coordinates absent of the conceptual idea 

with this space. 

Frank: I mean, uh, spherical coordinates don't look like that. They 

have sines in there and I agree but if I can't find a reason to put 

it in there, you know, and there must be something wrong with 

the way I'm thinking. If that's true but I just don't, I don't see it 

yet, so why do you have      ? 

This statement of “I can’t find a reason” marks a backward projection in the blending 

literature [76]. A backward projection describes the use of the blended space to interpret 

or look back at one of the input spaces. We identify the use of the spherical differential 

elements within the latter of the two groups as an attempt to use spherical coordinates to 

draw out the associated conceptual understanding attached to the angular components. 

With neither group recognizing the need for a      in the   -term, they each take 

different paths: Carol and Dan directly mapping the elements into the schmerical 

coordinate elements, and Elliot and Frank choosing to stick to the elements constructed 

within the realm of what they understand. This shows students experiencing difficulty 

with contextual knowledge, despite having the correct structural understanding of the 
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template. Therefore, it extends the explanatory power when compared to the individual 

theoretical frameworks. 

Students’ maneuvering within the blending diagram in order to ascertain the relevant 

conceptual information from a previously constructed equation further connects 

conceptual blending to symbolic forms. Sherin not only identified symbolic forms as a 

way to analyze students’ abilities to construct equations, but as a means to address their 

abilities to “extract implications from a derived expression,” thus students’ abilities to 

read out information from an equation based on the given structures [47]. While we see 

an aspect of this in attempts to isolate the coefficient template of a spherical differential, 

we suggest this reading out more explicitly draws on the backward projection. Drawing 

again on parts-of-a-whole, a student seeing an equation in which multiple things were 

being added together could recognize the parts-of-a-whole template and then infer a 

conceptual understanding of the nature of the relationship between the added quantities. 

In essence, the equation then carries this information, which is then projected into the 

larger conceptual space. This is seen in the earlier example presented by Bollen and 

colleagues  [39] in which interpretation of a calculation led a student to correct aspects of 

the physical system. 

 

8.3.2.3 Interpreting template errors in equation construction 

One of the benefits of applying conceptual blending in any context is the ability to 

isolate particular realms of ideas. In research on the use of mathematics in upper-division 

physics, this has manifested as the ability to isolate particular errors to difficulties with 

mathematics or physics ideas [39,81]. While this model has given us a means to assess 
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errors in a final expression that can be attributed to missing or unaccessed conceptual 

understanding, the benefits of this model extend to analyzing students’ mistakes in their 

symbolic forms understanding, meaning insight can be gained about students’ mistakes 

with the representational mathematics.  

In a different study, we conducted individual interviews to investigate students’ 

understanding and construction of differential area elements within common E&M 

contexts (see section 7.3,  [97]). One question in particular required students to construct 

a scalar differential area to solve for the electric field above a circular sheet with constant 

charge density (Fig. 8.16). In this task, a student seemingly displays the correct 

conceptual information but invokes the incorrect symbol template. After first attempting 

to ascertain the differential area by taking the derivative of (   ) with respect to  , Jake 

then recognizes he can build a differential area from differential length components.  

Jake: Actually no, it will be      because it’s a surface area so I’ll need 

two dimensions... that my dθ is probably going to come in from my 

  . Because I should have a differential area shouldn’t I, and a 
differential area should be     ... [writes         ]. 

Despite recognizing the need for two dimensions, which would imply multiplication 

between the two length components, Jake’s “    ” evidently contains an implicit  

 

 

Figure 8.16. Figure provided for the charged sheet task. Full details of the task are 

presented in section 8.3 
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addition symbol, as well as a radius term. Jake makes this error on an earlier task as well, 

despite having an otherwise appropriate concept image of a differential area as a small 

portion of area (see section 7.3.2.1.3,  [97]). 

Within our proposed model for equation construction, Jake’s conceptual 

understanding input space for differential area contains the correct information, yet it is 

blended with an inappropriate parts-of-a-whole template (Fig. 8.17). Using this symbolic 

forms understanding, we can hypothesize that Jake’s underlying conceptual schema was 

skewed to that of parts-of-a-whole. He thus could be seen approaching the idea of area as 

being made up of two lengths and used the incorrect template during the compression of 

ideas. As such, he wrote the terms as a sum rather than a product. Much later in the 

interview, Jake was able to correct his differential area by reasoning about 

dimensionality, which shifted the representational form to the correct multiplication of 

lengths.  

Likewise, Sherin noted instances of students accessing the requisite conceptual 

information but applying the incorrect template [47]. Within our work analyzing  

 

 

Figure 8.17. Conceptual blending where Jake invoked the incorrect template. 
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students’ differential length elements, we noted that students had a general understanding 

of the symbol template in terms of the structural representation of the differential length 

vector, but had more specific difficulty with understanding the geometry of the 

coordinate system and expressing it appropriately.  

In a further study, students constructed differential length vectors during a calculation 

of change in electric potential around a curved path (see section 5.2,  [98]). During these 

interviews we noted an incorrect encoding of vector notation which has been seen 

commonly in students’ work from course observations. The correct expression involves a 

differential length with two components to represent each polar direction of motion, as 

Molly easily demonstrates. 

Molly:  So first I travel in the  -direction so I go    in the    and then I 

travel in the   -direction and the arc length of a circle is the 

radius times the angle that you move so that is    , here in the 

  . (Fig. 8.18) 

Here, we see her emphasis on the unit vectors and associated components, which she 

deftly represents using the magnitude-direction template. 

In contrast, Lenny only constructs a component in the theta direction. Despite similar 

conceptual understanding, Lenny expresses his differential component as     . When 

asked to describe why he wrote the term in such a way, his reasoning was absent of 

magnitude-direction reasoning.  

Interviewer:  What do you mean by     there? 

Lenny:  So I guess, any differential shift in  …because that’s just the 

direction of the change in  . (Fig. 8.18) 

Mathematically speaking, the use of     makes the expression incorrect. While     would 

make sense for a differential shift in the  -direction, polar unit vectors are not static 
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Figure 8.18.  Comparison of students’ blending diagrams for expression differential 

vector elements 

 

quantities and vary based on position in space. In our analysis, Lenny’s idea of 

representing a vector within this space is reduced to a representation of “the direction of 

change in theta.” His emphasis on directionality without a separation of magnitude and 

unit vector leads to his encoding of this expression with a vector arrow template, [    ], 

rather than the magnitude-direction template, and thus makes sense within the presented 

model of conceptual blending and equation construction. 

 

8.4 Summary and Conclusions 

In this paper, we have used conceptual blending to analyze students’ mathematical 

sense-making when constructing equations in upper-division physics. As part of previous 

work, we analyzed data on students’ construction of differential length elements in an 

unfamiliar spherical coordinate systems using two different approaches: concept 

image [38] and symbolic forms [47]. Analysis involved the use of a concept image 
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framework to identify specific properties students associate with a differential length 

vector in a non-Cartesian coordinate system, as well as a symbolic forms approach to 

investigate students structural understanding during equation construction (see 5.1.5, 

 [91,92]). As symbolic forms were designed to assess the mathematical understandings of 

the structures within an equation, and not the physics conceptual understanding, we 

recognized these as naturally compatible to give a picture of both sides of the equation; 

yet they still remained independent analyses without a cohesive tie. By incorporating a 

conceptual blending lens [76], originally designed to describe the connection of meaning 

to form in the use of language, we have developed a model with the means to analyze 

students’ construction of equations as an expression of a mathematical-physical language 

in which they connect conceptual understanding and structural expression.   

This approach to analysis of equation construction uses the aspects of one theoretical 

framework to complement missing analytical aspects of the other. Use of conceptual 

blending adds a component of conceptual understanding to a symbolic forms analysis, 

which becomes increasingly important within upper-division physics where concepts 

connected to equations become more rigorous. Likewise, incorporating symbolic forms 

into a conceptual blend provides a guiding generic space to analyze student 

understanding and use of mathematics in physics contexts. To represent the union of 

these frameworks and illustrate the model, we designed a blending diagram that 

represents the conceptual blending generic space as the symbolic forms conceptual 

schema and depicts the compression of conceptual and representational understanding 

into the final construction of an equation.  
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This work has presented a number of examples in which our model is employed 

within the context of the differential length vector study, as well as several other 

instances in our own work. This serves to illustrate the model as well as to show the 

utility of bringing conceptual blending to the construction of equations and symbolic 

forms. We have also provided discussion as to how this model is consistent with and 

reinterprets the use of symbolic forms within the current literature base [48,50,93], where 

the conceptual schema of symbolic forms has equated with the conceptual understanding 

of the contextual content. Similarly it shows how use of the generic space, which is 

generally absent from conceptual blending analysis of mathematics in physics [39,81,94], 

can provide deeper explanation of students’ conceptual and representational choices 

when constructing equations.   

Lastly, we have outlined several benefits of such a model as well as the full scope of 

its explanatory power. The incorporation of the generic space as the underlying 

mathematical meaning or idea has provided the ability to connect diverse student 

conceptual understanding to similar template use. This model also isolates the specific 

structures of an equation so as to connect student difficulty to either template 

understanding or incorrect/incomplete conceptual understanding. This model also 

supports the backwards projection of the conceptual blending model, by connecting it to 

the reading of information out of an equation to gain conceptual understanding. We also 

showed how backward projection was useful in describing errors in students’ recall in 

which they use previous ideas to make sense of new contexts. 

The presented model provides the opportunity for obtaining a deeper and more 

complete understanding of students’ construction of equations in situations that draw on 
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sophisticated mathematical and/or physical understanding. The connection of aspects 

across these theoretical frameworks allows for analysis on both the level of conceptual 

understanding and of structural representation. 

 

8.5 Future Work 

With the understanding of the affordances of such a model to the analysis of student 

construction of equations in terms of conceptual and representational understanding, we 

envision further applications of the model.  

Just as Sherin suggests the symbolic forms framework could be extended into other 

domains of physics, we believe that our model presents as a key analytical tool to the 

study of mathematics used in physics problem solving, especially in an upper-division 

context where, throughout the course of their academic track, students connect physics to 

concepts of vector calculus, partial derivatives, and linear algebra.  

Sherin also suggests that “stretching farther still,” symbolic forms could be 

generalized to discuss other representational forms that contain sets of meaningful 

structures. We hypothesize that the incorporation of conceptual blending takes a step in 

that direction by providing the generic space as a means to connect ideas by their 

underlying similarities. As such, we can extend the template space to a representational 

space and connect students’ conceptual understanding of linear relationships and 

graphing knowledge to graphical representations, and additionally with conceptual ideas 

of wave vectors, wave functions, or probability density graphs. Researchers have recently 

begun to address students’ understanding of the various representations of Dirac notation, 

wave function notation, and matrix notation [17]. Other researchers have explored 
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students’ metarepresentational understanding of these notations, finding when students 

make judgments about which notation is easier or better suited to a task [99]. More 

broadly, a model of conceptual blending as we have presented could be extended to 

analyze student work as they translate between various representations that effectively 

convey the same conceptual understanding.  
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CHAPTER 9 

9 DISCUSSION AND CONCLUSIONS: CROSSCUTTING CONCEPTS 

AND COORDINATE SYSTEMS 

“It is good to have an end to journey toward,  

but it is the journey that matters in the end” 

–Ursula K. Le Guin 

 

The work presented in this dissertation is the result of several years of investigation 

into students’ understanding of one aspect of the vector calculus concepts that are 

ubiquitous junior-level electricity and magnetism. Specifically, this investigation has 

explored students’ conceptual and structural understanding of differential length vectors, 

differential area elements (scalar and vector), and differential volume elements, as these 

elements are constructed and determined in a given coordinate system. This is a 

continuation of a recent focus of physics education research both in the emphasis on the 

application and understanding of mathematics and as an inquiry into student 

understanding of upper-division content. While previous work has involved exploration 

of mathematics in E&M, little work has previously addressed construction of differential 

elements in the non-Cartesian symmetries used throughout the course. This study 

contributes empirical research that addresses student understanding and informs 

instruction of these quantities.  

Interviews were designed using tasks similar to those presented in course instruction 

as well as a task using an unfamiliar, unconventional coordinate system. Data from 

interviews using the tasks within a physics context provided insight into the connection 

between contextual features and students’ construction of differential elements. Data 

generated from the task based in the unconventional coordinate system provided insight 
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into the particular ideas associated with a generic differential length vector in non-

Cartesian coordinates. Analysis focused on identifying student difficulties [57], aspects of 

students’ concept image [38], and students’ understanding of equations in terms of 

symbolic forms [47]. The instantiation of these frameworks focused investigation on 

students’ understanding of symbolic expressions and conceptual aspects and how these 

impact construction. In chapter 8, we combined the concept image and symbolic forms 

frameworks using conceptual blending [76] as a theoretical model to depict how students’ 

contextual knowledge and representational understanding are combined in the 

construction of equations. We further extend this model as a means to address students’ 

mathematization.  

In this chapter, we present the conclusions as a discussion of common threads woven 

across the previous chapters. Initial attention is given to the extent to which coordinate 

system understanding influenced determination or construction of differential elements. 

Secondly, focus is turned to common concept image elements as they were or were not 

evoked across the interview tasks. Given the analytical focus on student understanding 

and invocation of symbolic forms and emphasis of multiple tasks on construction, further 

discussion highlights the common representational understandings in terms of how 

students encoded information in equations across chapters. Following this, I discuss the 

extent to which students recognized or utilized the relationships among differential 

lengths, areas, and volumes. Finally, there is a summary of instructional implications and 

suggestions for future works. 
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9.1 Overview of findings: Coordinate system choice and geometric reasoning in 

curved spatial coordinates 

The choice of coordinate system due to field symmetry and charge/current 

distribution is generally the first step in the mathematization of a physical situation in 

E&M. This choice impacts the expression of differential elements, fields, and vector 

operators. While the use of Cartesian coordinates dominates much of both mathematics 

and physics instruction, the physical symmetries of E&M dictates the use of other 

coordinate systems as a means to simplify calculation. Use of non-Cartesian systems, 

however, requires an understanding of how the curvature affects the geometry and 

expression for the differential elements. 

Results presented as part of this research project corroborate findings in the literature 

regarding student overuse of Cartesian coordinate systems for situations in which a 

curvilinear coordinate system would ease the calculational burden [10,44]. In some cases, 

the use of Cartesian coordinates can be equally productive, such as the flux task, on 

which a number of students used Cartesian to express the differential area for a square 

loop (see section 7.3.2.1.1,  [97]). However, Oliver’s attempt to use Cartesian coordinates 

for the spiral task offers an example of when use of Cartesian coordinates leads to 

unwieldy and calculationally inefficient expressions (see section 5.2,  [98]). 

Students’ construction of differential length vectors in schmerical coordinates 

(section 5.1,  [91,92]) also revealed the predominance of expressions related to Cartesian 

coordinates. Pairs GH and PQ constructed schmerical differential length expressions that 

were rooted in the Cartesian system. Rather than associating a differential length vector 

with a sum of components resulting from motions of the coordinate variables, these pairs 
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isolated components of the      in each of the Cartesian directions. CD engaged in a similar 

activity as they try and find the    and    components. This originally led to a cosine term 

in one component and a sine term in the other, before a comparison to spherical guided 

the remainder of the construction. Notably, a decomposition of a vector into Cartesian 

coordinates in terms of spherical components is an important problem-solving step when 

applying Coulomb’s Law, since this generic brute force approach often utilizes both 

Cartesian and non-Cartesian representations. 

Students’ responses in the generic differential length construction echo those found in 

the classroom: students attempted to construct generic differential length expressions in 

spherical and cylindrical coordinates, and even included inappropriate trigonometric 

functions (see section 4.3, Table 4.1). However, even students who constructed a 

differential length vector utilizing the elements of schmerical coordinates had significant 

difficulties reasoning about the geometry of the system. 

Generally, this overuse of Cartesian in any case speaks to a difficulty connecting to 

the underlying symmetry of the physical situation [12], a difficulty that leads to larger 

issues of determining appropriate coordinate systems. Analysis across several interviews 

shows that students struggle to connect the symmetries of the vector fields to the 

coordinate system of choice, and thus to the choice of differential elements. While 

working through the flux task (see section 7.3,  [97]), students attended more to the shape 

of the given area (square loop - Cartesian) rather than to the curling magnetic field 

(circular symmetry - cylindrical). When asked how their response would change if the 

square loop was rotated out of the plane, three of the four students using Cartesian 

coordinates did not recognize the field was still perpendicular to the loop and suggested 
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the dot product of field and differential area would yield a trigonometric function. At the 

time students were enrolled in E&M II, which commonly involves curling magnetic 

fields and cylindrical symmetry. Oliver specifically added a    to express the curling 

field, but demonstrated a strong preference for use of Cartesian coordinates.  

Analysis of the spiral task (see section 5.2.2,  [98]) further shows student emphasis on 

the given shape of the path with little attention to the contextual physics. While students 

in the interviews more often utilized curvilinear symmetry, there was emphasis on the 

rotational aspect of the spiral path and little attention to the radial direction of the electric 

field.  

In a small number of cases, some students never explicitly chose a coordinate system 

when problem solving or showed a limited understanding of coordinate systems. Lenny, 

in particular, never defined a coordinate system when approaching the flux task and only 

stumbled upon the correct solution after spending some time attempting to ascertain the 

direction of the magnetic field. Similarly, Kyle incorrectly associated the circular charged 

sheet (see section 7.3.2.1.1,  [97]) with spherical symmetry, rather than cylindrical. Bart 

and Harold both displayed difficulty with determining directions of cylindrical unit 

vectors, and even drew cylindrical coordinates as having two angles (see section 7.2.2). 

In the checking solution task (section 7.1), pairs were able to recognize that the 

differential area was inappropriate for the given task but some went further to incorrectly 

attribute the element to spherical coordinates or another surface within spherical 

coordinates. 

Students’ difficulties recognizing the scaling factors in the checking solution task as 

inappropriate for any coordinate system speaks to larger difficulties for students in 
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regards to geometric reasoning. Only a small number of students explicitly attend to arc 

length across the body of interviews (i.e., EF and RS during construction of the 

schmerical differential length, and Molly for the spiral and charged sheet task). This does 

not mean that other students do not have an understanding of arc length, but that it was 

not evoked in the given contexts. This suggests that students have a limited understanding 

of the construction of these terms, as arc length is monumentally important to the 

construction and understanding of differential elements in curvilinear coordinates (see 

Appendix A).  

Notably, for both EF and RS, who explicitly discussed the need for arc length in the 

schmerical length and schmerical volume constructions, respectively, the trigonometric 

function needed to account for projection was absent from their final expressions. Thus 

while arc length was accessible for these students, it was not tied to other aspects of the 

coordinate system geometry. The understanding of projection that results in the 

trigonometric function in spherical-like coordinate systems (see Appendix A) was 

difficult for all groups in the schmerical task. Only three groups in the seven interviews 

were able to connect the trigonometric function to projection, and this only occurred after 

students checked their differential volume element and calculated an incorrect volume.  

Results have also shown a number of instances in which students have trouble 

reconstructing the differential area elements in regards to the scaling factors that needed 

to be expressed. While Bart and Harold have significant difficulty constructing generic 

differential areas, even Dan and Victor, who are successful with the task, question the 

inclusion of the trigonometric term (See chapter 7.2.2). Analysis of area element 

construction in other contexts suggests that the instantiation of high symmetry tasks 
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obscures the origin of differential terms. The large number of problems in E&M that 

involve bypassing the writing of the differential element or that consistently only use one 

component (such as the radius) could result in a restricted concept image of differential 

elements where the reason for the trigonometric function or other scaling terms is lost. 

In conclusion, students appear to struggle with determining appropriate coordinate 

systems, often relying on Cartesian coordinates. Further investigation on construction of 

a generic differential length element within an unconventional system revealed student 

difficulty with recognizing the affordance of leveraging the geometry of a system to 

determine the expressions for the differential components. Unsurprisingly, students with 

a higher tendency to connect vector fields and charge/current distribution to coordinate 

systems and expression of differential elements performed better on these tasks. This 

leads to suggestions for instruction, which are further discussed later in this chapter. 

 

9.2 Overview of findings: Ubiquity of concept image aspects in differential 

element construction 

This section gives explicit attention to prominent concept image aspects identified in 

the schmerical differential length vector construction (see section 5.1.4,  [92]) and their 

influence on construction of differential elements as a whole. These include students’ 

attention to aspects such as dimensionality and differential. These aspects pervade 

construction of differential elements, as lengths, areas, and volumes all need to express 

appropriate dimensions. Furthermore, differential elements are differential quantities. 

Thus we can compare students’ treatment of these quantities (which are sometimes 

vectors) to previous literature looking at the differential in other contexts. Lastly I discuss 
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attention to component & direction. I omit discussion of the projection aspect here, due to 

its connection to the discussion of geometric reasoning in the previous section. 

 

9.2.1 Role of dimensionality 

Attention to dimensionality was noticeably constructive for students during the 

schmerical differential length task. Students in pairs AB, CD, and EF regularly attended 

to dimensionality, making sure each component expressed units of length. On the 

extreme end, the radius term was sometimes only included following argumentation that 

the term needed to include lengths, such as for Adam in the    component and for Carol 

when constructing the    component, saying “sine of something isn’t a length, so we need 

something else in there” (see section 5.1,  [91,92]). In these cases the overt attention to 

dimensionality overshadowed the geometric reasoning related to arc lengths. Carol and 

Dan gave explicit focus to each term being a differential length and at one point 

questioned whether the differential angles or unit vectors also carried units of length. For 

other students in the task, there was not discussion of dimensionality, which may have 

resulted in the length components that contained both an   and a     It is likely that in 

these cases, students did not recognize differentials as quantities that have dimension, 

which is a finding common with other studies of differentials [25,52].  

EF used dimensionality to reason about the correctness of their differential volume 

element later during the schmerical task, claiming it was likely correct, as it would 

integrate to an    (see section 6.6.2,  [92]). When Elliot acknowledged that integration 

over the angles could yield any coefficients beyond the      that were needed for the 

volume of a sphere, the pair carried out the necessary integration.  
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When determining differential area elements, several students also explicitly 

addressed dimensionality. Jake, having first incorrectly reduced the flux integral to a dot 

product with a length, recognized he needed an element which expressed two dimensions 

(see section 7.3.2.1.3,  [97]). However, he incorrectly represented this as a sum rather 

than a product, which we discuss later in this chapter. 

Overall, dimensional consistency of differential lengths, areas, and volumes is 

important to construction. While some students attend to this explicitly, in other cases not 

associating units to the differential elements contributed to their incorrect representations 

of terms. 

 

9.2.2 Student understanding of differentials 

Interviews during which students were asked to construct differential lengths, areas, 

and volumes, revealed myriad understandings of the differential quantity consistent with 

previous literature.  

As part of the schmerical differential length task (see section 5.1,  [91,92]), students 

commonly discussed needing small amounts of motion or changes in a given quantity. 

These concept image aspects were helpful for students building the components rather 

than using recall. The treatment of the differential in this way is common to physics 

instruction [25,27,49,56] and productive for students making sense of 

integration [28,48,52,69].  

This particular concept image also appeared in students’ construction and 

determination of differential area elements (see section 7.3,  [97]). In these tasks, rather 

than constructing a generic expression for a differential element, students were 
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constructing an expression explicitly for the purpose of integration. Here, thinking about 

the differential area as a small portion of the surface in question, specifically as a product 

of differential lengths, was productive for students.  

Students also associated the differential as a cue to take a derivative of another 

quantity [25]. This is most prominent in the differential area context, where Jake 

attempted to take a derivative of the area of a circle but struggled to determine what the 

derivative was with respect to. The idea also appeared in the schmerical length 

construction when Tyler began with an incorrect expression for the vector and attempted 

to take derivatives to find the differential length vector. In the spiral task, Oliver started 

with a    and    and attempted to take the derivative of the Cartesian transformations to 

convert the expressions into terms of theta. This type of representation and transitioning 

between understanding of the differential as an object and an understanding of the 

associated process to differentiate can be productive in some physics contexts when used 

appropriately. Only Jake would have been able to arrive at a correct response using this 

method, but only due to the given symmetry of this task. Other students struggled with 

this due to other difficulties. 

Lastly, results showed at least one student routinely approached differentials as 

identification of the variable of integration [25,52]. In this representation the differential 

has no physical meaning. In both differential area tasks, Nate added differentials to 

indicate the variables over which integration occurred. Notably, the equations he used 

included a differential area, which he replaced with an expression for the full area of the 

surface and didn’t attend to as a differential quantity. 
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Attention to students’ treatment of differential quantities spans the space of 

understanding detailed in the literature. As such, this means there is no single 

understanding students have of differential lengths, areas, or volumes when associated 

with the context of vector calculus. However, association of the differential as a change 

in a direction or as a small portion of a line or surface remain the most productive 

representations for this context. 

 

9.2.3 Recognition of component and direction  

In the construction of the schmerical differential length element, students in all but 

one interview eventually recognized the need to express multiple components. 

Transitions to a more contextual task, which included a spiral path (where the differential 

still included two components), involved more students only expressing a single term for 

a differential length vector, in line with highly-symmetric situations seen in class and on 

homework assignments. 

 

9.3 Overview of findings: How students encode information: Symbolic forms 

understanding 

Analysis of the schmerical differential length construction in terms of invoked 

symbolic forms [47] revealed students had a general understanding of the structures in 

the equation. The difficulty appeared in determining the quantities or variables that filled 

the structure. For example, students recognized where a coefficient was needed and often 

left space to write terms, but did not access the ideas of arc length or projection that 

would have yielded the appropriate terms. In many cases, the filling of the associated 
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symbol template was mediated by recall to spherical coordinates. In other cases, the 

correct symbol template was cued with two different and equally valid conceptual 

understandings. Both CD and EF correctly expressed differentials, but CD continually 

used the concept of change in a variable while EF focused on needing a little amount.  

Complimentary results from concept image [38] and symbolic forms analyses led to 

the use of conceptual blending [76] to account for the types of variation in students’ 

construction of equations described above (see Chapter 8). Importing conceptual 

blending provided a way to account for variation in conceptual understanding when using 

a symbolic forms analysis. Likewise, importing the underlying conceptual schema from 

symbolic forms provided a necessary structure missing in previous literature on students’ 

blending of mathematics and physics. As described in the previous chapter, this work 

extends beyond the schmerical differential length to other contexts in our study where 

students construct and interpret expressions.  

Students’ success with structural representation and understanding extended to 

construction of differential area elements. Students generally were able to invoke 

requisite templates and in some places articulate the differential area as a product of 

differential lengths. However, to some extent, a structural analysis is obscured in this 

context due to the “plugging in area” mentality cued with the instantiation of high 

symmetry in physics contexts. This results in fewer students constructing the differential 

area element outright as an infinitesimal. 

Over the course of the study, a fair number of students have shortcut the magnitude-

direction representation of a differential element by writing the differential as a vector 

(e.g.,     in place of     ) on homework, quizzes, and interviews. Both Lenny and Oliver 
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utilized this representation during the spiral task (see section 5.2.2). Students articulated 

that it represents the direction in which the change in taken. Notably, course observations 

show that this representation is not introduced by the instructor. While not 

mathematically correct, students’ specific encoding is suggestive of expert-like behavior 

in that the expression in shortened using the introduction of specific notation. This goes 

further to show that students’ structural understanding of vectors and some calculus 

concepts are fairly ingrained and understood by the time they enter upper-division E&M. 

Building on this structural understanding, instructional materials were developed in 

which the equations’ structures were isolated and students built the associated concepts 

(see sections 5.1.4, 7.3). Based on the productivity of this line of reasoning for students in 

the interviews, this approach should help students build the necessary connections 

between coordinate system geometry and the expression of differential elements. 

 

9.4 Overview of findings: Students understanding of connections between 

differential lengths, areas, and volumes 

Over the course of interviews, recognition of the interconnectedness of the 

differential elements was a tool that allowed students to be more productive. Students 

who had a stronger connection between the differential length vector and the differential 

volume were able to easily construct the differential volume element as a product of 

lengths. Furthermore, students who were most productive in the differential area 

construction were those with the concept image of the differential area as a product of 

differential length components that describe the surface. When constructing generic 

differential area elements in spherical coordinates, Victor attended to the multiplication 
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of different pairs of differential lengths to construct different differential areas. Then 

when checking his responses, he multiplied his conjectured differential area by the third 

length component to verify whether or not he arrived at the volume, as a means to 

validate the correctness of his differential areas and justify the inclusion of a      in the 

   term. Jake fixed his representation of differential area as a sum by recognizing that a 

Cartesian differential volume was a product of lengths.  

Granted, any differential element could be determined from scratch with sufficient 

geometric reasoning (RS attempt fail to construct a volume element in this way because 

of a missing trigonometric function; Lenny interpreted the geometry of the flux task to 

construct a differential area), but a more fundamental understanding of constructing 

differential lengths and an infusion of product understanding allow students to efficiently 

determine subsequent differential elements. 

Notably, it was much more difficult for students to deconstruct a non-Cartesian 

differential volume element into associated length terms. Both pairs CD and GH 

experienced difficulty determining a spherical differential length vector from the more 

easily recalled spherical volume element. The terms were entirely estranged for PQ, RS, 

and T, who experienced the most difficulty with schmerical differential length 

construction; they were easily able to recall the spherical volume element but did not 

connect the terms within the volume as components of a differential length vector. 

Students AB, CD, and EF were able to use the differential volume to correct their length 

terms but it was only these three groups that built the volume element as a product of 

differential lengths. 
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Therefore, a product understanding is useful for the construction of differential 

volume and area elements, as long as students possess sufficient understanding of how 

differential length terms are constructed within a given geometry.  

 

9.5 Implications for instruction 

Results suggest that instruction should give greater emphasis to the way the 

underlying coordinate system geometry connects to the construction of the differential 

elements. Students with stronger geometrical reasoning were better able to construct 

differential elements both as generic expressions and within specific contexts. Further 

emphasis should connect differential area and volume elements more explicitly to the 

origin of differential lengths. The connection of these differential elements to differential 

length terms was significantly productive for students, whereas the absence or inattention 

to these connections resulted in greater difficulty.  

These instructional implications have already led to the purposeful design of 

instruction tasks in the spirit of previously developed physics tutorials [6,66]. The first 

portion of the developed tutorial sequence builds the geometrical understanding of a 

spherical-type (schmerical) coordinate system while using a rubber ball to leverage the 

three-dimensional space the coordinate system represents (Appendix C). This tutorial 

activity structures the building of each length component by connecting the ideas arc 

length and projection to the expression of the differential length vector through attention 

to geometric motions on the surface of the ball. 

After connecting the first tutorial to differential length construction in the more 

common Cartesian, cylindrical, and spherical coordinates, the second portion of the 
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tutorial sequence leverages the understanding of differential lengths to construct 

differential areas in each of the coordinate systems (also with 3D examples) (Appendix 

D).  

The tutorial pair includes pre-tutorial homework, a tutorial designed for small-group 

work, and post-tutorial homework. The inclusion of  pre-tutorial homework is consistent 

with previous upper-division tutorials  [66] to situate and prepare students to engage with 

the tutorial. Each tutorial sequence was test-run with physics faculty and graduate 

students with experience in physics education research. This provided input to further 

design and modifications. The tutorials were implemented in E&M I near the third week 

of the course, in subsequent classes. Observations suggest tutorial implementation is 

promising: the materials seem to generate discussions similar to those in the interviews 

but allow students to harness an understanding of the physical space, connecting length 

components to geometric motions. Likewise, implementation of the area tutorial showed 

it was helpful for students in connecting differential length components in a given 

coordinate system to a needed differential area element describing a surface. Future 

implementation of these tutorials should include more discussion about how these ideas 

appear when problem solving in E&M. These materials will continue to be developed, 

tested in-house and at external pilot sites, and eventually disseminated more widely.  

 

9.6 Suggestions for future work 

This dissertation adds to the growing body of literature on student understanding of 

mathematics in E&M. While prior studies have explored E&M students’ understanding 

of differentials [25], cues for integration [14,48], understanding of physical 
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symmetry [12,16,24,33], and understanding of vector fields and vector differential 

operators, little previous work has addressed the construction of differential lengths, 

areas, and volumes as they connect to vector calculus in non-Cartesian coordinate 

systems [12]. As such, there is room for further investigation, specifically on the 

emphasis of physical context on choice of differential elements. This includes how 

variation in particular features of charge/current distribution and vector fields cue the 

implementation of different coordinate systems and the associated differential elements. 

The theoretical development derived from this study has far reaching implications 

and thus more work could be done extending this model to other physics contexts outside 

of E&M as well as other mathematical representations (i.e., graphs, matrix notation) 

beyond equations. (See Chapter 8 for more discussion.)  

 

9.7 Summary 

In conclusion, the work in this dissertation has explored student conceptual 

understanding of differential vector elements in non-Cartesian coordinate systems. 

Results document that even after explicit instruction and application of different lengths, 

areas, and volumes, students in E&M had difficulty with the geometric reasoning related 

to constructing non-Cartesian differential elements or connecting differential areas and 

volumes to the components of the differential length vector. Students successfully 

attending to these ideas were more proficient with problem solving in physics contexts; 

thus, instructional materials have been designed to guide students to explicitly attend to 

the development of these ideas. 
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Furthermore, specific attention to how students connected representation and 

contextual understanding has led to the development of a model for students’ 

construction and interpretation of equations, by combining complementary theoretical 

frameworks of symbolic forms and conceptual blending. The theoretical frameworks are 

complementary in that missing analytical aspects of one are supplemented by the other. 

This combination provides affordances in regards to previous analyses and can provide 

deeper insight into how students connect representation mathematics understanding to 

other physics contexts at the physics-mathematics interface.  
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APPENDIX A – MATHEMATICAL BACKGROUND 

DIFFERENTIAL ELEMENTS IN NON-CARTESIAN COORDINATE SYSTEMS 

 

The use of coordinate symmetry in physics largely eases the calculational burden. 

Just as Dirac notation is an elegant expression of vectors and matrices in quantum 

mechanics, the expressions of these natural physical symmetries (e.g., a point charge with 

a radial electric field or a long straight wire with a curling magnetic field) in terms of 

coordinate systems that leverage said symmetry is a matter of elegance. The caveat now 

comes in understanding that transitions from the more familiar rectangular coordinates to 

systems involving curved surfaces means one must interpret and keep track of how these 

new lines and areas are described. 

The purpose of the following sections is to give the reader enough background 

information to understand the differences between particular coordinate systems and how 

one goes about constructing differential elements for the purposes of vector calculus in 

E&M. This appendix may also serve as a reference for later chapters discussing student 

work in this area. Section A.1 first explains the nature Cartesian coordinates and develops 

background for how one may approach thinking about differential line, area, and volume 

elements. Sections A.2 and A.3 then go into detail about spherical and cylindrical 

coordinates and what use that particular coordinate system is to E&M. Since differential 

elements in spherical coordinates represent a greater deviation from Cartesian 

coordinates, more time is spent here to illuminate the differences between these two 

systems. As cylindrical coordinates draw on ideas from both systems, this will be 

developed more quickly. 
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A.1 Cartesian coordinates and Cartesian differential elements 

Cartesian, or rectangular, coordinates are the most commonly used coordinate 

systems for problem solving. Used almost exclusively mathematics taught vector calculus 

courses  [74,73], Cartesian coordinates are also used as the predominant coordinate 

system in the first few years of physics courses up to post-introductory mechanics and 

electricity and magnetism. The coordinate system is defined using three perpendicular 

axes denoted, x, y, and z, and therefore allow one to describe a coordinate point in three 

dimensional space using up to three straight perpendicular lines, each corresponding to an 

change along only one axis. This representation of vectors is how students commonly 

work with vectors in introductory physics courses.  

Representing a vector drawn to any point in three-dimensional space can be done by 

decomposing it into three vectors along the three coordinate directions (Fig. 2.1a). The 

particular length of a component is specified by the magnitude of the vector while the 

direction is given by a unit vector that points in the direction of a positive increase along 

a specific axis. Unit vectors are designated as        and    or         and    for the  -,  -, and 

 -axes, respectively (Fig 2.1b). Unit vectors in Cartesian coordinates are static, meaning 

that they always point in the directions defined by the Cartesian axes for any vector three-

dimensional space. A generic vector,   , in Cartesian coordinates can then be given as 

                

This becomes the given form for any vector in this coordinate system, regardless of 

whether it is defined from the origin or another point in space. 
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Figure A.1.  Cartesian vector notation. (a) Unit vectors for each of the Cartesian axes. 

Also commonly expressed as   ,   , and    for the  -,  -, and  -axes, 

respectively.  (b) A generic vector   , or  , represented in Cartesian 

coordinates. Images reproduced from E&M course text  [58]. 

 

E&M then deals with vector fields produced by distributions of charges or currents. A 

vector field is a set of position-dependent vector quantities. (Fig. A.2). E&M courses 

typically deal with electric and magnetic fields that establish symmetric patterns that 

students can interpret. Calculation involving these fields, however, must also account for 

the direction of the fields at points of interest. This involves employing vector calculus to 

account for the specific effects of fields along lines and through surfaces. 

 

 
Figure A.2.  Two examples of vector fields, showing position dependent vectors. 

Assuming an origin in the center of the image, the field on the left is 

expressed by             and the field on the right is expressed by 

               . Images reproduced from work by Bollen and colleagues 

 [37]. 
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Figure A.3.  Multiple differential lengths along a curve. The differential lengths here 

represent infinitely small vectors used to accumulate the effects of a field 

along a line segment. Image reproduced from E&M course text  [58]. 

 

A differential length vector,       , is an infinitesimal segment of length along a curve 

represented by a vector tangent to this curve (Fig. A.3). A        is typically used in vector 

calculus to sum up the effects of a particular vector field over a given curve or path. 

Working in Cartesian coordinates, this is easily represented by 

                  , 

where   ,   , and    represent infinitesimal lengths in each Cartesian direction.  

Similarly, differential area vectors can be created to represent infinitesimal portions 

of planes. These are typically used in vector calculus to calculate the amount of flux, or 

field passing through a given area. The differential unit vector for any given planar area is 

perpendicular to that area. Thus, an area represented in the   -direction is given by  - and 

 -length components. Mathematically this corresponds to a cross product of the two 

differential length vectors in the   - and   - directions, where the magnitude is the area of 

the resulting parallelogram (here a rectangle), and the direction is perpendicular to the 

plane spanned by the original vectors (Fig 2.4a). 

                                        

This follows for each of the Cartesian directions, giving a completed differential area 

vector as follows 
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Just as with the curve, components are selected based upon what is needed to 

represent the given area. In many cases, textbooks develop the differential area as a scalar 

quantity and use a unit vector    to describe the surface, which is developed later in the 

context of the problem  [75].  

Differential areas have a particular importance when working with flux. The vector 

field will have more effect when acting perpendicular to a surface area than when acting 

parallel with it; this will specifically appear as a dot product with the differential area 

vector within integration. The differential area describing a surface is co-opted as a vector 

quantity in order to account for the amount of field perpendicular to a surface (parallel 

with the unit vector that describes a surface). 

Volume elements, typically used in vector calculus integration to describe sources of 

vector fields, are then given using each of the Cartesian differential lengths and the 

equation for the volume of a parallelepiped. By taking an area given by a cross product of 

 

(a) (b)  

Figure A.4.  Cartesian area and volume elements. (a) A differential area element made 

from differential lengths in the  - and  -directions. The unit vector of the 

area,   , is perpendicular to the given area. (b) A differential volume where 

the sides are given by differential length components along each axis. The 

sides of the differential volume element represent the different possible 

differential areas. The differential area vector is created via a cross product 

of the two lengths. 
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two vectors and performing a dot product with a third vector, one can find the volume of 

a parallelepiped with sides defined by the three vectors [Fig 2.4b]. 

                                          =dxdydz 

Given that unit vectors for any coordinate system are defined to be perpendicular to 

each other, the differential volume is commonly used and taught as a multiplication of 

each of the three differential lengths, bypassing the vector nature of the construction. The 

resulting volume is the same for any combination of (right-handed) cyclic combination of 

components. Additionally the differential volume element is a scalar quantity and does 

not have three independent parts in the way that the volume and area elements do.  

 

A2. Spherical coordinates and spherical differential elements 

Spherical coordinates are often invoked in the analysis of physical systems with 

spherically symmetric fields. Typical systems include a single point charge, sphere of 

charge, or shell of charge where the amount of charge at any distance   is the same as any 

other point given at the same distance (e.g., (0,1,1) and (1,0,-1) have the same value of   

but different Cartesian coordinates). In these cases any non-zero resulting electric fields 

at any given point are directed along a line between the center of the charge source and 

the given point.  

To this effect, spherical coordinates utilize a vector,  , measured from the origin to 

the point of interest (Fig. A.5). The coordinate system is then mapped by the length of  
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(a) (b)   

Figure A.5.  Notation for spherical coordinates. (a) Standard physics conventions for 

spherical coordinates. Image reproduced from E&M course text  [58]. (b) 

Standard mathematics conventions for spherical coordinates. Image 

reproduced from http://mathworld.wolfram.com/SphericalCoordinates.html 

 

the vector,  , and two angles. In physics,   is the polar angle, meaning it is measured 

between the radial vector and the  -axis. In terms of an Earth-like coordinate system, this 

measures the particular co-latitude of a point starting with zero at the northern pole 

(positive  -axis), measuring π/2 at the equator and ending with π at the southern pole 

(negative  -axis). The second angle,  , is called the azimuthal angle. It measures the 

rotational distance of the radial vector in the xy plane. This can range from 0 to 2π. In 

mathematics, the assignment of these variables is reversed, with   being the polar angle 

and θ the azimuthal. The distinction in convention between the two disciplines has 

previously been proposed as a potential area of confusion for students  [40]. For the 

purposes of this work, I will continue to use the physics definitions for particular 

coordinate systems. Despite the disciplinary discrepancy, in either representation, 

spherical coordinates allow us to adequately describe any point in space with a single 

ordered triplet of variables in this domain. 

Establishing the conventions of the coordinate system, one can write    terms of a 

Cartesian coordinates system. 
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Associated with this is a radial unit vector   , which points directly away from the 

origin in the direction of increasing coordinate (Fig. 2.5). Thus within spherical 

coordinates,  

       

maps to any point in space by defining a set of concentric spherical shells. To define any 

single point in particular, one must explicitly account for the measurements of the two 

angles used to define   :   and  . Similarly   , which defines the direction of increasing 

radius, is dependent upon location of the vector. Therefore, this unit vector is not static in 

the way Cartesian unit vectors were defined.  

Just as with the unit vector in the radial direction, two additional unit vectors,    and 

  , define the directions of increasing   and  , respectively. Given our condition of 

orthogonality of unit vectors, these vectors are tangent to a spherical shell but will also 

change direction whenever    is placed at different values for the angles. This dependence 

is made apparent when examining the relation between the spherical unit vectors and unit 

vectors along the original Cartesian axes we use to describe this system.  

                                

                                

                  

While construction of a differential length vector in Cartesian coordinates involves 

tracing out lengths in completely independent directions, a cursory observation reveals 

that lines traced out by changing either variable angle in spherical coordinates creates 

circular arcs. A change of   maps out a circumference of the sphere (also known as a 
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great circle) – a circle of a particular longitude, to return to our geographical analogy. 

The length of this arc is given by the formula, 

     

where l is arc length. Changes of the azimuthal angle   yield small circles, traced out 

on latitudinal rings. Further observation of the coordinate representation yields that 

circles traced out by changes of   are smaller closer to the  -axis. This is because the 

radius measured to the z-axis is amended to      , rather than the full radius r used 

before hand. This gives the following expression for arc length for any value of  : 

           

These expressions for arc length for one fixed angle become relevant when we 

consider the effects of differential changes in angles [Fig A.6]. While in Cartesian 

coordinates, one was able to consider a small change in a variable and equate it to 

differential length, spherical coordinates does not trace out rectangular-like coordinates. 

However, the differential length does remain a straight line due only to the infinitesimal 

nature of the change. Engaging in a limiting process, one can determine expressions for 

differential changes in variables as defining differential lengths.  

 

 

Figure A.6.  Construction of differential length components in spherical coordinates. A 

differential change in each variable produces a differential length 

component traced by the vector,   . Image reproduced from E&M course text 

 [58]. 
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Accounting for a small change in the radial direction yields a simple   . For arc 

lengths, differential shifts in the angle yield differential lengths in those directions. Thus, 

one can construct the following differential length vector: 

                         

The differences resulting from a comparison to Cartesian coordinates are again a result of 

the need to consider infinitesimal arc lengths. Construction of further differential 

elements, however, retains the same procedural aspect and only requires attention to the 

inclusion of the spherical scaling factors.  

The cross product of the two differential lengths in the   - and   -directions results in 

an infinitesimal portion of the surface area of a sphere. This differential area vector points 

in the   -direction and has a magnitude                   [Fig A.7a]. This area is 

most commonly used in E&M when considering spherical charge distributions, which 

produce radial electric fields. Doing this requires recognizing that a centered spherical 

shell will mean that the radial field is perpendicular to the surface at all points, then 

recognizing which differential lengths describe that surface.  

However, just as in Cartesian coordinates, we can continue the combination of 

differential length elements to describe differential areas in the two other directions, 

resulting in the following generalized expression for a differential area vector: 

                                     

While differential areas in the   - and   -directions are not commonly used when problem 

solving in physics, the recognition of how to derive them is pertinent to    construction. 

This derivation is more relevant for differential areas in cylindrical coordinates, where 

each of the three possible   s is used in various situations. 
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A spherical differential volume is then found by taking the volume of a 

parallelepiped, as shown in Cartesian coordinates. A physical representation is illustrated 

in Figure A.7b. A simple multiplication of the three length components yields the same 

differential volume element: 

                

Notably, the representations of the differential area and volume elements typically 

depict the scaling factors written to the left of the expression followed by the differential 

variables in coordinate order. While this represents a simplified mathematical form, it 

hides the origins of the particular length terms.  

 

(a)   (b)  

Figure A.7.  Spherical differential area and volume elements. (a) Examples of differential 

areas in spherical coordinates.     depicts the differential areas for the 

surface of a sphere and is constructed as a product of two differential length 

components representing changes in each of the angles. Image reproduced 

from E&M course text  [58]. (b) A differential volume in spherical 

coordinates constructed as a product of each differential length component.
3
 

The sides of the differential volume element represent the different possible 

differential areas. The differential area vector is created via a cross product 

of the two lengths. 

 

 

                                                 
3
 Note that here the curving nature of the sides is exaggerated to depict the need to 

consider a differential arc length. The    is shown to establish the outward direction. 

While it represents the unit vector for the differential area of a spherical shell, the 

differential volume element in a scalar quantity. 
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A3. Cylindrical coordinates and cylindrical differential elements 

Cylindrical coordinates are another of the common coordinate systems used to 

describe physical systems in E&M, used to analyze line charges and a wealth of current-

carrying wires in magnetostatics. These systems contain two-dimensional radial electric 

fields and curling magnetic fields, respectively. Cylindrical coordinates become useful in 

these cases as they leverage two dimensional polar coordinates and extends three 

dimensionally using a Cartesian axis, typically considered, but not limited to, the  -axis 

(Fig. A.8). Just as with spherical coordinates, typical mathematics convention differs 

from that of physics. While mathematics conventions make use of variable notation for 

two-dimensional polar coordinates (where disciplines commonly agree on   and  ), for 

the purposes of this work, the author will use Griffiths’s notation  [58], where   gives the 

radius into the   -plane and   measures the polar angle. Using this coordinate system, 

one can represent any point in space in terms of Cartesian unit vectors as 

                      . 

 

(a)  

Figure A.8. Notation for cylindrical coordinates. (a) Standard physics conventions for 

cylindrical coordinates. Image reproduced from E&M course text  [58]. (b) 

Standard mathematics conventions for cylindrical coordinates. Image 

reproduced from http://mathworld.wolfram.com/CylindricalCoordinates.html 
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Within this coordinate system, the same vector is expressed as 

          , 

accounting for a position along the z-axis coupled with a circle traced out at that radius. 

Just as spherical coordinates allowed the definition of concentric spherical shells, 

defining cylindrical coordinates allows one to think about either circles or cylindrical 

shells centered on an axis. 

Further analysis reveals that while    is now a static unit vector, always pointing in the 

direction parallel to the  -axis,    and    are both dynamic in that they are dependent on 

the measurement of  . The specific relationship is drawn out when decomposing the unit 

vectors into the Cartesian axes: 

                 

                  

The complete vector form of the differential length element can be arrived at by again 

considering lengths traced out by differential changes in each of the three variables. This 

is now a simpler process than in spherical coordinates in that it only needs to account for 

one arc length when a change is made in the   -direction:  

                   . 

The differential areas are constructed as before and can again be compiled into a 

larger vector: 

                          . 

What differs here from spherical coordinates is that each of these differential area 

components is eventually used individually in E&M [see Chapter 7 for description of 

tasks using various differential areas]. Whereas in spherical coordinates it may be easier 
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to recall the   -component of the differential area for problem solving, a problem making 

use of cylindrical coordinates requires students to understand which component is 

relevant given the physical systems (i.e., what differential lengths account for the surface 

they need to describe). 

 Lastly, combining all of the differential length elements, the differential volume 

element takes the form (Fig. A.9): 

           

Just as with spherical coordinates, the typical expression of the volume element 

separates the scaling factors, obscuring the original expression of the differential lengths.  

 

Figure A.9. Cylindrical differential volume element. The sides of the differential volume 

element represent the different possible differential areas. The differential 

area vector is created via a cross product of the two lengths. 
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APPENDIX B - INTERVIEW TASKS 

B1: Schmerical task 

Consider the following coordinate system measured using the following variables:  

M: 0 → ∞ 

α: -π/2 → π/2 

β: 0 → 2 π 

  

i) Does this depict a feasible coordinate system and if it is valid what type of situations 

(kinds of problems) would it be appropriate for? 

ii) Construct a generic differential length element for this system.  

iii) Construct a differential volume element for this coordinate system.  

iv) Check that the volume element is correct. 
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B2: Check solution task 

Consider an infinite line of charge with a constant linear charge density, λ . Student B is 

working a homework problem to find the change in potential from radius e to a radius 

f>e. Find any errors that exist in Student B's reasoning.  

 

Student B's Solution: 

To solve for the electric field, imagine a Gaussian surface a radius r from the surface. 

 

                                   
 

 

  

 

         

             
 

  
 

 

  
   

Thus     
 

    

 

 
   

And  V(f)-V(e)               
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B3: Flux task  

Consider a wire lying along the z-axis with constant current,  , in the direction indicated 

in the figure.  

The magnitude of the magnetic field is         
    

   
 , where    is a constant and s is the 

distance from the wire.  

a)                     b)   

 

What is the magnetic flux through a square loop (side length l), if the first side is a 

distance m from the wire?  

 

 

[If student’s use Cartesian coordinates]  

How would your answer change if the loop was rotated out of the plane by some angle?  
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B4: Spiral task 

Consider a charge, Q, located at the origin.  

A test charge is moved along the following path given by r = 2θ/π as shown in the 

following diagram from (4,0,0) to (0,0,-7).  

 

i) What is the differential length,       , for the path along which the charge is moved? 

ii) What is the change in electric potential experienced by the test charge? 
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B5: Charged sheet task 

You have a circular sheet in the yz-plane with a constant surface charge density, σ, and 

radius  .  

 

Set up an expression to solve for the electric field a distance,  , far from the center of the 

sheet. 
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APPENDIX C – UPDATED LENGTH TUTORIAL SEQUENCE 

For the first portion of the tutorial sequence focusing on differential length 

construction, there is an attached pre-tutorial homework (Appendix C1). This assignment 

presents schmerical coordinates and asks students to reason about the feasibility of the 

system as was done in the first part of the interview task (section 5.1). This is designed to 

prepare students for working within the unfamiliar schmerical coordinate system. A 

second task was added to the pre-tutorial homework asking students to derive an 

expression for the distance traveled by two cars around a circular track at different radii. 

The purpose of this task is to refamiliarize students with the ideas of arc length before 

they applied it in such an unfamiliar context.  

The length tutorial (Appendix C2) was also greatly augmented to provide a more 

structured differential length construction in the second iteration. The largest difference 

was the inclusion of a physical manipulative, motivated by research showing student 

difficulties reasoning about 3D objects from 2D images  [84,85] and in part by observing 

students in interviews and in our previous tutorial implementation be challenged by 

considering motion in 3D space from 2D images. Each group is now provided with a 

rubber ball (     cm) that could be drawn on with erasable markers. Students are 

instructed to draw latitude and longitude lines, which are explicitly connected to 

measurements of alpha and beta in the schmerical coordinate system. This change allows 

students to actually consider and interact with motions at a fixed radius along the surface 

of the ball. Additionally, a small task is added to have students compare unit vectors at 

two different locations, as students have been shown to struggle with defining unit 

vectors in two dimensional coordinates  [43]. 
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The length task then asks students to describe changes in each variable direction and 

construct length components as before. In line with work on conceptual blending [76] 

(Chapter 8), this tutorial sequence attends to the specific structural components of the 

differential length vector and attempts to have students build the associated contextual 

information related to arc length and projection. For the angular components, this updated 

tutorial includes a discussion that compared lines of longitude for the   -component and 

latitude for the   -component. The result of such a task shows how, for fixed changes in 

alpha, longitude lines remain the same at different locations, but that lines of latitude 

(changes in the  -direction) are dependent on the value of alpha at which the change is 

measured. This leads students toward the inclusion of the trigonometric function as a 

scale factor for the beta-hat component. For each angular component, students are asked 

to express a large change on the physical surface of the ball, then find an expression for a 

differential change in the same direction. 

After constructing the three components, students are asked to express the total 

differential length vector and compare this to that for spherical coordinates. At this point, 

a student who has correctly expressed the schmerical element would say the 

trigonometric function had changed, but to a student who has used spherical coordinates 

as a means to construct components they are the same. The purpose of this step is to 

allow students to engage in a sense-making task by employing a coordinate system with 

which they were more familiar.  

The post-tutorial homework (Appendix C3) asks students to construct a differential 

area element for the surface of a sphere in schmerical coordinates, then asks how this 

related to the terms in the total differential length vector. The purpose of this is to help 
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students’ recognize that the area elements can be constructed from length elements. A 

second task was added to the post-tutorial homework in which students are explicitly 

asked to use ideas from the tutorial to construct the length elements for spherical, 

cylindrical, and Cartesian coordinates as a way to cement ideas within the more familiar 

coordinate systems, but also to prepare students for the area tutorial designed to be 

implemented the following class.  
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C1: Pre-tutorial HW 
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C2: Differential length vector tutorial 
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C3: Mid-tutorial HW 
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APPENDIX D – AREA TUTORIAL 

 

Following the results of the interviews dealing with differential areas within the 

context of physics, a second tutorial activity as a companion to the schmerical length 

tutorial (Appendix C). This tutorial (Appendix D1) seeks to guide students to explicitly 

connect differential area elements to the product of associated length elements, which 

several students productively employed in interviews. 

This activity begins by having students define an area vector for a flat plane using a 

grid-marked sheet of paper at the end of the packet. This portion of the tutorial is adapted 

from the beginning of the “Electric Field and Flux” tutorial which builds students’ 

understanding of a differential area vector  [65]. Students then define a differential area 

for a gridded region, using the appropriate coordinate system (Cartesian). At this point, 

the mathematical relationship for the area between two vectors is given,          

      , and students are asked to interpret what these vectors would be for the 

previously determined differential area. After doing this for a Cartesian coordinate 

system, students are given a polar coordinate grid and again asked to determine the 

differential area and to connect that expression to the equation for the area between two 

vectors. This shows that a polar differential area can be constructed using an arc length as 

one of the differential vector components. 

Expanding this into three dimensions, this tutorial makes further use of physical 

manipulatives. Students are instructed to take the sheet of paper and roll it into a cylinder 

in order to discuss the differential area that would be created for this surface. Likewise, 
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the ball from the schmerical tutorial is used for the construction of a spherical differential 

area element. 

This tutorial also addresses the disconnect between vectors having to represent 

straight lines and flat planes. As these elements are differential quantities, they can be 

treated as straight lines and flat planes even though they represent curved dimensions. 

Then as they are accumulated over a surface, we arrive at the curved shapes dictated by 

the symmetry of E&M. 

The last section of the tutorial addresses the idea of a coordinate system having 

multiple differential area elements by eliciting students’ construction of the less 

commonly used differentials by having them multiply other length components as a way 

of cementing the construction of area vectors.  
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D1: Differential area vector tutorial 
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